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ABSTRACT

While traditional time-series classifiers assume full sequences at inference, practi-
cal constraints (latency and cost) often limit inputs to partial prefixes. The absence
of class-discriminative patterns in partial data can significantly hinder a classi-
fier’s ability to generalize. This work uses knowledge distillation (KD) to equip
partial time series classifiers with the generalization ability of their full-sequence
counterparts. In KD, high-capacity teacher transfers supervision to help student
learning on the target task. When the generalization gap is due to limited parameter
capacity, matching with teacher features has shown promise. However, when
the generalization gap stems from training-data differences (full versus partial),
the teacher’s full-context features can be an overwhelming target signal for the
student’s short-context features. To provide progressive, diverse, and collective
teacher supervision, we propose Generative Diffusion Prior Distillation (GDPD),
a novel KD framework that treats short-context student features as degraded ob-
servations of the target full-context features. Inspired by the iterative restoration
capability of diffusion models, we learn a diffusion-based generative prior over
teacher features. Leveraging this prior, we (posterior-)sample target teacher rep-
resentations that could best explain the missing long-range information in the
student features and optimize the student features to be minimally degraded rel-
ative to these targets. GDPD provides each student feature with a distribution
of task-relevant long-context knowledge, which benefits learning on the partial
classification task. Extensive experiments across earliness settings, datasets, and
architectures demonstrate GDPD’s effectiveness for full-to-partial distillation.

1 INTRODUCTION

Many real-world applications in healthcare and industrial automation rely on supervised classification
of time series, where the goal is to accurately assign a class label to a given sequence. While
traditional models assume access to the entire sequence during inference, this assumption often
breaks down in practical settings. In many scenarios, models see only a prefix of the time series
due to constraints such as latency, cost, or sensor dropout. For instance, in emergency arrhythmia
detection from ECG, decisions may need to be made from 5–10 seconds of data rather than a full
60-second recording. However class-discriminative patterns may emerge at any point in the sequence,
and missing these patterns under partial observability reduces class separability, causing classifiers
trained and operated on partial data to generalize poorly. This work investigates how supervised
classifiers, trained and operated on partial time series can be effectively equipped with the capacity to
generalize from full-length series.

For a partial (prefix) time series, the true class is ambiguous since multiple classes can appear
identical in the early timesteps before diverging later. Therefore, when training a classifier on partial
data, hard-label supervision alone can be misleading, causing the model to overfit to spurious early
cues and form unstable decision boundaries. To prevent this, we propose to provide additional
regularization signal from a teacher model trained on full-length sequences, inspired by Knowledge
Distillation (KD). KD, first introduced in Buciluǎ et al. (2006); Hinton et al. (2015), is a training
paradigm in which knowledge is transferred from a teacher to guide the training of a student network.
The teacher is a model that learns representations which generalize well—an ability acquired through
computationally intensive training or greater architectural capacity. This ability can be distilled into a
student, which may lack the inductive biases to discover such representations from training data alone,
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often due to limited training resources or parameter capacity. The most widely adopted approach
to KD trains the student to match the teacher’s output logits, providing an additional regularization
signal during optimization on the target task (Hinton et al., 2015). Later works (Romero et al., 2015;
Park et al., 2019; Zagoruyko & Komodakis, 2016) extended this idea to match intermediate features
beyond the output logits.

However, these direct feature/logit matching KD methods were proposed to address the generalization
gap arising from differences in parameter capacity, with both the student and the teacher privileged
to see the same data. In contrast, when distilling knowledge from a teacher trained on full-length
sequences to a student trained on partial sequences, several fundamental concerns arise: 1) Can
the distillation technique transfer the teacher knowledge effectively? Even when the teacher
is a highly capable model with strong representational quality, the student may fail to properly
comprehend the transferred knowledge, leading to limited gains from KD (Cho & Hariharan, 2019;
Mirzadeh et al., 2020; Qiu et al., 2022; Stanton et al., 2021). Prior research has attributed this issue
to the capacity/architectural gap between teacher and student, and proposed intermediate “teacher-
assistant” models Mirzadeh et al. (2020); Son et al. (2021) and student-friendly teacher training (Park
et al., 2021; Rao et al., 2023; Cho & Hariharan, 2019). However, when the teacher and student are
exposed to different input spaces (e.g., full versus partial data), an inherent representational gap
is introduced even when the models have identical parameter capacity. In such scenarios, if the
distillation loss is poorly designed by directly enforcing alignment with the teacher’s full-context
features, it can overwhelm the student, which only encodes partial-context features, and thereby limit
its ability to effectively absorb the transferred knowledge.

2) Is a single teacher’s perspective diverse enough? Exposing students to diverse yet consistent
views of the same underlying information enhances generalization and fosters robust inductive
biases You et al. (2017); Allen-Zhu & Li (2020); Hossain et al. (2025). While existing works promote
diversity through teacher ensembles Allen-Zhu & Li (2020); You et al. (2017) or mutual supervision
among student ensembles Zhang et al. (2018); Furlanello et al. (2018), a key concern remains
whether supervision from a single model provides sufficient diversity of knowledge. Hossain et al.
(2025) demonstrate that multiple augmented teacher views can be generated from a single model by
perturbing its features with random noise. This increases knowledge diversity while avoiding the cost
of retraining multiple models. Providing diverse perspectives of teacher knowledge is particularly
important in full-to-partial distillation, where student features are degraded, incomplete, or ambiguous
compared to those of the teacher, as we do not want to overcommit to a single possible interpretation
of the missing or noisy information.

3) Is the knowledge faithful? KD transfers limited knowledge leading students with very different
predictive distributions from their teachers, hindering safe substitution (Stanton et al., 2021; Lamb
et al., 2023). Even though knowledge improves predictive accuracy, achieving good fidelity, the ability
of the student to match teacher predictions, with existing methods is extremely difficult (Stanton et al.,
2021). Stanton et al. (2021) observe that augmenting the distillation set with data samples not present
in the teacher’s training data increases the drop in distillation fidelity. Similarly, the training-data
mismatch that arises when the teacher is exposed to full-length data while the student is exposed to
partial data can make it more challenging for the student to match the teacher’s predictive distribution.

With these concerns in mind, we rethink distillation from a different lens and propose Generative
Diffusion Prior Distillation (GDPD). In GDPD, we view student representations learned from
partial sequences as degradations (partial measurements) of target teacher features derived from
full-length sequences. Inspired by the iterative restoration power of diffusion models (Kawar et al.,
2022), we train a diffusion model to serve as a generative prior over teacher features, capturing and
storing their statistical structure. Using this prior, we search within the space of teacher features
for target representations with optimal teacher knowledge, and train student features to become
minimally degraded relative to these discovered targets. Unlike conventional KD, which provides a
single teacher signal, we model knowledge as a distribution over target teacher signals. We discuss
how this distributional knowledge helps GDPD to address above three concerns of KD, exacerbated
in full-to-partial distillation, by generating teacher signals that 1) are dynamic and progressive with
respect to the student’s current capability, 2) provide stochastic diversity of the same features, and 3)
complete optimal knowledge through collective aggregation (Section 3.4).

In short, we make following contributions: 1) demonstrating that KD can equip early time-series
classifiers, operating on partial time series, with the generalization ability of classifiers trained on
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full-length time series, establishing this direction as a pioneer effort, 2) being the first to model teacher
knowledge as a generative distribution, formulating the target teacher–student feature relationship as
an ill-posed problem 3) introducing a novel KD framework, GDPD, to provide dynamic, diverse, and
collective knowledge for effective full-to-partial distillation, and 4) providing an in-depth analysis
and discussion evaluating GDPD and baseline KD methods in full-to-partial distillation.

2 PRELIMINARY

Knowledge Distillation. KD seeks optimal student parameters by jointly minimizing the task loss
LTask and a distillation loss LKD that aligns the student with a pre-trained teacher:

θ∗ = argmin
θ

λTask LTask(θ) + λKD LKD(θ), (1)

where λTask and λKD control the relative contributions of the two terms.

Diffusion Models. Given samples from the data distribution pdata, diffusion models are capable of
learning a parameterized distribution pϕ that approximates pdata and is easy to sample from Song et al.
(2020b). This is achieved through forward diffusion and reverse denoising processes. The Forward
Process is a Markov chain that gradually corrupts data z0 ∼ pdata until it approaches Gaussian noise
zT ∼ platent = N (0, I) after T diffusion steps. Corrupted latent variables z1, · · · , zT are sampled
from pdata with a diffusion process defined as a chain of Gaussian transitions:

q(z1:T | z0) =
T∏

t=1

q(zt | zt−1), q(zt | zt−1) = N
(
zt;

√
1− βt zt−1, βtI

)
,

with a fixed or learned variance schedule {βt}Tt=1. An important property of the forward nois-
ing process is that any marginal at step t has a closed form Ho et al. (2020): q(zt | z0) =

N
(
zt;

√
ᾱt z0, (1 − ᾱt)I

)
, with αt := 1 − βt and ᾱt :=

∏t
s=1 αs. Equivalently, any step zt

can be directly sampled from z0: zt =
√
ᾱt z0 +

√
1− ᾱt ϵ, with ϵ ∼ N (0, I). The Reverse Process

is a Markov chain that iteratively denoises a sampled Gaussian noise to a clean data. Starting from
zT ∼ N (zT ; 0, I), we learn a parameterized reverse process from latent zT to clean data z0, as a
chain of Gaussian transitions:

pϕ(z0:T ) = p(zT )

T∏
t=1

pϕ(zt−1 | zt), pϕ(zt−1 | zt) = N
(
zt−1; µϕ(zt, t), ΣϕI

)
.

The mean µϕ(zt, t) is primarily what we want to learn using a neural network Ho et al. (2020). The
variance Σϕ can be either time-dependent constants or learnable Nichol & Dhariwal (2021). A func-

tion approximator ϵϕ predicts the noise from zt and sets: µϕ(zt, t) =
1√
αt

(
zt − βt√

1−ᾱt
ϵϕ(zt, t)

)
.

Training minimizes the ℓ2 loss between the true forward noise ϵ and the predicted noise ϵϕ(zt, t):

Ldiffusion(ϕ) = E
[
∥ϵ− ϵϕ(zt, t)∥22

]
. (2)

Sampling/Guided Sampling During inference, sampling is performed by running the learned reverse
process starting from Gaussian noise. Guided sampling augments this process with external signals
(e.g., labels or features) to steer generation toward desired conditions Dhariwal & Nichol (2021).
Inverse Diffusion Problem Given a degraded measurement y = D(z0), D defines the degradation
of the clean signal z0, the objective is to recover z0 by sampling from the posterior p(z0 | y) ∝ p(y |
z0) pϕ(z0), where pϕ(z0) is a diffusion prior learned from data (Kawar et al., 2022).

3 METHOD

3.1 PROBLEM FORMULATION

Let D = {(xi,yi) | i = 1, . . . , N} denote a time series dataset with N samples, where xi ∈ RM×L

is a time series with M channels and L time steps, and yi ∈ RC is the one-hot encoded label
corresponding to the ground-truth class c ∈ {1, . . . , C}. We henceforth write a generic sample as
x. We denote by xe ∈ RM×e a partially observed time series containing only the first e < L time
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steps. While our main focus is on timestep-wise partialness, i.e., observing only a prefix of the
sequence, we also evaluate the case where channel-wise partialness is present, with only a subset of
channels m < M observed, with xe,m ∈ Rm×e. The goal of this work is to learn student classifier
Sθ that can effectively map early, partially observed inputs xe to their corresponding labels y, while
leveraging the knowledge of a teacher T trained on the full-length sequences x. We seek optimal
student parameters θ(e)

∗ by minimizing
LTask(θ) = E(x,y)∼D

[
ℓCE(Sθ(xe), y)

]
, and LKD(θ) = Ex∼D

[
ℓ(ϕt(x), ϕs(xe;θ))

]
.

Here, ℓCE is the cross-entropy loss, and ϕt, ϕs are functions to be determined that capture teacher
and student behavior on full and partial inputs, respectively. By minimizing the discrepancy measure
ℓ(·, ·), we encourage the student to behave on partially observed inputs as the teacher would on the
full-length sequences.

3.2 GENERATIVE DIFFUSION PRIOR DISTILLATION

We write the student model as Sθ = Shead
θ ◦ S feat

θ , where S feat
θ denotes the mapping up to the

feature extraction layer k, and Shead
θ denotes the subsequent mapping from these features to the final

prediction. Training the student on the partial sequences De = {(xe,y)}N , we define S feat
θ (xe) =

zshort as the intermediate feature of the partially observed input xe, referred to as the short-context
feature. Let us assume there exists a feature z∗long-ideal, which encodes the optimal long-range
information required for making accurate predictions from xe, as would be obtained if the model had
access to and were ideally trained on full-length sequences. During training, our goal is to guide the
student model such that it produces features zshort that resemble z∗long-ideal as closely as possible,
as if its predictions were informed by the full-length sequences, with the aim that this behavior
generalizes to partial sequences at inference time.

Teacher Knowledge as a Generative Prior. We denote by zlong the features of a teacher model
trained on the full-length sequences D, referred to as the long-context features. To capture the
teacher’s knowledge, we train a diffusion model on zlong to approximate the distribution of long-
context features, p(zlong). We assume there exist features (possibly multiple) within the teacher’s
feature manifold that can provide useful hints of z∗long-ideal. We call these hint features and denote
them by zlong-hint ∼ p(zlong). We start by viewing zshort as a degraded or partial measurement of
the underlying clean feature z∗long-ideal, which contains the optimal long-context knowledge and each
zlong-hint as a valid approximation (or completion) of z∗long-ideal. The diffusion model trained on
the teacher feature space serves as an effective prior pϕ(zlong), capturing the statistics of plausible
long-context features. Using this prior knowledge, our goal is to guide the student model to produce
zshort that retains as much information as possible about its underlying clean feature z∗long-ideal.
Accordingly, we aim for the student features to be minimally degraded relative to the hint features
zlong-hint, and thereby closer to z∗long-ideal.

To define the relationship between student features and hint features, we model the diffusion posterior
sampler p̃diff(zlong | zshort), where we utilize the pre-trained generative diffusion prior pϕ(zlong) to
search in the space of zlong, for an optimal zlong that best matches zshort, regarding zshort as degraded
observation of zlong. A posterior reconstruction sample ẑlong ∼ p̃diff(zlong | zshort) represents a
plausible completion (clean signal) consistent with the partial information present in zshort. We
argue that, if the student produce features that preserve sufficient information of hint features, that is
when zshort is minimally degraded to zlong-hint, then student features should recover hint features
as their posterior reconstruction samples. In other words, if zshort are sufficiently informative with
valid long-context knowledge, then they should provide the right conditioning to recover one such
representation, zlong-hint, as their plausible completion:

ẑ∗long ∼ p̃diff(zlong | zshort;θ∗) =⇒ ẑ∗long ≈ zlong-hint, (3)
where θ∗ is the optimal student parameters, what we are after. Recall that hint features are functionally
defined as teacher features that contain relevant long-context information necessary to assign the
correct prediction to xe. We characterize hint features by this predictive property, which posterior
reconstructions are trained to emulate under optimal student parameters. Therefore, during training
we optimize the student features by constraining their posterior reconstructions to output the correct
label:

LGDPD(θ) = E(x,y)∼D

[
ℓCE

(
Shead
θ (ẑ

(j)
long) ,y

)]
, ẑlong ∼ p̃diff

(
zlong

∣∣ zshort = S feat
θ (xe)

)
(4)
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Conditional Generation with Unconditional Prior. To enable sampling from p(zlong | zshort)
using an unconditional diffusion model, we adapt the reverse process to condition on zshort during
inference, in line with guided sampling. Typically, guided sampling in inverse diffusion modifies the
score function at each reverse step using an approximation of the likelihood gradients Chung et al.
(2023). In contrast to those settings, where the degraded measurements are fixed, our conditional
signals are subject to optimization, which prompts us to require a simple and direct form of guidance
from them. Therefore, we adopt a straightforward conditioning strategy by initializing the reverse
diffusion process directly based on zshort. Specifically we match each student feature zshort to the
initial noisy step T by fusing Gaussian noise, and use this initialization to start the reverse process:

zlong,T = α zshort + (1− α) ϵ, ϵ ∼ N (0, I) (5)

where α is the fusion weight between the two terms, which can be treated as a fixed hyperparameter
or learned feature-wise during the distillation process. We choose to learn α during distillation, as this
allows different features to be fused with different noise levels so that each is mapped appropriately
to the initial noise step. With this initialization, reverse process is conditioned on zshort, allowing
the algorithm to explore the feature manifold, ideally staying close to the starting point zshort, so
that it converges to a plausible clean feature ẑlong consistent to initialization. Over the course
of optimization, posterior sampling connects different long-context features to a student feature
(Equation (4)). This enables the student feature to evolve toward optimality by leveraging their
collective knowledge, which can better approximates the knowledge of z∗long-ideal. An overview of
this proposed method is illustrated in Figure 1 (a).

Training. Our student training proceeds in two phases, separated by a warm-up epoch Ewarm.
For ep < Ewarm, we train only the diffusion prior on teacher features with the student initialized
on the partial classification task. For ep ≥ Ewarm, the student is optimized to extract long-context
knowledge using the learned diffusion prior.

Ltrain =

{
LTask(θ) + Ldiffusion(ϕ), ep < Ewarm,

λTask LTask(θ) + λKD LGDPD(θ), ep ≥ Ewarm.
(6)

3.3 “KNOWLEDGE” AS A DISTRIBUTION

Conventional KD (deterministic / point knowledge). KD treats the teacher signal that each student
state (feature, soft label, or relation) should match as a point target. For a student state Zs = zs,
the “knowledge” is taken to be a single teacher state: k⋆ = zt, with zt the corresponding observed
teacher state (equivalently, PK|Zs=zs

= δk⋆). Supervision then enforces alignment of the student
state with this single target, with a discrepancy loss: ℓ(zs;θ,k⋆).

Common instances include:

(Feature KD) zs = fs(x;θ), k⋆ = ft(x), ℓ = ∥fs(x;θ)− ft(x)∥2,
(Logit KD) zs = ps(· | x;θ), k⋆ = pt(· | x), ℓ = KL

(
pt(· | x) ∥ ps(· | x;θ)

)
,

(Relational KD) zs = r(fs(x;θ), fs(x
′;θ)), k⋆ = r(ft(x), ft(x

′)), ℓ = (zs − k⋆)2.

GDPD (generative / distributional knowledge). In contrast, GDPD provides a distribution of
plausible teacher signals for each student state, consistent with what the student currently knows.
Rather than treating knowledge as a single target, GDPD models it as a distribution from which the
student can learn to sample in order to acquire optimal and diverse task-relevant knowledge. Formally,
for a student state zs, the “knowledge” is a distribution over teacher states: k ∼ p(K | Zs = zs).
More robust supervision can be defined as the expected loss (approximated by a Monte Carlo average
over J samples) under this distribution:

Ek∼p(·|zs)

[
ℓ(zs;θ, k)

]
≈ 1

J

J∑
j=1

ℓ
(
zs;θ, k

(j)
)
, k(j) ∼ p(· | zs). (7)

Since each forward pass in GDPD explores a different noise trajectory, the stochasticity across
training naturally covers multiple samples over time. Therefore, it is sufficient in practice to use
J = 1. See ablation over J in the Section 4.2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

X

Xe

T

S(θ)

W Ffuse(Zs, ε, α) Q

Diffusion Prior
P(φ)

YLTask

W

Zs

ẑt ~ p(zt | zs)

Zt

LGDPD

Ldiffusion

(a) Proposed GDPD Framework

S : Student  |  T : Teacher  |  W : Linear weights  |  Q : Weights for noise fusing block
X : Full inputs |  Xe : Partial inputs  |  Y : Targets   

(b) KD vs GDPD

KD: uses a direct 
corresponding teacher signal

GDPD: uses a collection of 
progressive teacher signals

Zs(θT)

Zt
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Zs(θT+1)
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ẑt

Figure 1: Depiction of (a) the proposed GDPD framework, and (b) a comparison of KD vs. GDPD.
KD provides a single static teacher signal, whereas GDPD provides each student feature with a
collection of diverse and progressive teacher signals over the course of training.

3.4 HOW GDPD ADDRESSES FUNDAMENTAL KD CONCERNS, EXACERBATED IN
FULL-TO-PARTIAL DISTILLATION

How Does GDPD Transfer the Teacher Knowledge Effectively? Since features derived from full
and partial observations are not directly aligned in representation space, directly enforcing the partial-
context student states zs to match full-context teacher states k∗ = zt as point targets can overwhelm
the student. GDPD alleviates this gap by providing dynamic and progressive teacher signals. Each
student state zs samples its target teacher signal k ∼ p(K | Zs = zs;θ

t) from the teacher manifold,
consistent with the student’s current knowledge as reflected in zs;θ

t during each forward pass. In
this way, the teacher signal adapts over the course of training, allowing the student to progressively
refine its ability to recover correct teacher features and ultimately absorb richer knowledge.

How GDPD Provide Diverse Teacher Perspectives Using a Single Model? When the student
operates with degraded, incomplete features compared to the teacher, overfitting to a single teacher
perspective can be risky, i.e., a single set of features (or logits) binds only one possible interpretation
of the missing or noisy information. One possible way to create diverse perspectives from a single
teacher is through stochastic diversity, i.e., generating multiple noise-perturbed variants of the same
feature (Hossain et al., 2025). However, hand-designed perturbations may produce distant, irrelevant
teacher signals, outside the meaningful teacher manifold. GDPD use diffusion models which naturally
works by generating samples in the close vicinity of the target distribution Chen et al. (2024). Unlike
randomly perturbed feature variants, the diversity of diffusion-generated teacher signals in GDPD
is controlled: they are not arbitrary but sampled as plausible completions of the student features,
k ∼ p(K | Zs = zshort).

How Does GDPD Transfer Faithful Knowledge? When the teacher’s training data and the
distillation set differ, the knowledge from direct corresponding teacher signals zt alone becomes very
limited, making it difficult to faithfully replicate (predictive distributions of) the teacher (Stanton
et al., 2021; Parchami-Araghi et al., 2024). In GDPD, as the student is trained toward optimal states,
each student state interacts with a collection of teacher signals

{
k(j)

}
;k(j) ∼ p(K | Zs = zs),

which collectively construct comprehensive long-range knowledge for zs. See Figure 1 (b). Unlike
the supervision from a single corresponding teacher signal k∗ = zt, this collection better reveals the
statistical structure of teacher features (class separability, geometric relationships between features).
We validate faithful knowledge empirically in Section 4.1.

Base Base-KD Fits GDPD
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(a) Earliness = 0.2

Base Base-KD Fits GDPD
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(b) Earliness = 0.4
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80
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(c) Earliness = 0.5

Base Base-KD Fits GDPD
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(d) Earliness = 0.8

Figure 2: Fidelity comparisons across methods and earliness levels, with each boxplot summarizing
12 UCR datasets. Fidelity is measured as teacher–student top-1 agreement on the test set.
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Table 1: Summary of performance across different earliness levels on 12 UCR datasets. Best values
are in bold. Rows marked with ↓ indicate lower-is-better.

Earliness=0.2L
Base BaseKD Fits GDPD

Avg.AUC-PRC 63.64 69.23 67.47 73.83
Avg.Rank ↓ 3.50 2.42 2.92 1.17
Num.Top-1 0 2 0 10
Wins/Draws 12 10 12 –
Losses ↓ 0 2 0 –

Earliness=0.4L
Base BaseKD Fits GDPD

70.44 78.03 75.36 81.70
3.58 2.50 2.67 1.25

0 1 1 10
12 11 10 –
0 1 2 –

Earliness=0.6L
Base BaseKD Fits GDPD

76.79 83.70 81.15 86.00
3.58 2.58 2.42 1.33

0 3 2 8
12 10 10 –
0 2 2 –

Earliness=0.8L
Base BaseKD Fits GDPD

77.79 84.78 82.74 89.02
3.67 2.42 2.83 1.08

0 0 1 11
12 12 11 –
0 0 1 –

Table 2: Comparison of distillation methods at earliness e = 0.5L on 12 UCR datasets. Test-fidelity
is reported as average top-1 agreement. Rows marked with ↓ indicate lower-is-better.

Base Base-KD Fits VID DKD Attention DT2W RKD RKD-Angle GDPD

Avg. AUC-PRC 71.6 78.14 77.28 77.19 74.29 75.47 55.32 79.89 79.26 84.64
Test-Fidelity 66.75 72.13 69.39 71.32 69.36 69.20 52.59 74.34 71.22 77.58
Avg. Rank ↓ 7.58 4.50 5.83 5.00 6.00 5.42 8.83 4.83 5.00 1.92
Num. Top-1 0 2 0 0 1 0 0 2 2 5
Num. Top-3 0 6 3 3 2 2 0 4 4 12
Wins/Draws 12 10 12 11 11 11 12 9 9 –
Losses 0 1 0 1 1 1 0 3 3 –

4 EXPERIMENTS

To reach generalizable conclusions across partialness levels, architectures, datasets, and runs, we
evaluate multiple settings. Experiments are conducted on the UCR univariate (Dau et al., 2019), UEA
multivariate (Bagnall et al., 2018), and a real-world PhysioNet mortality dataset (Silva et al., 2012).
Notation Net1 → Net2 denotes teacher–student distillation. All students use the same training
protocol, and results are averaged over five runs. Full experimental setup details are in Section A.2.

4.1 MAIN RESULTS

GDPD is Effective Across Varying Degrees of Partialness. We generate time series with varying
earliness by truncating at e ∈ {0.2L, 0.4L, 0.5L, 0.6L, 0.8L,L}, where L is the full length. The
teacher is trained on full-length series, while students are trained on truncated series using KD from
logits (Base-KD) (Hinton et al., 2015), features (Fits) (Romero et al., 2015), and GDPD, along with a
baseline student (Base) trained without distillation. Results for LSTM3-100 → LSTM3-100 on 12
UCR datasets are shown in Table 1 (and Table 19). At each earliness level, distilled students achieve
higher AUC-PRC and lower rank than the Base student, showing that full-context teacher knowledge
improves partial classification. GDPD attains the best AUC-PRC and rank, winning on over 80% of
datasets, demonstrating its effectiveness over direct feature- and logit-KD across partialness levels.

GDPD Outperforms Existing KD Variants. To further compare GDPD with different KD variants,
we construct students using RKD (Park et al., 2019), Attention (Zagoruyko & Komodakis, 2016),
DKD (Zhao et al., 2022), DT2W (Qiao et al., 2023), VID (Ahn et al., 2019), Base-KD, Fits, and Base.
Performance is evaluated at partialness e = 0.5L on 12 UCR datasets for LSTM3-100 → LSTM3-100
(Table 2). All students improve over the Base, showing that they benefit from long-context knowledge.
GDPD outperforms all methods, achieving top-3 performance on all datasets with an average rank of
1.92, while no other method achieves a rank close to 2.

GDPD Improves Student Fidelity Beyond generalization across earliness levels, we also assess
whether GDPD yields students with higher fidelity. Figure 2 summarizes student fidelity, measured as
average top-1 agreement over 12 UCR datasets for LSTM3-100 → LSTM3-100 at different earliness
levels. This metric is the percentage of instances where the student’s top-1 prediction (from partial
data) matches the teacher’s top-1 prediction (from the full sequence), directly quantifying how well
the student replicates the teacher’s behavior Stanton et al. (2021). In all settings, GDPD students
achieve higher fidelity than baseline KD, demonstrating its effectiveness in faithfully transferring
desirable teacher behavior under different degrees of partialness.

GDPD is Robust with Channel-wise Partialness. We evaluate GDPD’s robustness under channel-
wise partialness using 12 UEA multivariate datasets with two settings: 1) time-wise partialness only
(e = 0.5L), and 2) combined time- and channel-wise partialness (e = 0.5L,m = 0.5M ), where
half the channels are removed (Table 3). GDPD consistently achieves the highest AUC-PRC, lowest
average ranks, and most top-1 wins, confirming its robustness to channel-wise partialness.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results on 12 multivariate datasets under: 1) time-wise (e = 0.5L), and 2) time+channel
(e = 0.5L,m = 0.5M ) partialness. Each cell reports Avg. AUC-PRC / Avg. Rank / #Top-1 wins.

Inception55-32 → Inception55-32 LSTM3-100 → LSTM3-100

Time-wise Time+Channel Time-wise Time+Channel

Base 86.22 / 3.25 / 0 76.58 / 2.92 / 0 79.41 / 3.50 / 0 68.75 / 3.42 / 0
Base-KD 88.77 / 2.00 / 3 77.92 / 2.08 / 3 81.96 / 2.50 / 3 71.11 / 2.75 / 1
Fits 85.40 / 3.17 / 2 75.34 / 3.42 / 1 81.95 / 2.42 / 2 71.69 / 2.33 / 2
GDPD 90.82 / 1.33 / 9 80.24 / 1.33 / 10 83.87 / 1.58 / 7 73.60 / 1.42 / 9

Table 4: Model compression results under two earliness levels (e = 0.5L,L) and two compression
targets. Each cell reports Avg. AUC-PRC / Avg. Rank / Num. Top-1 wins across 12 UCR datasets.

LSTM3-100 → LSTM1-8 LSTM3-100 → LSTM2-32

e = 0.5L e = L e = 0.5L e = L

Base 58.58 / 3.42 / 0 74.92 / 3.33 / 0 72.98 / 3.33 / 0 84.34 / 3.67 / 0
Base-KD 61.97 / 2.33 / 1 77.62 / 2.33 / 3 74.92 / 2.58 / 2 88.11 / 2.17 / 4
Fits 59.84 / 2.67 / 0 76.49 / 2.83 / 2 78.26 / 2.75 / 1 85.93 / 2.75 / 1
GDPD 72.76 / 1.17 / 11 78.83 / 1.42 / 7 83.67 / 1.33 / 9 89.84 / 1.25 / 9

Table 5: Self-distillation results under three network architectures (e = L). Each cell reports Avg.
AUC-PRC / Avg. Rank across 12 UCR datasets.

LSTM3-100 → LSTM3-100 Inception55-32 → Inception55-32 ResNet32-64 → ResNet32-64

Teacher 87.32 / 3.33 96.96 / 2.83 98.43 / 2.33
Base-KD 89.29 / 2.08 97.80 / 1.50 98.52 / 2.25
Fits 88.73 / 2.75 93.90 / 3.92 98.55 / 2.33
GDPD 91.21 / 1.58 97.97 / 1.25 98.58 / 1.25

Table 6: Results on the PhysioNet case study in terms of AUC-ROC, AUC-PRC, and Accuracy. Four
settings under e = 0.5L are considered: (1) main-task distillation, (2) downstream task (survival
≥ 100 prediction), (3) channel-wise partialness, and (4) balanced-teacher to imbalanced-student.

In-hospital Mortality
(e = 0.5L)

Survival ≥100
(e = 0.5L)

Channel Partialness
(e = 0.5L,m = 0.5M )

Balanced → Imbalanced
(e = 0.5L)

ROC PRC Acc. ROC PRC Acc. ROC PRC Acc. ROC PRC Acc.
Teacher 76.04 76.12 70.72 76.04 76.12 70.72 76.04 76.12 70.72 76.04 76.12 70.72
Base 70.21 68.70 65.41 67.80 65.58 62.78 60.38 59.52 55.50 75.96 65.44 72.18
Fits 73.54 72.50 67.03 68.61 66.61 63.48 59.84 59.79 56.04 76.84 65.66 86.18
GDPD 74.45 73.74 68.56 70.52 69.74 65.13 61.31 62.18 57.40 76.88 65.84 86.10

Table 7: Effect of warm-up epochs (Ewarm) on GDPD performance (AUC-PRC).

Ewarm 0 (frozen ϕ) 0 (unfrozen ϕ) 0 (joint) 10 50 100 200 300 400 600

AUC-PRC 83.12 85.56 89.72 87.4 97.13 95.31 95.83 97.26 96.78 83.90

GDPD is Effective in Model Compression. We evaluate GDPD’s effectiveness for model com-
pression under two scenarios: 1) compression with partialness (e = 0.5L) and 2) compression only
(e = L). Results for two compression targets in Table 4 show GDPD consistently achieves the highest
AUC-PRC, lowest rank, and most wins, confirming its effectiveness for compressed students.

GDPD Provides Effective Self-Distillation. When teacher and student architectures are identical
and no partialness is involved (e = L), our experiments correspond to self-distillation (Pham et al.,
2022). We evaluate GDPD under this setting in Table 5. GDPD achieves higher AUC-PRC and
lower rank than the teacher, surpassing them on most datasets. GDPD proves more effective for
self-distillation than vanilla KD. Justification for improvements: Even without a teacher–student
representational gap, GDPD exposes each student feature to multiple vicinal features (analogous to
feature augmentation), which helps the model generalize better while avoiding overconfidence.

GDPD Across Different Network Architectures. We also evaluate GDPD under 1) similar
teacher–student and 2) cross-architecture distillation. GDPD consistently achieves the highest
performance gains, demonstrating effectiveness in both settings (see Table 17).
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GDPD Transfers Long-Context Knowledge. We assess transfer of full-context teacher knowledge
by testing prefix-learned representations on the suffix (last 0.5L) using 1) a linear probe on a frozen
backbone and 2) zero-shot suffix evaluation. GDPD exhibits strong transferability, indicating effective
acquisition and transfer of long-context temporal knowledge (see Table 18 and Section A.3.4).

Real-World Case Study: Predicting In-Hospital Mortality. The PhysioNet Silva et al. (2012)
dataset contains electronic health records from ICU patients. The main task is to predict in-hospital
mortality using first 48 hours recordings after admission. We also derive an auxiliary downstream task,
survival ≥ 100 prediction, to evaluate cross-task distillation (see Section A.2.1). We train the teacher
on the main task using a balanced set of full-length data. In the first scenario, students are trained on
the same task with partialness (e = 0.5L). We then consider three additional scenarios introducing
further teacher–student heterogeneity: 1) training students on a downstream task (survival ≥ 100
prediction) with e = 0.5L; 2) training under channel-wise partialness (e = 0.5L,m = 0.5M ); and 3)
training on an imbalanced dataset with e = 0.5L. Table 6 indicates GDPD consistently outperforms
Base and feature-KD across time- and channel-wise partialness, cross-task distillation, and when
the class distribution of the distillation set differs from the teacher’s training data, highlighting
its robustness under heterogeneous real-world conditions. Cross-task gains show GDPD extracts
task-relevant knowledge more effectively than direct feature matching.

4.2 ABLATIONS AND HYPERPARAMETER STUDY

To gain insights into the role of each component in Equation (6), we conduct an ablation study on the
StarLightCurves dataset for LSTM3-100 → LSTM3-100 with earliness set to e = 0.5L.
Ablation on Phase Scheduling. Under disabled warm-up and diffusion training (Ewarm =
0, Ldiffusion(ϕ) = 0), freezing ϕ yields 83.12 AUC-PRC and training without freezing yields 85.56,
both near the Base (83.90), indicating GDPD provides no benefit without proper diffusion prior
training. With warm-up disabled, jointly training the diffusion prior (Ldiffusion + LGDPD) yields
89.72 AUC-PRC, suggesting coupling helps even without a warm-up. Next, we sweep Ewarm in
Table 7. At Ewarm = 600 = total epochs, training reduces to the task loss only, collapsing to the
Base (83.90). The best results emerge when the warm-up occupies roughly half of the training
epochs (e.g., 97.26 at Ewarm = 300). These findings show that 1) the diffusion prior is essential, 2)
phase-wise training improves GDPD, and 3) mid-range warm-up durations yield the highest gains.

Ablation on Loss Terms. Setting λKD = 0 yields the Base (83.90). Using only the GDPD signal
(λTask = 0) gives limited improvement (85.72), while combination (λTask = 1, λKD = 1) achieves
the best result (97.26). With λTask = 1, we sweep λKD in Table 12, where any non-zero GDPD
contribution improves over λKD = 0. To verify that GDPD drives this gain, we replace LGDPD

(Equation (6)) with logit-KD, which gives 94.51, close to Base-KD (95.20) but inferior to GDPD.
Substituting feature-KD yields 83.81, similar to Fits (81.87). This suggests that, instead of matching
a single static teacher signal, GDPD’s diverse and progressive signals drives performance gains.
We further validate this by increasing diversity, estimating LGDPD with multiple posterior samples
J = 1, 2, 3, 4, 5 (Equation (7)), which yield 97.26, 97.34, 97.13, 97.87, and 97.78, respectively. The
gain for J > 1 can be attributed to the additional diversity introduced within each mini-batch. Since
J = 1 already achieves strong performance, we adopt it for a better efficiency–accuracy trade-off.
We also ablate alternative GDPD implementations that reduce diversity in Section A.3.1.
Ablation on Diffusion Controls are provided in Section A.3.1.

5 CONCLUSION

This paper proposes a novel KD framework for efficient knowledge transfer to bridge the generaliza-
tion gap from partial data. In conventional KD, directly matching a single set of teacher features can
result in incomprehensible knowledge due to data gaps, limited and brittle knowledge tied to one
perspective, and unfaithful knowledge from training–distillation set differences. To address this, we
propose capturing teacher knowledge as a generative diffusion prior that serves as a reservoir from
which the student can progressively sample diverse and faithful knowledge. We conduct extensive
evaluations of GDPD across partialness levels and distillation settings, demonstrating consistent
improvements over existing KD approaches on benchmark datasets. Additionally, we validate GDPD
on a real-world dataset under challenging heterogeneous conditions. This paper opens a new research
direction by proposing teacher knowledge as an effective form of generative prior.
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REPRODUCIBILITY STATEMENT

The source code for all models, training scripts, and experiments is available at https://github.
com/anonymICLR25/GDPD. Details of datasets, preprocessing steps, model configurations, and
training procedures are provided in the main text (Section 4) and Appendix (Section A.2). Additional
results are included in the supplementary materials to further support reproducibility.
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A APPENDIX

A.1 RELATED WORK

Knowledge Distillation. KD, introduced by Buciluǎ et al. (2006); Hinton et al. (2015), demonstrates
that smaller models can achieve comparable or superior performance through knowledge transfer
from larger models. This process involves matching the teacher’s softened logits with those of the
student, adjusted by a temperature hyper-parameter to amplify the contribution of negative logits.
Incorporating intermediate feature representations alongside final-layer logits has further improved
performance, establishing state-of-the-art results Romero et al. (2015); Zagoruyko & Komodakis
(2016); Ahn et al. (2019); Park et al. (2019).

However, recent works observe that KD often fails to meet its conventional promise due to several
concerns: 1) Distillation may not transfer teacher knowledge effectively because of the capacity
or architectural gap between teacher and student. To address this, recent studies have proposed
intermediate “teacher–assistant” models Mirzadeh et al. (2020); Son et al. (2021) and student-friendly
teacher training (Park et al., 2021; Rao et al., 2023; Cho & Hariharan, 2019). 2) Knowledge from
a single teacher is often not diverse enough, as it reflects only one perspective. To address this,
existing works promote diversity through teacher ensembles (Allen-Zhu & Li, 2020; You et al.,
2017) or mutual supervision among student ensembles (Zhang et al., 2018; Furlanello et al., 2018).
More recently, Hossain et al. (2025) generate multiple augmented teacher views from a single model
by perturbing features with random noise, thereby increasing knowledge diversity while avoiding
the cost of retraining multiple models. 3) Knowledge is not always faithful: recent works observe
that KD often transfers limited knowledge, leading students to learn predictive distributions very
different from their teachers, which hinders their safe substitution (Stanton et al., 2021; Lamb et al.,
2023). To mitigate this, recent studies have proposed transferring properties beyond direct logits or
features, which has been shown to improve student fidelity (Parchami-Araghi et al., 2024; Lamb et al.,
2023). When distilling knowledge from a teacher trained on full-length data to a student operating on
partial data, all of these concerns are further exacerbated by the additional training–distillation data
mismatch (Stanton et al., 2021).

Partial Time-Series Classification There is a related but distinct line of research called early time-
series classification (eTSC) (Mori et al., 2017; Schäfer & Leser, 2020), which aims to predict as early
as possible without observing the full sequence. The model processes a growing prefix and decides at
each step whether to predict or wait, trading off earliness and accuracy. In contrast, classification
with partial time series assumes only a fixed prefix is available by constraint (e.g., latency, cost, or
sensor dropout). Unlike eTSC, there is no option to defer prediction, and the model must classify
directly from incomplete and ambiguous data. This work investigates whether a model operating on
partial time series can benefit from the generalization of a model trained on full-length sequences,
which may have learned robust representations across time. While none of the existing works
specifically address prefix-based partialness, a few approaches mitigate the generalization gap from
channel-wise partialness by distilling multi-lead ECG classifiers to single-lead models (Sepahvand &
Abdali-Mohammadi, 2022; Chauhan et al., 2022). However, these application-specific methods rely
on direct feature- or logit-level KD and overlook the training–distillation data mismatch. This work
address this problem in a broad and innovative manner by modeling teacher–student feature relations
as degraded–to–clean counterparts and leveraging a generative prior to recover long-range temporal
discriminative cues.

A.2 EXPERIMENTAL SETUP

Teacher and Student Models In our experiments, we primarily use a Long Short-Term Memory
(LSTM) network (Hochreiter, 1997) (built upon recurrent blocks), ResNet (Wang et al., 2017) (a
network primarily composed of convolutional layers), and an InceptionTime network (Ismail Fawaz
et al., 2020), which is among the current state-of-the-art for TSC. For experiments involving model
compression, we construct smaller variants of LSTM under different compression levels by varying
the number of layers and output dimensions. The total number of parameters, model sizes, and
network configurations for all constructed models are summarized in Table 8.
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Table 8: Configuration of networks used for student and teacher models. The output dimension
indicates the hidden size for the LSTM and the output dimension of the first convolutional layer for
InceptionTime (Ismail Fawaz et al., 2020) and ResNet (Wang et al., 2017).

Network Num. Layers Output Dim. Total Param. Model Size (MB)

Inception55-32 55 32 978440 0.9361
Resnet32-64 32 64 2016008 1.9315
LSTM3-100 3 100 812008 0.7744
LSTM2-32 2 32 51976 0.0496
LSTM1-8 1 8 1480 0.0014

Datasets. We conducted our experiments using 12 univariate time-series datasets from the UCR-
2015 archive (Dau et al., 2019) and 12 multivariate datasets from the UEA archive (Bagnall et al.,
2018). Details of the selected datasets are provided in Table 9 and Table 10, respectively. All series
were standardized to length 100 via linear interpolation, z-normalized, and evaluated with the original
train/test split with 20% validation.

Table 9: Summary of univariate UCR benchmark datasets used in our experiments.

Dataset Type Train Test Variables (M) Length (L) Categories (C)

CBF Simulated 30 900 1 128 3
Coffee Spectro 28 28 1 286 2
ECG200 ECG 100 100 1 96 2
ECGFiveDays ECG 23 861 1 136 2
GunPoint Motion 50 150 1 150 2
FaceAll Image 560 1690 1 131 14
ItalyPowerDemand Sensor 67 1029 1 24 2
NonInvasiveFetalECGThorax1 ECG 1800 1965 1 750 42
StarLightCurves Sensor 1000 8236 1 1024 3
SyntheticControl Simulated 300 300 1 60 6
Trace Sensor 100 100 1 275 4
TwoLeadECG ECG 23 1139 1 82 2

Table 10: Summary of multivariate UEA benchmark datasets used in our experiments.

Dataset Train Test Variables (M) Length (L) Categories (C)

ArticularyWordRecognition 275 300 9 144 25
BasicMotions 40 40 6 100 4
Cricket 108 72 6 1197 12
ERing 30 270 4 65 6
JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
NATOPS 180 180 24 51 6
PenDigits 7494 3498 2 8 10
PEMS-SF 267 173 963 144 7
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
UWaveGestureLibrary 120 320 3 315 8

Implementation details. We select the best teacher model from five random initializations based
on the validation area under the precision-recall curve (AUC-PRC) Wang et al. (2017). All students
involving KD are trained using a combination of the task loss and the distillation loss:

Ltrain(θ) = λTask LTask(θ) + λKD LKD(θ),

where λTask and λKD determine the contributions of the classification loss LTask (cross-entropy)
and the distillation loss LKD, respectively. For all experiments, λTask is fixed at 1, while λKD is
optimized via grid search over {0.1, 1, 10}. Models are implemented in PyTorch Paszke et al. (2019)
and trained with the Adam optimizer using a batch size of 64 for a maximum of 600 epochs, with
the best weights selected based on validation loss. For GDPD students, the warm-up epoch is set to
Ewarm = 300, 350, nearly half of the total epochs. A learning rate decay of 0.5 is applied at epochs
25, 30, and 35, with initial learning rates set to 0.01 for the LSTM3-100 and LSTM2-32 models, and
0.1 for the other models. All student results are reported as the average over five runs with different
random initializations.
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Implementation of GDPD. We adopt a lightweight DDIM implementation together with the noise
fusing block proposed by Huang et al. (2023) for diffusion prior training, using a total of 1000
diffusion steps. All the hyperparameters used to implement GDPD are listed in Table 11.

Table 11: Default hyperparameters used for implementing GDPD.

Parameter Value

Diffusion steps (T ) 1000
Number of NFEs (sampling steps) 5
Knowledge distillation weight (λKD) Best among {0.1, 1, 10}
Task loss weight (λTask) 1.0
Number of posterior samples (J) 1
Total training epochs 600
Warm-up epochs (Ewarm) Best among {300, 350}
Batch size 64
Optimizer Adam

Evaluation metrics. Model performance was primarily evaluated using area under the receiver
operating characteristic curve (AUC-ROC), average AUC-PRC, and accuracy on the test set. We
adopt a metric from Stanton et al. (2021) to measure model fidelity: the average agreement between
the student’s and teacher’s top-1 predictions:

Average Top-1 Agreement =
1

N

N∑
i=1

⊮ (yt,i = ys,i) ,

A win/draw/loss calculation was employed, where a model ‘wins’ on a dataset, if it achieves the
highest AUC-PRC. We prioritized AUC-PRC over other metrics due to its robustness to class
imbalance.

The reported metrics in Table 1 and Table 2 are:

• Avg. AUC-PRC: The average AUC-PRC across all datasets.
• Avg. Test-Fidelity: The average teacher-student agreement across all datasets.
• Avg. Rank: The average ranking of a method compared to all baselines (lower is better).
• Num. Top-1: The number of datasets where the method achieves the highest performance

(AUC-PRC) among all baselines.
• Num. Top-3: The number of datasets where the method ranks within the top three in

performance.
• Wins/Draws: The number of datasets where GDPD achieves equal or better performance

compared to all baselines.
• Losses: The number of datasets where GDPD underperforms compared to baselines.

A.2.1 PREDICTING IN-HOSPITAL MORTALITY ON PHISONET DATA

The PhysioNet Silva et al. (2012) dataset contains medical records collected during the first 48 hours
after patients were admitted to an intensive care unit. A total of 37 variables were observed one or
more times for each patient, along with labels indicating length of stay (days), survival (days), and
in-hospital death. Omitting categorical variables, we use 11 time series variables:

• DiasABP: Invasive diastolic arterial blood pressure (mmHg)
• FiO2: Fractional inspired oxygen (0–1)
• HR: Heart rate (bpm)
• MAP: Invasive mean arterial blood pressure (mmHg)
• NIMAP: Non-invasive mean arterial blood pressure (mmHg)
• SaO2: Oxygen saturation in hemoglobin (%)
• RespRate: Respiration rate (bpm)
• NISysABP: Non-invasive systolic arterial blood pressure (mmHg)
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• SysABP: Invasive systolic arterial blood pressure (mmHg)
• Glucose: Serum glucose (mg/dL)
• Temp: Temperature (°C)

Therefore each sample is a time series with M = 11 variables and L = 48 timesteps. We impute
missing values using forward/backward filling, with train-set feature means for entirely missing
channels.

Downstream task. In addition to the in-hospital mortality classification task (label = in-hospital
death), we define a downstream task from the multi-label annotations: survival ≥100 days prediction
(label = 1 if survival == -1 or survival ≥100; else 0), to evaluate performance under cross-task
distillation.

A.3 ADDITIONAL RESULTS

A.3.1 FURTHER ABLATION STUDIES

Ablation on Loss Terms. To further verify that the diversity of GDPD’s teacher signals drives
the gain, we modify LGDPD (Equation (4)) as E(x,y)∼D

[∥∥ẑ(1)long − z∗long
∥∥2], where posterior recon-

struction samples are constrained to match the corresponding direct teacher feature z∗long of the same
training sample. This reduces knowledge diversity, forcing exact reconstruction, with a reduced result
of 96.21 that confirms the limitation.

We present ablation for Distillation ratio (λKD) in Table 12.

Table 12: Ablation of distillation ratio: GDPD performance measured in terms of AUC-PRC.

Distillation ratio (λKD) 0 0.01 0.1 0.5 1 10 100

AUC-PRC 83.90 86.41 91.91 93.72 97.26 91.87 88.61

Ablation on Diffusion Controls. We ablate the number of forward diffusion steps T in
Ldiffusion(ϕ) with {100, 500, 800, 1000}, obtaining 93.29, 95.33, 92.49, and 97.26, and set T = 1000
in our experiments. Following Huang et al. (2023), we use DDIM (Song et al., 2020a), which ac-
celerates denoising compared to early diffusion models and allows sampling with far fewer score
function evaluations (NFEs) ≪ T . We ablate the NFEs in the LGDPD with {0, 1, 2, 3, 5, 10} steps,
obtaining AUC-PRC values of 83.90, 95.98, 97.31, 94.96, 97.26, and 97.90, respectively. Even with
a single step, GDPD achieves a substantial gain over the Base model (83.90), and only a few steps
are sufficient to reach near-optimal performance; hence, we set NFEs to 5 in our experiments.

A.3.2 COMPUTATIONAL COST ANALYSIS OF GDPD

We evaluate the computational overhead of GDPD by quantifying the training cost on the
StarLightCurves dataset for LSTM3-100 → LSTM3-100 under the partialness level e = 0.5L.

Table 13: Training, memory, and inference cost comparison across distillation methods for LSTM3-
100 → LSTM3-100.

Method Student
Params (M)

Additional
Params (M)

Total
Train (h)

Epoch
Time (s)

Step
Time (ms)

GPU Mem
(GB)

Inference
(ms)

Base 0.20 0 0.10 0.61 46.71 0.17 0.02
Base KD 0.20 0 0.10 0.61 46.88 0.17 0.02
Fits 0.20 0.01 0.10 0.62 48.34 0.22 0.02
VID 0.20 0.03 0.11 0.68 52.00 0.25 0.02
DKD 0.20 0 0.10 0.62 47.98 0.17 0.02
Attention 0.20 0 0.11 0.64 49.00 0.17 0.02
RKD 0.20 0 0.13 0.80 61.61 1.03 0.02
GDPD 0.20 0.21 0.14 0.85 65.14 0.25 0.02
GDPD warm-up 0.20 0.21 0.07 0.81 62.46 0.24 0.02
GDPD guided phase 0.20 0.21 0.08 0.89 69.21 0.25 0.02
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Table 13 summarizes the results obtained using a single RTX-A6000/3090–class GPU. Below, we
discuss the computational cost of each phase of GDPD.

Teacher training. Training the teacher is identical to any standard KD pipeline and introduces no
additional cost in GDPD.

Diffusion-prior training. Trained in feature space, where the dimensionality is far lower than in
the input domain, GDPD’s diffusion training becomes significantly cheaper computationally. The
diffusion prior is lightweight (only 0.206M trainable parameters, including the noise adapter) and
is trained during the student’s warm-up phase. The warm-up stage costs 0.81 s/epoch, compared to
0.61 s/epoch for the Base student. With a warm-up duration of 300 epochs, this adds only ∼1 minute
of extra training in the evaluated setting. In practice, diffusion-prior training is comparable to training
one additional Base classifier and remains far cheaper than ensemble-teacher distillation, while still
providing the benefit of knowledge diversity.

Diffusion-guided training. During GDPD’s main distillation phase, posterior sampling uses only 5
NFEs, and all sampling is performed in feature space, making each reverse-diffusion step extremely
cheap. The diffusion-guided stage costs 0.89 s/epoch, compared to 0.61 s/epoch for the Base student,
an overhead of only ∼0.28 s per epoch. Over 300 epochs, this amounts to approximately 1.2 minutes
of additional training time on the evaluated dataset.

Overall training cost. In the evaluated setting, training the Base and Base-KD requires 0.10 h,
whereas GDPD (warm-up + guided phase) requires 0.14 h, adding only ∼2.4 minutes of extra training.
The overall training cost of GDPD is comparable to widely adopted feature-distillation methods such
as RKD and VID, while delivering substantially higher performance (Table 2). GDPD also maintains
a low memory footprint of 0.24-0.25 GB, similar to Fits and VID, only slightly above logits-based KD
(0.17 GB), and far below memory-intensive methods such as RKD (1.03 GB). Despite incorporating
a diffusion prior, GDPD introduces minimal memory overhead. This modest training overhead is well
justified by the consistent and significant performance improvements over conventional KD baselines
and the Base classifier (Table 2).

Inference cost. Inference cost is unchanged: the GDPD achieves 0.02 ms/sample, identical to the
Base. All additional computation occurs only during training, while the deployed model remains as
efficient as the Base classifier.

Table 14: Effect of inference diffusion steps on training cost, memory and inference time.

Inference
Steps

Total
Train (h)

Epoch
Time (s)

Step
Time (ms)

GPU Mem
(GB)

Inference
(ms)

AUC-PRC
(%)

0 0.10 0.61 46.71 0.17 0.02 83.90
1 0.13 0.77 59.03 0.24 0.02 95.98
2 0.13 0.80 61.86 0.24 0.02 97.31
3 0.13 0.81 62.45 0.25 0.02 94.96
5 0.14 0.85 65.14 0.25 0.02 97.26

10 0.16 0.95 72.79 0.25 0.02 97.90

Training cost vs. inference steps. Table 14 reports how the computational cost varies with the
number of inference steps (equivalently, the NFEs in our implementation). Increasing inference steps
slightly raises per-epoch time and memory. From 1 to 5 steps (our default), epoch time increases from
0.77 s to 0.85 s and memory from 0.24 GB to 0.25 GB. Even at 10 steps, memory remains at 0.25 GB
and total training stays below 0.16 h. We adopt 5 steps as the best cost-performance trade-off.

Table 15: Effect of the number of posterior samples on training cost, memory and inference time.

Posterior
Samples (J)

Total
Train (h)

Epoch
Time (s)

Step
Time (ms)

GPU Mem
(GB)

Inference
(ms)

AUC-PRC
(%)

0 0.10 0.61 46.71 0.17 0.02 83.90
1 0.14 0.85 65.14 0.25 0.02 97.26
2 0.17 0.99 76.05 0.25 0.02 97.34
3 0.19 1.11 85.99 0.25 0.02 97.13
4 0.22 1.30 100.17 0.25 0.02 97.87
5 0.24 1.44 111.07 0.25 0.02 97.78
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Training cost vs. posterior samples. Table 15 summarizes how training cost scales with the number
of posterior samples. The cost grows roughly linearly, as each sample requires an additional draw.
Epoch time rises from 0.85 s (1 sample) to 1.44 s (5 samples), and total training from 0.14 h to 0.24 h,
while GPU memory remains fixed at 0.25 GB. We adopt a single sample as the best cost-performance
trade-off.

Both ablations show that GDPD’s diffusion controls offer a flexible cost-performance trade-off with
minimal memory overhead and no effect on inference speed.

A.3.3 EFFECT OF TEACHER–STUDENT LAYER SELECTION.

To assess the impact of layer choice, we perform a layer-wise ablation by applying GDPD across all
teacher-student layer combinations in the LSTM3-100 → LSTM3-100 under the partialness level
e = 0.5L (Table 16). We additionally evaluate a “1+2+3” variant in which the diffusion prior is
trained on features from all three teacher layers. Across these ten configurations, we compute the
average rank and mean AUC-PRC over eight UCR datasets. The final-layer distillation (3→3) reports
the best performance, while distillation involving shallow layers (1 or 2) performs slightly lower yet
remains close. The multi-layer prior (1+2+3) performs comparably but no better than final-layer
distillation, suggesting that deep teacher features alone are the most effective.

We further report layer-wise averages and rank calculations for both teacher and student, and the
results indicate that the final layer is the strongest choice for both. Accordingly, all our experiments
use the final-layer features.

Table 16: Cross-layer GDPD performance for LSTM3-100 → LSTM3-100 on eight UCR datasets.
Each cell reports Avg. Rank ↓ / Avg. AUC-PRC ↑. Layer-wise averages and rank calculations are
also provided for each layer. “1+2+3” denotes a diffusion prior trained on feature representations
from all three teacher layers.

Student Layer Teacher Layer Avg.
Teacher Layer 1 2 3

1 8.88 / 81.35 6.63 / 82.02 5.50 / 82.13 2.42 / 81.83
2 6.00 / 82.04 5.25 / 82.84 4.00 / 83.28 1.83 / 82.72
3 5.38 / 82.25 4.13 / 82.92 3.89 / 84.03 1.75 / 83.07

1+2+3 – – 5.38 / 81.56 –

Student Layer Avg. 2.38 / 80.88 1.88 / 82.59 1.75 / 83.15

A.3.4 FURTHER MAIN RESULTS

GDPD is robust across different network architectures. In Table 17, we report results for two
distillation settings: 1) similar teacher–student architectures (Inception55-32 → Inception55-32,
Resnet32-64 → Resnet32-64) and 2) cross architectures (Inception55-32 → Resnet32-64,
Resnet32-64 → Inception55-32). Across both settings, GDPD consistently achieves the highest
performance gains, measured by average AUC-PRC, lowest average rank, and the greatest number of
top-1 wins, demonstrating its effectiveness for both similar- and cross-architecture distillation.

Table 17: Summary of similar- and cross-architecture distillation results on 12 UCR datasets. Each
cell reports Avg. AUC-PRC / Avg. Rank / Num. Top-1 wins.

Inception → Inception Inception → ResNet ResNet → ResNet ResNet → Inception

Base 87.71 / 2.92 / 0 81.47 / 2.83 / 2 88.72 / 3.33 / 0 71.61 / 3.58 / 0
Base-KD 88.26 / 3.25 / 0 84.66 / 2.50 / 1 89.37 / 2.33 / 2 75.05 / 2.42 / 1
Fits 88.98 / 2.58 / 1 82.47 / 3.33 / 0 89.26 / 2.42 / 2 77.06 / 2.75 / 1
GDPD 92.29 / 1.17 / 11 87.79 / 1.17 / 10 90.85 / 1.58 / 8 81.05 / 1.08 / 11

GDPD Transfers Long-context Knowledge. To assess whether GDPD students learn representa-
tions that generalize from full-context teacher knowledge, we evaluate representation transferability
to the suffix (last 0.5L) of each time series. We use two protocols: 1) Linear probe on frozen
backbone: Train the student on prefix data (first 0.5L), freeze its backbone, then train a linear
classifier on features extracted from suffix inputs. This tests whether prefix-learned representations
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are linearly useful for classifying suffix inputs. 2) Zero-shot suffix evaluation: Evaluate the frozen
prefix-trained student (backbone + original head) directly on suffix inputs without any additional
training. Results on the StarLightCurves dataset for LSTM3-100 → LSTM3-100 are presented in
Table 18. These results indicate that representations learned with GDPD exhibit strong transferability:
GDPD achieves the best linear-probe and zero-shot performance on suffix inputs, evidencing that it
effectively acquires and transfers long-context temporal knowledge.

Table 18: Transferability from prefix-trained students to suffix inputs on the StarLightCurves dataset.
We report AUC-PRC; best values per row are in bold.

Base Base-KD Fits GDPD

Linear-probe 65.57 74.86 65.74 76.88
Zero-shot 35.21 66.21 48.05 66.70

Robustness Under Weak-Teacher Supervision. To assess robustness when the teacher provides
poorly structured feature spaces, we construct a sequence of increasingly degraded teachers on the
StarLightCurves dataset by reducing the amount of training data and injecting label noise. We train
four weak teachers: (WT-1) 0% training data reduction and 0% label noise, (WT-2) 25% training data
reduction and 0% label noise, (WT-3) 25% training data reduction and 10% label noise, and (WT-4)
50% training data reduction and 25% label noise. Figure 3 reports how each baseline responds to
these progressively degraded supervision for Inception55-32 → Inception55-32 under the partialness
level e = 0.5L. Across the four weak-teacher settings, all methods degrade as supervision quality
decreases, but GDPD consistently maintains the highest performance and shows the slowest rate of
decline.

WT-1 WT-2 WT-3 WT-4
Weak-Teacher Setting

0.94
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0.96
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Figure 3: Performance comparison under four increasingly degraded teacher configurations (WT-1 to
WT-4), showing how each method responds to weak-teacher supervision.

Robustness to Different Earliness Levels. Table 19 reports results for earliness levels 0.5L and L,
which are complementary to the main results presented in Table 1.

Table 19: Summary of performance at earliness levels 0.5L and L (full length) on 12 UCR datasets.
Best values are in bold. Rows marked with ↓ indicate lower-is-better. GDPD achieves the highest
AUC-PRC, the lowest rank, and the largest number of Top-1 wins.

Earliness=0.5L
Base Base-KD Fits GDPD

Avg. AUC-PRC 71.60 78.14 77.28 84.64
Avg. Rank ↓ 3.50 2.33 2.92 1.17
Num. Top-1 0 2 0 10
Wins/Draws 12 10 12 –
Losses ↓ 0 2 0 –

Earliness=L (full)
Base Base-KD Fits GDPD

Avg. AUC-PRC 87.32 89.29 88.73 91.21
Avg. Rank ↓ 3.33 2.08 2.75 1.58
Num. Top-1 0 5 3 6
Wins/Draws 11 8 10 –
Losses ↓ 1 4 2 –

A.3.5 FULL RESULTS FOR SUMMARIES REPORTED IN THE MAIN TEXT

Robustness to Different Earliness Levels. Table 20 provides the complete results of evaluating
GDPD under different earliness levels on 12 UCR datasets.

Comparison with Different Distillation Objectives. The full results comparing GDPD with
existing KD variants, evaluated at earliness e = 0.5L, are provided in Table 21.
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Table 20: Detailed UCR results at earliness e ∈ {0.2L, 0.4L, 0.5L, 0.6L, 0.8L,L} for LSTM →
LSTM. Best per row in bold.

(a) e = 0.2L

Dataset Base Base-KD Fits GDPD

CBF 64.08 69.24 68.44 68.96
Coffee 90.76 98.88 91.07 99.34
ECG200 66.08 76.88 79.81 80.19
ECGFiveDays 56.78 57.19 56.32 57.70
Gun Point 77.38 75.18 81.38 84.80
FaceAll 31.90 48.29 41.88 52.84
ItalyPowerDemand 67.45 69.34 66.36 73.30
NonInvasiveFatal1 51.92 48.74 50.16 67.34
StarLightCurves 77.35 93.40 86.80 94.83
synthetic control 81.02 87.57 83.20 87.52
Trace 39.74 51.43 40.31 54.94
TwoLeadECG 59.22 54.56 63.88 64.20

Avg. AUC-PRC 63.64 69.23 67.47 73.83
Avg. Rank 3.50 2.42 2.92 1.17
Num. Top-1 0 2 0 10
Wins/Draws 12 10 12 –
Losses 0 2 0 –

(b) e = 0.4L

Base Base-KD Fits GDPD

93.87 89.50 88.11 94.35
64.95 88.28 78.14 90.13
68.26 78.93 70.34 80.15
55.40 56.38 56.30 55.82
64.44 74.87 68.31 84.59
55.67 69.90 72.44 73.78
79.74 79.43 79.93 81.84
49.02 67.35 72.23 72.20
93.68 97.13 95.20 97.43
82.32 81.66 86.59 90.87
68.82 73.42 71.78 74.05
69.10 79.47 64.93 85.17

81.70 78.03 75.36 81.70
3.58 2.50 2.67 1.25

0 1 1 10
12 11 10 –
0 1 2 –

(c) e = 0.5L

Base Base-KD Fits GDPD

90.29 97.39 95.04 95.44
71.26 83.28 82.98 85.28
79.31 83.61 79.30 82.95
48.33 61.44 66.72 73.85
74.21 79.22 78.90 93.55
53.09 71.48 70.09 76.08
82.53 87.26 82.53 91.71
71.68 72.12 71.89 73.32
83.90 95.20 81.87 97.26
63.82 61.46 63.08 82.94
63.59 63.16 72.52 74.87
77.19 82.07 82.45 88.44

71.60 78.14 77.28 84.64
3.50 2.33 2.92 1.17

0 2 0 10
12 10 12 –
0 2 0 –

(d) e = 0.6L

Dataset Base Base-KD Fits GDPD

CBF 82.61 90.68 82.76 89.88
Coffee 74.35 100 90.64 100
ECG200 76.09 80.78 83.55 81.26
ECGFiveDays 78.08 86.82 81.46 89.90
Gun Point 69.81 74.10 77.99 76.36
FaceAll 69.21 69.68 70.64 75.61
ItalyPowerDemand 93.04 92.46 93.02 95.32
NonInvasiveFatal1 68.91 70.97 73.53 74.25
StarLightCurves 81.15 94.02 95.23 96.97
synthetic control 99.69 99.64 99.86 99.87
Trace 50.18 67.41 55.64 65.34
TwoLeadECG 78.32 77.79 69.51 87.27

Avg. AUC-PRC 76.79 83.70 81.15 86.00
Avg. Rank 3.58 2.58 2.42 1.33
Num. Top-1 0 3 2 8
Wins/Draws 12 10 10 –
Losses 0 2 2 –

(e) e = 0.8L

Base Base-KD Fits GDPD

93.37 93.44 95.46 95.26
98.23 99.51 98.34 100.00
83.32 77.94 82.69 85.01
59.33 74.01 66.29 79.09
92.29 92.71 92.82 93.20
49.31 73.71 73.33 78.59
92.90 96.37 94.17 98.07
48.75 63.70 69.58 72.81
83.34 96.45 80.79 96.46
98.09 99.11 99.05 99.33
48.52 60.82 54.29 75.38
86.05 89.56 86.04 95.09

77.79 84.78 82.74 89.02
3.67 2.42 2.83 1.08

0 0 1 11
12 12 11 –
0 0 1 –

(f) e = L

Base Base-KD Fits GDPD

95.08 99.50 91.49 99.26
99.67 99.67 100.00 100.00
78.75 80.36 77.30 79.18
92.62 90.52 85.44 95.37
96.11 92.20 96.54 94.11
78.83 83.53 82.84 85.94
98.68 99.21 98.55 99.21
84.49 88.38 85.44 88.35
96.12 97.19 96.92 97.45
99.08 99.73 99.59 99.66
60.81 72.30 77.77 77.26
67.62 68.84 72.93 78.71

87.32 89.29 88.73 91.21
3.33 2.08 2.75 1.58

0 5 3 6
11 8 10 –
1 4 2 –

Table 21: Performance across 12 UCR datasets for LSTM → LSTM. Best per row in bold; second
best is underlined. (For Avg. Rank, lower is better.)

Dataset Base Base-KD Fits VID DKD Attention DT2W RKD RKD-A GDPD

CBF 90.29 97.39 95.04 84.18 90.90 80.20 46.60 86.67 80.12 95.44
Coffee 71.26 83.28 82.98 86.33 84.41 82.59 72.51 83.18 96.47 85.28
ECG200 79.31 83.61 79.30 81.01 79.80 83.28 81.87 79.13 81.08 82.95
ECGFiveDays 48.33 61.44 66.72 70.66 59.67 66.97 51.13 82.85 65.96 73.85
Gun Point 74.21 79.22 78.90 76.42 63.98 65.99 56.31 84.58 70.85 93.55
FaceAll 53.09 71.48 70.09 72.73 62.24 71.08 13.97 70.63 68.93 76.08
ItalyPowerDemand 82.53 87.26 82.53 88.94 84.03 84.77 90.61 93.34 94.77 91.71
NonInvasiveFatalECG1 71.68 72.12 71.89 55.39 51.22 61.79 16.61 59.14 57.48 73.32
StarLightCurves 83.90 95.20 81.87 89.81 89.24 87.65 72.41 92.47 96.46 97.26
synthetic control 63.82 61.46 63.08 74.58 65.13 67.73 48.87 98.41 96.76 82.94
Trace 63.59 63.16 72.52 64.28 75.44 69.26 55.01 64.35 65.75 74.87
TwoLeadECG 77.19 82.07 82.45 81.93 85.37 84.37 57.95 63.97 76.53 88.44

Avg. AUC-PRC 71.60 78.14 77.28 77.19 74.29 75.47 55.32 79.89 79.26 84.64
Test-Fidelity 66.75 72.13 69.39 71.32 69.36 69.20 52.59 74.34 71.22 77.58
Avg. Rank ↓ 7.58 4.50 5.83 5.00 6.00 5.42 8.83 4.83 5.00 1.92
Num. Top-1 0 2 0 0 1 0 0 2 2 5
Num. Top-3 0 6 3 3 2 2 0 4 4 12
Wins/Draws 12 10 12 11 11 11 12 9 9 –
Losses 0 1 0 1 1 1 0 3 3 –

Time-wise and Channel-wise Partialness for Multivariate Datasets. The detailed results for
time-wise partialness (evaluated at e = 0.5L) and time+channel-wise partialness (evaluated at
e = 0.5L,m = 0.5M ) in the case of LSTM3-100 → LSTM3-100 distillation are provided in
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Table 22. The corresponding full results for Inception55-32 → Inception55-32 distillation under the
same earliness settings are reported in Table 23.

Table 22: Detailed results for LSTM → LSTM on multivariate datasets under Time-wise partialness
(e = 0.5L) and Time+Channel partialness (e = 0.5L,m = 0.5M ). Best result per row in bold.

(a) Time-wise partialness

Dataset Base Base-KD Fits GDPD

ArticularyWordRecog. 87.55 90.26 89.66 89.88
BasicMotions 93.54 91.89 92.67 97.33
Cricket 83.39 85.27 75.77 87.95
ERing 64.25 62.69 66.74 67.55
JapaneseVowels 94.39 96.49 95.98 96.99
Libras 49.49 65.91 64.70 66.94
NATOPS 80.14 81.08 82.31 84.93
PEMS-SF 71.70 76.35 73.79 75.50
PenDigits 95.95 96.14 95.99 95.14
RacketSports 82.36 85.20 87.82 86.64
SelfRegulationSCP1 84.28 83.24 85.89 86.88
UWaveGestureLibrary 65.82 68.98 72.08 70.73

Avg. AUC-PRC 79.41 81.96 81.95 83.87
Avg. Rank 3.50 2.50 2.42 1.58
Num. Top-1 0 3 2 7
Wins/Draws 11 9 9 –
Losses 1 3 3 –

(b) Time+Channel partialness

Dataset Base Base-KD Fits GDPD

ArticularyWordRecog. 60.41 64.97 69.41 66.57
BasicMotions 85.18 94.85 94.31 97.44
Cricket 66.27 67.46 70.12 71.69
ERing 46.52 52.98 46.42 55.23
JapaneseVowels 92.26 91.70 92.53 93.04
Libras 35.16 37.35 38.32 41.27
NATOPS 86.86 85.27 86.86 87.64
PEMS-SF 66.98 69.60 69.17 73.57
PenDigits 75.46 75.61 75.55 70.91
RacketSports 74.32 74.45 77.35 79.18
SelfRegulationSCP1 84.23 87.99 83.97 91.11
UWaveGestureLibrary 51.37 51.12 56.29 55.56

Avg. AUC-PRC 68.75 71.11 71.69 73.60
Avg. Rank 3.42 2.75 2.33 1.42
Num. Top-1 0 1 2 9
Wins/Draws 11 11 9 –
Losses 1 1 3 –

Table 23: Detailed results for Inception → Inception on multivariate datasets under Time-wise
partialness (e = 0.5L) and Time+Channel partialness (e = 0.5L,m = 0.5M ). Best result per row in
bold.

(a) Time-wise partialness

Dataset Base Base-KD Fits GDPD

ArticularyWordRecog. 92.23 96.32 84.62 96.92
BasicMotions 99.78 100 100 100
Cricket 97.75 98.96 97.03 98.69
ERing 76.65 79.26 70.15 80.21
JapaneseVowels 98.43 99.04 96.26 99.19
Libras 68.78 81.28 81.20 82.70
NATOPS 86.94 84.78 82.01 89.65
PEMS-SF 57.84 65.07 65.45 77.70
PenDigits 90.68 95.37 95.39 94.69
RacketSports 88.84 86.50 85.53 88.91
SelfRegulationSCP1 95.13 96.96 95.71 96.91
UWaveGestureLibrary 81.55 81.66 71.49 84.27

Avg. AUC-PRC 86.22 88.77 85.40 90.82
Avg. Rank 3.25 2.00 3.17 1.33
Num. Top-1 0 3 2 9
Wins/Draws 12 9 11 –
Losses 0 3 1 –

(b) Time+Channel partialness

Dataset Base Base-KD Fits GDPD

ArticularyWordRecog. 69.44 76.01 68.16 79.56
BasicMotions 96.78 100 100 100
Cricket 84.03 87.61 81.96 86.66
ERing 71.87 71.39 70.40 72.42
JapaneseVowels 94.95 96.40 93.95 96.65
Libras 39.60 39.31 40.96 45.05
NATOPS 87.48 88.51 87.20 90.35
PEMS-SF 63.80 64.70 61.31 75.71
PenDigits 75.05 75.49 74.73 71.90
RacketSports 82.15 82.35 75.82 83.73
SelfRegulationSCP1 95.32 96.45 95.70 96.85
UWaveGestureLibrary 58.43 56.87 53.91 64.05

Avg. AUC-PRC 76.58 77.92 75.34 80.24
Avg. Rank 2.92 2.08 3.42 1.33
Num. Top-1 0 3 1 10
Wins/Draws 11 10 11 –
Losses 1 2 1 –

GDPD in Model Compression. The complete results for two compression targets under two
earliness levels are presented in Table 24.

GDPD in Self-distillation. The detailed self-distillation results (with similar model capacity and
without earliness) are summarized in Table 25.

A.4 LIMITATIONS AND FUTURE WORK.

Modeling teacher knowledge through a generative prior opens up a broad space of potential distillation
objectives to foster many desirable teacher properties. In this work, we instantiate only one such
formulation, and exploring alternative distillation objectives grounded in the generative prior remains
a promising direction for future research. The computational cost of GDPD is higher than simple
logits-based distillation methods (e.g., Base-KD, DKD), but it is comparable to established feature-
based distillation objectives such as VID and RKD.
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Table 24: Complete model compression results under two earliness levels (e = 0.5L,L) and two
compression targets (LSTM3-100→LSTM1-8, LSTM3-100→LSTM2-32). Best per row is in bold.

LSTM3-100 → LSTM1-8 LSTM3-100 → LSTM2-32

Earliness Dataset Base Base-KD Fits GDPD Base Base-KD Fits GDPD

e = 0.5L

CBF 58.95 60.45 58.95 70.17 90.40 90.58 90.49 92.61
Coffee 71.12 69.93 71.45 78.00 80.29 86.16 77.06 84.73
ECG200 83.51 84.94 84.76 84.06 81.54 79.39 79.79 82.28
ECGFiveDays 63.31 73.51 66.44 77.41 74.47 63.53 74.23 75.10
Gun Point 60.93 66.56 61.06 75.27 62.93 78.14 76.75 80.19
FaceAll 26.84 28.81 26.84 47.19 53.96 62.95 68.04 74.60
ItalyPowerDemand 85.00 86.41 85.00 93.35 92.10 92.76 90.27 92.37
NonInvasiveFatal1 18.20 19.51 18.24 33.03 50.63 36.91 57.88 76.27
StarLightCurves 75.63 77.66 76.11 80.33 77.18 83.13 93.92 94.22
synthetic control 53.78 56.14 63.52 74.62 61.60 68.65 76.42 93.73
Trace 49.02 48.81 49.02 73.08 67.17 69.78 62.10 73.23
TwoLeadECG 56.67 70.90 56.67 86.60 83.50 87.10 92.21 84.68

Avg. AUC-PRC 58.58 61.97 59.84 72.76 72.98 74.92 78.26 83.67
Avg. Rank 3.42 2.33 2.67 1.17 3.33 2.58 2.75 1.33
Num. Top-1 0 1 0 11 0 2 1 9
Wins/Draws 12 11 11 – 12 9 11 –
Losses 0 1 1 – 0 3 1 –

e = L

CBF 65.44 61.32 64.41 65.89 77.17 79.80 78.50 86.78
Coffee 87.08 87.79 97.38 91.64 99.51 100 99.67 100
ECG200 70.71 70.67 70.92 74.09 72.68 73.33 76.15 80.45
ECGFiveDays 75.76 88.23 79.52 87.88 72.22 91.97 69.00 93.22
Gun Point 94.75 96.32 95.63 96.77 91.40 98.47 94.95 98.00
FaceAll 42.91 45.82 43.81 47.31 76.09 81.98 80.12 82.59
ItalyPowerDemand 98.46 99.03 98.46 98.99 98.18 98.67 98.24 98.68
NonInvasiveFatal1 43.81 44.53 43.45 44.78 86.07 88.88 86.47 88.40
StarLightCurves 93.20 92.62 93.65 93.27 96.40 97.24 96.60 97.20
synthetic control 87.73 96.99 93.36 97.83 99.50 99.38 99.44 99.54
Trace 69.89 75.10 69.64 75.44 69.52 75.58 78.00 78.00
TwoLeadECG 69.25 72.99 67.62 72.03 73.28 72.02 74.03 75.25

Avg. AUC-PRC 74.92 77.62 76.49 78.83 84.34 88.11 85.93 89.84
Avg. Rank 3.33 2.33 2.83 1.42 3.67 2.17 2.75 1.25
Num. Top-1 0 3 2 7 0 4 1 9
Wins/Draws 12 9 10 – 12 9 12 –
Losses 0 3 2 – 0 3 0 –

Table 25: Detailed self-distillation results on 12 UCR datasets under three architectures. Best per row
is in bold.

LSTM → LSTM Inception → Inception ResNet → ResNet

Dataset Teacher Base-KD Fits GDPD Teacher Base-KD Fits GDPD Teacher Base-KD Fits GDPD

CBF 95.08 99.50 91.49 99.26 99.19 99.91 96.51 99.94 99.72 99.69 99.61 99.76
Coffee 99.67 99.67 100 100 99.75 100 94.70 100 100 100 100 100
ECG200 78.75 80.36 77.30 79.18 91.16 92.21 91.14 92.16 92.19 92.91 93.37 93.09
ECGFiveDays 92.62 90.52 85.44 95.37 95.94 100 94.51 100 98.25 97.29 97.84 97.63
Gun Point 96.11 92.20 96.54 94.11 99.71 100 99.72 99.99 100 100 100 100
FaceAll 78.83 83.53 82.84 85.94 86.72 89.49 71.69 90.87 96.38 97.19 96.80 97.25
ItalyPowerDemand 98.68 99.21 98.55 99.21 98.90 99.05 98.01 99.05 98.69 98.99 98.96 99.00
NonInvasiveFatalECG1 84.49 88.38 85.44 88.35 94.85 95.01 84.53 95.33 97.45 97.44 97.41 97.48
StarLightCurves 96.12 97.19 96.92 97.45 97.79 98.09 97.68 98.38 98.47 98.72 98.69 98.75
synthetic control 99.08 99.73 99.59 99.66 99.97 99.95 99.29 100 99.98 99.99 99.94 99.99
Trace 60.81 72.30 77.77 77.26 100 100 99.54 100 100 100 100 100
TwoLeadECG 67.62 68.84 72.93 78.71 99.55 99.92 99.42 99.89 100 99.99 100 100

Avg. AUC-PRC 87.32 89.29 88.73 91.21 96.96 97.80 93.90 97.97 98.43 98.52 98.55 98.58
Avg. Rank 3.33 2.08 2.75 1.58 2.83 1.50 3.92 1.25 2.33 2.25 2.33 1.25
Num. Top-1 0 5 3 6 1 7 0 9 5 4 5 10
Wins/Draws 11 8 10 – 12 9 12 – 11 12 10 –
Losses 1 4 2 – 0 3 0 – 1 0 2 –

Applicability Beyond Time Series Classification. This work establishes GDPD as a principled
distillation framework for partial time-series classification, validated across standard benchmarks and
a real-world case study, and accompanied by practical guidance on key hyperparameter controls. The
current implementation supervises posterior reconstructions using a classification loss and is therefore
instantiated for classification. However, modeling teacher knowledge as a generative prior provides
a novel and broadly applicable perspective on knowledge distillation, leaving several promising
extensions of GDPD for future work. First, GDPD may be applicable to forecasting or multimodal
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learning with missing modalities by substituting the classification-based posterior supervision with
the relevant task-specific objective. Second, the proposed framework can, in principle, be applied
to partial-input classification in domains beyond time series, such as short-text classification (e.g.,
headlines or snippets) (Zhu et al., 2024). In textual data, topic shifts and the discrete nature of
token representations make short contexts more ambiguous than temporally continuous signals (Zhu
et al., 2024). Thus, when extending GDPD to textual domains, feasible earliness levels must be
carefully validated, and potential mismatches in teacher–student vocabularies (reflected in their
embedding layers) should be addressed. These considerations represent promising directions for
future exploration.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we used OpenAI’s ChatGPT (GPT-4) as a writing assistance tool. Its
role was limited to polishing language for improved clarity, grammar, and readability in certain
sections of the paper and appendix. The model did not contribute to research ideation, methodological
design, experimental execution, data analysis, or interpretation of results. All scientific content,
technical contributions, and conclusions are solely the work of the authors. We take full responsibility
for the accuracy and integrity of the paper.
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