
PhishinWebView: Analysis of Anti-Phishing Entities
in Mobile Apps with WebView Targeted Phishing

Anonymous Author(s)
ABSTRACT
Despite the relentless efforts on developing anti-phishing tech-
niques, phishing attacks continue to proliferate, often incorporating
evasion techniques to bypass detection. While recent studies have
continuously enhanced our understanding of their evasion tech-
niques in desktop environments, few studies have been conducted
to explore how the phishing attack is being handled in mobile
environments, specifically WebView.

In this study, we systematically evaluate the blocking processes
of anti-phishing entities in individual apps in the real world by
designing the phishing attack tailored to WebView. Specifically,
we select eight well-known apps using WebView, and report 80
typical phishing sites (without evasion techniques) and 130 user-
agent-specific phishing sites (accessible exclusively via each app’s
WebView). For scalable analysis, we develop an autonomous eval-
uation framework and investigate accessibility of both apps and
Safe Browsing entities. As a result, we find that user-agent-specific
(UA-specific) phishing sites successfully evade blocking across all
of the eight Android apps. We investigate accessing strategies of
anti-phishing agents when trying to access UA-specific phishing
sites; and only two apps find their accessible user-agents for the
phishing site without any subsequent actions such as blocking
the link. According to our experiment results, we present security
recommendations that apps should provide users with sufficient
visual clues on link previews (such as HTTP indicators and URL
check status) when accessing websites through WebView. To the
best of our knowledge, this is the first study that explores how the
WebView environments handle phishing attacks and disclose their
vulnerability in the real world.

ACM Reference Format:
Anonymous Author(s). 2018. PhishinWebView: Analysis of Anti-Phishing
Entities in Mobile Apps with WebView Targeted Phishing. In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion emai (Conference acronym ’XX). ACM, New York, NY, USA, 9 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Phishing attacks have been steadily increasing. According to the
APWG report, from 2019 to 2022, phishing attacks has grown by
more than 150% per year [1]. In 2022 alone, APWG observed a total
of 1,350,037 attacks. This increase is not limited to desktop users; it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

also extends to mobile users. According to [16], from 2018 to 2021,
South Korea recorded 38,112 incidents of messenger phishing, with
losses amounting to 139.7 million US dollars. A significant portion
of these incidents occurred via the KakaoTalk app [13], with 90% of
all messenger phishing reported in 2019. Phishing attacks through
messenger apps continue to rise year by year.

In today’s real-world scenario, major web browsers on desktop
and mobile platforms employ blocklisting techniques to combat
phishing. However, as phishing techniques continue to evolve, at-
tackers are employing evasion techniques to circumvent the moni-
toring systems of anti-phishing entities [40, 41, 48]. While desktop
platforms have significantly addressed these evasion techniques,
the same cannot be said for mobile devices. For example, many
mobile apps are increasingly incorporating their browsers within
the application itself to mitigate the inconvenience of apps having
to connect to external browsers. These in-app browsers are called
WebView, and starting from Android 8.0 (API level 26), Google
Safe Browsing is integrated as the default feature in WebView to
block malicious websites [27]. While numerous empirical analysis
studies have been conducted on the blocklisting responses of vari-
ous anti-phishing organizations in significant desktop and mobile
browsers [32, 39, 40, 43], no prior research has been conducted on
blocklisting within mobile WebView.

In this research, we comprehensively assess the real-world block-
ing mechanisms of anti-phishing entities within WebView applica-
tions. For this purpose, we design a user-agent-specific (UA-specific)
phishing attack, which uses evasion technique and allows access
only by apps’ WebView user-agents. We then determine to report
UA-specific phishing websites and typical phishing websites to both
the app and Google Safe Browsing (GSB) to see how each responds.
To select tested apps, considering the top 10 messaging and social
apps by country, we select six apps (Facebook, Facebook Messenger,
Instagram, Line, WeChat, and Zalo) and also the two most popular
messaging and portal apps (KakaoTalk and Naver) in Korea are
added in the list. Then, we develop an automated evaluator of Web-
View to monitor the reactions of each app at 30-minute intervals
systematically. We conduct tests with a maximum of 40 domains per
app at 30-minute intervals, considering the factors such as delays
and interrupting behaviors of apps to restrict automation, for a 10-
hour term, which is a reasonable duration considering the average
age of phishing sites [42] is about 9 hours long before blocked.

As a result of our research, we discover that all UA-specific
phishing websites tested on eight apps are not blocked by either
app and GSB, despite reporting. After reporting, the crawler makes
a total of 945 access attempts across 210 phishing websites. The
crawlers attempt to access UA-specific websites with 4.23 times
more IP addresses and 2.26 times more diverse user agents than
when accessing typical phishing sites. Despite crawlers’ numerous
attempts to access, we find that out of the eight apps, only two apps
access UA-specific websites using their WebView user-agent; they

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

also do not display warning signs or take any proactive measures.
Furthermore, we find no sanctions in place when re-uploading the
typical phishing links and UA-specific phishing links to all eight
apps after reporting, and alerts are found on previews of phishing
links. Lastly, we suggest security recommendations to provide more
informative link previews showing the detailed status of linked
sites. Our research findings indicate that, despite users expecting
protection through applications, they may still be exposed to risks.

In summary, our contributions are as follows:
• To the best of our knowledge, our study represents the first
comprehensive evaluation and analysis of anti-phishing mea-
sures in WebView environments.

• We overcome the challenges of implementing automated
evaluation tools in the mobile WebView environment, con-
ducting automated anti-phishing assessments across eight
apps using Appium [2] and UiAutomator2 [3].

• Through the design of the customized phishing attack in the
WebView environment, we find that anti-phishing agents in
the eight apps failed to detect the attack. Additionally, our log
analysis reveals the absence of anti-phishing bots utilizing
WebView as a user-agent in seven of the tested apps. Even
when such bots are present, they do not effectively block
phishing attempts.

• We recommend implementing bots for link previews in mo-
bile apps to provide users with advanced information about
potential phishing sites, enhancing their ability to make in-
formed decisions.

2 BACKGROUND
Phishing is a type of social engineering attack [35]. Phishers create
fraudulent websites that imitate legitimate ones to deceive victims
into providing personal information, such as account credentials or
financial details, ultimately for financial gain. Nowadays, tools like
phishing kits make it easy for individuals with limited knowledge
of the web to create and distribute phishing sites [41]. The ease
of implementing phishing attacks has led to a growing trend in
phishing attacks.

2.1 Anti-Phishing Blocklist
Browser blocklisting [39, 40] is one of the most commonly used
defense mechanisms against phishing and malicious websites in
real-life scenarios. When a site is detected as a phishing site and
gets blocklisted, it triggers a warning pop-up when someone tries
to access it. Blocklisting applies to desktop and mobile devices,
making it a versatile defense method. Two prominent anti-phishing
organizations that are extensively used for blocklisting are Google
Safe Browsing (GSB) [10] and Microsoft Smart Screen [17]. Most
web browsers rely on these services for protection.

2.2 Evasion Techniques
Evasion techniques are vulnerabilities in blocklisting methods [39,
40, 49]. Phishers employ various evasion techniques to circumvent
security systems like bot crawlers to remain exposed on the web
for longer. These techniques can be broadly categorized into server-
side and client-side approaches. Server-side evasion techniques rely
on information in HTTP requests to identify users [40]. In contrast,

client-side evasion is achieved through code running in the visitor’s
browser, often using JavaScript, to apply filters based on attributes
like pop-up or mouse movement [48]. These evasion techniques
allow phishing sites to linger longer online and avoid detection.
User-Agent evasion technique. User-Agent is a part of the HTTP
request header that provides information about the operating sys-
tem, device, and browser being used by the visitor (e.g., Mozilla/5.0
(Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/116.0.0.0 Safari/537.36) [37] [48]. Websites that
utilize user-agent evasion techniques show benign or error pages
when the visitor’s User-Agent includes terms commonly associ-
ated with crawlers or bots. This strategy enables them to evade
access and avoid detection. However, our approach takes a different
stance. Instead of blocking specific user agents, access is granted
exclusively to users with the desired User-Agent conditions.

2.3 WebView in Apps
When users access URL links while chatting or using social network-
ing apps, the in-app browser enables them to remain within the app
interface instead of being sent to an external web browser [50]. The
in-app browser enables seamless access to web content, enhancing
the user experience and providing a means to integrate various web
features within the app. This convenience benefits app developers
by seamlessly incorporating web functionality and allowing users
to access richer content and services without leaving the app. Due
to these reasons, the usage of in-app browsers is on the rise, and
most popular apps are incorporating in-app browsers.
WebView. In-app browser useWebView to displayweb content [44].
This class is the foundation for developers to create web browsers or
incorporate online content within their apps. It is important to note
that a WebView does not include the complete feature set of a fully-
fledged web browser. Its primary function is just displaying web
pages [47]. WebView offers various methods and functionalities,
including navigating forward and backward through a browsing
history, zooming in and out, performing text searches, injecting
custom JavaScript code, and more. In the context of Android, dif-
ferent WebView components are available, including the standard
WebView, Chrome Custom Tabs, and Trusted Web Activity. On the
iOS platform, WebView options include UIWebView, WKWebView,
and SFSafariViewController [44]. This discussion will focus on the
most widely used Android WebView.
WebView Safe Browsing. Starting from April 2018 withWebView
66, Google Play Protect introduced Safe Browsing as the default
feature for WebView. Developers of Android apps using WebView
no longer need to make any adjustments to benefit from this safe-
guard. Safe Browsing in WebView has been available since Android
8.0 (API level 26) and utilizes the same underlying technology as
Chrome on Android. When Safe Browsing is triggered, the app will
display a warning and receive a network error. For apps designed
for API level 27 and above, new APIs are available for customiz-
ing this behavior, allowing developers to tailor the Safe Browsing
experience [27].

3 EXPERIMENTAL METHODOLOGY
Our goal is to measure how effectively anti-phishing entities per-
form detection in mobile WebView. We aim to measure reactions in

PhishinWebView: Analysis of Anti-Phishing Entities
in Mobile Apps with WebView Targeted Phishing Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Phishing Website

Deny

Phishing Website

❶

❷

http://www.

Benign/Error Website

Access

Access

App

App

App

Phishing URL
Click

Sending Phishing URL
through Chatting App

Typical
Phishing Website

UA-Specific
Phishing Website

Figure 1: Tested Scenarios of Phishing Attack in WebView

two scenarios. First, when typical phishing sites are accessed, and
second, when phishing sites specifically target apps’ WebView. In
the case of WebView targeting phishing sites, they restrict access
to only specific apps based on the user agent in the HTTP request
header. If it is not the specific app, they redirect to a benign site or
display an error page, making it inaccessible. Previous studies have
only evaluated blocklisting performance in mobile browsers and
did not consider the apps’ WebView environment [39]. Additionally,
there have been challenges in using automation tools in the mobile
environment, but we have addressed some of these issues.

3.1 Overview
3.1.1 Attack Scenario. We divide our scenarios into two types, as
outlined in Figure 1, spreading typical phishing websites through
the app and distributing WebView targeting phishing websites.
Test Types. In Scenario 1, phishers configure phishing sites that
closely resemble legitimate websites. Then, they send links on the
app’s chat window or post them on social media. When the victim
clicks on the URL links shared by the phishers, they are directed
to the fake sites, which are difficult to distinguish from the real
ones. They are prompted to enter personal information, banking
details, and more, which is then sent to the phisher for exploitation.
Phishing attacks within apps are indeed prevalent. For example, a
victim mentioned in the [7] article was deceived by a phisher who
impersonated her friend on Instagram, resulting in the theft of her
Twitter and Instagram accounts.

Scenario 2 shares similarities with Scenario 1 but differs in that it
involves targeting specific victims. It utilizes the user agent evasion
technique described in Section 2.2, specifically targeting individuals.
Apps that useWebView include unique features in their user agents,
such as the app’s name. Phishers leverage this feature by creating
phishing sites that only grant access to users with the corresponding
app’s unique user agent. We call these phishing sites user-agent-
specific (UA-specific) phishing sites. As in Scenario 1, phishing
attackers share links through chatting or posting, attempting to
lure victims. When a phisher targets an app’s users who are not
their intended victims, they redirect them to a benign site or display
an error page, effectively blocking access. This strategy allows the
phisher to persist in their attacks on their desired targets while
making it difficult for anti-phishing entities to circumvent and
access the site, thus enabling them to endure longer.

3.1.2 Targeted Apps. In 2023, among the most popular messag-
ing apps worldwide [19], we select apps that use WebView in-app
browsers. Out of the eight apps listed, five of them, namely Face-
book Messenger [15], WeChat [28], LINE [14], KakaoTalk [13], and

App Service Type Link Report Object Reported GSB Usage

Facebook SNS Comment
Instagram SNS Message
Kakaotalk Messenger Message

FM∗ Messenger Message
Zalo Messenger # -
LINE Messenger Message

WeChat Messenger Message #
Naver Portal ∗∗ Email #

∗ : Facebook Messanger, ∗∗ : Whale Safe Browsing

Table 1: Link Report Capability and GSB Usage of Each App

Zalo [31], are found to use WebView. Additionally, when consid-
ering the top 10 social apps by country, Facebook [8] and Insta-
gram [12] are consistently found to be widely used apps that utilize
WebView. Therefore, we select these two as our social apps. Fur-
thermore, we include Naver [20], the most widely used portal app
in South Korea [25] as a targeted app to verify its safe browsing
effectiveness. Therefore, the total number of apps to 8 are selected
for our experimental purposes.
Naver App. According to the 2022 statistics, the Naver app ranked
third among Koreans’ most widely used apps, with a monthly aver-
age user base of 40 million [25]. Upon further investigation, we find
that Naver utilizes its detection system called ‘Whale Safe Browsing’
(WSB) [29]. According to the Whale Safe Browsing announcement,
it shares its database with other safe browsing systems like GSB
and Phishtank [30].
WeChat. WeChat is the most popular messaging app in China,
and it has a substantial user base in China and globally. Many apps
use Google Safe Browsing to block malicious websites, but WeChat
in China does not. In China, Google is blocked by their government,
so they can not use Google Safe Browsing. Instead, Apple integrates
the Tencent Safe Browsing service for people using Chinese IPs [26].
However, for people not using Chinese IPs, Apple uses Google Safe
Browsing by default [34]. There is no known information about
how it operates on Android, so we conduct experiments to uncover
this.

3.1.3 Reporting. Wemainly test two types of anti-phishing entities
in the WebView environment.
Safe Browsing Entity. We confirm the functionality of Google
Safe Browsing (GSB) within the web views of each Android app. The
preliminary experiment in Section 3.2 demonstrates that, except
Naver and WeChat, GSB operates effectively in the background,
exhibiting the warning page consistent with those observed in the
mobile Chrome browser. However, in the case of Naver andWeChat,
GSB’s warning pages have not been detected.
Built-in Report. We select messaging and social media apps that
allow reporting URLs to investigate whether they have a built-
in reporting feature for potentially malicious websites. As shown
in Table 1, out of the seven selected apps, all except for Zalo allow
users to report messages containing URLs.

3.2 Preliminary Test
We conduct a preliminary test to observe what apps are showing on
the screen when accessing the reported phishing sites and to decide
the observation period for testing attack scenarios in Section 3.1.1.
We download a simple Office 365 login phishing kit sample from

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

(a) GSB in Instagram (b) WSB in Naver (c) Instagram

Figure 2: Warning Pages of WebView

phishunt.io [24] to create our test phishing sites. To avoid the
inadvertent transmission of submitted information, we manually
remove the backend processing of the phishing kit. Subsequently,
we host a clouded Apache server containing ten random domains
similar to the Office365 login page. Eight domains are configured
with user-agent-specific evasion techniques, enabling access only
through each app. In contrast, the remaining two domains have no
evasion techniques applied, allowing all accesses. Then, we report
10 test phishing sites to GSB.

We conduct manual testing on 3 test phishing sites for each
app by presenting one UA-specific phishing site and two typical
phishing sites accessible through all apps every hour. In addition,
to gain insights into how apps respond across different mobile
platforms, we conduct tests on the latest versions, Android 12 on
the Galaxy S20 and iOS 17 on the iPhone 13. We experiment, setting
a time frame of one week, during which we have reported eight UA-
specific phishing sites and two typical phishing sites to Google Safe
Browsing. Following the research [39],we consider any response
taking up to 72 hours to result in blocklisting as undetected.
Result. The eight UA-specific sites have not elicited GSB block
response in any of the eight apps even after a week has passed. For
the other two typical phishing sites, it has been evident that the
GSB does not respond even after a week for the WeChat and Naver
apps in the Android environment. Therefore, we have decided to
report domains separately to Whale Safe Browsing and monitor
Naver’s response. Whale Safe Browsing collects the latest phishing
data based on Naver’s spam mail system and takes action by col-
lecting phishing URLs from user reports [30]. However, even after
72 hours, domains reported to Naver have not been blocked during
our experimental period. As for another app, WeChat, there is yet
to be known information about the anti-phishing environment it
employs outside of China for users in external countries. On the
other hand, the remaining six apps, excluding these two, are all
blocked within 4 hours. In the iOS environment, the GSB response
is consistent with Android, with all eight apps blocking two typical
phishing sites within 4 hours.
Limitation and Additional Tests. We have identified two key
limitations in our preliminary test. Firstly, we realize that we need
to incorporate the apps into the scope of safe browsing entities.
During the preliminary tests, we have assumed that apps rely solely
on third-party entities like Google Safe Browsing (GSB) to display
phishing warning pages. However, additional testing involving
access to ten online phishing sites listed on the open phishing data-
base service, PhishTank [23], through each app reveals that each

Monitoring Infrastructure

Report Phishing
DomainsDomain Generation

and Registration

Hosting Infrastructure

Hosting
Domains

Control Client

Appium Server Mobile Device

Screenshot
Blacklist Status

Send
Screenshots

Output
Benign/Phishing

Anti-Phishing
Ecosystem

Test Suite

com.facebook
.
.

com.instagram
.
. . . .

Log Transmission

Figure 3: Overview of Automation Framework

app provides its warning page, as shown in Figure 2c, indicating
that apps also have their own phishing prevention mechanisms in
place. Consequently, we investigate the configuration of the built-
in reporting functionalities in each app; only Zalo lacks a direct
link reporting feature, providing account-level reporting as the
minimum reporting unit. To further confirm this, we send a link
to one test phishing site in each app and report the link by each
built-in reporting functionality. After monitoring the access logs
for the test phishing site for a full day, we have found no evidence
of Zalo’s crawler accessing the site, while other crawler bots of
seven apps access our test phishing sites. In addition, the bots of
three apps (Facebook, Instagram, and Facebook Messenger), which
have accessed our test sites after reports, have the same IPs and
user-agents. It implies that the three apps have the same phishing
prevention mechanisms controlled by one entity. As a result, we
have decided to add the scenario of reporting exclusively through
the app in our full-scale tests.

Secondly, manually accessing the test sites through all eight
apps is impractical for evaluating a large number of phishing sites.
Especially given the constraints of conducting hourly access, it
becomes unmanageable as the number of test domains increases.
Therefore, we have decided to automate the process of accessing test
phishing site links through each app in our subsequent full-scale
tests.

3.3 Automated Evaluator of WebView
As shown in Figure 3, we develop an evaluator that automatically
clicks on links, captures screenshots, and classifies each access to
test phishing sites, whether showing the warning page or not.
Challenges. Developing an automated testing framework for
mobile devices is challenging, as previous research [39] mentioned
that finding a suitable emulator was elusive. Moreover, tests within
WebView introduce an additional challenge, as each app typically
allows only one user account per actual phone number.

Firstly, we overcome these challenges by leveraging the devel-
oper options on mobile devices and utilizing the Appium server [2]
and the UiAutomator2 driver [3] on the monitoring desktop. When
configured, testing URLs are uploaded on apps, and when they
are clicked, the evaluator captures the response and automatically
saves the screenshots in a folder. Secondly, we address the issue of
single-user limitations by issuing additional phone numbers to ex-
perimental participants, enabling us to register for each app. Then,
we automate various actions signed in by experimental participants
on the app, including swiping, clicking, and capturing screenshots.

PhishinWebView: Analysis of Anti-Phishing Entities
in Mobile Apps with WebView Targeted Phishing Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

3.3.1 Test Suites. To conduct practical tests, rather than opening
links directly on the apps, we have established a simple webpage
containing a comprehensive list of test phishing sites accessible
only for specific IPs and user-agents. Each mobile device initially
accesses the webpage through a dedicated test application, enabling
easy access to the phishing site links listed on the GitHub page.
Through testing, we observe that the response of each applica-
tion’s WebView varies significantly. For instance, if a phishing site
listed on our webpage encounters a blocking action, it displays a
warning page and, after activating the back action to access the
following phishing site from a warning page, specific apps (e.g.,
KakaoTalk) return to the messenger interface. In contrast, others
revert to the GitHub page. By meticulously examining the distinct
behaviors of these applications in preliminary testing, we craft test
suite scripts that facilitate the repetitive clicking of phishing site
links within each app. They provide precise instructions for link
access, navigation, scrolling, and screenshot capture, tailored to the
characteristics of each app’s WebView.

3.3.2 Warning Page Classifier. Figure 2 shows that GSB warning
pages, as WSB warning pages for Naver app, displayed in the app’s
WebView are largely similar to warning pages shown in a Chrome
Mobile Browser, except for frames. Consequently, following the
methodology of prior research [39], we determine that checking
if the dominant color in each image is red is a sufficient criterion
for verifying the presence of a GSB warning page. For app-specific
warning pages, similar to the methodology mentioned, we record a
sequence of test phishing sites’ 5 dominant colors (RGB 255) before
evaluation and check if the sequence changes because of the apps’
warning pages.

3.3.3 Performance. We measure the average time it takes for our
automation framework to obtain a screenshot of a single test phish-
ing site. In a setup mirroring the conditions of our preliminary
test, the average completion time of one access across eight Web-
Views is recorded as 9.12 seconds. However, when testing with 50
real-world phishing sites, returning to the message window, espe-
cially scrolling, consumes lots of time. As a result, across the eight
apps, the average time taken is 15.25 seconds, with a maximum of
24.12 seconds. Recognizing this as a challenge in scaleable research,
we opt to address it by utilizing multiple devices simultaneously.
When we have ran tests on Galaxy Note 7 FE and LG VELVET2,
altering only the device information provided in the test suite, we
consistently observed an average completion timewith a maximal
variance of 1.05 seconds. These results signify that scaleable mea-
surements are attainable with sufficient mobile devices.

3.4 Full-Scale Tests
Based on the preliminary test results, we assess the differences be-
tween UA-specific attacks targeting WebView and typical phishing
attacks on anti-phishing agents, including apps and Safe Browsing.
To this aim, we determine the following test scenarios and set the
environment of tests.

According to the preliminary test in Section 3.2, GSB demon-
strates consistent responses across iOS and Android environments,
while reporting through apps depends on the apps themselves and
not the mobile OS. Therefore, we conduct the full-scale tests only

App Name UA-Specific Phishing Typical Phishing # of TestsApp GSB WSB App GSB WSB
KakaoTalk 10 10 - 10

10

- 40
LINE 10 10 - 10 - 40

Messenger 10 10 - 10 - 40
Facebook 10 10 - 10 - 40
Instagram 10 10 - 10 - 40

Zalo - 10 - - - 20
WeChat 10 - - 10 - - 20
Naver - - 10 - - 10 20

Total 60 60 10 60 10 10 210

Table 2: Number of Domains by Test Scenarios

on Android devices where the automated evaluator can be used. We
connect one monitoring infrastructure to one mobile Android de-
vice (eight devices) and automate evaluators to check anti-phishing
responses every 30 minutes. Given the varying evaluator responses
upon accessing the apps and considering factors like errors and
delays, we determine that testing with a maximum of 40 domains
per app is the most suitable approach. As shown in Table 2, We
report 190 domains the built-in reporting function of apps and to
GSB. For Naver, we report ten domains per scenario exclusively to
WSB.

3.4.1 Test Scenario. We decide to test the effectiveness of phishing
site detection within the apps by dividing our two scenarios(in
Figure 1) into four different subscenarios. We determine each sub-
scenario by where to report phishing links.
Reporting UA-specific Phishing Sites to Apps. In this sub-
scenario, we conduct an experiment to confirm whether the apps
utilize their own WebView user-agents when attempting to access
UA-specific phishing websites. To do this, we input or post each
phishing URL link into the app’s messagingwindow orwithin a post
and then report each URL directly to the app. We test seven apps,
excluding Zalo, which cannot report phishing links, as mentioned
in Section 3.2.
Reporting UA-specific Phishing Sites to Safe Browsing. We
divide this subscenario based on whether we report to GSB or WSB.
We aim to test GSB’s ability to detect and block UA-specific phish-
ing sites when reported. We submit our reports through the GSB
reporting page [11], designed to provide easy access for genuine
reporters. We exclude WeChat and Naver from our experiment
since they do not utilize GSB within their WebViews. In the case
of the Naver app, we conduct the same test using WSB. However,
unlike GSB, we submit our reports via email.
Reporting Typical Phishing Sites to Apps. We conduct the
experiment in a similar manner to the UA-specific phishing sites
mentioned earlier, but this time, we report typical phishing sites.
Reporting Typical Phishing Sites to Safe Browsing. As men-
tioned in the sub-scenario of reporting UA-specific phishing sites to
safe browsing, we report typical phishing sites to GSB and WSB in
different ways, such as the GSB reporting page and email. We test
whether apps exhibit similar reactions to GSB detection as those
observed when GSB detects phishing sites. To confirm GSB’s de-
tection, we compared the responses in the mobile Chrome browser
with those in the apps. As with UA-specific phishing sites report-
ing to GSB, we exclude WeChat and Naver from the experiment

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

App Name Report to App Report to GSB/WSB*
UA-specific Typical (Avg. Speed) UA-specific Typical (Avg. Speed)

LINE 0/10 1/10 (5:05) 0/10

10/10 (0:42)

KakaoTalk 0/10 6/10 (0:50) 0/10
Facebook 0/10 3/10 (2:22) 0/10
Instagram 0/10 4/10 (2:30) 0/10

FM** 0/10 3/10 (2:25) 0/10
Zalo - - 0/10

WeChat 0/10 5/10 (4:01) - -
Naver - - 0/10 0/10

Total 0/60 22/60 (2:29) 0/60 10/20
*: Whale Safe Browsing only for Naver, **: Facebook Messanger

Table 3: Coverage and Speed of Anti-phishing Entities in
WebView (The unit of the average speed is minutes.)

because they do not use GSB in their WebViews. We conduct the
same test with WSB.

3.4.2 Domain Generation & Hosting Servers. Considering the re-
sponses for each app from the preliminary test results, we conduct
experiments with a total of 210 domains, as shown in Table 2. We
create and deploy the domains in October 2023, observing responses
over 10 hours, based on our preliminary test in Section 3.2 and the
previous research [42] showing the average phishing attack lasting
9 hours long to be blocklisted.

We aim to implement our test sites just as phishing sites in
the real world. We employ various domain names and multiple
web servers to achieve this, striving for diversity. We utilize the
DOTHOME [6] hosting service to host eleven Apache web servers,
as it permits the connection of up to 20 domains per server. In con-
trast, we purchase domains from a different registrar, GoDaddy [9],
a commonly used choice among phishers. Additionally, we focus
on using affordable and commonly employed domains in phishing,
such as the ‘.xyz’, ‘.site’, and ‘.world’ domains, frequently used in
real-world phishing attacks. To link the domains to web servers,
we configure DNS records and use HTTPS, aligning them with
conditions similar to phishing sites.
Test Phishing Brand. We use the Office 365 login page when
creating phishing sites. In 2022, Microsoft was the most frequently
utilized brand for phishing kits and was consistently targeted in
phishing scams [45, 46]. According to Check Point Research [5],
by the second quarter of 2023, Microsoft ranks first on the list of
brands most frequently impersonated in phishing scams [18].

4 EVALUATION
First, we evaluate the blocking speed and coverage of each test
scenario, shown in Table 3. Furthermore, we analyze the logs of
our test phishing sites to investigate the strategies employed by
anti-phishing entities of WebView when accessing and exploring
phishing sites. At last, we examine whether the phishing link sent
to each app changes, such as disappearing from the chat room,
depending on whether it shows a warning page.
CrawlerAccess Attempts. As shown in Table 4, we have observed
that when the crawlers attempt to access UA-specific websites, they
use 4.23 times as many different IP addresses and 2.26 times as many
diverse user agents compared to when accessing typical phishing
sites. However, these access attempts vary between each app and
Safe Browsing, with some apps not retrying the access even if
the initial attempt failed. It implies that in such apps’ WebView
environment, any phishing site can potentially evade only the initial

Phishing Site Crawler(s) Access

#Domains IP UA* Total Avg. Access # of Domains Accessed
w/ WebView UA

UA-Specific 130 563 222 758 5.83 13 (FB**, FM***)
Typical 80 133 98 187 1.66 -

*: User-agent, **: Facebook, ***: Facebook Messenger

Table 4: Crawler Access Attempts to our Phishing Sites (Each
number represents the count of distinct IPs and user-agents.)

access of anti-phishing agents, thereby preventing site blocking
and extending the lifespan of phishing attacks.

4.1 App Performance
Over 10 hours of experiment, as shown in Table 3, 60 UA-specific
phishing websites reported to eight apps are not detected when
reported through apps with reporting functionality.

4.1.1 Facebook, Messenger, and Instagram. When we report typ-
ical phishing sites to the apps alone, Facebook, Messenger, and
Instagram have less than 50% coverage. Compared to all the sites
reported to GSB that have been blocked within 30 minutes, this
indicates that, despite having GSB integrated into their WebView
by default, the results of reporting to these three apps take longer
to reach GSB or may not be transmitted at all.
WebView User-agent of Facebook Crawler. When we report
the test phishing sites to Facebook, Messenger, and Instagram, the
crawlers with the same IPs and user-agent access to test sites imme-
diately after report. Whether reporting a typical phishing site or a
UA-specific phishing site, the number of crawlers’ access to 3 apps
that have accessed the sites is five or more. However, the number
of distinct user agents attempting access is 5 for accessing typical
phishing sites and 9 for accessing UA-specific sites, indicating the
different strategies of inaccessible sites with multiple user agents.
Among multiple user agents, we find one crawler of Facebook and
Facebook Messenger using their WebView user-agent, which is
the only way to access our test sites. As shown in Table 4, 13 UA-
specific phishing websites are successfully accessed and crawled
by user-agent matching crawler, but the two apps do not take any
further action beyond attempting to connect, such as displaying
warning messages or alerts.

4.1.2 KakaoTalk and LINE. KakaoTalk has ranked the top on both
coverage and speed. LINE, the other popular messenger used in
South Korea, blocks only one page of the typical phishing site. The
crawler of each app has accessed our phishing sites immediately.
However, neither of them has used their WebView user-agent, re-
sulting in none of the sucessful access to UA-specific sites. Moreover,
their bots only make a single attempt to access both the UA-specific
and typical phishing sites reported, no matter whether they fail to
access UA-specific phishing sites.

4.1.3 WeChat. The app has blocked 5 out of 10 typical phishing
sites. We suspect its higher coverage than others happens because
it solely depends on its built-in report for anti-phishing.However, it
fails to block ten of all UA-specific phishing sites. Furthermore, as
KakaoTalk and Line mentioned earlier, WeChat has been observed
to attempt to access a site only once after reporting, even if the
crawling of sites fails. As of 2023, with approximately 4 million

PhishinWebView: Analysis of Anti-Phishing Entities
in Mobile Apps with WebView Targeted Phishing Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

users in the United States, there is a potential vulnerability for many
users.

4.2 Anti-Phishing Entities Performance
4.2.1 GSB. As shown in Table 3, all typical phishing sites reported
solely to GSB are blocked in nearly 30 minutes, almost matching
their objective [4] to block malicious sites in 30 minutes. Unlike
reporting solely on apps, which shows less than three attempts of
access, we find 5.16 access attempts of crawlers on average to access
UA-specific phishing sites. Moreover, we have observed more than
ten user-agent types when we reported UA-specific phishing sites.
Unfortunately, none of the user-agent crawlers with Google’s IP
include WebView user-agent of apps.

4.2.2 WSB in Naver. As with GSB, they all have failed to access
our UA-specific phishing sites. We observe an average of only 2.86
access attempts on UA-specific sites, which is not significantly dif-
ferent from the average of 2.25 access attempts on typical phishing
sites. WSB alters its operating system and browser during every
access attempt, but it has been unable to connect due to the ab-
sence of a WebView user-agent, the same as GSB. This fact can be
particularly detrimental to apps that rely solely on GSB for phish-
ing URL-blocking mechanisms, such as Zalo, which only blocks
reported phishing accounts. In such cases, the apps cannot pre-
vent users from being exposed to phishing links until the phishing
accounts are finally blocked.

4.3 Links Reported in Apps
We observe whether there are any changes in the status of phishing
links posted within the apps based on whether they are reported
or not. To this aim, we upload phishing links in each app from the
account unrelated to the report at the time both before and after
reporting. To better observe how previews change, we have added
‘Sign in to your Microsoft account’ on the title of the test phishing
site.
Result. When we have uploaded the links of UA-specific phish-
ing sites to the apps, all apps have not provided the link preview
because the crawlers’ user-agents have not included each app’s
WebView. Additionally, when UA-specific phishing sites have been
reported to the apps or the Safe Browsing entity and subsequently
uploaded, none of the apps take follow-up measures against repost-
ing these phishing links. Our experimental results indicate that
the links of UA-specific phishing sites, which remain unblocked
despite reporting, can continue to be used, leading to a continuous
risk of phishing for different potential victims after the report. In
the case of typical phishing sites, we check that the sites’ titles
appear in the link previews of Facebook, Messenger, Instagram,
KakaoTalk, and LINE before reporting. Even after reporting to apps
or the Safe Browsing entity, it is possible to post the same links
again or send links, and information indicating that the phishing
links are blocked can not be found in the link previews of all apps.

5 DISCUSSION AND RECOMMENDATION
While anti-phishing entities are striving to combat evasion tech-
niques of phishing sites, not only on desktops but also mobile
platforms [39, 40], our UA-specific phishing site tests on eight apps’
WebView illustrate the inadequacy of blocklists against evasion

techniques targeted at specific applications. For built-in reports
from apps, our experiments reveal persistent disparities in speed
and coverage, even when dealing with typical phishing sites. Fur-
thermore, some apps’ bots fail to access UA-specific phishing sites
but do not attempt to reaccess them, making it unreasonable to
rely on the app’s built-in reporting for blocking phishing links.
These findings highlight phishing site threats in environments that
anti-phishing entities have yet to consider. They also emphasize
the importance of including the apps’ WebView user-agent in the
user-agent lists used by their bots.
Visual Previews of Phishing Links. Among our tested eight
apps, we observe that five apps (excluding Naver, Zalo, andWeChat)
provide link previews for received phishing URLs. However, they
do not display any warnings or indications for phishing sites on link
previews, even when flagged by GSB. Our investigation, involving
log analysis of our test sites, find that the bots used by seven of these
apps (excluding Zalo) can access links links and to gather crucial
information such as HTTPS usage, URL redirection, and the bot’s
accessibility status. However, this collectable data is underutilized
in generating informative link previews and the bots seem to collect
only metadata based on the Open Graph protocol [36]. Even these
links are abused by phishers [21] for showing plausible images,
obscuring phishing links.

As a result, we suggest security recommendations to enhance
user protection through more informative link previews. GSB API
(Lookup and Update) [22] allows for checking whether a URL is
blocklisted and either one is used in WebView by default. By apply-
ing this functionality to bots used for link previews, each app’s bot
can prepopulate link previews based on the link status, whether
on a blocklist or not. Moreover, the additional tab for detailed link
information, accessible by long-pressing a link, can provide users
with valuable insights, including information on HTTPS usage and
URL checks via third-party security services. This approach em-
powers users to make informed decisions before clicking on a link,
bolstering their protection against phishing threats in WebView.

5.1 Ethics
We consider several ethical issues, while conducting the study.
Responsible Disclosure. We have disclosed our experimental
findings to relevant Safe Browsing entities and apps. Specifically, we
have reported that specific phishing sites accessible only through
the WebView of a particular app are not adequately mitigated by
Google Safe Browsing, and we are awaiting a response. Regarding
the apps, we have reported similar contents to GSB for KakaoTalk,
Line, Instagram, and Facebook Messenger. We note that the bots
of each app cannot reach the accurate phishing site that can only
be accessed through each app’s WebView. In the case of Facebook,
we report that Facebook’s bots can access phishing sites through
Facebook and Messenger’s WebViews. However, we have not en-
countered any phishing site warning pages during the experiment.
Additionally, we have shared our findings with applications that
either possess their own safe browsing mechanisms (e.g., Naver) or
have no discernible mechanisms in place (e.g., WeChat) based on
our experiments.
Risk of Benign Access. In order to prevent potential victims from
accessing our created test phishing sites, the URLs of these phishing

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

sites have been exclusively reported to anti-phishing entities and
have not been uploaded to other services. Furthermore, access to
our website containing the list of phishing sites used for automated
phishing site access has been restricted to authorized experimen-
tal participants only. Lastly, as a precautionary measure against
benign access, we refrain from conducting additional server-side
processing for any form submissions and stop hosting test phishing
sites immediately after the experiment period.
Infrastructure Usage. We followed the guides for all the services
used for our study. Also, we have informed our hosting service, Go-
Daddy and DOTHOME, of our experiments, and they have allowed
us to utilize their infrastructure.

5.2 Limitation
Partial Automation. In our experimental framework, we manu-
ally acquire domains and host web servers. However, with the future
implementation of a secure process for automated test phishing site
generation, our framework is poised to become a comprehensive
automation platform for evaluating app-targeted phishing within
WebView. Notably, through the use of simple test suites in our frame-
work that determine behaviors for each application, safe-browsing
developers can also assess the anticipated blocking outcomes of
apps that employ their own safe browsing mechanisms.
Short-term Experiment. We observe the effects of reporting for a
limited period of 8-10 hours after the reporting incident. This limita-
tion prevents us from observing the possibility of further blocking
by apps or Safe Browsing for our test phishing sites. However, as
mentioned in previous research [42], phishing attacks in the real
world take an average of 9 hours to be blocklisted after the initial
visit, indicating that our measurement period captures practical
information on anti-phishing behaviors.

6 RELATEDWORK
As far as we know, this paper represents the first investigation into
the response of the anti-phishing ecosystem of WebView when
user-agent evasion techniques are employed for targeting apps’
WebView. It is likely the first research paper to develop an automa-
tion framework for evaluating anti-phishing detection within the
mobile app environment. While similar studies [39, 40, 48] exist,
they predominantly focus on research conducted in the mobile
browser environment, with most research concentrating solely on
phishing site cases within the desktop environment.
Measuring Anti-Phishing Ecosystem. Oest et al. [39] intro-
duced PhishFarm, a scalable framework designed to systematically
assess the effectiveness of blocklisting coverage and timeliness in
modern desktop and mobile browsers when faced with evasion
techniques employed by attackers. During a period spanning from
mid-2017 to late 2018, Google Safe Browsing (GSB) blocklists ex-
hibited significant issues on mobile devices, both with and without
evasion techniques. Notably, none of the websites triggered any
warnings in mobile Chrome, Safari, or Firefox, despite being block-
listed on desktop platforms. However, following the disclosure of
their findings, there is now greater consistency in blocklisting prac-
tices between desktop and mobile platforms compared to the earlier
period.

Oest et al. [40] examined the speed of blocklisting on mobile
devices. This examination involved the programmatic monitoring
of Google Safe Browsing through the Update API. Additionally,
the study empirically compared the mobile versions of Chrome,
Firefox, andOperawith their desktop counterparts, utilizing a single
physical Android phone.
WebView Security. Android WebView is vulnerable and suscepti-
ble to various attacks. Luo et al. [38] and Chin et al. [33] explored the
vulnerabilities within webviews and various attacks. Yang el al. [47]
made an empirical study that when an untrusted web iframe/popup
is present within a WebView, it can bypass existing defense so-
lutions and potentially lead to the leakage of sensitive informa-
tion, potentially resulting in phishing attacks. Zhang et al. [50]
performed the first empirical study on the usability in security of
in-app browsing interfaces (IABIs) in both Android and iOS apps.
The information on In-app browser is limited and only a few In-app
browsing interfaces give warnings to remind users of the risk of
inputting passwords during navigating a login page which can lead
to phishing attack.

However, we further discover that earlier studies exclusively ex-
amine the performance of phishing entities in major mobile browser
environments, and these improvements have not been effectively
applied in WebView browsers. Given the growing trend of mobile
apps incorporating WebView-based in-app browsers, it is impera-
tive to assess their effectiveness in applications utilizing WebView
browsers.

7 CONCLUSION
We have conducted a first systematic evaluation of anti-phishing en-
tities blocking processes in individual apps’ WebView in real-world
scenarios, specifically tailoring phishing attacks to WebView. We
have targeted eight well-known apps utilizing WebView, reporting
50 general phishing sites and 80 user-agent-specific (UA-specific)
phishing sites. The results of our comprehensive analysis reveal that
UA-specific phishing sites evade blocking measures across all eight
Android apps. By logging access to test phishing sites, the crawlers
attempt to access UA-specific websites with 4.23 times more IP ad-
dresses and 2.26 times more diverse user agents than when access-
ing typical phishing sites, implying anti-phishing agents’ strategies
to reach the real phishing site. In spite of anti-phishing crawlers’
efforts to access, we find that only two apps identify their accessible
user-agents for the phishing site, not taking further actions such
as showing warning pages. Moreover, we observe that UA-specific
phishing links in apps do not provide any information on link pre-
views, even after they are reported, being able to be the constant
threat of phishing. The findings of this study underscore the need
for developing and implementing more evident visual cues for users
when accessing websites through WebView. It is imperative that
future work builds upon these findings to create a safer WebView
experience for users and provide more effective approaches for
preventing phishing threats.

REFERENCES
[1] [n. d.]. 2022 APWG report Phishing attack in 2022. https://docs.apwg.org/reports/

apwg_trends_report_q4_2022.pdf
[2] [n. d.]. Appium. https://appium.io/docs/en/2.1/
[3] [n. d.]. Appium driver for Android UIAutomator2. https://github.com/appium/

appium-uiautomator2-driver

https://docs.apwg.org/reports/apwg_trends_report_q4_2022.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2022.pdf
https://appium.io/docs/en/2.1/
https://github.com/appium/appium-uiautomator2-driver
https://github.com/appium/appium-uiautomator2-driver

PhishinWebView: Analysis of Anti-Phishing Entities
in Mobile Apps with WebView Targeted Phishing Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[4] [n. d.]. Better password protections in Chrome. https://blog.google/products/
chrome/better-password-protections/

[5] [n. d.]. Check Point Research. https://research.checkpoint.com/about-us/
[6] [n. d.]. DOTHOME - Hosting is DOTHOME. https://www.dothome.co.kr/
[7] [n. d.]. Exclusive: How A Hacker Used Social Engineering To Target A

Newslaundry Journalist On Instagram And What Happened After. https://
www.medianama.com/2022/03/223-nidhi-suresh-twitter-instagram-hack/

[8] [n. d.]. Facebook. https://www.facebook.com/
[9] [n. d.]. GoDaddy. https://www.godaddy.com/
[10] [n. d.]. Google Safe Browsing. safebrowsing.google.com/
[11] [n. d.]. Google Safe Browsing Report. https://safebrowsing.google.com/

safebrowsing/report_phish/?hl=ko
[12] [n. d.]. Instagram. https://www.instagram.com/
[13] [n. d.]. KakaoTalk, where people and the world come to get connected. https:

//www.kakaocorp.com/
[14] [n. d.]. LINE - We are always with users. https://line.me/
[15] [n. d.]. Messenger. https://www.messenger.com/
[16] [n. d.]. Messenger Phishing Financial Lost. https://news.mt.co.kr/

mtview.php?no=2022020912104621627
[17] [n. d.]. Microsoft Defender SmartScreen. https://learn.microsoft.com/en-

us/windows/security/operating-system-security/virus-and-threat-
protection/microsoft-defender-smartscreen/

[18] [n. d.]. Microsoft Dominates as the Most Impersonated Brand for Phishing Scams in
Q2 2023. https://www.checkpoint.com/press-releases/microsoft-dominates-as-
the-most-impersonated-brand-for-phishing-scams-in-q2-2023/

[19] [n. d.]. Most Popular Messaging Apps Worldwide 2023. https:
//www.similarweb.com/blog/research/market-research/worldwide-messaging-
apps/

[20] [n. d.]. Naver. https://www.naver.com/
[21] [n. d.]. O Geez – Abusing the Open Graph Protocol. https://www.zerofox.com/

blog/open-graph-protocol-abuse/
[22] [n. d.]. Overview | Safe Browsing APIs (v4). https://developers.google.com/safe-

browsing/v4
[23] [n. d.]. PhishTank - Join the fight against phishing. https://phishtank.org/
[24] [n. d.]. phishunt.io - Feed of active phishing cases. https://phishunt.io/
[25] [n. d.]. The ranking of the most used mobile apps by Koreans in 2022. https:

//platum.kr/archives/199255
[26] [n. d.]. Tuesday briefing: Apple says its Tencent-powered Safe Browsing system isn’t

sending URLs back to China. https://www.wired.co.uk/article/wired-awake-
151019

[27] [n. d.]. WebView Safe Browsing. https://developer.android.com/develop/ui/views/
layout/webapps/managing-webview

[28] [n. d.]. WeChat. https://www.wechat.com/
[29] [n. d.]. Whale Safe Browsing. https://whale.naver.com/ko/details/security/
[30] [n. d.]. Whale Safe Browsing Data. https://deview.kr/data/deview/session/attach/

3_%EC%9B%A8%EC%9D%BC%20%ED%94%BC%EC%8B%B1%EA%B3%BC%20%
EC%A0%84%EC%9F%81%20%EC%A4%91.pdf

[31] [n. d.]. Zalo. https://zalo.me/
[32] Simon Bell and Peter Komisarczuk. 2020. An analysis of phishing blacklists:

Google safe browsing, openphish, and phishtank. In Proceedings of the Aus-
tralasian Computer Science Week Multiconference. 1–11.

[33] Erika Chin and David Wagner. 2014. Bifocals: Analyzing webview vulnerabilities
in android applications. In Information Security Applications: 14th International
Workshop, WISA 2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected
Papers 14. Springer, 138–159.

[34] Yuefeng Du, Huayi Duan, Lei Xu, Helei Cui, Cong Wang, and Qian Wang. 2022.
PEBA: Enhancing User Privacy and Coverage of Safe Browsing Services. IEEE
Transactions on Dependable and Secure Computing (2022).

[35] Surbhi Gupta, Abhishek Singhal, and Akanksha Kapoor. 2016. A literature survey
on social engineering attacks: Phishing attack. In 2016 international conference
on computing, communication and automation (ICCCA). IEEE, 537–540.

[36] Austin Haugen. 2010. The open graph protocol design decisions. In International
Semantic Web Conference. Springer, 338–338.

[37] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu, Jean-
Michel Picod, and Elie Bursztein. 2016. Cloak of visibility: Detecting when
machines browse a different web. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 743–758.

[38] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks
on WebView in the Android system. In Proceedings of the 27th Annual Computer
Security Applications Conference. 343–352.

[39] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Kevin Tyers. 2019. Phishfarm: A scalable framework for measuring the effec-
tiveness of evasion techniques against browser phishing blacklists. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 1344–1361.

[40] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan
Shoshitaishvili, and Adam Doupé. 2020. {PhishTime}: Continuous longitudinal
measurement of the effectiveness of anti-phishing blacklists. In 29th USENIX
Security Symposium (USENIX Security 20). 379–396.

[41] Adam Oest, Yeganeh Safei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and
Gary Warner. 2018. Inside a phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In 2018 APWG Symposium on Electronic
Crime Research (eCrime). IEEE, 1–12.

[42] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. 2020. Sunrise to sunset: Ana-
lyzing the end-to-end life cycle and effectiveness of phishing attacks at scale. In
29th {USENIX} Security Symposium ({USENIX} Security 20).

[43] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Cranor, Jason Hong, and
Chengshan Zhang. 2009. An empirical analysis of phishing blacklists. (2009).

[44] Thomas Steiner. 2018. What is in a web view: An analysis of progressive web
app features when the means of web access is not a web browser. In Companion
Proceedings of the The Web Conference 2018. 789–796.

[45] Karthika Subramani, William Melicher, Oleksii Starov, Phani Vadrevu, and
Roberto Perdisci. 2022. PhishInPatterns: measuring elicited user interactions at
scale on phishing websites. In Proceedings of the 22nd ACM Internet Measurement
Conference. 589–604.

[46] Bhaskar Tejaswi, Nayanamana Samarasinghe, Sajjad Pourali, Mohammad Man-
nan, and Amr Youssef. [n. d.]. Leaky Kits: The Increased Risk of Data Exposure
from Phishing Kits. ([n. d.]).

[47] Guangliang Yang, Jeff Huang, and Guofei Gu. 2019. {Iframes/Popups} Are
Dangerous in Mobile {WebView}: Studying and Mitigating Differential Context
Vulnerabilities. In 28th USENIX Security Symposium (USENIX Security 19). 977–
994.

[48] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo Sun, RC Johnson, Brad Ward-
man, Shaown Sarker, Alexandros Kapravelos, Tiffany Bao, Ruoyu Wang, et al.
2021. Crawlphish: Large-scale analysis of client-side cloaking techniques in
phishing. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 1109–1124.

[49] Penghui Zhang, Zhibo Sun, Sukwha Kyung, Hans Walter Behrens, Zion Leon-
ahenahe Basque, Haehyun Cho, Adam Oest, Ruoyu Wang, Tiffany Bao, Yan
Shoshitaishvili, et al. 2022. I’m SPARTACUS, No, I’m SPARTACUS: Proactively
Protecting Users from Phishing by Intentionally Triggering Cloaking Behavior. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 3165–3179.

[50] Zicheng Zhang. 2021. On the usability (in) security of in-app browsing interfaces
in mobile apps. In Proceedings of the 24th International Symposium on Research in
Attacks, Intrusions and Defenses. 386–398.

https://blog.google/products/chrome/better-password-protections/
https://blog.google/products/chrome/better-password-protections/
https://research.checkpoint.com/about-us/
https://www.dothome.co.kr/
https://www.medianama.com/2022/03/223-nidhi-suresh-twitter-instagram-hack/
https://www.medianama.com/2022/03/223-nidhi-suresh-twitter-instagram-hack/
https://www.facebook.com/
https://www.godaddy.com/
safebrowsing.google.com/
https://safebrowsing.google.com/safebrowsing/report_phish/?hl=ko
https://safebrowsing.google.com/safebrowsing/report_phish/?hl=ko
https://www.instagram.com/
https://www.kakaocorp.com/
https://www.kakaocorp.com/
https://line.me/
https://www.messenger.com/
https://news.mt.co.kr/mtview.php?no=2022020912104621627
https://news.mt.co.kr/mtview.php?no=2022020912104621627
https://learn.microsoft.com/en-us/windows/security/operating-system-security/virus-and-threat-protection/microsoft-defender-smartscreen/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/virus-and-threat-protection/microsoft-defender-smartscreen/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/virus-and-threat-protection/microsoft-defender-smartscreen/
https://www.checkpoint.com/press-releases/microsoft-dominates-as-the-most-impersonated-brand-for-phishing-scams-in-q2-2023/
https://www.checkpoint.com/press-releases/microsoft-dominates-as-the-most-impersonated-brand-for-phishing-scams-in-q2-2023/
https://www.similarweb.com/blog/research/market-research/worldwide-messaging-apps/
https://www.similarweb.com/blog/research/market-research/worldwide-messaging-apps/
https://www.similarweb.com/blog/research/market-research/worldwide-messaging-apps/
https://www.naver.com/
https://www.zerofox.com/blog/open-graph-protocol-abuse/
https://www.zerofox.com/blog/open-graph-protocol-abuse/
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://phishtank.org/
https://phishunt.io/
https://platum.kr/archives/199255
https://platum.kr/archives/199255
https://www.wired.co.uk/article/wired-awake-151019
https://www.wired.co.uk/article/wired-awake-151019
https://developer.android.com/develop/ui/views/layout/webapps/managing-webview
https://developer.android.com/develop/ui/views/layout/webapps/managing-webview
https://www.wechat.com/
https://whale.naver.com/ko/details/security/
https://deview.kr/data/deview/session/attach/3_%EC%9B%A8%EC%9D%BC%20%ED%94%BC%EC%8B%B1%EA%B3%BC%20%EC%A0%84%EC%9F%81%20%EC%A4%91.pdf
https://deview.kr/data/deview/session/attach/3_%EC%9B%A8%EC%9D%BC%20%ED%94%BC%EC%8B%B1%EA%B3%BC%20%EC%A0%84%EC%9F%81%20%EC%A4%91.pdf
https://deview.kr/data/deview/session/attach/3_%EC%9B%A8%EC%9D%BC%20%ED%94%BC%EC%8B%B1%EA%B3%BC%20%EC%A0%84%EC%9F%81%20%EC%A4%91.pdf
https://zalo.me/

	Abstract
	1 Introduction
	2 Background
	2.1 Anti-Phishing Blocklist
	2.2 Evasion Techniques
	2.3 WebView in Apps

	3 Experimental Methodology
	3.1 Overview
	3.2 Preliminary Test
	3.3 Automated Evaluator of WebView
	3.4 Full-Scale Tests

	4 Evaluation
	4.1 App Performance
	4.2 Anti-Phishing Entities Performance
	4.3 Links Reported in Apps

	5 Discussion and Recommendation
	5.1 Ethics
	5.2 Limitation

	6 Related Work
	7 Conclusion
	References

