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Dual representation learning for predicting drug-side
effect frequency using protein target information

Sungjoon Park, Sangseon Lee, Minwoo Pak, and Sun Kim

Abstract—Knowledge of unintended effects of drugs is critical
in assessing the risk of treatment and in drug repurposing.
Although numerous existing studies predict drug-side effect
presence, only four of them predict the frequency of the side
effects. Unfortunately, current prediction methods (1) do not
utilize drug targets, (2) do not predict well for unseen drugs,
and (3) do not use multiple heterogeneous drug features. We
propose a novel deep learning-based drug-side effect frequency
prediction model. Our model utilized heterogeneous features
such as target protein information as well as molecular graph,
fingerprints, and chemical similarity to create drug embeddings
simultaneously. Furthermore, the model represents drugs and
side effects into a common vector space, learning the dual
representation vectors of drugs and side effects, respectively. We
also extended the predictive power of our model to compensate
for the drugs without clear target proteins using the Adaboost
method. We achieved state-of-the-art performance over the ex-
isting methods in predicting side effect frequencies, especially for
unseen drugs. Ablation studies show that our model effectively
combines and utilizes heterogeneous features of drugs. Moreover,
we observed that, when the target information given, drugs
with explicit targets resulted in better prediction than the drugs
without explicit targets. The implementation is available at
https://github.com/eskendrian/sider.

Index Terms—drug-side effect frequency, dual representation
learning, adverse drug reaction, drug target protein

I. INTRODUCTION

DRUGS contributed to human lives by alleviating pain
and curing diseases. However, they are not panaceas and

often involve unintended side effects. Predicting side effects
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of drugs is one of the most important challenges of modern
medicine. Adversarial side effects may result in poisonous
effects. Thalidomide, as a notorious example, had unexpected
side effect of causing deformities in pregnant fetuses, and
about 10,000 victims suffered the consequences [1]. Even now,
side effect is the fourth major cause of death in the United
States [2], [3], [4]. Predicting side effect frequencies can help
weigh the potential risks and benefits of using certain drugs
[5].

Side effects also account for the second reason for fail-
ure to develop new drugs, following lack of efficacy [6].
Drug discovery pipeline consists of virtual screening followed
by pre-clinical and clinical testing of efficacy and toxicity.
Therefore, early detection of side effects in the stage of
virtual screening can reduce enormous costs in the whole drug
discovery process. Post-marketing drug withdrawal causes the
health risk of public [7] and financial costs [8], [9].

Unintended side effects do not always lead to bad results.
Side effects sometimes lead to drug repurposing [10]. For
instance, Sildenafil was originally developed to treat angina,
but the desired cardiovascular effect was not observed. Instead,
it is nowadays more known as a medication treated for erectile
dysfunction [11]. The knowledge of the frequencies of side
effect for existing drugs can facilitate the introduction of new
drugs [12], [13].

Although it is important to know the side effects of drugs,
it is a challenging work. Side effects are rare by nature,
and only observed in a small population of patient groups.
Information about side effects of drugs is incomplete and
unobserved side effects can be newly reported at any time. This
makes empirical evaluation of side effects costly and time-
consuming. For these reasons, many researchers have tried to
develop resources and computational methods for side effects
of drugs. SIDER was introduced in 2010 as a database that
collects known side effects of drugs from public documents
and package inserts [14], [15]. Since the availability of such
curated data, many studies focused on predicting drug side
effects [16], [17], [18], [19], [20], [21], [22].

Lately, predicting frequencies of side effects has arisen as a
new problem. Most drugs, even when treated with appropriate
dosage, can result in side effects for some proportion of
those who take the medication. Measuring the frequency of
these side effects can be useful in determining the therapeutic
efficacy of a drug in clinical settings. However, frequency of
side effects has not been widely studied until reccently. To
this day, only four studies have focused on predicting the
frequencies of drug-side effects.
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A. Related Works

SIDER database [15] currently provides drug-side effect
association among 1,430 drugs and 5,868 side effects, and
40% of them have side effect frequency information. Galeano
et al. [5] screened the database to integrate heterogeneous
frequency labels of 759 drugs and 994 side effects into five
classes ranging from very rare (label=1) to very frequent
(label=5). Then, the authors formulated drug-side effect fre-
quency prediction problem as a recommendation system and
used matrix factorization. Since its publication, follow-up
papers predicting drug-side effect frequency commonly used
the curated dataset of 759 drugs and 994 side effects.

Numerous research endeavors have been undertaken to
predict the presence of drug-side effects, employing a diverse
array of methodologies. For example, Zhang et al. [23] utilized
recommender techniques to predict potential associations be-
tween drugs and side effects. In this study, the researchers
constructed an ensemble model that combined an integrated
neighborhood-based approach with a method based on the
restricted Boltzmann machine, culminating in an enhanced
framework for predicting drug-side effect relationships. An-
other study by Zhang et al. [24] utilized matrix factorization
coupled with graph regularization to generate vectors rep-
resenting both drugs and side effects. In this work, it was
assumed that drug targets significantly influence metabolic
processes, thereby influencing the emergence of side effects.
DeepSide [25] developed multi-modal and multi-task neural
networks to forecast drug side effects. This work used drug-
induced gene expression profiles from the LINCS L1000
dataset [26] to optimize the prediction accuracy for drug
side effects. More recently, Galeano et al. [27] developed the
development of a geometric self-expressive model (GSEM)
to predict drug-side effect associations. This method involved
the computation of two matrices: drug-drug similarity and
side effect-side effect similarity matrices, which collectively
facilitated the prediction of presence scores. Importantly, this
framework showcased its adaptability to proprietary datasets.
In another study, Liang et al. [28] adopted a distinctive
approach to the drug-side effect prediction problem by em-
ploying positive-unlabeled learning. The authors used trans-
ductive matrix co-completion as a means for the prediction
of unobserved side effects, with a notable emphasis on the
pivotal role of drug-target interactions for the prediction of
side effects.

However, these studies are developed for the prediction of
the existence of side effects. In practice, medical practition-
ers prescribe drugs while considering a delicate equilibrium
between the benefits and potential side effects. Therefore, the
prediction of the quantitative frequency of side effects can be
more informative. Recently, there are studies for the prediction
of frequencies of side effects as summarized below.

Zhao et al. proposed MGPred [29], a graph attention
network (GAT) [30] model to predict the drug-side effect
frequency. The paper constructed heterogeneous graph of
drugs and side effects, and learned important features based
on the heterogeneous neighbors. That is, given drug and side
effect, GAT extracts drug features based on drugs that carry the

given side effect, and side effect features based on other side
effects that are carried by given drug. MGPred first introduced
GAT to enhance the prediction of drug-side effect frequency.
However, it utilized the frequency of some side effects as input
features, limiting the model only to work on known drugs.

Later, Zhao et al. developed SDPred [31] and investigated
the role of similarities of drugs and side effects in their
frequency. In the paper, the authors used 10 drug similarities
and 4 side effect similarities fed into deep learning models
such as multiple layer perceptrons (MLPs) and convolutional
neural networks (CNNs). The paper showed that similarities
from different sources can be used to predict the adverse
reactions, even without chemical property of drugs or known
relation to side effects. However, the authors note that SDPred
is dependent to the complete similarity information of new
drugs.

Most recently, Xu et al. suggested DSGAT [32], a novel
GAT model to predict drug-side effect frequency. Unlike MG-
Pred that applies GAT on drug-drug network graph, DSGAT
used molecular structure of drugs as graph data to feed to GAT.
This way, DSGAT works without requiring prior knowledge
of novel drugs other than its molecular formula. The authors
emphasize that DSGAT performs best for predicting side
effect frequencies of unseen drugs, or “cold start” drugs.
However, the model neglects other available information of
drugs such as protein target information, which leaves room
for improvement.

II. MOTIVATION

The problem of drug-side effects is a critical issue, and
previous research has highlighted the significance of protein
targets as ingredients in determining the side effects of a drug
[33]. Incorporating target information has also enhanced the
detection of side effects [34], [35], [36], [37]. However, a
more complex problem of estimating the frequency of drug-
side effects has emerged, which has only been covered in
four studies so far. Still, the useful target information is
not currently getting attention in drug-side effect frequency
studies.

In the subsequent sections, we outline the limitations of
the existing studies that have examined drug-side effect fre-
quency. Subsequently, we propose our approach to address the
shortcomings and challenges faced by previous methods. We
devised a dual representation learning method, that puts drugs
and side effects onto a common embedding space, along with
emerging technologies such as GAT (graph attention networks)
and network propagation.

A. Limitations and Challenge

There are three major limitations for the existing side
effect frequency prediction models. In this subsection, we list
and describe the common limitations of existing studies. The
limitations can be summarized as follows:

• Protein target information is a key to estimating side
effects, which, however, has not been utilized.

• Existing models are not designed to effectively predict
side effect frequencies for unseen novel drugs.
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Fig. 1: Overview of training our drug-side effect frequency prediction framework. (A) Inputs and outputs of the base model
for predicting drug-side effect frequency. Our model takes drug and side effect as input, and outputs frequency of the given
drug-side effect pair. (B) Value distribution of frequency range of our data of 750 drugs and 994 side effects. (C) Adaboost
boosting scheme. At each step, the base model is trained for 50 epochs, using the data with its sampling weight matrix. Here,
the sampling weights assigned to drugs are augmented proportionally in relation to the rate of incorrect predictions so that they
are better trained in the subsequent base model. Final model is a linear combination of base models using the log of overall
error εb(b = 1, 2, ..., 10) as coefficients.

• Heterogeneous features, such as molecular graph, finger-
prints, drug-drug chemical similarity, and protein targets
are not utilized simultaneously.

First, protein targets are not utilized for side effect frequency
prediction. It is established that on- and off-targets are respon-
sible for side effects of drugs. Studies also show that target
is a key information related to drug side effects [38]. Some
studies have found drug targets using side effect information
[34], [39], while others investigated drug protein target to
explain the side effects of the drugs [40], [41], [42]. Moreover,
target validation is one of the first steps in discovering a
new drug [43], thus targets are likely to be known by the
time of screening candidate compounds and predicting their
side effects [44]. Therefore, it is natural to leverage target
information available at the stage of predicting side effect
frequencies.

Second, Galeano et al. [5], MGPred [29], and SDPred
[31] are not designed to predict unseen novel drugs. MGPred
and SDPred directly use the known side effect frequency
of drugs to predict the frequency of unknown side effects.
Additionally, matrix factorization proposed by Galeano et
al. decomposes drug vectors and side effect vectors, thus it
is innately inapplicable for unseen drugs. In real-life drug
discovery, known frequencies of side effects for novel drug
candidates are often not available. We present in the Result
section, that these models do not perform well.

Finally, the existing studies lack utilization of heterogeneous
information from multiple sources. Galeano et al. [5], SDPred

[31], and DSGAT [32] used drug-side effect frequency, drug-
drug similarity, and molecular graph structure as the only
input features, respectively. Side effect can be attributed from
different factors of drugs, and current studies are limited to
using only a single type of data.

B. Our approach

In this study, we developed a novel deep learning-based
drug-side effect frequency prediction model. Our model is
the first to introduce drug protein target as an important
feature in predicting the frequencies of drug-side effects.
We used various sources of drug features such as molecular
graph, fingerprints, chemical similarity, as well as drug target
proteins. We constructed a shared vector space for the dual
representation for drugs and side effects in a single space.
However, simply adding more heterogeneous input features to
models does not guarantee accurate prediction of drug-side ef-
fect frequency. To tackle this problem, we ensembled multiple
base models complementing different features using Adaboost
technique. Our model showed significant performance gain
compared to the current state-of-the-art method.

Utilization of drug protein target information. Information
about drug protein on- and off-targets is available from
DrugBank [45]. To simulate the downstream effect of the
cellular perturbation by drug targets, we performed network
propagation [46] on a protein-protein interaction (PPI) network
with the seed genes as protein targets. This way, we not
only encoded protein targets of drugs, but also considered the
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downstream effect of perturbation of the targets in biological
network.

Representation learning of drugs and side effects on com-
mon vector space. Our model is designed to be applicable
to novel drugs for their side effect frequency. First, we
created drug vectors from four embeddings of drug features,
and side effect vectors from one embedding of side effect
features, respectively. The dimensions of drug vectors and
side effect vectors are kept the same. Then, we trained the
representation of drugs and side effects while interpreting the
(cosine) distance between drug and side effect vectors as their
frequency. The continuous mapping of drugs and side effects
achieved good generalization for unseen drugs.

Using heterogeneous multiple information sources. We in-
herited drug features, such as molecular graph structure,
fingerprints, and drug-drug similarity, that are traditionally
used to determine side effects. Additionally, we adopted drug
protein features, and created embedding for each of the input
feature. We used an ensemble technique to complement the
models that use heterogeneous information.

III. METHODS

To predict drug-side effect frequency, we developed a novel
deep learning model that exploits multiple features comple-
mentarily in an Adaboost framework. Figure 1 illustrates the
bird-eye view of our Adaboost boosting framework. In the
following subsections, we describe the dataset, formulation
of the research problem, and pre-processing of features, and
depict our model architecture with its training process.

A. Dataset

Since the publication of Galeano et al. [5], studies pre-
dicting drug-side effect frequency commonly used the same
dataset [29], [31], [32]. We also used the same benchmark
dataset from the models to train and validate our model for
fair comparison. The dataset includes 750 drugs and 994
side effects with 37,071 drug-side effect pairs with observed
frequencies. For a set of drugs D = {d1, d2, ..., dN}, a set
of side effects S = {s1, s2, ..., sM}, and frequency range
F = {0, 1, 2, 3, 4, 5}, our goal is to build a deep learning
model that best approximates the frequency function f such
that

f : D × S → F (1)

In our case, N = 750 is the number of drugs, M = 994 the
number of side effects, and the elements of F indicates 0:
unobserved, 1: very rare, 2: rare, 3: infrequent, 4: frequent, 5:
very frequent.

Among 745,500 combinatorial pairs of 750 drugs and 994
side effects, only 37,071 pairs have non-zero side effect
frequency. In evaluating our model in terms of predicting
presence of drug-side effects, we regarded zero frequency as
non-existence of side effects.

However, though presently unobserved, the drug-side effect
pairs with zero frequency could potentially be identified later.
Even in such scenario, the identified frequency is expected to
be low, because all drugs included in our study have undergone

rigorous clinical trials and obtained drug approval. This further
strengthens our perspective that prediction of the quantitative
frequencies of side effects is more informative.

B. Heterogeneous feature generation

Campillos et al. [34] inspired us that side effects of drugs
may be attributed to various factors, including compound
structures, drug targets, and therapeutic categories, either indi-
vidually or in combination. Therefore, we used heterogeneous
set of features of drugs and side effects as features to construct
different embeddings. Specifically, we used molecular graph
structure, drug-drug similarity score, and drug target informa-
tion as drug features. Likewise, we used MedDRA categories
and Glove word embedding as side effect features.

To take the structural information of molecular graph into
account, we adopted the molecular graph encoding similar
to embeddings used in existing studies [32]. The atoms and
bonds in drug compound are interpreted as nodes and edges
of graph, respectively. For node feature, we use multi-hot
vector encoding 109 atomic properties of each node. They
include properties such as atom type, degree, total number of
adjacent hydrogens, valence, formal charge, hybridization, and
aromaticity of the atom. We denote the drug molecular graph
DG as

DG = (G1, G2, ..., GN ), Gi = (Vi, Ei) (2)

Vi = {xi1, xi2, ..., xik} (3)

Here, Gi = (Vi, Ei) is a graph for drug di. Vi denotes a set
of atoms and Ei a set of bonds. All k atoms in Vi have 109-
dimensional multi-hot features xi1, xi2, ..., xik.

Existing studies [29], [31] showed that both chemi-
cal similarity of drugs and drug-drug interaction are ef-
fective predictors of side effects. MGPred [29] used the
Combined_score value of chemical-chemical link from
STITCH database [47], which is then interpolated using chem-
ical structure similarity calculated using a chemical develop-
ment kit (cdk) [48]. Later, we use independent validation data
to show that similarity to only 750 drugs from our dataset is
enough to predict side effect frequencies of unseen drugs. We
denote the drug similarity feature DS as

DS = (w1, w2, ..., wN ) (4)

where wi is the similarity vector of drug di to all 750 drugs.
Drugs that share similar protein targets can also share

similar side effects. We collected 843 protein targets for the
750 drugs from the DrugBank [45] database. There were 611
drugs that had at least one protein target, and the maximal
number of protein targets for a single drug was 70. We define
843-dimensional multi-hot protein target vector zi for each
drug di. We denote the drug target information DT as

DT = (z1, z2, ..., zN ). (5)

Molecular fingerprints are multi-hot vector of pre-defined
substructures. Its utility, especially when combined with graph
neural network, is known to be useful [49]. Here, we use
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Fig. 2: Architecture of our base model. Drug and side effect are encoded into drug vector d and side effect vector s. Drug features
include molecular graph, protein targets, drug-drug similarity, and fingerprints. Graph attention network, network propagation,
and multi-layer perceptron are used to construct the embeddings for drug, and the embeddings are merged into a drug vector.
On the other side, side effect vector is constructed using MedDRA hierarchical category and Glove word embedding as initial
features. The final prediction of the drug-side effect frequency is an element-wise multiplication of the drug and side effect
vectors. To guide the embedding training during Adaboost, similarity-based loss for drug vectors and side effect vectors are
defined.

1024-bit Morgan fingerprint computed by rdkit to further
complement the prediction of model. We denote molecular
fingerprint DF as

DF = (v1, v2, ..., vN ). (6)

Side effects in SIDER database are provided in Med-
DRA [50] labels. MedDRA terms consist of hierarchical
structures, starting with the System Organ Class at
the top, followed by High Level Group Term, High
Level Term, Preferred Term, and Lowest Level
Term. In this paper, We encode side effects into 243-
dimensional multi-hot MedDRA categorical vector ui us-
ing 243 categories of System Organ Class and High
Level Group Term. Therefore, we denote the side effect
class feature SC as

SC = (u1, u2, ..., uM ) (7)

We also used word embedding used in language models
to capture the contextual similarity among side effects. Glove
[51] is a method that learns vector space representation of
words using word co-occurrence. MGPred [29] used a Glove
model pre-trained on Wikipedia to create semantic features of
side effects.

SE = (v1, v2, ..., vM ) (8)

where vi is a 300-dimensional vector for side effect si.

C. Dual representation learning of drugs and side effects
Our model constructs drug vectors and side effect vectors

from the features mentioned above (Figure 2). For the drug

vectors, we defined four different kinds of embeddings using
molecular graph (DM), drug-drug similarity (DS), protein target
(DT), and molecular fingerprint (DF), respectively. Then, the
four embeddings are merged into a single drug vector (See
Equation (15)).

First, we describe the embedding driven by molecular
graph features DM that is given as node features with edge
information of the graph topology. Here, we use GAT [30]
layer to transform node features of dimension F into another
dimension F ′. Thus, the formula for a single GAT layer is
described as follows. For input h⃗i of atom node i and output
h⃗′
i,

αij =
exp(LeakyReLU(⃗aT

[Wh⃗i||Wh⃗j ]))

exp(
∑

k∈Ni
LeakyReLU(⃗aT [Wh⃗i||Wh⃗k]))

(9)

h⃗′
i =

Ln

l=1

σ
( ∑

j∈Nj

α
(l)
ij W

(l)h⃗j

)
(10)

where αij indicates normalized importance of node j’s fea-
tures to node i, vector a⃗ a weight vector, matrix W a linear
transformation matrix, and Ni is a set of neighbor nodes that
are connected to node i with covalent bond. Furthermore, ∥
denotes concatenation in both Equation (9) and (10), and L is
the number of attention heads.

Specifically, We used four GAT layers to transform the
molecular graph features for atoms. We utilized multi-head
attention (L = 10) until the penultimate layer, and L = 1 for
the final GAT layer. The output of the consecutive four GAT
layers is then aggregated using max pooling and fed to two
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fully connected layers to project into embedding space. Thus,
the molecular graph-based drug embedding

x⃗i = σ(W (σ(W (G′
i) + b) + b) (11)

where G′
i is the output of Gi fed to the four GAT layers

followed by activation function, W and b denote weight matrix
and bias vector of a linear layer.

Next, drug-drug similarity matrix DS is used to construct
another embedding of drug. Here, we simply used two fully
connected layers. That is, the similarity drug embedding

w⃗i = σ(W (σ(W (wi) + b) + b) (12)

where W and b denote weight matrix and bias vector of a
linear layer.

Moreover, we constructed drug embedding of protein targets
using network propagation proposed by Pak et al. [52]. We
performed network propagation on STRING protein-protein
interaction (PPI) network [53] to reflect the underlying bio-
logical mechanism of drug-target interaction (DTI). First, we
constructed drug-specific PPI network for each drug in a way
that only leaves the edges that are either with edge weight
greater than 800 or connected to one of the drug targets. Then,
we performed network propagation on the constructed graph
with the drug protein targets DT being the seeds of the prop-
agation. Genes with top 200 node values after convergence
were selected. We performed gene set enrichment analysis
(GSEA) with the selected genes to determine the enriched
pathway from Reactome Pathway Database [54]. Next, the
genes included in the biological pathway that are enriched
with p-value less than 0.05 were selected as the next seed
genes for the network propagation process. The process was
repeated until convergence, and then the final values for all
19,127 nodes (genes) were fed to two fully connected layers
for dimension reduction. Therefore, the target protein drug
embedding

z⃗i = σ(W (σ(W (z′i) + b) + b) (13)

where z′i is the output of zi after the network propagation
process, W and b denote weight matrix and bias vector of a
linear layer.

Lastly, we constructed drug embedding of molecular finger-
print using two fully connected layers. The fingerprint drug
embedding is thus

v⃗i = σ(W (σ(W (vi) + b) + b) (14)

With four embeddings of drugs, we define the final drug
vector d⃗, using the embeddings x⃗, w⃗, z⃗, and v⃗. The first three
embeddings are aggregated by a single fully connected layer.
After that, the fingerprint embedding is concatenated to the
aggregated embedding, which is to highlight the existence
of particular subgraphs of a modelcule. All embeddings of
a molecule are input to a fully connected layer and an
activation layer. This way, the final embedding captures the
signal from among molecular graph, drug similarity, protein
target information, and molecular fingerprints.

d⃗ = tanh(W (W (⃗x
n

w⃗
n

z⃗) + b)
n

v⃗) + b (15)

where
f

is concatenation, W and b denote weight matrix and
bias vector of a linear layer.

For side effect vector, we concatenate MedDRA categorical
vectors SC and Glove word embedding SE and feed the
concatenated vector into two fully connected layer followed
by activation function.

s⃗ = tanh(W2(ReLU(W1[u||v] + b1)) + b2) (16)

where Wi and bi denote weight matrices and bias vectors of
linear layers.

Finally, we inner-product drug vector and side vector for
the prediction of drug-side effect frequency. Here, d⃗ and s⃗ are
both unit vectors, as their range is an output of a hyperbolic
tangent function. To scale this range to cover our frequency
values from 0 to 5, we multiply 5 to the inner product of two
vectors.

f(d, s) = 5 · d⃗ · s⃗ (17)

Dimensions of the GAT layers and hidden layers from Equa-
tion (11)-(16) are noted in the supplementary material (Sup-
plementary Table S1).

D. Model training loss

Given drug d, side effect s, and their frequency y, we train
the model using root mean square loss as follows:

Lrmse =

√∑
d,s

(α(f(d, s)− y))
2
/NM (18)

where f(·) denotes our prediction function, α scaling weights
for the drug-side effect pairs (observed: 1; unobserved: 0.03)
to complement the class imbalance, N the total number of
drugs, and M the total number of side effects.

E. Adaboost framework

Drug-side effect frequency is determined by multiple differ-
ent factors. We conjecture that different drugs have different
input features of x⃗, w⃗, z⃗, or v⃗ that need to be focused in order
to predict side effect frequency. However, we have limited
numbers of available drugs, side effects, and proteins. To
overcome the issue of overfitting and improve predictions
for all drug groups, we utilize a boosting strategy inspired
by Adaboost. Initially, we define the sampling weights of
our training data as W1 = {1/NM}NM

i=1 where N is the
number of drugs and M the number of side effects. Then,
we train the base model f1 : x → y for 50 epochs. To
utilize Adaboost classifier, we interpret our base model as a
binary classifier for now and determine the presence/absence
of drug-side effects using the best threshold computed. In
other words: fi(x), yi ∈ {0, 1}. For the total prediction
error e after training, the influence of the classifier is defined
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α1 = log((1−e)/e)/2. Then, we update the sampling weights
of the training data as following:

Wi+1 =


1

Z
e−αiWi, iffi(x) = yi

1

Z
eαi Wi, otherwise

(19)

Then we valuated sampling weight for each of drug-side effect
and averaged the sampling weights per drugs. This way, we
maximize the boosting effect and prevent overfitting to outlier
data. We iteratively train a base model fi(x) using sample
weights Wi for 50 epochs. The final model F (x) after boosting
10 base models, f1(x), f2(x), ..., f10(x) is:

F (x) =

10∑
i=1

αifi(x) (20)

We reused the similarity of drugs and side effect vectors at
each boosting step. Generally, Adaboost assigns lower sam-
pling weight for the data that is well predicted and focus more
on the data failed to predict. To compensate the downlplayed
data and guide to train other vectors, we utilize the vector
similarity matrix to introduce the embedding loss. At the end
of the training of a base model, drug-drug similarity matrix and
side effect-side effect similarity matrix are defined. Then, we
adopt embedding loss that minimizes the difference of next
drug/side effect vectors similarity and the defined matrices.
Contrary to the prediction loss, embedding loss is inverse
proportional to the sampling weights. This way, the next base
model can learn from previously successful embeddings. For
drug vector d and side effect vector s, we define the embedding
loss as following.

Lemb =
∑
i,j

(
dTi dj

∥di∥∥dj∥
− SimD(i, j)

)
ω
(i)
d ω

(j)
d

+
∑
i,j

(
sTi sj

∥si∥∥sj∥
− SimS(i, j)

)
ω(i)
s ω(j)

s

(21)

where SimD denotes drug-drug similarity matrix, SimS side
effect-side effect similarity matrix, and ω

(k)
d or ω

(k)
s the

maximal value of sampling weights minus the sampling weight
of drug or side effect k. Finally, the final loss function is
computed as

Ltotal = Lrmse + λLemb. (22)

IV. RESULT

A. Evaluation metrics

For comparison, we used exactly the same evaluation
metrics used in the current state-of-the-art model, DSGAT
[32]. For drug-side effect frequency prediction, we computed
Spearman’s correlation coefficient (SCC), root mean square
error (RMSE), absolute mean error (MAE) as following:

SCC =
Cov(R(f(x), R(y))

σR(f(x))σR(y)
(23)

RMSE =
√∑

(f(x)− y)
2
/NM (24)

MAE =
∑

|f(x)− y|/NM (25)

where R(·) denotes rank variables of the data.
For drug-side effect presence/absence prediction, we com-

pute area under the receiver operating characteristic curve
(AUROC) and mean average precision (mAP; also known as
AUPRC) for association prediction

AUROC =

∫ 1

0

TPR(FPR−1(x))dx (26)

mAP (AUPRC) =
1

N

N∑
d=1

TPd/(FPd + TPd) (27)

We also compute normalized discounted cumulative gain
(nDCG), recall and precision of the top 1, 15 items with
prediction score for recommendation. Here, we used the
best threshold computed from the presence/absence prediction
above, to determine the predicted labels for drug-side effects.

nDCG@K = ZK

K∑
i=1

r(i)

log2(i+ 1)
(28)

Precision =
TP

N
(29)

Recall =
TP

T
(30)

where r(i) ∈ {0, 1} is a relevance score, and ZK the
normalizer that nDCG@K estimation for the ideal possible
recommendation would be 1.

B. Performance comparison with baseline models

In the process of drug development, we may not have any
side effect reported for the tested drug prior to the examination.
Therefore, it is desirable and necessary to test the drugs that
are never seen to the model in the training process. To evaluate
the prediction power for side effect frequencies of unseen
drugs, we split drugs into training data and test data, so that
drugs in the test data have not seen while training our model.

We assessed our model in drug split with tenfold cross-
validation. First, we randomly divided 750 drugs into 10
bins of equal size. Then, we trained our model using 9 bins
to test each remaining bin. We repeated and averaged the
evaluation metrics over 10 times. To prevent data leakage,
the columns of drug similarity vector that correspond to test
drugs are masked to zero. To prevent overfitting, dropouts were
included in all trainings. The supplementary material reports
the hyperparameters used to train our model (Supplementary
Table S2).

Table I shows the results of performance comparison. Our
suggested model outperformed the existing models, and scored
the best performance in 7 out of 10 of the evaluation metrics.

In Table I, the performances of MGPred [29] and SDPred
[31] were not as good as the other models because they were
initially designed for predicting the side effect frequencies of
drugs that are already known. To compare with these models,
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TABLE I: Performance comparison of our model with other
SOTA baseline models. We split drugs into 10 bins, and
performed tenfold cross validation using training and testing
dataset as 9:1 ratio, to evaluate prediction for unseen drugs.
MGPred, SDPred, DSGAT and our model were compared in
ten different evaluation metrics. Galeano’s model is matrix
factorization-based method and is not applicable to predicting
side effects of unseen drugs. Our model shows superior
performance in overall. Bold-faced numbers indicate the best
performance of each evaluation metric.

MGPred [29] SDPred [31] DSGAT [32] Our model
Metric
SCC -0.065 0.258 0.431 0.438
RMSE 3.435 3.649 1.470 1.407
MAE 3.314 3.539 1.174 1.057
AUROC 0.746 0.845 0.878 0.901
mAP (AUPRC) 0.178 0.347 0.403 0.436
nDCG@10 0.201 0.778 0.813 0.858
Precision@1 0.019 0.668 0.701 0.750
Precision@15 0.021 0.476 0.513 0.556
Recall@1 0.000 0.026 0.030 0.031
Recall@15 0.004 0.241 0.265 0.267

we designed additional tenfold cross-validation using different
data split. Specifically, we divided 750 drugs and 994 side
effects into 10 bins, ensuring an equal distribution of known
associations between drugs and side effects. Then, we used
tenfold cross-validation to test each bin. Supplementary Table
S3 shows the results. Note that we use imbalanced dataset.
MGPred and SDPred were not scalable, and do not perform as
effective as they claimed in their original paper where only part
of the negative data were selected to make balanced datasets.
On the other hand, our model showed good performance, and
was comparable to the state-of-the-art model, DSGAT [32].

We additionally carried out another experiment to assess the
performance of our model when only data indicating presence
are accessible. We trained the model with the same dataset,
this time binarizing the label prior to the training phase so
that all labels are either one of 0 or 1. We achieved equally
high scores as we did with the original dataset. Specifically,
we achieved AUROC and AUPRC of 0.905 and 0.422 with
binarized labels, comparable to the original values of 0.903
and 0.431. The results are added to Supplementary Note S1.

In summary, our model achieved good performance in
overall. Drug discovery process in real life often involves
situation where side effect information for candidate drugs is
not available. In this case, our model has superior performance
in most evaluation metrics. Furthermore, cross-validaiton in
traditional data split shows our model is robust to data imbal-
ance compared to other methods such as Galeano et al. [5],
MGPred [29], and SDPred [31].

C. Drug feature importance and ablation studies

To demonstrate the power of all drug features, we performed
feature importance study and feature ablation study. First, for
feature importance study, we used only one drug embedding to
create drug vector and masked others. Other than the feature

TABLE II: Feature importance studies of drug features. -DG,
-DS, -DT, and -DF in the header row indicates ablation
model with no molecular graph, drug similarity, drug pro-
tein target information, or molecular fingerprints, respectively.
Bold-faced numbers indicate the best performance of each
evaluation metric.

Full model DG DS DT DF
Metric
SCC 0.438 0.453 0.455 0.459 0.440
RMSE 1.407 1.549 1.406 1.415 1.361
MAE 1.057 1.223 1.078 1.106 1.038
AUROC 0.901 0.892 0.878 0.901 0.895
mAP (AUPRC) 0.436 0.417 0.401 0.433 0.421
nDCG@10 0.858 0.837 0.626 0.850 0.836
Precision@1 0.750 0.716 0.737 0.746 0.726
Precision@15 0.556 0.550 0.541 0.554 0.547
Recall@1 0.031 0.027 0.029 0.028 0.028
Recall@15 0.267 0.258 0.255 0.261 0.257

TABLE III: Ablation studies of drug features. -DG, -DS, -DT,
and -DF in the header row indicates ablation model with
no molecular graph, drug similarity, drug protein target in-
formation, or molecular fingerprints, respectively. Bold-faced
numbers indicate the best performance of each evaluation
metric.

Full model -DG -DS -DT -DF
Metric
SCC 0.438 0.418 0.411 0.445 0.429
RMSE 1.407 1.435 1.627 1.410 1.373
MAE 1.057 1.078 1.310 1.085 1.049
AUROC 0.901 0.897 0.893 0.897 0.892
mAP (AUPRC) 0.436 0.428 0.421 0.425 0.419
nDCG@10 0.858 0.851 0.846 0.852 0.843
Precision@1 0.750 0.736 0.708 0.748 0.740
Precision@15 0.556 0.546 0.555 0.550 0.548
Recall@1 0.031 0.029 0.027 0.030 0.029
Recall@15 0.267 0.259 0.276 0.259 0.257

set, we used the same model architecture with the same pa-
rameters. Table II shows the result of feature importance study.
Here, each of DG, DS, DT, and DF denotes drug molecular
graph, similarity to other drugs, drug target information, and
molecular fingerprints, respectively.

We observed that drug target information has the highest
score in SCC, and AUROC. It was also observed to perform
competitively, in other metrics. This corresponds with our
emphasis on drug target protein, while also highlighting the
importance of utilizing all drug features to predict drug-side
effect frequency.

Table III shows the result of ablation studies. Each of -DG,
-DS, -DT, -DF denotes that either molecule graph, similarity to
other drugs, drug target information, or molecular fingerprint
embedding vector is masked. Experiments without any feature
lead to a notable drop in performance predicting the frequen-
cies and presence, in most evaluation metrics. Therefore, all
the features in our model play role in determining side effect
frequency of drugs.

D. Evaluating independent drugs

So far, we used 750 drugs from Galeano et al. [5] and
MGPred [29] to compare the performance of our model
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TABLE IV: Independent nine drugs performance. We trained
our model on all 750 drugs and 994 side effects, and tested on
nine novel drugs. The prediction of drug-side effect frequency
for these drugs do not deteriorate with external data.

SCC RMSE MAE AUROC mAP (AUPRC)
Drug name
balsalazide 0.351 1.067 0.693 0.953 0.712
carboplatin 0.204 0.976 0.786 0.952 0.478
cisatracurium -* 0.517 0.448 0.971 0.292
doxercalciferol 0.327 1.404 1.166 0.955 0.420
esomeprazole -0.144 1.678 1.317 0.937 0.554
everolimus 0.500 1.676 1.370 0.871 0.682
fidaxomicin 0.577 0.769 0.536 0.976 0.486
gadoteridol 0.434 1.059 1.796 0.898 0.470
ixabepilone 0.391 1.110 0.858 0.958 0.740
Avg. 0.330 1.140 0.997 0.941 0.537

* Only one-class label to predict

with former drug-side effect prediction algorithms. Originally,
Galeano et al. curated dataset of 759 drugs. MGPred screened
out nine drugs whose STITCH compound IDs were not
available. We identified the STITCH compound IDs of the
nine drugs and further validated our model on the mentioned
compounds (Supplementary Table S4). Specifically, we trained
our model using the whole 750 drugs and then evaluated the
scoring metrics of the nine newly introduced drugs. Table IV
shows SCC, RMSE, MAE, AUROC, and mAP values for the
nine independent drugs.

The AUROC and mAP values show that most of the
nine drugs show excellent prediction power in determining
drug-side effect association. The average value of AUROC
and mAP are 0.941 and 0.537, respectively. These scores
are significantly higher than the original performance of our
model. RMSE and MAE also shows that our model excels
in predicting the frequency in terms of error. SCC was not
satisfactory compared to that of the original scheme. The rea-
son is mainly attributed to esomeprazole and carboplatin with
their SCC being -0.144 and 0.204, respectively. Nonetheless,
the AUROC and mAP values of these drugs indicate that
predictions of side effect presence are reliable enough for
practical use. Overall, the result shows that our model, trained
with the whole 750 drugs, performs well for an independent
dataset.

E. Performance boosting of the Adaboost framework in terms
of drug target specificity

We studied the impact of Adaboost on different drug groups.
Since our motivation mainly focuses on using target informa-
tion of drugs, we use drug groups with and without explicit
protein targets. Explicit protein target means that the drug is
meant to disrupt the targeted protein’s biological pathway.
Genomics of Drug Sensitivity in Cancer (GDSC) provides
data on screened compounds with targeted pathways and
processes [55] We classified cancer drugs into cytotoxic drugs
(targeting DNA replication and cytoskeleton) and targeted
drugs (targeting signaling pathways). In general, cytotoxic
drugs are less investigated for off-targets than targeted drugs,
thus we used the terminologies, cytotoxic vs. targeted in this
context. We used area under receiver operating characteristic

Fig. 3: Comparison of targeted (blue) and cytotoxic (orange)
drugs. The x-axis indicates the ordinal number of base models
in Adaboost. (A) Relative data sampling weights for tar-
geted/cytotoxic drugs of the base model. (B) AUROC values of
targeted/cytotoxic drugs of the base model. There are two lines
for each group of drugs. Solid line denotes the AUROC values
for 10 boosted models, and dashed line the AUROC values
for 10 base models. Here, cytotoxic drugs greatly improves
by Adaboost, compared to targeted drugs.

curve (AUROC) value to evaluate the scores for each group.
The sampling weights and performance of two groups are
shown in Figure 3. In Figure 3A, the sampling weights of
both targeted and cytotoxic drugs increase with Adaboost,
indicating that the selected cancer group is difficult predict
their side effect values, compared to other type of drugs.
Here, cytotoxic drug exhibits a larger increase. This shows
that it is more difficult to train compared to the targeted
ones. Figure 3B also shows the relative low AUROC
score of cytotoxic drugs compared to the targeted drugs.
However, as Adaboost complements with higher sampling
weights, cytotoxic drugs show larger improvement than the
targeted drugs. Specifically, while the average AUROC value
of targeted drugs improves by 0.0017, that of cytotoxic drugs
improves by 0.0026. To sum it up, while targeted drugs benefit
from the target information given, cytotoxic drugs have low
initial precision, which is complemented using Adaboost. Our
Adaboost strategy successfully integrates to construct the final
model that is competent to predict drug-side effect frequency
for both targeted and cytotoxic drugs.

F. Common embedding space for drugs and side effects

Our model creates drug vectors and side effect vectors of
the same dimension and magnitude (Equation 15, 16), inner
products the two vectors and scale the resulting output to
predict their frequency (Equation 17). Therefore, the drug
vectors and side effect vectors are projected into the common
spherical space with their cosine similarity being proportional
to the frequency of side effects, forming a drug-side effect
sphere like the constellation. In such space, the geography
of drugs and side effects can be directly linked to reveal their
frequency. We performed principal component analysis (PCA)
to reduce the dimension and visualize the distribution of drugs
and side effects.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3350083

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Seoul National University. Downloaded on July 14,2024 at 13:00:10 UTC from IEEE Xplore.  Restrictions apply. 



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 10

Fig. 4: Drugs and side effects projected in common vector space. The drug vectors and side effect vectors are reduced to
2-dimensional space using principal component analysis (PCA). (A) Drug vectors are represented in colored dots with their
color indicating ATC code of drugs. Drugs for [C: cardiovascular system], [L: antineoplastic and immunomodulating agents],
and [N: nervous system] are drawn with ellipses indicating the deviation of each class, respectively. Side effects are represented
in gray marks. (B) Heatmap of average percentile cosine similarity among drugs and side effects in perspective of ATC code
and System Organ Class. (C) Side effect vectors are represented in colored dots with their color indicating System
Organ Class of side effects. Side effects of Cardiac, Neoplasm and Nervous system class are drawn with ellipses indicating
the deviation of each class, respectively. Drugs are represented in gray marks.

Figure 4 displays drugs and side effects in a com-
mon space, with colors indicating corresponding ATC codes
(Anatomical Therapeutic Chemical Classification System) and
System Organ Class. We examine three pairs of drug
and side effect groups, [C: cardiovascular-cardiac] (red),
[L: antineoplastic-neoplasm] (blue), and [N: nervous-nervous]
(yellow), and notate deviations with ellipses. Figure 4A and
4C show the same space in the same scale, with one focusing
on drugs and the other on side effects.

While we clearly observe the clustering of drugs, the
coverage of each group of drugs are explained by the cosine
similarity among different classes, as in Figure 4B. Note
that drug points are mostly located in the left-hand side
of the space while side effect points are in the right-hand
side. Cardiovascular drugs occupy the farthest side on the
left, with its cosine similarity to side effects being one of
the lowest among the drug groups. However, antineoplastic
drugs and nervous system drugs are placed in center close to
side effects. Their similarities to side effects are the largest,
coherent to the reality. While an average drug gets 49.4 side
effects, cardiovascular/antineoplastic/nervous system drugs get
28.1/56.4/110.8 side effects, respectively. Moreover, we ob-
serve that antineoplastic drugs have lower risk of developing
side effects of neoplasm than developing side effects of other
System Organ Class, while nervous system drugs on the
contrary, often cause nervous system side effects. We observed
the nervous system side effects that reside leftmost, as shown
in the red box of Figure 4C. The names of the side effects and
the true probability of a nervous system drug accompanying
the side effects are: somnolence (0.80), tremor (0.65). The
average probability for other nervous system side effects was
0.15. The side effect points that are closer to the nervous
system drug cluster on the embedding space indeed showed
more frequent occurrence.

V. CONCLUSION

Predicting drug-side effect frequency in silico is a major
problem for drug discovery. Neglecting side effects of drugs
can jeopardize the public health and incur social costs, even
lives of people. On the other hand, knowledge of drug side
effects can lead to understanding the benefit and risk of drugs.
However, the task of predicting drug-side effect frequency is
not a trivial task, and only four existing studies have covered
the topic.

In this paper, we proposed a deep learning-based drug-
side effect frequency prediction model. While we inherited
important features such as molecular graph and drug-drug
similarity from the previous studies, we also introduced drug
protein target and molecular fingerprint to complement the
model. We adopted GAT and network propagation to further
extract latent features of given input, and finally aggregated
four different embeddings to produce final vector representa-
tion for drugs. Our model achieved the best performance over
the existing drug-side effect frequency prediction models. We
are the first to utilize the direct drug protein target information
to represent drug vectors for predicting frequencies of side
effects. Moreover, Adaboost ensemble technique successfully
integrated the utility of the heterogeneous features of drugs.
We performed ablation studies to show that all components in
our model contribute to good prediction.

The features of our model are limited to ingredients of the 4
drug embeddings, and exclude other information such as drug-
induced gene expression of cell lines. Integrating biological
data is another challenge to improve drug-side effect frequency
prediction. We will pursue this topic as a future study.
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