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Abstract
Information asymmetry is a pervasive feature of
multi-agent systems, especially evident in eco-
nomics and social sciences. In these settings,
agents tailor their actions based on private infor-
mation to maximize their rewards. These strategic
behaviors often introduce complexities due to con-
founding variables. Simultaneously, knowledge
transportability poses another significant chal-
lenge, arising from the difficulties of conducting
experiments in target environments. It requires
transferring knowledge from environments where
empirical data is more readily available. Against
these backdrops, this paper explores a fundamen-
tal question in online learning: Can we employ
non-i.i.d. actions to learn about confounders even
when requiring knowledge transfer? We present
a sample-efficient algorithm designed to accu-
rately identify system dynamics under informa-
tion asymmetry and to navigate the challenges of
knowledge transfer effectively in reinforcement
learning, framed within an online strategic interac-
tion model. Our method provably achieves learn-
ing of an ϵ-optimal policy with a tight sample
complexity of Õ(1/ϵ2).

1. Introduction
Multi-agent systems are widely applied in reinforcement
learning (RL) (Littman, 1994; Wang et al., 2019; Dubey
& Pentland, 2021), economics (Brero et al., 2022), social
science (Sabater & Sierra, 2005), and robotics (Yan et al.,
2013). In systems like these, agents are characterized by
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their diverse private information and their drive to maximize
individual rewards, which give rise to what is termed in-
formation asymmetry (Myerson, 1982; Gan et al., 2022a).
Due to information asymmetry, the agents always strategi-
cally choose their actions according to the predetermined
and publicly known policy of the principal, while keep-
ing their private information concealed from the principal’s
awareness. Here, we say agents are “strategical” because
they will choose their strategic actions based on personal
types and aim at maximum obtainment. A famous example
in economics is the generalized principal-agent problem
(Myerson, 1982), where a principal interacts with several
myopic agents with private types and type-based strategic
bidding.

On the other hand, it’s also common and sometimes neces-
sary for the learner in machine learning to generalize the
knowledge from one domain to other related domains, which
is often referred to as transfer learning (Zhuang et al., 2020).
Similar phenomena have also been observed in casual infer-
ence, which is known as knowledge transportability (Pearl
& Bareinboim, 2011). Knowledge transportability stud-
ies the problem of transferring information learned from
experiments to different environments, where conducting
active experiments is difficult or unfeasible but only pas-
sive observations are allowed. Social problems, particularly
medical issues, frequently involve instances of knowledge
transportability (Pearl & Bareinboim, 2011; Bareinboim &
Pearl, 2013). A motivating example is to transfer the learned
effect of a treatment from one population (e.g., experiments
done in New York City) with a large number of samples to
other populations where massive experiments might be not
available (e.g., investigating the outcome of that treatment
in Los Angeles).

In this paper, we hope to theoretically study online decision-
making under information asymmetry arising from the
agents’ side and knowledge transportability needed by the
principal. Inspired by the generalized principal-agent prob-
lem, we model a scenario in which a principal sequentially
interacts with a series of agents. Each agent, driven by short-
term objectives, myopically maximizes her rewards based
on her private information (Zhong et al., 2021). This model
captures the dynamics of a principal engaging with a con-
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tinuous flow of agents where their private types and actions
directly affect the transition and the reward of the principal.
The goal of the principal is to design a policy to maximize
his total rewards when interacting prospectively with a spe-
cific target population of agents, though the online data may
come from a different population of agents thus knowledge
transfer is necessary. As a result, we formalize this problem
as an online strategic interaction model–a generalization of
the strategic Markov decision process (MDP) similar to Yu
et al. (2022), which studies an offline setting. However, we
must adaptively adjust our policy, i.e., time-varying, in an
online learning setting to explore unknown environments.
Therefore, our actions are not i.i.d. distributed, but are inter-
dependent. Hence, the traditional concentration inequalities
used in Yu et al. (2022) do not apply to our case. This
immediately raises a question:

Is it possible to learn a model with confounders using
non-i.i.d. actions and states?

There are two main challenges in our model in order to learn
the optimal policy of the principal. The first one is the pres-
ence of unobserved confounders–the agents’ private types
and private actions, which directly affect both the rewards
and transition dynamics but are kept unobserved to the prin-
cipal. The second is to transfer the learned information from
online data to the target population of agents. It prompts a
second question:

Can we design an approximately optimal algorithm if the
target distribution and source distribution are different, and

how does this difference affect the sample complexity?

Different from standard RL, the exploration needed here is
more challenging because the heterogeneous agents can
strategically manipulate their feedback to the principal,
which affects the rewards and transitions.

We provide affirmative answers to both questions. To re-
solve the challenges, we propose a model-based algorithm
to learn a nearly optimal policy of the principal. Our algo-
rithms leverage a novel nonparametric instrumental variable
(NPIV) method sparked by Angrist & Imbens (1995); An-
grist & Krueger (2001); Newey & Powell (2003); Ai & Chen
(2003) with algorithmic instruments to establish causal iden-
tification of the system in the presence of confounders. With
such identification, we’re able to construct a high probability
confidence set for the model or the value functions under
the target domain to transfer knowledge (Pan & Yang, 2009;
Taylor & Stone, 2009) using the method of moments. Our
analysis shows that such a model-based algorithm prov-
ably learns a ϵ-optimal policy with only Õ(1/ϵ2) samples
which matches corresponding lower bounds up to logarith-
mic terms.

In summary, our contributions are two-fold:

• In order to theoretically study reinforcement learning
with information asymmetry and knowledge transporta-
bility, we introduce the online strategic interaction
model motivated by the strategic MDP (Yu et al., 2022).
Our online strategic interaction model breaks the i.i.d.
data condition and presents a scenario in which rein-
forcement learning models can be learned using time-
varying data. Technically, we propose a model-based
algorithm in the general MDP setting which leverages
the NPIV method to do causal identification of the
underlying model.

• We investigate the conditions under which our algo-
rithm can provably learn a near-optimal policy. Us-
ing Õ(1/ϵ2) samples, the proposed model-based al-
gorithm learns an ϵ-optimal policy and we show its
dependency on the knowledge transportability. We de-
fine a knowledge transfer multiplicative term Cf and
use it as a measure of the hardness increased by trans-
ferring knowledge (cf. Section 5).

1.1. Related Work

Our work is closely connected to several bodies of literature
discussed below.

RL in economics. Many models or problems extensively
studied in economics have been combined with reinforce-
ment learning, including Stackelberg game (Başar & Olsder,
1998; Zhong et al., 2021), Bayesian persuasion (Kamenica &
Gentzkow, 2011; Gan et al., 2022b; Wu et al., 2022), mech-
anism design (Gan et al., 2022a; Bernasconi et al., 2022),
performative prediction (Mandal et al., 2022), etc. Different
from those models, our work is a natural extension of the
generalized principal-agent problem to reinforcement learn-
ing focusing on learning the optimal policy of the principal
in the presence of information asymmetry and knowledge
transportability.

Efficient exploration in RL. The exploration problem has
been extensively studied in tabular MDPs (Auer et al., 2008;
Azar et al., 2017; Dann et al., 2017; Jin et al., 2018; Dann
et al., 2019; Zanette & Brunskill, 2019; Zhang et al., 2022),
MDPs with linear function approximation (Yang & Wang,
2019; Jin et al., 2020; Yang & Wang, 2020; Cai et al., 2020;
Ayoub et al., 2020; Zhou et al., 2021; Hu et al., 2021; Chen
et al., 2021) and general function approximation (Russo &
Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Jin et al.,
2021; Du et al., 2021). Apart from standard RL models, the
strategic interaction model poses additional challenges due
to, for instance, the strategic behaviors of agents caused by
information asymmetry. Since the principal cannot observe
agents’ types, partially observed feedbacks bring higher
uncertainty and more nuisance in algorithm design.
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RL with confounded Data. There is a line of works study-
ing reinforcement learning in the presence of confounded
data (Chen & Zhang, 2021; Wang et al., 2021; Liao et al.,
2021; Shi et al., 2021; Bennett et al., 2021; Bennett & Kallus,
2021; Wang et al., 2022; Lu et al., 2022; Yu et al., 2022).
The studies of Chen & Zhang (2021); Liao et al. (2021); Yu
et al. (2022) also use the instrumental variables to do causal
identification. Among them, Yu et al. (2022) is most related
to this work, which studied strategic MDPs in the offline
setting. In contrast, we study the online strategic interaction
model together with knowledge transfer, a generalization of
their model with a break of i.i.d. assumption, and distribu-
tion shift. We provide an elaborate summary of the novelty
in this work beyond Yu et al. (2022) and standard RL in
Appendix B.2.

The principal-agent problem and instrumental variable
model. The principal-agent problem is well-known in eco-
nomics (Myerson, 1982; Guruganesh et al., 2021; Zhang &
Conitzer, 2021; Gan et al., 2022a), which features the strate-
gic interactions between a principal and an agent with pri-
vate type and private action. The challenges in the principal-
agent problem are known as “moral hazard” (incomplete
information about actions) and “adverse selection” (incom-
plete information about types), which are both present in our
work. The instrumental variable model has been extensively
studied in economics (Angrist & Imbens, 1995; Angrist &
Krueger, 2001; Ai & Chen, 2003; Newey & Powell, 2003;
Blundell et al., 2007; Chen & Pouzo, 2012; Chen & Qi,
2022), with applications in (statistical) machine learning
(Harris et al., 2022) and reinforcement learning (Chen &
Zhang, 2021; Liao et al., 2021; Yu et al., 2022). As an appli-
cation of the instrumental variable model, we use the non-
parametric instrumental variable model to build conditional
moment equations and methods of moments to identify the
underlying model.

2. Preliminaries
We use Markov decision processes to depict the standard
online interaction models involved in this paper, which can
be summarized as (S,A, P,R,H, s1). S and A denote the
state space and action space, respectively. In the meanwhile,
P = {Ph(· | s, a)}Hh=1 and R = {Rh(s, a)}Hh=1 are the
transition dynamics and reward functions, which are both
unknown. H is the time horizon while s1 denotes the initial
state.1

For each episode, a player interacts with the model starting
from state s1 for H steps. When the player reaches state sh,
he receives an observation indicating sh. So, without loss of

1We assume the initial state is a fixed state for simplicity. It’s
straightforward to extend it to the case where s1 is sampled from a
fixed initial distribution.

generality, we assume he can observe sh directly. Then he
takes an action ah according to the past states and actions,
receives a reward rh = Rh(sh, ah) and transits to the next
state sh+1 ∼ Ph(· | sh, ah).

We consider the time-inhomogeneous Markov policy class
Π in this work. A policy π = {πh}Hh=1 ∈ Π maps each sh
to ∆(A) at step h. The value function V π

h : S → R of a
policy π at step h conditioned on sh is defined as

V π
h (s)

def
= Eπ[

H∑
t=h

rt | sh = s].

The goal is to learn an optimal policy π∗ with a highest
cumulative rewards, viz,

π∗ = argmax
π∈Π

V π
1 (s1).

3. The Online Strategic Interaction Model
The online strategic interaction model formalizes the se-
quential strategic interactions of a principal and H agents,
where each agent possesses a different private type sam-
pled from a prior distribution.2 To elaborate further, at each
step h ∈ [H] = {1, ...,H}, an agent with private type th
arrives and chooses a strategic action bh that maximizes
her own payoff. The principal needs to dynamically adjust
his strategy to actively engage in exploration, with the goal
of learning an approximately optimal policy as quickly as
possible. This prior distribution represents the population
from which the online data is collected, which may be dif-
ferent from the target population of agents, underscoring the
necessity of knowledge transfer. We also call the prior dis-
tribution as the source distribution Ps = {Ps

h}Hh=1. Starting
at a fixed state s1, the interactions happen as follows (see
Figure 1 for a more intuitive understanding):

• For the h-th agent, the principal transits to state sh and
then takes an action ah according to his strategy.

• The agent’s private type th is sampled from the
unknown source population Ps

h. Based on it, the
myopic agent strategically takes an action bh =
argmaxbR

a
h(sh, ah, th, b) to maximize her own re-

ward Ra
h. Note that th and bh are both unobserved by

the principal (Maskin & Riley, 1984).

• After the agent takes her action, the principal re-
ceives a manipulated feedback eh ∼ F̃h(· |
sh, ah, th, bh) from the agent according to her pri-
vate information. Denote Fh(· | sh, ah, th)

def
=

F̃h(· | sh, ah, th, argmaxbR
a
h(sh, ah, th, b)), then

eh ∼ Fh(· | sh, ah, th).
2It can also model the interaction of the principal and a single

agent for H steps, who has a different aspect of personal type
drawn from a prior distribution at each step.
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• Finally, the principal receives a reward rh =
R∗

h(sh, ah, eh)+ξh, whereR∗
h is an unknown function

and ξh is assumed to be an unobserved endogenous
zero-mean noise (i.e., confounded with the private type
th referring to Appendix C). The principal transits to
the next state sh+1 ∼ P ∗

h (· | sh, ah, eh) according to
an unknown function P ∗

h . Similarly, we could also al-
low the stochastic transition of sh+1 to be endogenous
or confounded with th. Then the principal starts the
interaction with the next agent.

3.1. Motivation

Next, we discuss the motivation for designing the online
strategic interaction model and use two real-world examples
of the existence of confounders to digest this setting. More
details can be found in Appendix C.

As mentioned in the introduction, the main motivation to
study the online strategic interaction model is to under-
stand the strategy design of multi-agent strategic interaction
(e.g., the generalized principal-agent model) in a sequential
decision-making setting, where both problems are common
in reality. To better align this model with the real world,
we incorporate several generalizations including the distri-
bution shift of the agent population, the extensively large
state space, and the endogenous noise in our model. Each
of these generalizations greatly enhances the expressive
power of our model in the sense that

• Without distribution shift (i.e., the knowledge trans-
portability), the model reduces to single-agent RL,
which is somehow not hard to compute near-optimal
policies. The distribution shift condition initiates many
challenges studied in the paper such as the confounding
issue and the knowledge transfer.

• A large state space is ubiquitous in complex real-world
problems. Our analysis characterizes the impact of
problem size growth on the sample complexity of our
algorithms, for instance, through the Eluder dimension.

• Many practical applications have endogenous noises
while existing work only assumes exogenous noise.
In real-world problems, the principal is typically a
company or an organization, and the agents are clients,
employees, etc. The state sh is usually the conditions
of the company, and the rewards are the profits of the
company over an agent, which has a deep connection
to the private type of the agents (e.g., the personality,
the health conditions). Thus, the distribution of the
rewards is largely correlated to the private type. If the
noises are exogenous variables, this correlation will
be realized solely by the feedback eh. That is to say,
the private type must influence the reward distribution

via an observable term eh. However, the feedback
eh is observed so that it only conveys very limited
information of the private type. In reality, the noise
term ξh may include the unobserved confounder in
the reward that is not measured even when intervening
with the feedback eh. Please see the next section for
some examples for further explanations.

Example 3.1 (Contract design). The shareholders of a com-
pany aim to maximize the stock price sh and related re-
turns. At each step h, the company decides whether to
replace the CEO and what her compensation should be de-
noted by ah. CEOs can be either diligent or lazy, namely,
th ∈ {Diligent,Lazy}. Different types of CEOs will choose
to exert different levels of effort bh, and whether a CEO is
hardworking affects some hidden factors, e.g., the morale
of the company’s employees. Shareholders cannot observe
the CEO’s effort directly; they can only observe the opera-
tional status of the company eh. At time h, the shareholders’
returns are influenced by several factors: the stock price
and the operational status of the company which determine
dividends, the CEO’s salary, and employee morale (which
may affect turnover rates). The first two terms constitute
R∗

h(sh, ah, eh) while the last unobserved term forms ξh.
This explains the source of confounders and ends up with re-
ward rh = R∗

h(sh, ah, eh)+ξh. The market can observe the
company’s stock price, financial statements, and operational
condition at moment h, and these observations influence
the stock price at h + 1, saying sh+1 ∼ P ∗

h (· | sh, ah, eh)
through self-fulfilling expectation (Hamilton & Whiteman,
1985).

Intuitively, this model enables agents to strategically ma-
nipulate rewards of the principal and state transitions via
their private information through their feedback eh, which
is more challenging than classic RL. The introduction of
endogenous variables greatly enhances the generality of
our model but also raises more challenges to designing ef-
ficient algorithms. We provide more details of the model
and the motivation, as well as more motivating examples in
Appendix C. We use M∗(Ps) to denote the online strate-
gic interaction model under the source distribution and let
Pt = {Pt

h}Hh=1 be the target population of agents. We
close off this section by providing an application scenario
of knowledge transfer.
Example 3.2 (Experimental design.). With the rapid de-
velopment of Large Language Models (LLMs), integrating
LLMs into experimental design (Kumar et al., 2023), such as
A/B testing, has become a new trend. Compared to the high
costs associated with using human samples for experiments,
the cost of using LLMs is essentially zero. However, LLMs
exhibit significant differences from humans in many as-
pects. For example, in addressing an optimization problem,
LLMs operate with complete rationality, whereas humans
sometimes possess only bounded rationality (Simon, 1990;
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Figure 1. Timeline of the interaction. rh and sh+1 (blue) are influenced by observable sh, ah, eh (red) and unobservable th (green). We
use numbers to indicate the sequence of events.

Conlisk, 1996). Therefore, experiment designers need to
combine known human characteristics say Pt with experi-
mental data derived from LLM features say Ps to develop
optimal mechanisms tailored for human agents.

3.2. Planning in the Online Strategic Interaction Model

Since we are trying to design model-based algorithms, we
introduce the planning algorithm in the online strategic inter-
action model in this section. If we are given the underlying
rewards {R∗

h}Hh=1 and transitions {P ∗
h}Hh=1, we can con-

struct an aggregated model with respect to a target type
distribution Pt, i.e., assuming the random type is sampled
from Pt.

Define the aggregated model M̄∗ = (S,A, R̄∗, P̄ ∗, H, s1)
under the target distribution as

R̄∗
h(sh, ah)

def
= Et∼Pt

h,e∼Fh(·|sh,ah,t) [R
∗
h(sh, ah, e)] ,

(3.1)

P̄ ∗
h (· | sh, ah)

def
= Et∼Pt

h,e∼Fh(·|sh,ah,t) [P
∗
h (· | sh, ah, e)] .

(3.2)

It is known that the reward and transition dynamics in the
target model M∗(Pt) is equivalent to M̄∗. We provide a
brief explanation here and defer the details to Appendix C.

Given any (sh, ah, eh) in M∗(Pt), we know ξh is an en-
dogenous noise which may be confounded with th. This
means

E [ξh | sh, ah, eh] ̸= 0, (3.3)

since eh also correlates with th. Nevertheless, we note that
ξh is independent of (sh, ah) in our model as apart from
what absorbed in R∗

h(sh, ah, eh), the rest only depends on
the unobservable type th, which implies that

Eth∼Pt
h,eh∼Fh(·|sh,ah,th) [ξh | sh, ah] = 0,

because ξh is a zero-mean noise. Therefore, we conclude
that

EM∗(Pt) [rh | sh, ah]
def
= Eth∼Pt

h,eh∼Fh(·|sh,ah,th) [rh | sh, ah]
= R̄∗

h(sh, ah),

and analogously the transition of M∗(Pt) is also identical
to P̄ ∗

h (· | sh, ah).

Now it suffices to learn the optimal policy π̄∗ of M̄∗. Since
the aggregated model is an episodic MDP, its optimal policy
is a Markov policy, which justifies the previous definition
of Π. Denote the value function of any policy π on M̄∗ as
V̄ π
M̄∗ , we say a policy π is ϵ-optimal if

V̄ π
M̄∗ ≥ V̄ π̄∗

M̄∗ − ϵ.

3.3. Notation Guide

We use ds,πh (·, ·, ·) (resp. dt,πh (·, ·, ·)) to denote the joint dis-
tribution of sh, ah, eh for policy π under model M∗(Ps)
(resp. M∗(Pt)). Sometimes we also marginalize over eh
and use ds,πh (·, ·) (resp. dt,πh (·, ·)) to denote the marginal
distribution of sh, ah on M∗(Ps) (resp. M∗(Pt)). For
any value function gh+1 : S → R and transition dy-
namics Ph(· | sh, ah, eh), we use Phgh+1(sh, ah, eh)

def
=∑

s′ gh+1(s
′)Ph(s

′ | sh, ah, eh) to denote the expectation
of gh+1 under Ph. For any function space X with function
x∗ ∈ X , define the translated space X − x∗

def
= {x − x∗ :

x ∈ X}. A comprehensive table of notation, covering both
the main body and the appendix, is provided in Appendix A.

4. Meta Algorithm and Methodology
We’re ready to present our algorithms to learn the optimal
policy in the online strategic interaction model. We first
introduce a meta-algorithm (i.e., Algorithm 1), then come
to its model-based variant tailored for our setting.
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Algorithm 1 Meta Algorithm
1: Input: hypothesis class H, confidence level β, total

episodes K, auxiliary function class U .
2: Initialize the exploration policy π1 as a uniform policy.
3: for k = 1, 2, ...,K do
4: Establish dataset Dk

h with policy πk for h ∈ [H].
5: Compute empirical risk function Lk

h(ch) for all ch ∈
Hh with auxiliary function class U .

6: Construct high probability confidence set C̄k = {c =
(c1, ..., cH) ∈ H : Lk

h(ch) ≤ β,∀h ∈ [H]}.
7: Compute ck+1 = argmaxc∈C̄k V ∗

c , π
k+1 = πck+1 .

8: end for
9: Output: πi for i ∼ Unif([K]).

Suppose we have access to a hypothesis class H =
{Hh}Hh=1 that realizes the underlying model or equally
value functions, we follow the optimism principle in the
face of uncertainty to perform efficient exploration by se-
lecting the optimistic hypothesis ck+1 and its related policy
πck+1 (e.g., the optimal policy of ck+1 as if ck+1 is the
model). The high probability confidence set is constructed
by the empirical risk function with the help of an auxiliary
function class U (see Line 1 in Algorithm 1) according to the
casual identification established through our NPIV method
(see Section 4.1).

4.1. Detailed Explanation of Methodology

Recall that we face two coupled challenges aiming at learn-
ing the optimal policy.

First, we need to bypass the confounding issues. Since
ξh which depends on unobserved type th appears in the
reward function, the correlation between it and feedback eh
invalidates traditional direct reinforcement learning meth-
ods, calling for instrumental variable method. As a simple
observation, we know that the principal’s state-action pair
serves as a valid instrument. Intuitively, (sh, ah) affects the
agent’s reward both directly and indirectly only by affecting
the feedback eh generated from the agent’s best response
behavior.

Second, we need to explore unknown environments.
Given the exploration requires accurate estimates of rewards
and transitions, these two challenges are coupled and we
propose a corresponding optimism principle generalizing
the application of optimistic planning. We visualize the
causal graph and our underlying intuition on instrumental
variables in Figure 2.

We propose a model-based variant of the meta-algorithm,
i.e., OPME-G in Algorithm 2, in our setup, where the hy-
pothesis class Hh is initialized to the model class Hh =
(Rh,Ph), where Rh = {Rh : Rh(sh, ah, eh) ∈ R} and
Ph = {Ph : Ph(· | sh, ah, eh) ∈ ∆(S)}. Please refer to

Figure 2. The causal graph for the strategic interaction between the
principal and the h-th agent. The red line denotes the confounding
between (rh, sh+1) and th. ”IV” means instrumental variables.

Appendices D and H for details on hyperparameter selection
and additional information on another variant OPME-D.

It is challenging to estimate R∗
h and P ∗

h from the model
class because of the confounding issue. We take R∗

h as an
example to explain this issue. Suppose the principal receives
a sampled reward rh at state sh after taking action ah and
observing feedback eh, one may hope E[rh | sh, ah, eh] =
R∗

h(sh, ah, eh) so as to estimateR∗
h by standard least square

regression. However, this is not the case with the existence
of confounders.

Given the endogenous noise ξh in rh = R∗
h(sh, ah, eh)+ξh,

Equation (3.3) implies that

EM∗(Ps) [rh | sh, ah, eh] ̸= R∗
h(sh, ah, eh).

Here M∗(Ps) is the model under source distribution (cf.
Section 3). Motivated by Yu et al. (2022); Angrist & Imbens
(1995); Angrist & Krueger (2001); Chen & Qi (2022), we
turn to tailoring the NPIV method and finally resolve this
issue.

Nonparametric instrumental variable model. Since ξh
is a zero-mean noise, we can use (sh, ah) as an instrumental
variable for (sh, ah, eh) and rh in the sense that (cf. Ap-
pendix F)

EM∗(Ps) [rh −R∗
h(sh, ah, eh) | sh, ah] = 0. (4.1)

Given any roll-in policy π, the conditional moment equation
(i.e., Equation (4.1)) gives

Esh,ah∼ds,π
h

[
Eeh [rh −R∗

h(sh, ah, eh) | sh, ah]
]
= 0,

which inspires us to estimate R∗
h via the least-square loss in
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Algorithm 2 Optimistic Planning with Minimax Estimation-
Dynamical/General (OPME-D/G)

1: Input: model class R,P , confidence level β (see Equa-
tion (H.4)), number of episodes K, discriminator class
F , discriminator class G (used only in OPME-G).

2: Initialize the dataset Dh = ∅ for all h ∈ [H].
3: Initialize the exploration policy π1 as a uniform policy.
4: for k = 1, 2, ...,K do
5: Roll out πk and collect τk = {(skh, akh, ekh, rkh)}Hh=1.
6: for h = 1, 2, ...,H do
7: Add the sample (skh, a

k
h, e

k
h, r

k
h, s

k
h+1) to Dh.

8: Define the empirical risk function L̂k
h(·) of rewards

Rh ∈ Rh by Equation (4.4).
9: Compute confidence set Rk

h by Equation (4.7).
10: Define the empirical risk function L̂k

h(·) of transi-
tion dynamics Gh ∈ Ph by Equation (D.4) for
OPME-D, or Ph ∈ Ph by Equation (4.6) for
OPME-G.

11: Compute confidence set Pk
h by Equation (D.5) for

OPME-D, or by Equation (4.8) for OPME-G.
12: end for
13: Construct model class C̄k by Equation (D.6) for

OPME-D, or by Equation (4.9) for OPME-G.
14: Set M̄k+1 = argmaxM̄∈C̄k V π

M̄(s1) and πk+1 =
π∗
M̄k+1 .

15: end for
16: Output: πi for i ∼ Unif([K]).

episode k, that is,

argmin
Rh

k∑
τ=1

E
sh,ah∼ds,πτ

h

[(E
eh

[rh −Rh(sh, ah, eh) | sh, ah])2].

(4.2)

However, this conditional least-square regression cannot be
directly estimated due to the conditional expectation inside
the square. Instead, we use the minimax estimation with a
discriminator function class Fh : S × A → R in place of
Equation (4.2) by Fenchel-Rockafellar duality (Dai et al.,
2018; Nachum & Dai, 2020) and we define the risk function
Lk
h as

Lk
h(Rh)

def
= max

fh∈Fh

lkh(Rh, fh)−
1

2

k∑
τ=1

E
s,a∼ds,πτ

h
[f2h(s, a)],

(4.3)

where lkh(R, f)
def
=
∑k

τ=1 Esh,ah,eh∼ds,πτ

h
[f(sh, ah)(R(sh,

ah, eh)− rh)].

In each episode k, we roll out a trajectory τk =
(sk1 , a

k
1 , e

k
1 , r

k
1 , ..., s

k
H , a

k
H , e

k
H , r

k
H) by πk and construct a

dataset Dk
h = {τ1, τ2, ..., τk}. Then we can construct an

empirical version of Lk
h, say

L̂k
h(Rh)

def
= max

fh∈Fh

l̂kh(Rh, fh)−
1

2

k∑
τ=1

f2h(s
τ
h, a

τ
h), l̂

k
h(R, f)

def
=

k∑
τ=1

f(sτh, a
τ
h) (R(s

τ
h, a

τ
h, e

τ
h)− rτh) . (4.4)

Note that although the minimax estimation is motivated
by Yu et al. (2022) which has access to i.i.d. samples for
estimation, we can only process a non-i.i.d. but sequentially
constructed dataset Dk

h. It turns out that we need to resort
to a different and more intricate fast martingale concentra-
tion analysis with a new construction of confidence set (cf.
Equations (4.7) and (4.8)).

The issue similarly affects the estimation of the transition
function P ∗

h . Given sh, ah and eh, the confounding between
the random variable sh+1 and eh impedes standard model-
based estimation methods (Agarwal et al., 2020; Modi et al.,
2021; Liu et al., 2022a). Nonetheless, the approach of value
target regression (Ayoub et al., 2020; Zhou et al., 2021)
inspires us and has been proven beneficial in addressing this
confounding issue with meticulously tailored. We utilize
an additional discriminator class G, which is designed to
encapsulate the optimal value functions of all candidate
models. Specifically, for any gh+1 within Gh+1 and for any
observed sh, ah, it holds that

EM∗(Ps) [gh+1(sh+1)− P ∗
hgh+1(sh, ah, eh) | sh, ah] = 0,

(4.5)

thereby aiding in the effective resolution of confounding
variables. This innovative approach allows for more accu-
rate estimations of the transition dynamics by leveraging
the capabilities of G to discriminate among the potential in-
fluences of confounders. Note that the conditional moment
equation has the same form as the previous one, namely,
Equation (4.1). Therefore, we can similarly define the em-
pirical risk function of Ph as

L̂k
h(Ph)

def
= max

gh+1∈Gh+1

l̂kh(Ph, gh+1), (4.6)

l̂kh(Ph, gh+1)
def
= max

fh∈Fh

l̂kh(Ph, gh+1, fh)−
1

2

k∑
t=τ

f2h(s
τ
h, a

τ
h),

where l̂kh(P, g, f)
def
=
∑k

τ=1 f(s
τ
h, a

τ
h)(Pg(s

τ
h, a

τ
h, e

τ
h)−

g(sτh+1)).

Knowledge transfer and optimistic planning. We can
estimate R∗, P ∗ with consistent causal identification dis-
cussed above. Leveraging the idea of unsupervised domain
adaptation (Ganin et al., 2016), we then use such estimators
to guide the exploration process given the target population
by optimistic planning.
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To be more specific, we construct the high probability confi-
dence set in episode k as

Rk
h

def
=
{
Rh ∈ Rh : L̂k

h(Rh) ≤ β1

}
, (4.7)

Pk
h

def
=
{
Ph ∈ Ph : L̂k

h(Ph) ≤ β2

}
. (4.8)

The confidence level β1, β2 are defined in Equation (H.4).
For all h and any Rh ∈ Rk

h and Ph ∈ Pk
h , an aggre-

gated model M̄(R,P ) under the target distribution Pt with
R = {Rh}Hh=1,P = {Ph}Hh=1 is defined by Equations (3.1)
and (3.2), which enables us to transfer the learned causal
knowledge from the source population to the target popu-
lation. Hence, we define the confidence set on aggregated
models as

C̄k def
=
{
M̄(R,P ) : Rh ∈ Rk

h, Ph ∈ Pk
h ,∀h ∈ [H]

}
.

(4.9)

Finally, we choose the exploration policy πk+1 for episode
k + 1 as the optimal policy of the model with the highest
estimated cumulative reward in C̄k. Simply put, use Ps for
estimation, use Pt for exploration!

5. Theoretical Results and Analysis
In this section, we outline the assumptions made regarding
the function classes and detail the sample complexity of our
algorithms.

5.1. Necessary Assumptions

Realizability. First of all, we require all the function
classes to be realizable.

Assumption 5.1 (Realizability). There exists a constant B
such that for any h ∈ [H],

• R∗
h ∈ Rh, P

∗
h ∈ Ph.

• The auxiliary function class Fh : S × A → R
with range [−B,B] captures all required functions,
say Et∼Ps

h,e∼Fh(·|sh,ah,t) [νh(sh, ah, e)] ∈ Fh for any
νh ∈ {Rh −R∗

h, (Ph − P ∗
h )Gh+1}.3

• The auxiliary function class Gh : S → [−B,B] cap-
tures all optimal value functions, say V̄ ∗

M̄(R,P ),h
∈

Gh of the aggregated model M̄(R,P ) for any R ∈
R, P ∈ P .

Realizability is necessary since the identification is per-
formed under general nonparametric function classes. For

3Recall that (Ph − P ∗
h )Gh+1 = {Phgh+1 − P ∗

hgh+1 : Ph ∈
Ph, gh+1 ∈ Gh+1}.

example, the second assumption requires discriminator func-
tion class Fh can capture the projection of νh from the input
space to the instrumental variable space in order to bound
the error of corresponding minimax estimation.

Ill-posedness measure. We overcome the confounding is-
sue through the NPIV model to build a consistent estimator
of the model via conditional moment equations (i.e., Equa-
tions (4.1) and (4.5)). Taking the reward functions as an
example, these equations enable us to bound the projected
mean square error (MSE) of Rh, namely,

Esh,ah∼ds,π
h

[
Eeh [(Rh −R∗

h) (sh, ah, eh) | sh, ah]
2
]
,

while the sample complexity is associated with the MSE

Esh,ah,eh∼ds,π
h

[
(Rh(sh, ah, eh)−R∗

h(sh, ah, eh))
2
]
.

Bridging the gap between projected MSE and MSE leads to
an ill-posed inverse problem. People quantify the difficulty
of this kind of problems via the following ill-posedness
measure.

Definition 5.2. Define the ill-posedness measure τh as

τh
def
= max

νh,π

Esh,ah,eh∼ds,π
h

[
ν2h(sh, ah, eh)

]
Esh,ah∼ds,π

h

[
Eeh [νh(sh, ah, eh) | sh, ah]

2
] ,

where the maximum of νh is taken over νh ∈ {Rh −
R∗

h, (Ph − P ∗
h )Gh+1}.

The ill-posedness measure is widely used in economics to
quantify estimation errors of related instrumental variable
models (Dikkala et al., 2020; Chen & Qi, 2022; Yu et al.,
2022). It illustrates how confounders increase the difficulty
of the learning problem and are inevitable in sample com-
plexity.

Knowledge transfer error. Apparently, the knowledge
transfer is infeasible when the target population drastically
differs from the source population where the online data
is collected (Pearl & Bareinboim, 2011). We quantify the
error caused by transferring knowledge as follows.

Definition 5.3. Define the knowledge transfer multiplicative
term Cf

h as

Cf
h

def
= max

νh,π

Esh,ah,eh∼dt,π
h

[
ν2h(sh, ah, eh)

]
Esh,ah,eh∼ds,π

h
[ν2h(sh, ah, eh)]

,

where νh ∈ {Rh −R∗
h, (Ph − P ∗

h )Gh+1}.

The multiplicative term Cf
h quantifies the distributional shift

when transferring estimators computed from online data to
the target population. In the literature, it is often referred
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to as “Concentrability” (Foster et al., 2021b). Concentrabil-
ity is a simple but fairly strong notion of coverage, which
requires that the distribution of our data collection evenly
covers the target distribution we are interested in. It captures
the effort needed to bypass the knowledge transfer.

5.2. Sample Complexity Results

We now introduce the sample complexity of our algorithms.

Theorem 5.4. Under Assumption 5.1, with probability at
least 1− δ, the sample complexity of the model-based algo-
rithm to learn an ϵ-optimal policy is bounded by

Õ

(
H∑

h=1

B2dV,hτhC
f
h log(|R × P × G × F|/δ) · ϵ−2

)
.

Here dV,h is the distributional Eluder dimension of the
model class (cf. Appendix E).

We use a simple example to estimate the magnitude of
the Eluder dimension and defer further discussion to Ap-
pendix E.
Example 5.5 (Linear MDPs (Jin et al., 2021)). Consider the
d-dimensional linear function classes

Rh =
{
θh ∈ Rd : Rh(sh, ah, eh) = ϕ⊤(sh, ah, eh)θh

}
,

Ph =
{
ψh ∈ Rd : Ph(sh, ah, eh) = ϕ⊤(sh, ah, eh)ψh

}
,

where ϕ is a known d-dimensional feature map-
ping. We assume that the underlying reward func-
tion is R∗

h(sh, ah, eh) = ϕ⊤(sh, ah, eh)θ
∗
h for an

unknown θ∗h while the true transition kernel is
P ∗
h (sh, ah, eh) = ϕ⊤(sh, ah, eh)ψ

∗
h for some un-

known ψ∗
h. Then, we know that dV,h ≲ Õ(d), yielding

Õ
(∑H

h=1B
2dτhC

f
h log(|R × P × G × F|/δ) · ϵ−2

)
sample complexity to learn a ϵ-optimal policy.

Theorem 5.4 shows the sample complexity to learn an ϵ-
optimal policy in such a general MDP setting scales as
Õ(1/ϵ2) with a linear dependency on the other terms, in-
cluding dV,h, τh and Cf

h. The necessity of the ill-posed
measure and knowledge transfer multiplicative term is dis-
cussed in Appendix I.

Lastly, we end this section with a remark on relevant lower
bounds.
Remark 5.6. Domingues et al. (2021) proves that an Õ(ϵ−2 ·
log(1/δ)) sample complexity is inevitable to identify an
ϵ-optimal policy with probability 1 − δ even without con-
founding issues. Hence, we conclude that our algorithms
achieve optimal, though omitting logarithmic terms, sample
complexity concerning ϵ. The dependence of lower bounds
on problem-dependent parameters is of independent interest,
and we leave it as a future research avenue.

6. Discussion and Conclusion
In this paper, we explore the theoretical impacts of infor-
mation asymmetry and knowledge transferability within the
context of reinforcement learning. Specifically, we concep-
tualize these interactions using an online strategic interac-
tion model, framed through a generalized principal-agent
problem, and we introduce algorithms designed to determine
the principal’s optimal policy within a MDP framework.
We introduce innovative estimation techniques utilizing the
NPIV method to address confounding issues stemming from
information asymmetry. Additionally, we quantify the er-
rors associated with knowledge transfer, providing a robust
framework for understanding these dynamics in complex en-
vironments. Finally, we propose an algorithm with Õ(1/ϵ2)
sample complexity and show its optimality with respect to
the optimality gap ϵ.

Nevertheless, our model also has some limitations. For ex-
ample, it requires the target distribution Pt and the feedback
manipulation distribution F to be known to the principal.
There are two considerations on why we cannot remove this
condition:

• The optimal policy directly depends on them but we
assume no online interaction ability on the target popu-
lation. That is to say, we need at least some (passive)
samples on the target population to estimate the target
distribution (e.g., by clustering). Also, it’s a standard
assumption in Myerson’s auction and coordination the-
ory of principal-agent problems (Myerson, 1981; 1982;
Gan et al., 2022a) that the target type distribution is
known.

• The feedback manipulation distribution is often rela-
tively easy to determine in reality. In many cases, it
is either a canonical distribution known to the public
or a predetermined quantity according to the principal
marketing research on the target population.

Questions raise themselves for future explorations. We find
that the states of such decision-making problems are not
always fully observable (Brown & Sandholm, 2018; 2019;
Futoma et al., 2020). For example, part of the attributes
of a third domain such as the government or market are
unknown to both the principal and the agents. Is it possible
to solve reinforcement learning problems with confounding
issues under partially observable Markov decision processes
(POMDPs)? Is the NPIV method still valid with value
bridge functions (Shi et al., 2021; Uehara et al., 2022a;b)?
We leave these interesting questions as potential next steps.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
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consequences of our work, none which we feel must be
specifically highlighted here.
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A. Notation Table
For the convenience of the reader, we summarize the notations in the paper as a notation table.

Notation Explanation
S,A, P,R,H parameters of an online strategic interaction model
sh, ah, eh, th state, action, feedback, private type at step h
Zh, Z̄h the space of M -step history (Zh excludes the state sh)
zh, z̄h an M -step history in Zh, Z̄h

Ps = (Ps
1,Ps

2, ...,Ps
H) the distribution of private types on source population

Pt = (Pt
1,Pt

2, ...,Pt
H) the distribution of private types on target population

Ra
h(sh, ah, t, b) private reward function of the agent with type t and action b

bh = argmaxbR
a
h(sh, ah, th, b) private action of the h-th agent

F̃h(· | sh, ah, th, bh) feedback manipulation distribution
Fh(· | sh, ah, th) F̃h(· | sh, ah, th, argmaxbR

a
h(sh, ah, th, b)), equivalent to F̃h

M∗(Ps),M∗(Pt) the online strategic interaction model under the source/target population
ds,πh (sh, ah, eh), d

t,π
h (sh, ah, eh) occupancy measure of sh, ah, eh on M∗(Ps),M∗(Pt)

ds,πh (sh, ah), d
t,π
h (sh, ah) occupancy measure of sh, ah on M∗(Ps),M∗(Pt)

β, β1, β2, β3 confidence level
R = (R1, ...,RH),P = (P1, ...,PH) hypothesis model class
R∗

h(sh, ah, eh), P
∗
h (sh, ah, eh) underlying reward function and transition function

P̄ ∗, R̄∗ aggregated reward and transition on target population
M̄∗ = (S,A, P̄ ∗, R̄∗, H, s1) aggregated MDP model on target population
π̄∗ optimal Markovian policy of M̄∗

V̄ π
M̄∗ value function of policy π on M̄∗

ξh additive endogenous noise of rewards
F = (F1, ...,FH),G = (G1, ...,GH) discriminator function class
Phgh+1(sh, ah, eh) Bellman backup

∑
s′ gh+1(s

′)Ph(s
′ | sh, ah, eh)

Lk
h, l

k
h population risk function of candidate models

L̂k
h, l̂

k
h empirical risk function of candidate models

Rk
h,Pk

h , C̄k confidence set
τh ill-posed measure
Cf

h knowledge transfer multiplicative term
dM,h, dV,h distributional Eluder dimension of the model class
νh (main text) any function in the union space of Rh −R∗

h and (Ph − P ∗
h )Gh+1

G∗ = (G∗
1, ...,G

∗
H) dynamical system transition function (cf. Appendix D.1)

ds the dimension of the state in dynamical system
Ph,i, Gh,i(Gh,i ∈ Ph,i) dynamical transition class and one function in the class for dim i ∈ [ds]
Yh the union space of Rh −R∗

h, (Ph − P ∗
h )Gh+1,Ph,i −G∗

h,i,∀i ∈ [ds]

νh (appendix) any function in Yh

B. Detailed Discussion of Related Work
We discuss some related works in detail in this section.

B.1. Further Topics and Related Work

In this section, we provide a more in-depth and comprehensive discussion of the related literature.

Online exploration in MDPs. Online exploration problem is one of the most fundamental problems in reinforcement
learning (Sutton & Barto, 2018). It has been extensively studied in tabular MDPs (Auer et al., 2008; Azar et al., 2017;
Dann et al., 2017; Jin et al., 2018; Dann et al., 2019; Zanette & Brunskill, 2019; Zhang et al., 2022), MDPs with linear
function approximation (Yang & Wang, 2019; Jin et al., 2020; Yang & Wang, 2020; Cai et al., 2020; Ayoub et al., 2020;
Agarwal et al., 2020; Zhou et al., 2021; Hu et al., 2021; Chen et al., 2021) and general function approximation (Russo
& Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020; Jin et al., 2021; Du et al., 2021; Foster et al.,
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2021a; Zhong et al., 2022; Liu et al., 2022b; Chen et al., 2022). In the standard exploration problem, the agent is required to
balance the exploration–actively exploring the unknown part of the environment to discover potential high rewards, and the
exploitation–exploiting the discovered area to earn higher rewards. The exploration-exploitation trade-off is known as one
of the core challenges in RL with large state and action space. This paper studies the online strategic interactions in RL
with general function approximation, which naturally inherits the exploration-exploitation trade-off challenge. Furthermore,
the strategic interaction model presents a more challenging exploration issue in that the agent is able to manipulate the
distribution of the strategic feedback based on her private type, which is not controlled by the principal. We tackle this issue
by leveraging the NPIV model (Ai & Chen, 2003; Newey & Powell, 2003) and optimism in the face of uncertainty principle
(Abbasi-Yadkori et al., 2011).

RL with confounders. Our work is also related to RL with confounders, as the private type th acts as an unobserved
confounder in the strategic interaction model. The off-policy evaluation (OPE) problem with unmeasured confounders has
been actively studied in recent years (Kallus & Zhou, 2020; Tennenholtz et al., 2020; Shi et al., 2021; Bennett & Kallus,
2021; Bennett et al., 2021; Nair & Jiang, 2021) by leveraging the techniques in casual inference (Pearl, 2009). There are
also a number of works studying the policy optimization in offline RL with a confounded dataset (Wang et al., 2021; Liao
et al., 2021; Kallus & Zhou, 2021; Lu et al., 2022; Yu et al., 2022; Wang et al., 2022). On the contrary, our work studies the
online setting, where the unobserved private type th confounds with the rewards and transition dynamics. Among these
works, the most related one to us is Yu et al. (2022), which studied the strategic MDPs in the offline setting. Our work
is different from theirs in several aspects. First, we study the strategic interactions in the online setting which violates
the widely used i.i.d. assumption and calls for new technical solutions. Second, we explore a setup that more accurately
simulates the real world, albeit with an added challenge—knowledge transportability. Lastly, we extend their transition class
from nonlinear dynamical systems to general transition classes, which can handle noises that are not additive. We refer the
readers to Appendix B.2 for a detailed comparison.

Transfer learning for reinforcement learning domains. Taylor & Stone (2009) gives an inspiring survey on how to
do transfer learning when facing RL scenarios while Zhu et al. (2023) extends it to deep reinforcement learning. As for
the application literature, Hua et al. (2021) utilizes transfer learning and reinforcement learning in the field of robotics
and Gamrian & Goldberg (2019) uses this idea to solve visual tasks. Yang et al. (2021) considers how to use transfer
learning when facing multiagent reinforcement learning. Here, we give some theoretical perspectives on how knowledge
transportability affects the sample complexity of reinforcement learning.

B.2. Novel Analysis Beyond the Offline Strategic MDP and Standard Exploration in RL

We discuss the novelties of our algorithms beyond the PLAN algorithm proposed by Yu et al. (2022) that learns the optimal
policy of strategic MDPs under general function approximation in the offline setting, and the exploration algorithms in
standard RL literature with general function approximation. The novelties mainly come from the problem settings and
theoretical analysis, besides the difference between online exploration and offline planning.

• In terms of the problem settings, we study a generalized version of the original strategic MDPs proposed in Yu et al.
(2022), which assumed the transition dynamics belong to a nonlinear dynamical system class with additive Gaussian
noises. We show how to learn the optimal policy in general transition classes (cf. Section 4.1) given access to an extra
discriminator function class. Moreover, we study a generalized online strategic interaction model that breaks static
policy assumptions and needs to balance exploration and nuisance caused by time-varying data. Our analysis, focusing
on the utilization of correlated data as instrumental variables, is entirely independent from their work, which introduces
a novel design and analysis for a new NPIV model.

• In terms of the theoretical analysis, ours are different from the analysis in Yu et al. (2022) in three aspects: the casual
identification, the construction of the confidence set, and the analysis therein.

Although both our work and their work take advantage of the NPIV model to estimate the empirical risk function L̂
(see, e.g., Equation (4.4)), Yu et al. (2022) established the concentration bound with an i.i.d. distributed dataset, but
our work employs martingale concentration analysis with Freedman’s inequality. Moreover, their work constructed
the confidence set by restricting the value difference between a candidate model and the minimizer of L̂, while we
construct the confidence set by solely restricting the value of L̂ of the candidate model (see, e.g., Equation (4.7)). Our
analysis shows that our construction is not only cleaner but enables us to get rid of the symmetric and star-shaped
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assumption imposed on F (see Assumption 5.3 of Yu et al. (2022)). Moreover, we design cleaner proofs only using the
realizability assumption and the boundedness of zeros of a concave quadratic function, simplifying the complicated
proof based on the symmetric and star-shaped assumption of F in Yu et al. (2022).

• In an online strategic interaction model, the principal is asked to interact with a source population of agents for H
steps, where each agent has a private type and commits a private action, both unknown to the principal. The goal
of the principal is to learn a return-maximizing policy for another population of agents called the target population.
The property of the source population is described through the private type distribution of the agents Ps (the source
distribution), and the feedback manipulation distribution F . The source distribution is unknown to the principal.
For the feedback manipulation distribution F , we made a simplification in the paper to assume it is the same for
the source population and target population, but we note that this distribution can be different for the source and
the target. The principal does not need to know the corresponding F of the source population. This is part of the
reason why we cannot reduce the problem to a naive single-agent RL problem since the source distribution and source
feedback manipulation distribution are both unknown. Another challenge beyond single-agent RL is the distributional
shift between the source distribution and the target distribution. Our model-based approach follows a similar idea of
unsupervised domain adaptation where we estimate the underlying model R∗, P ∗ from the source distribution at first,
then transfer the estimator to the target. A key difference to the unsupervised domain adaptation here is the use of
target distribution. Standard unsupervised domain adaptation uses target distribution to build importance-sampling
estimators. Nevertheless, as we don’t know Ps, it’s impossible to use importance sampling to construct an unbiased or
even consistent estimator. Besides, confounding issues beyond traditional RL problems hamper our use of importance
sampling as well. Consequently, we use the target distribution to design the exploration policy for the next episode.

C. Detailed Descriptions of the Online Strategic Interaction Model and the Motivation
This section offers more details of the online strategic interaction model and the motivations to learn this model.

C.1. More Details of the Online Strategic Interaction Model

For a strategic interaction model M∗(P) with reward functionR∗, transition dynamics P ∗, and agent private type distribution
P , the casual graph of the strategic interactions between the principal and the h-th agent is shown in Figure 2. To better
illustrate this strategic interaction process, we take the reward rh as an example. The causal structure of the transition sh+1

is the same as rh.

The reward equals

rh = R∗
h(sh, ah, eh) + ξh

by definition, where ξh is an endogenous noise that may be confounded with th (Yu et al., 2022; Harris et al., 2022).

Definition C.1 (Informal, see Pearl (2009) for a formal definition). A factor in a causal model or causal system whose value
is determined by the states of other variables in the system is called an endogenous variable. On the contrary, an exogenous
variable is a factor in a causal model or causal system whose value is independent of the states of other variables in the
system.

According to the definition and observe that ξh is only confounded with the private type th, it holds that

Eth∼P [ξh | sh, ah] = 0. (C.1)

Now, let’s talk about why Equation (C.1) makes sense. Considering the source distribution Ps, if Eth∼Ps
h
[ξh | sh, ah] ̸= 0,

we can set R∗
h(sh, ah, eh) to be R∗

h(sh, ah, eh) + Eth∼Ps
h
[ξh | sh, ah]. Then, this process demeans ξh and proves the

legitimacy of Equation (C.1), namely, we can assume ξh is zero-mean under Ps without loss of generality. Nevertheless,
we in general cannot guarantee that Eth∼Pt

h
[ξh | sh, ah] = 0 whenever the target distribution Pt is deviated from the

source distribution Ps. Note that ξh doesn’t depend on ah actually, so the optimal policy under dynamics R∗
h(sh, ah, eh)

and R∗
h(sh, ah, eh) + Eth∼Pt

h
[ξh | sh, ah] are the same. Consequently, albeit adding the counterfactual assumption that

Eth∼Pt
h
[ξh | sh, ah] = 0, we will find an identical policy as the case without it regarding the way we form M̄∗. Therefore,

we conclude that assuming Eth∼Pt
h
[ξh | sh, ah] = 0 won’t simplify the problem and will yield equivalent sample complexity.
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Thereupon, we keep Equation (C.1) for a more concise presentation and want to remind readers that this assumption is
neither necessary nor does it affect the results.

However, this confounding issue causes a severe challenge that when conditional on any (sh, ah, eh)

EM∗(P) [rh | sh, ah, eh] ̸= R∗
h(sh, ah, eh)

because the feedback eh also depends with th and the noise term ξh will not be zero-mean given eh.

Observe that conditioned on any (sh, ah) it holds that

EM∗(P) [rh | sh, ah] = Eth∼Ph,eh∼Fh(·|sh,ah,th) [rh | sh, ah]
= Eth∼Ph,eh∼Fh(·|sh,ah,th) [R

∗(sh, ah, eh)] . (C.2)

The second equation holds because of Equation (C.1). The last term in Equation (C.2) is the definition of the aggregate
model (i.e., Equations (3.1) and (3.2)).

The transition dynamics have the same causal structure of the rewards, but we cannot express this structure with additive
endogenous noise as the rewards. The causal identification of the next state sh+1 should be

sh+1 ∼ Eth∼Ph,eh∼Fh(·|sh,ah,th) [P
∗(sh, ah, eh)]

according to previous analysis. Therefore, the expected reward and transition are identical for the corresponding strategic
interaction model M∗(P) and the aggregated model.

C.2. Motivating Examples

We offer two motivating examples here for the MDP setting.

• The non-compliant agents in the recommendation system (Yu et al., 2022). The principal is a company offering some
recommendation services, and the agents are clients. The private types th are the profiles of the clients (e.g., the
category of items they like, and their shopping preferences). The state sh is a public condition of the company (e.g., the
inventory level, the transportation service condition, etc.), and the action ah is the recommended item to the client.
The private action bh is the item ordered by the client (not necessarily the same as ah), and the feedback eh is exactly
the action bh in this case. The reward rh is the real profit made from this client, which is related to the state sh, the
feedback eh = bh, the transportation fee, the willingness to buy accessories, etc. In this case, the reward distribution is
highly correlated to the private type th, and such correlation can not be expressed by a simple model R(sh, ah, eh)
with an independent additive noise. That explains the necessity to introduce a confounding noise model and thus
endogenous variables. Here, H = 12 represents 12 months in one year periodically.

• The admission of university (Harris et al., 2022). A university (the principal) is making admission decisions for a
population of applicants (the agents). Typically, there are several, namely H , rolling admissions decisions throughout
the year. The action ah of the university is an assessment rule that measures some predicted outcome (such as the
overall GPA) of the students if admitted. The predicted outcome is also used as the reward rh for the university.
The feedback eh should be some observed/measured attributes of the students, like the standardized test scores, high
school GPA, etc. The students try to maximize the alignment between the observed attributes eh and the assessment
rule ah through their efforts bh, which is unobservable. The private type th of the student can be many (unobserved)
attributes related to eh or rh (the predicted outcome of the student), such as the baseline scores the students can get
without any efforts, the efficiency of changing efforts to improved scores, etc. The noise term ξh summarizes all other
environmental factors that can impact the agent’s true outcome when we control for observable attributes, such as the
effect of the institutional barriers the student faces on their actual college GPA. The noise term ξh can be arbitrarily
correlated with private type th, which also impacts the feedback eh.

D. Complete Algorithm in the Online Strategic Model
The complete algorithm, Optimistic Planning with Minimax Estimation (OPME), is presented as Algorithm 2. We provide
OPME for two types of transition classes: the general transition class (cf. Section 4.1) and the dynamical transition class (see
Appendix D.1). The algorithm OPME-General (OPME-G) is the complete version of the model-based algorithm described
in Section 4.1.
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D.1. The Dynamical Transition Class

Following the setting of Yu et al. (2022), we also study a restricted transition class that Ph is a non-linear dynamical system.
Suppose S ⊆ Rds and

sh+1 = G∗
h(sh, ah, eh) + ηh

for some unknown G∗
h, where ηh is a ds-dimensional zero-mean noise possibly confounded with th. Thus, we assume the

noise term ηh can be decomposed to a correlation term and an independent noise

ηh = corr(th) + η′h, (D.1)

where corr(·) is a correlation function and η′h is an independent standard Gaussian noise η′h ∼ N (0, Ids).

In such transition classes, Ph can be written as Ph = {Gh : Gh = (Gh,1, Gh,2, ..., Gh,ds
) ∈ Rds}. For simplicity, we

assume Ph can be decomposed as the product of ds classes Ph = Ph,1 × Ph,2 × · · · × Ph,ds , where

Ph,i = {Gh,i : Gh,i(sh, ah, eh) ∈ R} (D.2)

denotes the transition class for the i-th coordinate and step h. Note that G∗
h,i ∈ Ph,i for each i ∈ [ds].

We propose the algorithm OPME-Dynamical (OPME-D, Algorithm 2) that learns the optimal policy of M∗(Pt) under the
dynamical system transition class.

Similar to the reward function, the identification of the transition function can also be established by the NPIV method, that
is

EM∗(Ps) [sh+1 −G∗
h(sh, ah, eh) | sh, ah] = 0. (D.3)

For i ∈ [ds], we can construct the empirical risk function L̂k
h(Gh,i) for transition Gh,i analogously. With a little abuse of

notations, we define

L̂k
h(Gh,i)

def
= max

fh∈Fh

l̂kh(Gh,i, fh)−
1

2

k∑
τ=1

f2h(s
τ
h, a

τ
h), (D.4)

and

l̂kh(Gh,i, fh)
def
=

k∑
τ=1

fh(s
τ
h, a

τ
h)
(
Gh,i(s

τ
h, a

τ
h, e

τ
h)− sτh+1,i

)
.

The high probability confidence set in episode k for the transition function is defined as

Pk
h,i

def
=
{
Gh,i ∈ Ph,i : L̂

k
h(Gh,i) ≤ β3

}
,∀i ∈ [ds]. (D.5)

Here β3 (defined in Equation (H.4)) is the confidence level used in OPME-D. For all h and any Rh ∈ Rk
h and Gh ∈ Pk

h
def
=∏ds

i=1 Pk
h,i,

4 we can construct the aggregated model M̄(R,G) under the target distribution Pt with R = {Rh}Hh=1,G =

{Gh}Hh=1 by Equations (3.1) and (3.2). Hence, we define the confidence set on aggregated models as

C̄k def
=
{
M̄(R,G) : Rh ∈ Rk

h,Gh ∈ Pk
h ,∀h ∈ [H]

}
. (D.6)

We choose the exploration policy for episode k + 1 as the optimistic policy with the highest value in C̄k.

E. The Distributional Eluder Dimension
Definition E.1 (ϵ-independence between distributions, Definition 6 of Jin et al. (2021)). Let G be a function class defined
on X , and ν, µ1, µ2, ..., µn be probability distributions over X . We call ν is ϵ-independent of µ1, µ2, ..., µn with respect to
G if there exists g ∈ G such that

√∑n
i=1(Eµi

[g])2 ≤ ϵ, but |Eν [g]| > ϵ.
4We use

∏ds
i=1 P

k
h,i as the shorthand for Pk

h,1 × Pk
h,2 × · · · × Pk

h,ds .
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Definition E.2 (Distributional Eluder Dimension, Definition 7 of Jin et al. (2021)). Let G be a function class defined on X ,
and Π be a class of distributions over X . The distributional Eluder dimension dimDE(G,Π, ϵ) is defined as the length of the
longest sequence µ1, µ2, ..., µn such that µi ∈ Π,∀i ∈ [n] and there exists ϵ′ ≥ ϵ where µi is ϵ′-independent of µ1, ..., µi−1

for all i ∈ [n].

We define the distribution class Π = {Πh}Hh=1 where Πh collects all the density measures dt,πh for the optimal policy π of
any aggregated model M̄(R,P ), R ∈ R, P ∈ P .

For the dynamical system transition class, with a little abuse of notations, we define the distributional Eluder dimension dM
of the model class (R,P) by

dM,h
def
= dimDE(Rh −R∗

h,Πh, 1/
√
K) +

ds∑
i=1

dimDE(Ph,i − P ∗
h,i,Πh, 1/

√
K).

For the general transition class, we define the distributional Eluder dimension dV of the model class (R,P) with respect to
the discriminator function class G as

dV,h
def
= dimDE(Rh −R∗

h,Πh, 1/
√
K) + dimDE(PhGh+1 − P ∗

hGh+1,Πh, 1/
√
K).

The distributional Eluder dimensions are small for several model classes (Jin et al., 2021; Jiang et al., 2017). Here we
provide a detailed example.

Consider the d-dimensional linear function class

Rh =
{
θh ∈ Rd : Rh(sh, ah, eh) = ϕ⊤(sh, ah, eh)θh

}
,

where ϕ is a known d-dimensional feature mapping. The underlying reward function is R∗
h(sh, ah, eh) = ϕ⊤(sh, ah, eh)θ

∗
h

for an unknown θ∗h. Then for any Rh ∈ Rh, there exists a feature function ψh : Π → Rd such that

Esh,ah,eh∼dt,π
h

[Rh(sh, ah, eh)−R∗
h(sh, ah, eh)] = ⟨ψh(π), θh − θ∗h⟩ , (E.1)

where

ψh(π) = Esh,ah,eh∼dt,π
h

[ϕ(sh, ah, eh)] .

According Section C.1 of Jin et al. (2021) and Equation (E.1), we know

dimDE(Rh −R∗
h,Πh, 1/

√
K) ≤ Õ (d)

as long as ∥ϕ∥2, ∥θh∥2 have a uniform upper bound.

Similarly, we can bound the distributional Eluder dimension of Ph,i if

Ph,i =
{
θ̄h ∈ Rd : Ph,i(sh, ah, eh) = ϕ⊤(sh, ah, eh)θ̄h

}
.

The distributional Eluder dimension is bounded by

dimDE(Ph,i − P ∗
h,i,Πh, 1/

√
K) ≤ Õ (d)

for each i ∈ [ds].

More generally, consider a general transition class with a linear structure

Ph =
{
µh(·) ∈ Rd : Ph(· | sh, ah, eh) = ϕ⊤(sh, ah, eh)µh(·)

}
,

where µh(·) is a measure over S. Then

PhGh+1 =

{
(g, µh(·)) ∈ Gh+1 × Rd : Phgh+1(sh, ah, eh) =

〈
ϕ(sh, ah, eh),

∫
s

µh(s)g(s)ds

〉}
,
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which is again a linear function class with respect to ϕ. Therefore, we still have

dimDE(PhGh+1 − P ∗
hGh+1,Πh, 1/

√
K) ≤ Õ (d)

if ∥ϕ∥2 and ∥
∫
s
µh(s)ds∥2 are both uniformly upper bounded.

As a final remark, there are also other function classes whose distributional Eluder dimension is small, such as the generalized
linear function class (Russo & Van Roy, 2013; Jin et al., 2021), the kernel function class with bounded effective dimension
(Jin et al., 2021; Du et al., 2021). Since this is not the main point of the paper, we refer the readers to the mentioned papers
for further details.

F. The Nonparametric Instrumental Variable Model
We have provided a detailed explanation of the causal structure in the strategic MDP in Appendix C. In this section, we
show that we can use the nonparametric instrumental variable (NPIV) model (see, e.g., Dikkala et al. (2020); Chen & Qi
(2022)) to estimate the underlying model R∗ and P ∗.

Recall the general form of the NPIV model (Chen & Qi, 2022)

Y = f∗(X) + U, with E[U |W ] = 0,

where f∗ is the unknown function to estimate, Y is the response, X is called endogenous variables, W is called instrumental
variables, and U is the random (endogenous) noise.

According to the causal relationship (see Figure 2), the NPIV model is exactly applicable to estimate P ∗ and R∗ with
Y = (rh, sh+1), X = (sh, ah, eh), and W = (sh, ah) since the noise U is zero-mean in the population level (see, e.g.,
Equation (C.1)).

To solve for f∗, we build the conditional moment equation (Dikkala et al., 2020)

E [Y − f∗(X) |W ] = 0,

and construct an empirical dataset for X,Y,W to perform least-square regression according to the conditional moment
equation. Denote the least-square estimator of f∗ by f̂ , standard analysis allows us to bound the projected Mean Squared
Error (pMSE)

EW

[
EX,Y

[
Y − f̂(X) |W

]2]
.

Sometimes we care about the MSE of f̂ under the population of X,Y,W , namely,

EX,Y,W

[(
Y − f̂(X)

)2]
.

We can transfer pMSE to MSE via the ill-posed condition (Dikkala et al., 2020; Chen & Qi, 2022; Yu et al., 2022; Uehara
et al., 2022a), which is standard in the literature of the NPIV model.

G. Auxiliary Lemmas
In this section, we first introduce some lemmas that will be repeatedly used throughout the proof process.

Lemma G.1 (Freedman’s Inequality (see, e.g., Lemma 9 of Agarwal et al. (2014))). Let (Xt)
T
t=1 be a real-valued martingale

difference sequence adapted to the filtration Ft. Let Et
def
= E[· | Ft] be the conditional expectation. Suppose |Xt| ≤ R

almost surely, then for any 0 < λ ≤ 1/R it holds with probability at least 1− δ that

T∑
t=1

Xt ≤ λ(e− 2)

T∑
t=1

Et−1[X
2
t ] +

log(1/δ)

λ
.

20



The Sample Complexity of Online Strategic Decision Making with Information Asymmetry and Knowledge Transportability

Lemma G.2 (Rephrased from Theorem 1.3 of Devroye et al. (2018)). For one-dimensional Gaussian distributions, we have

TV
(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
≤

3
∣∣σ2

1 − σ2
2

∣∣
2σ2

1

+
|µ1 − µ2|

2σ1
,

where TV denotes the total variation distance.

Lemma G.3 (Lemma 41 of Jin et al. (2021)). Consider a function class Φ defined on X with |ϕ(x)| ≤ C for all ϕ ∈ Φ
and x ∈ X , and a distribution class Π over X . Suppose sequence {ϕk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π satisfy for all
k ∈ [K],

∑k−1
t=1 (Eµt

[ϕk])
2 ≤ β. Then for all k ∈ [K] and ω > 0, it holds that

k∑
t=1

|Eµt
[ϕt]| ≤ O

(√
dimDE(Φ,Π, ω)βk +min {k, dimDE(Φ,Π, ω)}C + kω

)
.

H. Missing Proofs
We provide the formal proof for Theorem 5.4 in this section. Recall that M̄∗ is the aggregated model under the target
distribution. Denoting the value function of any policy π on M̄∗ as V̄ π

M̄∗ , we can use π̄∗ to measure the regret of any
algorithm ALG as

Reg(ALG,K)
def
=

K∑
k=1

V̄ π̄∗

M̄∗,1(s1)− V̄ πk

M̄∗,1(s1), (H.1)

where πk is the policy committed by ALG in the k-th episode.

We assume P,R,F ,G are finite sets to simplify the analysis. Note that the capacity of the function space can be replaced
by the corresponding covering number (Jin et al., 2021; Uehara et al., 2022b).

Before coming to the proofs, we prove some concentration lemmas at first. We define the norms of fh ∈ Fh as

∥∥fkh∥∥22 def
=

k∑
j=1

E
sh,ah∼d

s,πj
h

[
f2h (sh, ah)

]
(H.2)

∥∥fkh∥∥22,k def
=

k∑
j=1

f2h

(
sjh, a

j
h

)
. (H.3)

Let the filtration Fk be induced by {(sj1, a
j
1, e

j
1, r

j
1, ..., s

j
H , a

j
H , e

j
H , r

j
H)}kj=1. We can use the Freedman’s inequality to

bound the difference between them.

Lemma H.1. With probability at least 1− δ/2, for any f = {fh}Hh=1, any (k, h) ∈ [K]× [H], we have∣∣∣∥∥fkh∥∥22,k −
∥∥fkh∥∥22∣∣∣ ≤ 1

2

∥∥fkh∥∥22 + 4(e− 2)B2 log(4KH|F|/δ).

Proof. Consider the martingale difference sequence Xj
def
= f2h(s

j
h, a

j
h)− E

sh,ah∼d
s,πj
h

[f2h(sh, ah)]. Then E[Xj | Fj−1] = 0

since πj is Fj−1-measurable. Moreover, |Xj | ≤ 2B2 almost surely.

Note that E[X2
j | Fj−1] ≤ B2E

sh,ah∼d
s,πj
h

[f2h(sh, ah)], we invoke the Freedman’s inequality (cf. Lemma G.1) with a union

bound over Fh × [K]× [H] to show that with probability at least 1− δ/2 for any λ < 1/2B2,∣∣∣∥∥fkh∥∥22,k −
∥∥fkh∥∥22∣∣∣ ≤ λB2(e− 2)

∥∥fkh∥∥22 + log(4KH|F|/δ)
λ

,∀fh, k, h.

Choosing λ = 1/4(e− 2)B2 completes the proof.
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For any νh ∈ {Rh −R∗
h,Ph,i −G∗

h,i, (Ph −P ∗
h )Gh+1}, assume that we have ∥νh∥∞ ≤ B. Recall the definition of the risk

function and empirical risk function (see, e.g., Equations (4.3) and (4.4)), namely,

lkh(νh, fh) =

k∑
j=1

E
sh,ah,eh∼ds,πj

h

[fh(sh, ah)νh(sh, ah, eh)] ,

l̂kh(νh, fh) =

k∑
j=1

fh(s
j
h, a

j
h)ν̂h(s

j
h, a

j
h, e

j
h).

With a little abuse of notations, we use ν̂h(s
j
h, a

j
h, e

j
h) to denote a sample from sh, ah, eh ∼ ds,π

j

h on νh, to wit,

• For νh ∈ Rh −R∗
h, ν̂h(s

j
h, a

j
h, e

j
h)

def
= Rh(s

j
h, a

j
h, e

j
h)− rjh.

• For νh ∈ Ph,i −G∗
h,i, ν̂h(s

j
h, a

j
h, e

j
h)

def
= Gh,i(s

j
h, a

j
h, e

j
h)− sjh+1,i.

• For νh ∈ (Ph − P ∗
h )Gh+1, ν̂h(s

j
h, a

j
h, e

j
h)

def
= Phgh+1(s

j
h, a

j
h, e

j
h)− gh+1(s

j
h+1).

For any (k, h) ∈ [K]× [H] and νh ∈ Yh for Yh ∈ {Rh−R∗
h,Ph,i−G∗

h,i, (Ph−P ∗
h )Gh+1}, we have the following lemma

using Freedman’s inequality.

Lemma H.2. With probability at least 1− δ/2, for any (k, h) ∈ [K]× [H] and νh ∈ Yh, fh ∈ Fh∣∣∣lkh(νh, fh)− l̂kh(νh, fh)
∣∣∣ ≤ 4B

√
log(6KH|F||Y|/δ)∥fkh∥2 + 4B2 log(6KH|F||Y|/δ).

Proof. Let the martingale difference be

Xj
def
= fh(s

j
h, a

j
h)ν̂h(s

j
h, a

j
h, e

j
h)− E

sh,ah,eh∼ds,πj

h

[fh(sh, ah)νh(sh, ah, eh)].

We know that |Xj | ≤ 2B2 almost surely.

For a fixed (k, h, νh, fh) tuple, observe that

k∑
j=1

E[X2
j | Fj−1] ≤

k∑
j=1

E
sh,ah,eh∼ds,πj

h

[
f2h(sh, ah)ν

2
h(sh, ah, eh)

]
≤ B2

∥∥fkh∥∥22 .
since πj is Fj−1-measurable.

Therefore, if √
log(1/δ)

B
∥∥fkh∥∥2 √e− 2

>
1

2B2

holds, then ∥∥fkh∥∥22 < 4B2 log(1/δ)

e− 2
.

Invoking Freedman’s inequality (cf. Lemma G.1) by λ = 1/2B2 yields that∣∣∣lkh(νh, fh)− l̂kh(νh, fh)
∣∣∣ ≤ λ(e− 2)B2

∥∥fkh∥∥22 + log(1/δ)

λ
≤ 4B2 log(1/δ).

Otherwise, we invoke Freedman’s inequality with

λ =

√
log(1/δ)

B
∥∥fkh∥∥2 √e− 2

≤ 1

2B2
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yielding ∣∣∣lkh(νh, fh)− l̂kh(νh, fh)
∣∣∣ ≤ 2B

√
(e− 2) log(1/δ)

∥∥fkh∥∥2 .
The lemma is finally proved by taking union bound over all (k, h, νh, fh).

Lemma H.3 (Consistent Confidence Set). Define the confidence level β1, β2, β3 in OPME by

β1
def
= 28B2 log(KH|F||R|/δ)

β2
def
= 28B2 log(KH|F||G||P|/δ)

β3
def
= 28B2 log(KH|F||P|/δ).

(H.4)

With probability at least 1− δ, the confidence set C̄k is consistent in that the underlying model is contained in Ck, namely,

R∗
h ∈ Rk

h, G
∗
h,i ∈ Pk

h,i, P
∗
h ∈ Pk

h ,M̄∗ ∈ C̄k, ∀(k, h, i) ∈ [K]× [H]× [ds].

Proof. We assume the high probability events in Lemma H.1 and H.2 hold for simplicity. Note that the probability that
either of them fails is at most δ.

Lemma H.1 implies for any fh ∈ Fh

1

2

∥∥fkh∥∥22 − 4(e− 2)B2 log(2KH|F|/δ) ≤
∥∥fkh∥∥22,k ≤ 3

2

∥∥fkh∥∥22 + 4(e− 2)B2 log(2KH|F|/δ)

Consider L̂k
h(ι

∗
h) = maxfh l̂

k
h(ι

∗
h, fh)− ∥fkh∥22,k/2 for ι∗h ∈ {R∗

h, G
∗
h,i, P

∗
hGh+1}. For any fixed fh ∈ Fh we have

l̂kh(ι
∗
h, fh)−

∥fkh∥22,k
2

≤ lkh(ι
∗
h, fh)−

∥fkh∥22,k
2

+ 4B
√
log(KH|F||Y|/δ)∥fkh∥2 + 4B2 log(3KH|F||Y|/δ)

≤ lkh(ι
∗
h, fh)−

∥fkh∥22
4

+ 4B
√
log(KH|F||Y|/δ)∥fkh∥2

+ 4B2 log(3KH|F||Y|/δ) + 2(e− 2)B2 log(2KH|F|/δ)

≤ −∥fkh∥22
4

+ 4B
√
log(KH|F||Y|/δ)∥fkh∥2

+ 4B2 log(3KH|F||Y|/δ) + 2(e− 2)B2 log(2KH|F|/δ).

Here Y denotes the corresponding function space Rh − R∗
h,Ph,i − G∗

h,i, or (Ph − P ∗
h )Gh+1. The first inequality is by

Lemma H.2. The second inequality is due to Lemma H.1. The third inequality holds because lkh(ι
∗
h, fh) = 0 for any fh by

definition (see, e.g., Equation (4.3)) .

Note that Equation (H.5) is a standard quadratic function with respect to ∥fkh∥2, we have that

l̂kh(ι
∗
h, fh)−

∥fkh∥22,k
2

≤ −∥fkh∥22
4

+ 4B
√
log(KH|F||Y|/δ)∥fkh∥2 + 4B2 log(3KH|F||Y|/δ) + 2(e− 2)B2 log(2KH|F|/δ)

≤ 28B2 log(KH|F||Y|/δ)

holds for any fh ∈ Fh.

Therefore, with probability at least 1− δ, for any (k, h) ∈ [K]× [H], it holds that

L̂k
h(ι

∗
h) = max

fh
l̂kh(ι

∗
h, fh)−

∥fkh∥22,k
2

≤ 28B2 log(KH|F||Y|/δ).

By the definition of β1, β2, β3, we can finish the proof.
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Lemma H.4. With probability at least 1− δ, it holds the following statements.

For any (k, h, i) ∈ [K]× [H]× [ds] and Rh ∈ Rk
h, Gh,i ∈ Pk

h,i,

k∑
j=1

E
(sh,ah)∼ds,πj

h

[(
Eeh∼Fh(·|sh,ah,Ps

h)
[Rh(sh, ah, eh)−R∗

h(sh, ah, eh)]
)2]

= O(β1),

k∑
j=1

E
(sh,ah)∼ds,πj

h

[(
Eeh∼Fh(·|sh,ah,Ps

h)

[
Gh,i(sh, ah, eh)−G∗

h,i(sh, ah, eh)
])2]

= O(β3).

For any (k, h) ∈ [K]× [H] and Ph ∈ Pk
h , gh+1 ∈ Gh+1,

k∑
j=1

E
(sh,ah)∼ds,πj

h

[(
Eeh∼Fh(·|sh,ah,Ps

h)
[Phgh+1(sh, ah, eh)− P ∗

hgh+1(sh, ah, eh)]
)2]

= O(β2).

Proof. We assume the high probability events in Lemma H.1 and H.2 happen for simplicity. Note that the probability either
of them fails is at most δ.

For any νh ∈ {Rk
h −R∗

h,Pk
h,i −G∗

h,i, (Pk
h − P ∗

h )Gh+1}, define function f [νh] as

f [νh] : S ×A → R such that f [νh](sh, ah) = Eeh∼Fh(·|sh,ah,Ps
h)
[νh(sh, ah, e)] . (H.5)

By Assumption 5.1 we know f [νh] ∈ Fh for any νh.

By definition, we know

k∑
j=1

E
(sh,ah)∼ds,πj

h

[(
Eeh∼Fh(·|sh,ah,Ps

h)
[νh(sh, ah, eh)]

)2]
=
∥∥f [νh]k∥∥22 = lkh(νh, f [νh]). (H.6)

The second equation holds because

lkh(νh, f [νh]) =

k∑
j=1

E
(sh,ah,eh)∼ds,πj

h

[f [νh](sh, ah)νh(sh, ah, eh)]

=

k∑
j=1

E
(sh,ah)∼ds,πj

h

[
Eeh∼Fh(·|sh,ah,Ps

h)
[f [νh](sh, ah)νh(sh, ah, eh) | sh, ah]

]

=

k∑
j=1

E
(sh,ah)∼ds,πj

h

[
f [νh](sh, ah) · Eeh∼Fh(·|sh,ah,Ps

h)
[νh(sh, ah, eh) | sh, ah]

]

=

k∑
j=1

E
(sh,ah)∼ds,πj

h

[(
Eeh∼Fh(·|sh,ah,Ps

h)
[νh(sh, ah, eh)]

)2]
.

For any νh ∈ Yh = {Rk
h −R∗

h,Pk
h,i −G∗

h,i, (Pk
h − P ∗

h )Gh+1} and any fh we have

lkh(νh, fh) ≤ l̂kh(νh, fh) + 4B
√

log(3KH|F||Y|/δ)∥fkh∥2 + 4B2 log(3KH|F||Y|/δ)

≤ β +

∥∥fkh∥∥22,k
2

+ 4B
√
log(3KH|F||Y|/δ)∥fkh∥2 + 4B2 log(3KH|F||Y|/δ)

≤ β +
3
∥∥fkh∥∥22
4

+ 4B
√
log(3KH|F||Y|/δ)∥fkh∥2 + 4B2 log(3KH|F||Y|/δ) + 2(e− 2)B2 log(2KH|F|/δ).

Here β ∈ {β1, β3, β2} is the corresponding confidence level of Yh. The first inequality is by Lemma H.2. The second
inequality is due to the construction of the confidence sets Rk

h,Pk
h,i,Pk

h according to Equations (4.7), (4.8) and (D.5). The
third inequality is by Lemma H.1.
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Plugging in fh = f [νh] implies

lkh(νh, f [νh]) =
∥∥f [νh]k∥∥22

≤ β +
3
∥∥f [νh]k∥∥22

4
+ 4B

√
log(3KH|F||Y|/δ) · ∥f [νh]k∥2

+ 4B2 log(3KH|F||Y|/δ) + 2(e− 2)B2 log(2KH|F|/δ).

Thus we have ∥∥f [νh]k∥∥22
4

≤ β + 4B
√
log(3KH|F||Y|/δ)∥f [νh]k∥2 + 4B2 log(3KH|F||Y|/δ)

+ 2(e− 2)B2 log(2KH|F|/δ).

Solving this expression proves the result.

Now we use the ill-posedness measure (Definition 5.2) and knowledge transfer multiplicative term (Definition 5.3) to
propose the following lemma.

Lemma H.5. With probability at least 1− δ it holds the following statements.

For any (k, h, i) ∈ [K]× [H]× [ds] and Rh ∈ Rk
h, Gh,i ∈ Pk

h,i,

k∑
j=1

E
(sh,ah,eh)∼dt,πj

h

[
(Rh(sh, ah, eh)−R∗

h(sh, ah, eh))
2
]
= O

(
β1τhC

f
h

)
,

k∑
j=1

E
(sh,ah,eh)∼dt,πj

h

[(
Gh,i(sh, ah, eh)−G∗

h,i(sh, ah, eh)
)2]

= O
(
β3τhC

f
h

)
.

For any (k, h) ∈ [K]× [H] and Ph ∈ Pk
h , gh+1 ∈ Gh+1,

k∑
j=1

E
(sh,ah,eh)∼dt,πj

h

[
(Phgh+1(sh, ah, eh)− P ∗

hgh+1(sh, ah, eh))
2
]
= O

(
β2τhC

f
h

)
.

Proof. This is a straightforward application of Lemma H.4.

Take the reward function as an example, we have

k∑
j=1

E
(sh,ah)∼ds,πj

h

[(
Eeh∼Fh(·|sh,ah,Ps

h)
[Rh(sh, ah, eh)−R∗

h(sh, ah, eh)]
)2]

= O (β1) (H.7)

according to Lemma H.4.

By Equation (H.7) and the definition of τh, it holds that

k∑
j=1

E
(sh,ah,eh)∼ds,πj

h

[
(Rh(sh, ah, eh)−R∗

h(sh, ah, eh))
2
]
= O (β1τh) . (H.8)

By Equation (H.8) and the definition of Cf
h we have

k∑
j=1

E
(sh,ah,eh)∼dt,πj

h

[
(Rh(sh, ah, eh)−R∗

h(sh, ah, eh))
2
]
= O

(
β1τhC

f
h

)
.

The proof is identical for the rest two terms.
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Lemma H.6 (Regret Decomposition). Let dπM̄∗,h
(s, a)

def
= PrπM̄∗(sh = s, ah = a) be the occupancy measure of π under

the unknown aggregated model M̄∗. Recall that the optimistic model M̄k = M̄(Rk, P k) is defined in OPME (Algorithm
2). The regret can be decomposed as

Reg(OPME-D,K) =

K∑
k=1

V̄ π̄∗

M̄∗,1(s1)− V̄ πk

M̄∗,1(s1)

≲
K∑

k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[ ∣∣Rk
h(sh, ah, eh)−R∗

h(sh, ah, eh)
∣∣

+H

ds∑
i=1

∣∣Gk
h,i(sh, ah, eh)−G∗

h,i(sh, ah, eh)
∣∣ ]

for the dynamical system transition class, or it can be decomposed as

Reg(OPME-G,K) =

K∑
k=1

V̄ π̄∗

M̄∗,1(s1)− V̄ πk

M̄∗,1(s1)

≲
K∑

k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[ ∣∣Rk
h(sh, ah, eh)−R∗

h(sh, ah, eh)
∣∣ ]

+

K∑
k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[ ∣∣∣P k
h V̄

πk

M̄k,h+1(sh, ah, eh)− P ∗
h V̄

πk

M̄k,h+1(sh, ah, eh)
∣∣∣ ]

for the general transition class.

Proof. The regret can be decomposed as

Reg(OPME-D,K) =

K∑
k=1

V̄ π̄∗

M̄∗,1(s1)− V̄ πk

M̄∗,1(s1) ≤
K∑

k=1

V̄ πk

M̄k,1(s1)− V̄ πk

M̄∗,1(s1)

≤
K∑

k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∣∣R̄k
h(sh, ah)− R̄∗

h(sh, ah)
∣∣+ ∣∣∣P̄ k

h V̄
πk

M̄k,h+1(sh, ah)− P̄ ∗
h V̄

πk

M̄k,h+1(sh, ah)
∣∣∣ ]

≤
K∑

k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∣∣R̄k
h(sh, ah)− R̄∗

h(sh, ah)
∣∣ ]

+H

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∥∥P̄ k
h (· | sh, ah)− P̄ ∗

h (· | sh, ah)
∥∥
1

]
.

For the transition term, we can bound it by

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∥∥P̄ k
h (· | sh, ah)− P̄ ∗

h (· | sh, ah)
∥∥
1

]
=

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∥∥∥Eth∼Pt
h,eh∼Fh(·|sh,ah,th)

[
P k
h (· | sh, ah, eh, th)− P ∗

h (· | sh, ah, eh, th)
]∥∥∥

1

]
≤

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h
,th∼Pt

h,eh∼Fh(·|sh,ah,th)

[ ∥∥P k
h (· | sh, ah, eh, th)− P ∗

h (· | sh, ah, eh, th)
∥∥
1

]
.

The first inequality uses Jensen’s inequality. Let Fh(· | sh, ah,Pt
h) be the distribution of eh under sh, ah and th ∼ Pt

h. For
the dynamical system transition class, we know Ph(· | sh, ah, eh, th) is a ds-dimensional Gaussian distribution with mean
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Gh(sh, ah, eh) and covariance Ids
(i.e., ds independent Gaussian random variables) by Equation (D.1). Therefore, we have

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h
,th∼Pt

h,eh∼Fh(·|sh,ah,th)

[ ∥∥P k
h (· | sh, ah, eh, th)− P ∗

h (· | sh, ah, eh, th)
∥∥
1

]
≲

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h
,eh∼Fh(·|sh,ah,Pt

h)

[ ∥∥Gk
h(sh, ah, eh)−G∗

h(sh, ah, eh)
∥∥
1

]
,

by Lemma G.2.

This term can be further bounded by

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h
,eh∼Fh(·|sh,ah,Pt

h)

[ ∥∥Gk
h(sh, ah, eh)−G∗

h(sh, ah, eh)
∥∥
1

]
=

K∑
k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[ ∥∥Gk
h(sh, ah, eh)−G∗

h(sh, ah, eh)
∥∥
1

]
=

K∑
k=1

H∑
h=1

ds∑
i=1

E
(sh,ah,eh)∼dt,πk

h

[ ∣∣Gk
h,i(sh, ah, eh)−G∗

h,i(sh, ah, eh)
∣∣ ]

where the first equality is by the definition of dt,π
k

h (see Section 3.3) and the aggregated model M̄∗.

Similarly, the reward term can be bounded by

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∣∣R̄k
h(sh, ah)− R̄∗

h(sh, ah)
∣∣ ]

≤
K∑

k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h
,eh∼Fh(·|sh,ah,Pt

h)

[ ∣∣Rk
h(sh, ah, eh)−R∗

h(sh, ah, eh)
∣∣ ]

=

K∑
k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[ ∣∣Rk
h(sh, ah, eh)−R∗

h(sh, ah, eh)
∣∣ ].

For the general transition class, we decompose the regret as

Reg(OPME-G,K) =

K∑
k=1

V̄ π̄∗

M̄∗,1(s1)− V̄ πk

M̄∗,1(s1) ≤
K∑

k=1

V̄ πk

M̄k,1(s1)− V̄ πk

M̄∗,1(s1)

≤
K∑

k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∣∣R̄k
h(sh, ah)− R̄∗

h(sh, ah)
∣∣+ ∣∣∣P̄ k

h V̄
πk

M̄k,h+1(sh, ah)− P̄ ∗
h V̄

πk

M̄k,h+1(sh, ah)
∣∣∣ ].

The transition term now can be bounded by

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∣∣∣P̄ k
h V̄

πk

M̄k,h+1(sh, ah)− P̄ ∗
h V̄

πk

M̄k,h+1(sh, ah)
∣∣∣ ]

=

K∑
k=1

H∑
h=1

E
(sh,ah)∼dπk

M̄∗,h

[ ∣∣∣Eeh∼Fh(·|sh,ah,Pt
h)

[
P k
h V̄

πk

M̄k,h+1(sh, ah, eh)− P ∗
h V̄

πk

M̄k,h+1(sh, ah, eh)
]∣∣∣ ]

≤
K∑

k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[ ∣∣∣P k
h V̄

πk

M̄k,h+1(sh, ah, eh)− P ∗
h V̄

πk

M̄k,h+1(sh, ah, eh)
∣∣∣ ].

The last inequality is by Jensen’s inequality.
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Now we come to bound the regret of OPME.
Theorem H.7. Under Assumption 5.1, with probability at least 1− δ the regret of OPME is bounded by

Reg(OPME-D,K) = Õ

(
H∑

h=1

HB
√
dM,hτhCf

h log(|R||P||F|/δ)K

)
for OPME-D, and

Reg(OPME-G,K) = Õ

(
H∑

h=1

B
√
dV,hτhCf

h log(|R||P||G||F|/δ)K

)
for OPME-G.

Proof. Fix h ∈ [H]. Since Rk
h ∈ Rk−1

h for any k ∈ [K], we use Lemma G.3 with

C = B,ω =
1√
K
,Φ = Rh −R∗

h, ϕk = Rk
h −R∗

h, µk = dt,π
k

h

to obtain
K∑

k=1

E
(sh,ah,eh)∼dt,πk

h

[∣∣Rk
h(sh, ah, eh)−R∗

h(sh, ah, eh)
∣∣]

≤ O

(√
dimDE(Rh −R∗

h,Πh, 1/
√
K)β1τhCf

hK)

)
by Lemma H.5.

Similarly, for any i ∈ [ds], we have

K∑
k=1

E
(sh,ah,eh)∼dt,πk

h

[∣∣Gk
h,i(sh, ah, eh)−G∗

h,i(sh, ah, eh)
∣∣]

≤ O

(√
dimDE(Ph,i − P ∗

h,i,Πh, 1/
√
K)β3τhCf

hK)

)
.

By Lemma H.6, with probability at least 1− δ, we can bound the regret of OPME-D as

Reg (OPME-D,K) ≤ H

K∑
k=1

H∑
h=1

ds∑
i=1

E
(sh,ah,eh)∼dt,πk

h

[∣∣Gk
h,i(sh, ah, eh)−G∗

h,i(sh, ah, eh)
∣∣]

+

K∑
k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[∣∣Rk
h(sh, ah, eh)−R∗

h(sh, ah, eh)
∣∣]

≤ Õ

(
H∑

h=1

HB
√
dM,hτhCf

h log(|R||P||F|/δ)K

)
.

Similarly, we invoke the Lemma G.3 with

C = B,ω =
1√
K
,Φ = PhGh+1 − P ∗

hGh+1, ϕk = P k
h V̄

πk

M̄k,h+1 − P ∗
h V̄

πk

M̄k,h+1, µk = dt,π
k

h

to obtain
K∑

k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[∣∣∣P k
h V̄

πk

M̄k,h+1(sh, ah, eh)− P ∗
h V̄

πk

M̄k,h+1(sh, ah, eh)
∣∣∣]

≤ O

(√
dimDE(PhGh+1 − P ∗

hGh+1,Πh, 1/
√
K)β2τhCf

hK)

)
.
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The regret of OPME-G is bounded as

Reg (OPME-G,K) ≤ E
(sh,ah,eh)∼dt,πk

h

[∣∣∣P k
h V̄

πk

M̄k,h+1(sh, ah, eh)− P ∗
h V̄

πk

M̄k,h+1(sh, ah, eh)
∣∣∣]

+

K∑
k=1

H∑
h=1

E
(sh,ah,eh)∼dt,πk

h

[∣∣Rk
h(sh, ah, eh)−R∗

h(sh, ah, eh)
∣∣]

≤ Õ

(
H∑

h=1

B
√
dV,hτhCf

h log(|R||P||G||F|/δ)K

)
.

Proof of Theorem 5.4. The sample complexity of OPME (Theorem 5.4) can be obtained by standard online-to-batch
conversion (Jin et al., 2018) from Theorem H.7. That, the suboptimality of a uniform policy from {π1, π2, ..., πK} for a
given number of episodes K is at most

Õ

∑H
h=1HB

√
dM,hτhCf

h log(|R||P||F|/δ)
√
K


for OPME-D, and

Õ

∑H
h=1B

√
dV,hτhCf

h log(|R||P||G||F|/δ)
√
K


for OPME-G by Theorem H.7. To bound this suboptimality term to be at most ϵ, we can prove the theorem by setting K
according to the theorem.

I. The Necessity of the Ill-posed Measure and Knowledge Transfer Multiplicative Term
Recall that the sample complexity of the model-based algorithm OPME-G has a linear dependency on the ill-posed measure
τh, the knowledge transfer multiplicative term Cf

h, and the distributional Eluder dimension dV,h. Generally speaking, they
are all necessary terms in our bound in order to find near-optimal policies. Now, we discuss the necessity of these terms.

• The distributional Eluder dimension is standard in the literature of RL with general function approximation (Jin et al.,
2021). Without bounded distributional Eluder dimension, the sample complexity can scale linearly with the state space
and action space in the worst case.

• The ill-posedness measure is also standard in the ill-posed inverse problems. This term is necessary as long as we hope
to identify the underlying reward function R∗ and transition function P ∗. Taking the reward function as an example,
the mean square error of identification is lower bounded by the inverse of eigenvalues of an operator K, where K
is defined on Rh − R∗

h and (Kνh)(sh, ah) := Eeh [νh(sh, ah, eh)], as pointed out by Chen & Reiss (2011); Hall &
Horowitz (2005). In other words, K is a linear mapping from the function space of (sh, ah, eh) (endogenous variables)
to the function space of (sh, ah) (instrumental variables). Suppose the eigenvalues of K are λ1 ≥ λ2 ≥ · · · ≥ 0 and
λk ≥ k−α, then the lower bound of the MSE scales as Ω(n−β/(β+α)) (n is the number of samples) for α, β ≥ 0. Here
α controls the magnitude of the ill-posedness measure defined in the paper, and if α → ∞ the estimation error will
diverge even if n is very large.

• The third term is the distributional shift term. Our problem is similar to the covariate shift setting in the unsupervised
domain adaptation. We can regard the model as using sh, ah, eh to predict rh, sh+1 with underlying functions R∗

h, P
∗
h .

The source distribution is dπ,sh and the target distribution is dπ,th for an arbitrary policy π. Therefore, a well-known
conditions for domain adaptation to succeed in this setting (Ben-David & Urner, 2012; 2014) is the so-called weight
ratio being lower bounded, which is equal to minX dπ,sh (X)/dπ,th (X) and X is any measurable subset of the input
space. That is exactly equal to the distributional shift term Cf

h defined in the paper up to constant multipliers. Intuitively,
there will be no information being transferred to the target in the worst case without such conditions.
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