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Abstract

Amodal Instance Segmentation (AIS) presents an intrigu-
ing challenge, including the segmentation prediction of both
visible and occluded parts of objects within images. Pre-
vious methods have often relied on shape prior informa-
tion gleaned from training data to enhance amodal seg-
mentation. However, these approaches are susceptible to
overfitting and disregard object category details. Recent
advancements highlight the potential of conditioned diffu-
sion models, pretrained on extensive datasets, to gener-
ate images from latent space. Drawing inspiration from
this, we propose AISDiff with a Diffusion Shape Prior Es-
timation (DiffSP) module. AISDiff begins with the predic-
tion of the visible segmentation mask and object category,
alongside occlusion-aware processing through the predic-
tion of occluding masks. Subsequently, these elements are
inputted into our DiffSP module to infer the shape prior
of the object. DiffSP utilizes conditioned diffusion models
pretrained on extensive datasets to extract rich visual fea-
tures for shape prior estimation. Additionally, we introduce
the Shape Prior Amodal Predictor, which utilizes attention-
based feature maps from the shape prior to refine amodal
segmentation. Experiments across various AIS benchmarks
demonstrate the effectiveness of our AISDiff.

1. Introduction
Amodal perception, as described in [10], describe human’s
remarkable ability to perceive objects in their entirety de-
spite occlusion. Building upon this concept, the pioneering
studies by [12, 30] introduced amodal instance segmen-
tation (AIS). This approach aims to predict the complete
shape of objects, encompassing both their visible and oc-
cluded regions. Indeed, AIS exhibits vast potential across
various domains, as evidenced by its applications in robot
manipulation [1] and autonomous driving [19]. Across var-
ious AIS benchmarks [3, 19, 30], a multitude of approaches
addressing the AIS challenge have emerged in the litera-
ture. These approaches, as evidenced by numerous studies
[3, 7, 12, 14, 19, 24, 25], demonstrate the ongoing efforts to
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Figure 1. Overall architecture of AISDiff. AISDiff predicts the
visible segmentation mask and the object category while simulta-
neously addressing occlusion by predicting the occluding mask.
Next, these predictions are integrated into the Diffusion Shape
Prior Estimation (DiffSP) module to establish the object’s shape
prior. This shape prior is then utilized by AISDiff to produce the
amodal segmentation.

tackle this challenge.

Recent research [2, 4, 7, 26, 27] highlights the effec-
tiveness of integrating shape prior information in AIS. In-
deed, These shape prior AIS methods typically construct
shape-prior knowledge from the training dataset, which is
later utilized to train the AIS model. In [26], for instance,
the authors employ variational autoencoders to reconstruct
amodal masks. The concept revolves around using ground
truth amodal masks, utilizing autoencoders to reconstruct
them, and storing the encoded codebooks as shape priors.
Similarly, in [4], the authors also construct a shape prior
codebook but employ a vector-quantization variational au-



toencoder. After establishing the shape prior, these method
first predict the coarse amodal segmentation and refine the
final amodal segmentation mask using the built shape prior.
However, there are limitations to these approaches. Firstly,
the shape prior tends to overfit to the training data, con-
sequently leading to overfitting in amodal mask prediction
overall. Secondly, since the shape prior is built solely from
ground truth amodal masks, it may overlook the object cate-
gory, which could provide significant supplementary infor-
mation for deriving the shape prior.

To tackle these issues, we desgin a AIS mask head with
Diffusion Shape Prior Estimation (AISDiff). The design of
AISDiff is depicted in Figure 1. In essence, AISDiff be-
gins by predicting the visible segmentation mask and the
category of the object of interest. Simultaneously, it con-
ducts occlusion-aware processing by predicting the occlud-
ing mask, which is the segmentation of occluding elements
within the specified ROI. Subsequently, these three pieces
of information are fed into the proposed Diffusion Shape
Prior Estimation (DiffSP) module to derive the shape prior
of the object. Finally, leveraging this shape prior, AISDiff
generates the amodal segmentation.

Specifically, DiffSP leverages the successes of condi-
tioned diffusion models (such as Stable Diffusion [20] and
GLIDE [17]), which are pretrained on extensive language
vision datasets like LAION [22]. This enables the model
to capture rich visual features, making it suitable as prior
knowledge for downstream tasks [18, 28]. Building upon
this foundation, we feed a trained conditioned diffusion
model with an ROI image containing only the visible pix-
els of the object of interest, expecting the model to gener-
ate the missing parts. Additionally, an occluding mask and
a textual description of the object category is also feed to
condition the mdoel. Subsequently, the denoising process
iterates T steps to output the generated image containing
the occluded parts. However, rather than relying on the fi-
nal generated pixels, DiffSP exploits on the attention mech-
anism between the conditioning information and the image
features. This attention map remains relatively stable across
time steps, thereby reducing the denoising time needed to
obtain the shape prior. Furthermore, we design the Shape
Prior Amodal Predictor, which learns the attention-based
amodal feature map from the acquired shape prior to pre-
dict the amodal mask segmentation.

In summary, our contributions are as follows:
• We present AISDiff, a novel AIS mask head featuring a

Diffusion Shape Prior Estimation module. This model
predicts the visible segmentation mask and category of
the object while considering occlusion. It then uses these
predictions to estimate the shape prior of the object before
generating the final amodal segmentation mask.

• We propose DiffSP module, harnessing the efficacy of
conditioned diffusion models to derive the shape prior of

the object of interest.
• We introduce the Shape Prior Amodal Predictor, which

learns attention-based amodal feature maps from the ob-
tained shape prior to predict the amodal segmentation.

2. Related Work
Amodal instance segmentation involves predicting an ob-
ject’s shape, including both its visible and occluded parts.
Li and Malik [12] pioneered a method aimed at addressing
AIS. They proposed enlarging the modal bounding box in
alignment with high heatmap values and synthesizing oc-
clusions. Following this seminal work, various method-
ologies have surfaced in literature. Notably, ORCNN [3]
introduces instance mask heads for both amodal and visi-
ble instances, along with an additional head for predicting
occluded masks. ASN [19] builds upon ORCNN by inte-
grating a multi-level coding module for bidirectional fea-
ture modeling of visible and amodal aspects. BCNet [8]
enhances amodal mask prediction by incorporating a sup-
plementary branch dedicated to predicting occlusion masks
within the bounding box. AISFormer [24] introduces a
transformer-based mask head, demonstrating the efficacy of
transformer modeling in generating AIS masks. However,
their approach, which consolidates all mask relationships
into one transformer model, leads to compromised visible
segmentation output, consequently affecting the quality of
amodal segmentation output due to bidirectional feature re-
lations as mentioned earlier.

Recent studies [7, 26] underscore the benefits of inte-
grating shape priors into AIS. These methods leverage prior
knowledge of mask shapes to improve amodal mask pre-
dictions. VRSP-Net [26] predicts coarse amodal masks, re-
trieves shape priors using a simple autoencoder, and then re-
fines the final amodal mask predictions. AmodalBlastomere
[7] employs a similar strategy with a variational autoen-
coder for blastomere and cell segmentation. Despite their
progress, these methods often overlook the importance of
object categories when utilizing prior shapes. Moreover,
their training procedures frequently lead to overfitting of
the shape prior model to the training dataset. Additionally,
these approaches simply incorporate the shape prior by con-
catenating it with visible features to refine amodal masks.

3. Method
3.1. Overall AIS Setup

Given an input image I, we follow most of previous AIS
settings [3, 8, 24, 26], utilizing a pre-trained backbone net-
work, such as ResNet [6], RegNet [21] to extract spatial vi-
sual representation. An object detector such as FCOS [23],
or Faster-RCNN[6], can be subsequently adopted to obtain
n regions of interest (RoI) predictions and their correspond-
ing visual features {Fi}ni=1. Follow most of previous works
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Figure 2. Overall process of Diffusion Shape Prior Estimation
(DiffSP).

[8, 24, 26], the object detector being chose is Faster R-CNN
for fair comparison. Here, each RoI is presented by its vi-
sual feature Fi ∈ RCe×Hr×Wr , where Ce denotes the fea-
ture channel size and Hr ×Wr represents the spatial shape
of the pooling feature. In this context, given a RoI, AISDiff
takes Fi as input and aims to predict the amodal mask Mi

a.
Moreover, in this case, we also denote the visible mask Mi

v ,
and the occluding mask Mi

o.

3.2. AISDiff

The overall design of AISDiff is depicted in Fig. 1. Initially,
we discuss the prediction process for the visible segmenta-
tion of the object of interest, along with its categories, in-
corporating occlusion-awareness through the prediction of
occluding masks (Sec. 3.2.1). Following this, we introduce
the DiffSP method in detail (Sec. 3.2.2). Lastly, we present
the Shape Prior Amodal Predictor (Sec. 3.2.3).

3.2.1 Occlusion-aware Visible Segmentation

Given the ROI feature Fi, AISDiff first aims to predict the
visible segmentation mask and the category of the object
of interest, while simultaneously conducts occlusion-aware
ability by predicting the occluding mask, which is the seg-
mentation of occluding elements within the specified ROI.
BCNet [8] is utilized as the foundation for the Occlusion-
aware Visible Segmentation module. This module consists
of two branches: one for occluding mask prediction and
the other for visible mask prediction. Drawing from the
methodology outlined in [8], both branches follow a sim-
ilar design structure, encompassing two main components:
feature extraction and mask prediction. The feature extrac-
tion segment comprises a sequence of layers, including a
3×3 convolutional layer with a stride of 1, a Graph Convo-
lutional Network (GCN) [11] block, and another 3× 3 con-
volutional layer with a stride of 1. Subsequently, the mask
prediction component is constructed with a 2×2 transposed

convolutional layer employing a stride of 2, coupled with a
1× 1 convolutional layer using a stride of 1.

Furthermore, to enhance occlusion awareness and sub-
sequently improve visible segmentation accuracy, features
extracted from the occluding branch are incorporated into
the ROI feature Fi before being fed into the feature extrac-
tion section of the visible branch. Simultaneously, features
extracted from the visible branch are utilized for object cat-
egory prediction. This classification step employs a fully
connected layer with an output dimension corresponding
to the number of categories present in the datasets under
consideration. In summary, the final output of this module
comprises the visible mask Mi

a, the occluding mask Mi
o,

and the object category ci.

3.2.2 DiffSP

The process depicted in Fig. 2 illustrates the Shape Prior Es-
timation (DiffSP) module. DiffSP builds upon the successes
of conditioned diffusion models, such as Stable Diffusion
[20] and GLIDE [17], which are pre-trained on comprehen-
sive language-vision datasets like LAION [22]. This pre-
training equips the model with the ability to capture intricate
visual features, rendering it suitable as prior knowledge for
subsequent tasks [18, 28]. Expanding on this foundation,
DiffSP utilizes a trained conditioned diffusion model and
inputs a ROI image containing only the visible pixels of the
object under consideration, expecting the model to generate
the obscured parts. Additionally, the model is conditioned
with an occluding mask and a textual description of the ob-
ject category. Subsequently, the denoising process iterates
T steps to produce the generated image containing the oc-
cluded regions. However, instead of relying solely on the
final generated pixels, DiffSP capitalizes on the attention
mechanism between the conditioning information and the
image features.

Specifically, Stable Diffusion [20] is employed as the
pre-trained conditioned diffusion model, leveraging its self
and cross-attention layers. Specifically, the random Gau-
sian noise is encoded into latent space and then experiences
the denoising process over T time steps to generate the in-
painting image. In fact, the ROI image containing only the
visible pixels of the object of interest, the occluding mask,
and the textual description of the object category serve as
conditions and are represented as y, which is projected by τ
into an intermediate representation τ(y). At each denoising
step t, a UNet architecture with L layers of self and cross-
attention transforms zt into zt−1. Specifically, at layer l and
time step t, the cross-attention layer captures the relation-
ship between zt and the encoded condition τ(y), reflecting
the entire reconstructed shape of the object. This relation-
ship is formalized as follows: at layer l and time step t,
the self-attention map is denoted as Al,t

S , and the cross-



attention map is denoted as Al,t
C . Moreover, as demon-

strated in [16], the attention map remains relatively stable
across time steps. Following the methodology of [16], we
average these cross and self-attention maps over layers and
time steps, setting T = 10. Additionally, as also suggested
in [16], although the cross-attention maps AC already out-
line the shape of the reconstructed object, they tend to be
coarse-grained and noisy. To refine the precision of object
localization, we follow [16], utilizing the self-attention map
AS to enhance AC . Consequently, the shape prior is ob-
tained by: Msp = (AS)

τ · AC .

3.2.3 Shape Prior Amodal Predictor

The design of Shape Prior Amodal Predictor is depicted in
Fig. 3. Initially, the feature extraction module utilizes the
ROI feature Fi to generate the amodal feature. This mod-
ule is constructed using a sequence of 3 × 3 convolutional
layers with a stride of 1. Subsequently, the obtained amodal
feature undergoes processing in the attention learning mod-
ule in conjunction with the shape prior Msp obtained from
DiffSP, aimed at learning the spatial attention map. Specifi-
cally, the attention computation involves passing the amodal
feature through a sequence of 3 × 3 convolutional layers
with a stride of 1, followed by a sigmoid activation func-
tion. This computed attention map is then multiplied with
the shape prior Msp. The spatial attention map is further
multiplied with the amodal feature to obtain the attention
amodal feature. This feature is then fed into a mask pre-
diction module, which is structured with a 2× 2 transposed
convolutional layer employing a stride of 2, coupled with a
1 × 1 convolutional layer using a stride of 1, to derive the
amodal mask Mi

a

3.3. Objective Function & Training

Employing AIS protocols, the training adopts a two-stage
instance segmentation process similar to Mask R-CNN, fa-
cilitating concurrent training of both bounding box and
amodal mask prediction heads alongside the object detec-
tion framework. In essence, the training procedure opti-
mizes a multi-task loss function L as follows:

L = Ldet + Lcls + Lv + Lo + La (1)

where Ldet is object detection loss, defined similarly to that
in Faster R-CNN object detection. The occluding mask loss
Lo, the visible mask loss Lv , the amodal mask loss La, and
the classification loss Lcls are computed using cross entropy
loss with the corresponding ground truth.

4. Experiments
4.1. Datasets, Metrics and Implementation Details

Datasets: We benchmark our AISDiff on three AIS
datasets, namely KINS [19], COCOA-cls [3], and D2SA
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Figure 3. Overall design of Shape Prior Amodal Predictor.

Table 1. Performance comparison on KINS test set with various
backbones. † indicates our reproduced results.

Backbones& Methods Venue Shape
AP ↑ AP50 ↑ AP75 ↑ AR ↑Prior

R
es

N
et

-5
0

PCNet[29] CVPR20 ✗ 29.1 51.8 29.6 18.3
ASBU[15] ICCV21 ✗ 29.3 52.1 29.7 18.4
Mask R-CNN[9] ICCV17 ✗ 30.0 54.5 30.1 19.4
ORCNN[3] WACV19 ✗ 30.6 54.2 31.3 19.7
ASN[19] CVPR19 ✗ 32.2 - - -
AISFormer[24] BMVC22 ✗ 33.8 57.8 35.3 21.1
AmodalBlastomere[7] TMI20 ✓ 30.3 - - -
VRSP-Net[26] AAAI21 ✓ 32.1 55.4 33.3 20.9

AISDiff (Ours) - ✓ 33.9 58.8 35.2 22.0

R
es

N
et

-1
01 Mask R-CNN[6] † ICCV17 ✗ 30.2 54.3 30.4 19.5

BCNet[8] CVPR21 ✗ 28.9 - - -
BCNet[8] † CVPR21 ✗ 32.6 57.2 35.4 21.5
AISFormer[24] BMVC22 ✗ 34.6 58.2 36.7 21.9

AISDiff (Ours) - ✓ 35.1 58.8 37.3 23.0

R
eg

N
et ASPNet[14] CVPR22 ✗ 35.6 - - -

AISFormer[24] BMVC22 ✗ 35.6 59.9 37.0 22.5

AISDiff (Ours) - ✓ 36.1 60.1 38.6 23.0

[3]. KINS is a large-scale traffic dataset with 95,311 train-
ing instances and 92,492 testing instances with 7 cate-
gories. COCOA-cls is an AIS dataset that is derived from
MSCOCO [13] with 80 categories of 6,763 training in-
stances and 3,799 testing instances. D2SA is an AIS dataset
with 60 categories of instances related to supermarket items
with 13,066 training instances and 15,654 testing instances.

Metrics: Following existing AIS methods [24, 26], we
adopt mean average precision (AP) and mean average re-
call (AR).



Table 2. Performance comparison on D2SA test set with ResNet-
50 as backbone. † indicates our reproduced results.

Methods Venue Shape
Prior AP ↑ AP50 ↑ AP75 ↑ AR ↑

Mask R-CNN[6] ICCV17 ✗ 63.57 83.85 68.02 65.18
ORCNN[3] WACV19 ✗ 64.22 83.55 69.12 65.25
ASN[19] † CVPR19 ✗ 63.94 84.35 69.57 65.20
BCNet[8] † CVPR21 ✗ 65.97 84.23 72.74 66.90
AISFormer[24] BMVC22 ✗ 67.22 84.05 72.87 68.13
VRSP-Net[26] AAAI21 ✓ 70.27 85.11 75.81 69.17

AISDiff (Ours) - ✓ 71.01 85.12 76.23 69.29

Table 3. Performance comparison on COCOA-cls test set, ResNet-
50 as backbone. † indicates our reproduced results.

Methods Venue Shape
Prior AP ↑ AP50 ↑ AP75 ↑ AR ↑

Mask R-CNN[6] ICCV17 ✗ 33.67 56.50 35.78 34.18
ORCNN[3] WACV19 ✗ 28.03 53.68 25.36 29.83
ASN[19] † CVPR19 ✗ 35.33 58.82 37.10 35.50
BCNet[8] † CVPR21 ✗ 35.14 58.84 36.65 35.80
AISFormer[24] BMVC22 ✗ 35.77 57.95 38.23 36.71
VRSP-Net[26] AAAI21 ✓ 35.41 56.03 38.67 37.11

AISDiff (Ours) - ✓ 35.93 58.86 38.63 37.14

4.2. Performance Comparison

4.2.1 Quantitative Results

KINS. Tab. 1 depicts the comparison between AISDiff and
SOTA AIS methods on the KINS dataset. AISDiff demon-
strates consistent improvements across various backbones,
including ResNet [5], ResNet [5], and RegNet [21]. Specif-
ically, when compared to methods utilizing ResNet-50 as
the backbone, our method outperforms both SOTA meth-
ods that use shape prior (e.g., and VRSP-Net [26] by 1.8
AP) and methods that do not use shape prior (e.g., AIS-
Former [24] by 0.1 AP), respectively. When ResNet-101 is
utilized as the backbone, our method achieves a improve-
ment over AISFormer, outperforming it by 0.5 AP. Further-
more, compared to APSNet [14] and AISFormer [24] on
the RegNet backbone, our approach achieves SOTA perfor-
mance by surpassing them 0.5 AP.
D2SA. Tab. 2 further validates our approach on D2SA
dataset. We achieve best results across all metrics. Specifi-
cally, we gains 0.74 on AP and 0.12 AR in comparison with
the second best method, i.e. VRSP-Net.
COCOA-cls. Tab. 3 shows our results on COCOA-cls
dataset. Our AISDiff also outperform other methods on all
metrics. In fact, it outperforms the second best by 0.16 AP
and 0.03 AR.

4.2.2 Qualitative Results

Fig. 4 illustrates the qualitative output of AISDiff. The
results are arranged from left to right, encompassing: in-
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Figure 4. Qualitative results of AISDiff. Left to right: Input RoI,
Visible masks, Occluding masks, Amodal masks. Best viewed in
color.

Figure 5. Spatial attention map of the Shape Prior Amodal Predic-
tor on the each RoI. Best viewed in color.

put ROIs, Visible Masks, Occluding Masks, and Amodal
Masks.

Fig. 5 visualizes the spatial attention map of the Shape
Prior Amodal Predictor on ROIs of the image. The atten-
tion maps are well-constrained to the object shape. More-
over, we can see that the decoder typically attends to the
visible parts of objects that are similar to the occluded re-
gions when predicting the amodal mask.

5. Conclusion

In conclusion, we propose AISDiff, an AIS mask head
with a Diffusion Shape Prior Estimation module. This
module, termed DiffSP, leverages pre-trained condi-
tioned diffusion models on extensive datasets to extract
nuanced visual features for deriving the shape prior of
the object. Furthermore, we present the Shape Prior
Amodal Predictor, which utilizes attention-based feature
maps from the shape prior to enhance amodal seg-
mentation. Through extensive experimentation across
diverse AIS benchmarks, we affirm the efficacy of AISDiff.



References
[1] Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh,

Raeyoung Kang, Seongho Bak, and Kyoobin Lee. Unseen
object amodal instance segmentation via hierarchical occlu-
sion modeling. In ICRA, pages 5085–5092. IEEE, 2022. 1

[2] John Duncan. Selective attention and the organization of vi-
sual information. Journal of experimental psychology: Gen-
eral, 113(4):501, 1984. 1

[3] Patrick Follmann, Rebecca König, Philipp Härtinger,
Michael Klostermann, and Tobias Böttger. Learning to see
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