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ABSTRACT

Visual manipulation localization (VML) aims to identify tampered regions in im-
ages and videos, a task that has become increasingly challenging with the rise of
advanced editing tools. Existing methods face two central issues. The first is reso-
lution diversity. Resizing or padding can distort subtle forensic cues and introduce
unnecessary computational cost. The second is the difficulty of extending spatial
models for images to spatio-temporal inputs in videos, which often results in main-
taining separate architectures for the two data types. To address these challenges,
we propose RelayFormer, a unified framework that adapts to varying resolutions
and naturally handles both static and temporal visual data. RelayFormer parti-
tions inputs into fixed-size sub-images and introduces Global Local Relay (GLR)
tokens that propagate structured context through a relay-based attention mecha-
nism. This design enables efficient exchange of global cues, such as semantic or
temporal consistency, while preserving fine-grained manipulation artifacts. Un-
like prior approaches that depend on uniform resizing or sparse attention, Relay-
Former scales to arbitrary resolutions and video sequences with minimal overhead.
Experiments across diverse benchmarks demonstrate state-of-the-art performance
and strong efficiency, combining resolution adaptivity without interpolation or ex-
cessive padding, unified processing for images and videos, and a favorable balance
between accuracy and computational cost.

1 INTRODUCTION

Visual manipulation localization (VML), covering both static images and temporally extended
videos, is a fundamental task in digital forensics. Its goal is to precisely identify tampered re-
gions within visual content. With the rapid proliferation of advanced editing tools, detecting and
localizing such manipulations has become increasingly challenging (see Fig. 1(a)).

While prior research has predominantly focused on improving detection performance (Zhu et al.,
2025; Lou et al., 2024), robustness (Guillaro et al., 2023; Qu et al., 2023), generalization (Zhou
et al., 2023; Lou et al., 2025), and interpretability (Qu et al., 2024a) either for static images or
for videos extended along the temporal dimension, existing methods still face two key limitations
that hinder their applicability in real-world scenarios. First, resolution diversity poses a signifi-
cant challenge. In-the-wild content ranges from low resolution (e.g., 256×256) to 4K. Unlike in
standard vision tasks, interpolation can destroy the subtle low-level traces crucial for forensic anal-
ysis (Guillaro et al., 2023; Ma et al., 2023). Prior works rely on fixed-resolution training, forcing a
trade-off: down-sampling inputs to a uniform size (e.g., 512×512), which risks losing manipulation
artifacts (Guillaro et al., 2023; Su et al., 2025), or padding smaller inputs to a large canvas (e.g.,
1024×1024), which incurs substantial computational redundancy (Ma et al., 2023). Furthermore,
uniform resizing disproportionately distorts content with non-standard aspect ratios (e.g., 9:19.5 in
modern smartphones), further compromising forensic reliability.

Second, the extension from static to temporal inputs introduces a modeling gap. Images and videos
belong to the same visual modality, but videos add a temporal dimension that requires reasoning over
frame-to-frame consistency. Existing algorithms are usually designed either for purely spatial inputs
or for spatio-temporal inputs. Image-oriented models cannot leverage temporal cues, whereas video-
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Figure 1: Illustration of several common types of visual manipulation, including splicing, copy-
move, and inpainting. (a) Examples of manipulated regions and their corresponding boundaries
generated by these methods. (b) A schematic illustration highlighting the need for both local and
global information to accurately localize manipulated regions.

oriented models often struggle to generalize to single images. This limitation forces practitioners to
maintain two separate models, increasing both computational cost and system complexity.

Manipulation localization in images and videos demands a delicate balance between fine-grained
sensitivity and global semantic reasoning. Manipulated regions are typically small and visually
subtle, yet their reliable detection often hinges on scene-level consistency cues such as illumination
patterns, object semantics, or temporal coherence across frames. Although dense global attention
can, in principle, capture such dependencies, it is computationally prohibitive for high-resolution
content. As illustrated in Fig. 1(b), the global cues essential for manipulation detection are relatively
coarse, reflecting scene-level regularities rather than exhaustive pixel-level correspondence. For
example, in the splicing case (top right), inconsistencies often manifest as illumination mismatches
across the scene; in the copy–move case (bottom right), beyond local artifacts, detection relies on
structural redundancy between the duplicated region and its source. These characteristics suggest
that sparse yet effective global information propagation is both sufficient and desirable.

Building on this insight, we propose RelayFormer, a unified, efficient, and flexible architecture
for VML. The key idea is to leverage structured global–local interactions without incurring the
prohibitive cost of dense attention. RelayFormer dynamically partitions inputs into fixed-size sub-
images according to resolution and introduces Global–Local Relay (GLR) tokens that mediate in-
formation exchange through a relay-based attention mechanism. Acting as information bottlenecks,
these tokens iteratively absorb scene-level consistency cues, transmit compressed semantics across
the entire sample, and reinject enriched context back into their respective regions. Unlike prior ap-
proaches (Yang et al., 2021; Su et al., 2025) that reduce computation primarily via sparse attention,
the proposed architecture dynamically allocates computation according to input resolution while
enabling task-oriented global information propagation. This design ensures scalability to arbitrary
resolutions and a natural extension from static images to temporal sequences.

To comprehensively validate the effectiveness of our framework, we conduct extensive experiments
on a wide range of widely used benchmarks covering both static and temporal visual data. We further
provide detailed quantitative and qualitative analyses demonstrating that our method consistently
achieves superior performance while maintaining efficiency across diverse settings.

Our main contributions are as follows:

• Resolution adaptivity. We dynamically handle arbitrary input resolutions without inter-
polation or redundant padding, preserving subtle forensic traces.

2
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• Unified image–video modeling. We use a single architecture that naturally supports both
spatial (image) and spatio-temporal (video) manipulation localization.

• Efficient global–local reasoning. We introduce GLR tokens to propagate structured global
context efficiently without relying on dense full-resolution attention.

2 RELATED WORK

2.1 IMAGE MANIPULATION LOCALIZATION

Image-level approaches primarily differ in the forensic cues they exploit. Artifact-based meth-
ods (Wu et al., 2022; Wu & Zhou, 2021) detect low-level traces such as noise inconsistencies or
compression residuals. Although effective in controlled settings, these cues are easily disrupted by
common post-processing operations such as resizing or recompression, which leads to unstable per-
formance in real-world scenarios. Multi-scale or mesoscopic architectures, including Mesorch (Zhu
et al., 2025), improve robustness by enlarging receptive fields or combining convolutional and Trans-
former features. However, their reliance on high-resolution processing introduces substantial com-
putational overhead.

Another line of work leverages contrastive learning or structural priors. FOCAL (Wu et al., 2023)
and NCL (Zhou et al., 2023) leverages contrastive learning to improve generalization ability, while
our work is complementary as it focuses on efficiently handling dynamic resolutions and mixed im-
age–video inputs. IML-ViT (Ma et al., 2023) demonstrates that high-resolution vision Transformers
benefit from edge supervision, but full-resolution attention incurs high memory cost and limits scal-
ability to diverse or larger inputs. Fusion-based models such as TruFor (Guillaro et al., 2023) and
CAT-Net (Kwon et al., 2022) combine RGB information with noise fingerprints or DCT-domain
cues, improving the reliability of forensic evidence. Their performance, however, is constrained by
assumptions tied to specific compression characteristics, which reduces their applicability to images
from heterogeneous acquisition pipelines.

2.2 VIDEO MANIPULATION LOCALIZATION

Video manipulation localization extends spatial analysis to incorporate temporal information. Vide-
oFACT (Nguyen et al., 2024) enriches spatial representations with contextual embeddings through
deep self-attention, but its quadratic complexity restricts the feasible temporal length. ViLocal (Lou
et al., 2025) utilizes contrastive learning to detect local spatiotemporal inconsistencies. In contrast,
UVL2 (Pei, 2023) integrates cues such as spatial edges and global pixel distributions within a hy-
brid design to achieve robust localization. These methods achieve strong generalization yet remain
computationally demanding due to dense temporal sampling or high-resolution spatial processing.
VIDNet (Zhou et al., 2021) integrates RGB features with error level analysis (ELA) cues through
a ConvLSTM decoder, although the reliance on ELA makes the method sensitive to modern re-
encoding pipelines and common real-world perturbations.

3 METHOD

We present RelayFormer, a unified and modular framework for Visual Manipulation Localization
(VML) that scales to arbitrary image resolutions and temporal lengths. The framework is composed
of three main components: Input Unification, Global-Local Relay Attention, and a Query-based
Mask Decoder. These components together enable efficient spatial-temporal reasoning by balancing
global consistency with local expressivity, while ensuring computational scalability.

3.1 INPUT UNIFICATION

To unify image and video inputs into a common representation suitable for parallel computation, we
decompose all inputs into slightly overlapping local sub-images, which serve as the atomic process-
ing elements in our framework.

Image inputs. Given an image x ∈ RC×Himg×Wimg , we partition it into slightly overlapping sub-
images of spatial size Hp×Wp. Let the sliding strides along height and width be Sh and Sw. Padding
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Figure 2: Overview of our proposed framework, which consists of three main components. First, the
input image or video is partitioned into unified local sub-images without interpolation, preserving
fine-grained spatial details. Second, we propose the GLRA module to achieve efficient global infor-
mation propagation. Finally, a carefully designed lightweight mask decoder efficiently produces the
prediction masks. For clarity, the positional encoding components are omitted from the figure.

is applied if the remaining region is smaller than a full sub-image. The number of sub-images along
each spatial dimension is

Nh =

⌈
Himg −Hp

Sh

⌉
+ 1, Nw =

⌈
Wimg −Wp

Sw

⌉
+ 1,

so the total number of sub-images for the image is Nimg = Nh×Nw. The resulting tensor has shape
(Nimg, C,Hp,Wp).

Video inputs. For a video x ∈ RT×C×Hvid×Wvid , we first merge the batch and temporal di-
mensions, treating the video as (T,C,Hvid,Wvid). Each frame is partitioned in the same way
as images, producing Nvid = Nh × Nw sub-images per frame. The resulting tensor has shape
(T ·Nvid, C,Hp,Wp).

Unified representation. Finally, all sub-images from images and videos are concatenated into a
batch of shape

(Btotal, C,Hp,Wp),

where Btotal =
∑

images Nimg +
∑

videos T ·Nvid. Each sub-image is treated as an independent sample
in the subsequent local modeling stage, enabling large-batch parallel computation without explicitly
distinguishing between image and video inputs. We provide pseudocode in the Appendix A.3.1.

3.2 GLOBAL-LOCAL RELAY ATTENTION (GLRA)

To balance efficiency and expressiveness, we propose Global-Local Relay Attention (GLRA),
which enables efficient propagation of global context through a small set of learnable tokens, while
retaining fine-grained local modeling. Fig. 3 shows the detailed structure of GLRA.

Local-aware Attention. For each sub-image Ui, we apply a ViT patch embedding to obtain patch
tokens Xi ∈ RP×d, where P is the number of tokens and d is the feature dimension. We append a
small set of learnable Global-Local Relay [GLR] tokens Ti ∈ Rm×d to each sub-image:

[T
(l)
i , X

(l)
i ] = SelfAttnlocal([T

(l−1)
i ;X

(l−1)
i ]), (1)

where l = 1, . . . , L represents the layer. In this stage, the [GLR] tokens both relay global informa-
tion obtained from previous layers and absorb localized details from their corresponding sub-images.
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Figure 3: Detailed architecture of the proposed Global-Local Relay Attention (GLRA) module.

Relay-based Global Attention. To enable global information exchange, we aggregate [GLR]
tokens from all sub-images:

Tflat = ConcatNi
j=1Tj ∈ R(Ni·m)×d, (2)

where Ni denotes the number of sub-images in the sample. Each [GLR] token is encoded with tem-
poral index, spatial location, and token identity using 4D Rotary Positional Embeddings (RoPE) (Su
et al., 2024; Wang et al., 2024). The global attention step is then:

Tupdated = SelfAttnglobal(RoPE4D(Tflat)). (3)

After global attention, the updated [GLR] tokens are injected back into their corresponding sub-
images, enabling iterative information relay: 1) in the local attention stage, [GLR] tokens transmit
global context into local sub-images while gathering new local evidence; 2) in the global attention
stage, they exchange these enriched representations with [GLR] tokens of other sub-images.

Parameter-efficient strategy. Using shared parameters for local sub-module and global sub-
module would reduce performance because they have conflicting goal. Shared weights lead to poor
performance in both. While conceptually separating local and global attention into two distinct
Transformer layers is straightforward, this naive approach doubles the parameter count overhead for
each such block.

Our core motivation stems from the hypothesis that the computational processes for local and global
attention, while functionally distinct, share a substantial underlying structure. To capitalize on this
insight, we propose a parameter-efficient strategy. We maintain a single, shared Transformer back-
bone layer for both the local and global attention computations. To induce the necessary func-
tional specialization, we introduce two distinct adaptation modules (e.g., LoRA (Hu et al., 2022) or
Adapters (Poth et al., 2023)), one for each attention mechanism. Specifically, the shared backbone
layer learns the common, foundational features of the attention mechanism. The adaptation module
for local attention learns the specific residual transformation required to specialize the shared func-
tion for processing fine-grained patterns, while the module for global attention learns the residual
required for long-range, contextual reasoning. This approach allows us to achieve the expressive
power and performance nearly identical to a two-layer model, but with only a marginal increase in
parameters over a single-layer baseline, thereby achieving a superior trade-off between performance
and efficiency. We provide more implementation details of this in the Appendix A.3.2.

4D RoPE Formulation and Extrapolation. We decompose the hidden dimension of each token
into five groups: temporal (T ), token index (id), vertical (H), horizontal (W ), and the remaining.

5
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Specifically, for a token vector:
x = [xT , xid, xH , xW , xrem],

where xT ∈ RdT , xid ∈ Rdid , xH ∈ RdS , xW ∈ RdS , xrem ∈ Rdrem , with dT+did+2dS+drem =
d.

For each group, a standard 1D RoPE (Su et al., 2024) is applied independently with the correspond-
ing positional index (temporal id, token id, height id, width id). Formally, for a sub-vector xg ∈ Rdg

and index pg , we apply:

RoPE(x(2i)
g , x(2i+1)

g ) =

[
x
(2i)
g cos(pgθi)− x

(2i+1)
g sin(pgθi)

x
(2i)
g sin(pgθi) + x

(2i+1)
g cos(pgθi)

]
,

where θi = 10000−2i/dg .

The final rotated embedding is:
RoPE4D(x) = [RoPE(xT ),RoPE(xid),RoPE(xH),RoPE(xW ), xrem].

This formulation applies independent rotary encodings across temporal, token index, and spatial
dimensions, equipping our model with strong extrapolation capabilities to arbitrary resolutions.

3.3 QUERY-BASED MASK DECODER

To avoid decoding becoming a computational bottleneck, we design a lightweight query-based
Transformer decoder, inspired by Mask2Former (Cheng et al., 2022). Given the reassembled fea-
ture map F ∈ RHf×Wf×d, we first project it into a lower-dimensional space F̃ ∈ RHf×Wf×dlow . A
small set of learnable queries Q ∈ RMf×d then interacts with the projected feature map.

The decoder is composed of K stacked layers. At the k-th layer (k = 1, . . . ,K), query features are
updated via a cross-attention followed by a self-attention operation:

Q(k)′ = CrossAttn(Q(k−1), F̃ ), (4)

Q(k) = SelfAttn(RoPE(Q(k)′)). (5)

Finally, a gating MLP assigns weights to each query, modulating its contribution to the predicted
manipulation masks.

3.4 LOSS FUNCTION

Following previous methods (Ma et al., 2023), we adopt a combination of binary cross-entropy
(BCE) loss and edge loss. The overall loss is defined as:

L = LBCE(P,M) + λ · LEdge(P ⊙Me,M ⊙Me) (6)

where P is the predicted mask, M is the ground truth, and Me is the edge mask.

The edge loss applies BCE on the edge regions to emphasize boundary accuracy:

LEdge(P ⊙Me,M ⊙Me) = LBCE(P ⊙Me,M ⊙Me) (7)

Here, λ is a weighting factor balancing the two loss terms.

4 EXPERIMENTS

Datasets. In our experiments, we conducted comprehensive evaluations using a diverse set of
benchmark datasets, including CASIA v1.0 (Dong et al., 2013), CASIA v2.0 (Dong et al., 2013),
Columbia (Hsu & Chang, 2006), Coverage (Wen et al., 2016), NIST16 (Guan et al., 2019),
IMD2020 (Novozamsky et al., 2020), Fantastic Reality (Kniaz et al., 2019), TampCOCO (Kwon
et al., 2022), DAVIS2016 (Perazzi et al., 2016), and MOSE (Ding et al., 2023). Following widely
accepted and fair evaluation protocols, we adhered to the evaluation guidelines recommended by
IMDLBench (Ma et al., 2024), ensuring consistency and comparability with prior studies.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Protocol Method COVERAGE Columbia NIST16 CASIAv1 IMD2020 Average

MVSS

Mantra-Net (Wu et al., 2019) 0.090 0.243 0.104 0.125 0.055 0.123
MVSS-Net (Chen et al., 2021) 0.259 0.386 0.246 0.534 0.279 0.341
CAT-Net (Kwon et al., 2022) 0.296 0.584 0.267 0.594 0.268 0.402
ObjectFormer (Wang et al., 2022) 0.294 0.336 0.173 0.429 0.172 0.281
PSCC-Net (Liu et al., 2022b) 0.231 0.605 0.200 0.378 0.233 0.329
NCL-IML (Zhou et al., 2023) 0.225 0.446 0.260 0.502 0.237 0.334
Trufor (Guillaro et al., 2023) 0.419 0.865 0.311 0.721 0.317 0.527
IML-ViT (Ma et al., 2023) 0.438 0.747 0.269 0.718 0.328 0.500
Mesorch (Zhu et al., 2025) 0.276 0.623 0.283 0.743 0.256 0.436
SparseViT (Su et al., 2025) 0.287 0.781 0.245 0.646 0.230 0.438
Relay-ViT (Ours) 0.551 0.762 0.335 0.740 0.381 0.554
Relay-Seg (Ours) 0.569 0.756 0.273 0.760 0.357 0.543

CAT

Trufor (Guillaro et al., 2023) 0.451 0.875 0.348 0.821 × 0.627
SparseViT (Su et al., 2025) 0.513 0.959 0.384 0.827 × 0.671
Mesorch (Zhu et al., 2025) 0.586 0.890 0.392 0.840 × 0.677
APSC-Net (Qu et al., 2024b) 0.523 0.966 0.436 0.837 × 0.691
Relay-ViT 0.647 0.878 0.476 0.806 × 0.702
Relay-Seg 0.704 0.883 0.430 0.802 × 0.705

Table 1: Pixel-level comparison on the image manipulation localization task under both MVSS and
CAT protocols. Scores indicate the F1 scores with a fixed threshold of 0.5.

Implementation Details. To ensure fair comparisons and consistent experimental conditions, all
experiments were conducted using the IMDLBench (Ma et al., 2024) framework. We conduct ex-
periments using ViT and SegFormer as backbones, referred to as Relay-ViT and Relay-Seg, respec-
tively. We set the number of [GLR] tokens to n = 2, sub-image size to 512×512. For video, we set
the sub-image size to 256×256 and the clip length to 4. We trained our models for 200 epochs using
the AdamW optimizer (Loshchilov & Hutter, 2019) with a base learning rate of 1e-4, scheduled by
a cosine decay policy (Loshchilov & Hutter, 2017). For more details, see the Appendix ??.

Evaluation Metrics. We evaluate the performance of the predicted masks using two commonly
adopted metrics: F1 score (with a fixed threshold of 0.5) and Intersection over Union (IoU).

Methods
MOSE

E2FGVI FuseFormer STTN
(IoU / F1) (IoU / F1) (IoU / F1)

Mantra-Net (Wu et al., 2019) 0.378/0.524 0.385/0.531 0.356/0.505
MVSS-Net (Chen et al., 2021) 0.038/0.057 0.051/0.074 0.094/0.133
TruFor (Guillaro et al., 2023) 0.311/0.414 0.285/0.388 0.260/0.353
FOCAL (Yang et al., 2021) 0.098/0.150 0.138/0.206 0.152/0.226
TruVIL (Lou et al., 2024) 0.521/0.674 0.557/0.699 0.462/0.612
ViLocal (Lou et al., 2025) 0.485/0.620 0.597/0.721 0.393/0.524
Relay-ViT 0.552/0.689 0.561/0.695 0.549/0.684
Relay-Seg 0.561/0.698 0.554/0.692 0.534/0.674

Table 2: Quantitative comparison on the video manipulation localization task on three different
video inpainting methods. For studies without open-source implementations, we report the results
as presented in their original papers to ensure a fair comparison.

4.1 COMPARE WITH SOTA METHODS

Image Manipulation Localization. Following Protocol-MVSS (Chen et al., 2021), we train on
CASIAv2 and test on others. As shown in Table 1, Relay-ViT and Relay-Seg achieve superior or
competitive results across all datasets. Our framework reaches the highest average score (0.554),
surpassing prior methods such as Trufor and IML-ViT. To further evaluate robustness, we also adopt
Protocol-CAT. We utilize a mixed training set comprising CASIAv2, Fantastic Reality (Kniaz et al.,
2019), IMD2020, and TampCOCO (Kwon et al., 2022), and evaluate on the remaining datasets
(excluding IMD2020). In this challenging setting, our methods continue to excel.
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Model Parameters (M) GFLOPs Note

MVSS 150.53 171.01 Input: 512×512
PSCC 3.67 376.83 Input: 256×256
CAT-Net 116.74 137.22 Input: 512×512
TruFor 68.70 236.54 Input: 512×512
Mesorch 85.75 124.93 Input: 512×512
IML-ViT 91.78 576.78 Input: 1024×1024

Relay-ViT 89.55+2.36 119.18 / 238.20 / 476.12 N = 1, 2, 4
Relay-Seg 45.90+2.39 52.71 / 105.41 / 210.83 N = 1, 2, 4

Table 3: Model complexity comparison: parameter counts (M) and computational cost (GFLOPs).
The bolded part in our models indicates additional parameters. Multiple GFLOPs values correspond
to different sub-image counts N = 1, 2, 4.

Ground Truth CAT-Net PSCC-Net MVSS-Net Trufor Mesorch RelayFormerManipulated Image

Manipulated Video

Ground Truth

Predicted Mask

Manipulated Video

Ground Truth

Predicted Mask

Manipulated Video

Ground Truth

Predicted Mask

Figure 4: Visual qualitative results for image and video scenarios.

Video Manipulation Localization. Following TruVIL (Lou et al., 2024) and ViLocal, we train on
OP (Oh et al., 2019) and VI (Kim et al., 2019) edited DAVIS2016 (Perazzi et al., 2016), and test on
E2FGVI (Li et al., 2022), FuseFormer (Liu et al., 2021), and STTN (Zeng et al., 2020) edited MOSE.
Table 2 shows that both models achieve state-of-the-art results: Relay-Seg leads on E2FGVI, while
Relay-ViT performs best on STTN, confirming robustness across different inpainting models.

As shown in Fig. 4 and in the Appendix A.10, our method also demonstrates superior performance
in visual results.

4.2 INTERACTION BETWEEN IMAGE AND VIDEO IN UNIFIED TRAINING

We conduct a series of experiments to study how images and videos influence each other when
trained within a unified model. Table 4 reports the F1 obtained under six training configurations:
image-only (Img), video-inpainting-only (V-Inp), video-splice-only (V-Spl), image + video inpaint-
ing (Img+V-Inp), and image + video inpainting + video splice (Img+V-All).

From Experiments 1, 2, and 3, we observe that adding video forgeries to image data does not no-
ticeably improve image-domain performance. This is mainly because current video datasets lack
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Num. Training set COV. Col. NIST16 CASIAv1 IMD2020 Splice MOSE

1 Img+V-All 0.569 0.755 0.282 0.753 0.357 0.472 0.684
2 Img+V-Spl 0.569 0.756 0.282 0.753 0.357 0.476 0.09
3 Img+V-Inp 0.570 0.733 0.308 0.748 0.357 0.133 0.681
4 V-Spl 0.051 0.147 0.163 0.143 0.219 0.264 0.119
5 V-Inp 0.005 0.139 0.066 0.029 0.061 0.003 0.688
6 Img 0.551 0.762 0.335 0.740 0.381 0.458 0.082

Table 4: F1 across datasets under different training configurations.

[GLR] (n) Decoder COV. Col. NIST16 CASIAv1 IMD2020 Average
0 - 0.486 0.596 0.248 0.691 0.248 0.454
1 - 0.548 0.718 0.289 0.751 0.301 0.521
1 ✓ 0.559 0.696 0.292 0.757 0.355 0.532
2 ✓ 0.551 0.762 0.335 0.740 0.381 0.554
3 ✓ 0.556 0.714 0.260 0.761 0.327 0.524

Table 5: Ablation study on manipulation detection (F1 scores) across five benchmarks. We vary the
number of [GLR] tokens (n = 0, 1, 2, 3), (n = 0) means without the GLRA module, and evaluate
the performance of our mask decoder.

diversity and precise annotations, while image datasets already provide rich and reliable spatial ma-
nipulation cues.

Comparing Experiments 2, 4, and 6, we find the opposite direction to be effective: image data
clearly strengthen video forgery detection for manipulation types shared across both domains. High-
quality image forgeries give the model a solid set of spatial cues that transfer well to video frames,
effectively serving as a strong “starting point” for learning video manipulations.

Finally, Experiments 3 and 5 show that when image and video datasets contain non-overlapping
manipulation types, no mutual benefit appears. Without shared artifact patterns, joint training offers
no advantage over single-source training.

4.3 FLOPS AND PARAMETERS

As shown in Table 3, our framework adapts dynamically to varying input resolutions, reducing
redundant computation with minimal parameter overhead. See the Appendix A.9 for a more detailed
analysis of time complexity and parallelism.

4.4 ABLATION STUDY

We conduct ablation experiments to assess the contribution of each component from three perspec-
tives: (1) the number of [GLR] tokens and the role of the GLRA module (n=0), (2) the Query-based
Mask Decoder, and (3) spatial-temporal cues and interpolation strategies.

Table 5 reports results on five benchmarks. Adding a single [GLR] token (n=1) improves results,
and substituting the MLP with our decoder further boosts performance (0.532). The best perfor-
mance occurs at n=2, while n=3 slightly degrades results due to redundancy (Fig. 6). We provide
a further analysis of the behavior of the [GLR] token along with additional visualizations in the
Appendix A.6.

Effectiveness of GLRA along Temporal Dimensions We further investigate the effectiveness of
applying GLRA solely along the spatial dimension versus jointly across both spatial and temporal
dimensions in video detection, in order to verify that our method can indeed extend to capturing
temporal information in videos. The corresponding results are presented in Table 6.
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Spatial Temporal F1 IoU
– – 0.6124 0.4828
✓ – 0.6745 0.5391
✓ ✓ 0.6877 0.5524

Table 6: Ablation of GLRA along spatial and
temporal dimensions (MOSE).

Metric w/o resize w/ resize

Res. 2958×4437 1024×1024
F1 0.453 0.350

Table 7: Impact of interpolation (IMD2020).
Res. denotes the maximum resolution.

None 3 7 11 15 19 23
Kernel Size
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Noise Level
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RelayFormer IML-ViT Trufor Cat-Net PSCC-Net

Figure 5: Robustness analysis results of the model under common perturbations.

Effect of Input Resolution on Performance and Extrapolation to Higher Resolutions Table 7
summarizes the impact of input resolution on detection accuracy. First, resizing high–resolution
inputs (e.g., 4K) to 1024×1024 substantially reduces computation, but it also destroys subtle tam-
pering cues. Interpolation inevitably smooths or distorts high–frequency artifacts (e.g., boundary
inconsistencies, resampling traces), leading to a notable performance drop (0.350 vs. 0.453). This
confirms that naı̈ve downsampling can obscure the very forensic signals the model relies on.

Second, this experiment also provides empirical evidence of the model’s extrapolation capability.
Although the model is trained only on images within a significantly lower resolution range (from
240×160 to 600×901), it performs best when evaluated directly on raw 4K images without any
resizing. The improvement at resolutions far exceeding the training regime demonstrates that the
model generalizes robustly to arbitrarily high input sizes, rather than overfitting to the training scale.
In other words, accuracy does not saturate at the training resolution; instead, the model benefits
from the additional fine-grained cues present at 2K/4K resolutions, supporting our claim of strong
resolution extrapolation.

4.5 ROBUSTNESS EVALUATION

We assess the robustness of different methods under common corruptions: Gaussian Blur, Gaussian
Noise, and JPEG Compression. As shown in Fig. 5, RelayFormer consistently outperforms prior
methods across all distortion types and levels. It maintains higher F1 scores under increasing blur,
noise, and compression, demonstrating strong generalization to real-world degradations.

5 CONCLUSION

In this work, we introduced RelayFormer, a unified framework for visual manipulation localiza-
tion that addresses two long-standing challenges: resolution diversity and the extension from static
images to temporal video inputs. By decomposing inputs into fixed-size sub-images and employing
Global Local Relay (GLR) tokens, the proposed relay-based attention mechanism enables efficient
propagation of scene-level context while preserving fine-grained forensic evidence. This design
allows RelayFormer to adapt to arbitrary input resolutions and naturally process video sequences
without relying on costly resizing or separate models for different data types. Extensive experi-
ments on diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance
with strong computational efficiency. These results highlight RelayFormer as a practical and scal-
able solution for robust manipulation localization across both static and temporal visual data.
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A APPENDIX

A.1 LIMITATIONS

Limitations on global context modeling. While our partition-and-relay design achieves a favor-
able trade-off between accuracy and efficiency, it inevitably introduces a limitation compared to full
global attention. Specifically, when manipulations span across multiple sub-images, the Global-
Local Relay Attention (GLRA) propagates contextual information through relay tokens rather than
establishing exhaustive pairwise interactions. This relay mechanism is computationally more effi-
cient, yet it cannot capture cross-partition dependencies as precisely as a global attention scheme if
computational constraints are disregarded.

A.2 DISCUSSION: RELATION AND DISTINCTION FROM VISUAL PROMPT-TUNING

In this section, we clarify the relationship between our proposed Global-Local Relay Attention
(GLRA) and existing visual prompt-tuning methods (Jia et al., 2022; Liu et al., 2022a; Yang et al.,
2024). While GLRA shares the high-level concept of utilizing learnable tokens for information
aggregation, its design objectives, interaction mechanisms, and computational characteristics are
fundamentally distinct from standard prompt-tuning paradigms.

Distinction from Standard Prompt Tuning. Classical methods such as P-Tuning v2 (Liu et al.,
2022a) or Visual Prompt Tuning (VPT) (Jia et al., 2022) typically insert learnable tokens into a
frozen pretrained backbone to achieve lightweight adaptation for classification tasks. These tokens
interact via standard self-attention without specific spatial structural constraints. In contrast, GLRA
is designed for dense prediction (manipulation localization) within a fully trainable backbone. We
introduce a dedicated relay mechanism across local units, ensuring efficient global modeling at
arbitrary resolutions—capabilities absent in standard prompt tuning.

A.3 DETAILED DESCRIPTION OF THE METHOD

A.3.1 INPUT UNIFICATION

To more clearly demonstrate how we preprocess videos and images into a unified form, we provide
relevant pseudocode 1.

Algorithm 1 Sub-images Extraction

Require: Image set Ximg, video set Xvid, patch size (Hp,Wp), stride (Sh, Sw)
Ensure: Unified tensor X ∈ RBtotal×C×Hp×Wp

1: X← empty list
2: for each image x ∈ Ximg do
3: H,W ← spatial dimensions of x
4: Nh ← ⌈(H −Hp)/Sh⌉+ 1
5: Nw ← ⌈(W −Wp)/Sw⌉+ 1
6: Extract Nh ×Nw patches using sliding window
7: Append patches to X
8: end for
9: for each video x ∈ Xvid do

10: T,H,W ← dimensions of x
11: Nh ← ⌈(H −Hp)/Sh⌉+ 1
12: Nw ← ⌈(W −Wp)/Sw⌉+ 1
13: Extract patches from first frame: P← patches from x[0]
14: Repeat P along temporal dimension: Pfull ← repeat(P, T )
15: Append Pfull to X
16: end for
17: Stack all patches into tensor of shape (Btotal, C,Hp,Wp)
18: return X
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A.3.2 PARAMETER-EFFICIENT STRATEGY

Using shared parameters for both local and global attention severely degrades performance because
the two modules serve fundamentally different purposes and operate on distinct feature spaces.
Local attention works on dense, low-level patch tokens (Xi), focusing on fine-grained textures,
edges, and object parts. Global attention, by contrast, processes sparse, high-level [GLR] tokens
(Tflat), which summarize sub-images and model long-range dependencies. A single set of projection
weights cannot simultaneously specialize in local detail extraction and global structural reasoning,
leading to suboptimal representations in both tasks. Therefore, separate parameterization is essential
to preserve both local fidelity and global coherence.

As shown in Fig. 3, our solution introduces functional specialization via a dynamic parameter-
sharing scheme based on Low-Rank Adaptation (LoRA). Each Transformer block maintains a shared
set of backbone projection matrices (WQ, WK , WV ), which are fully trainable. On top of this
backbone, we add two task-specific sets of LoRA parameters: {Alocal, Blocal} for SelfAttnlocal and
{Aglobal, Bglobal} for SelfAttnglobal. During the forward pass, the effective weight is dynamically
constructed. For example, in local attention:

W ′
Q = WQ +BQ,localAQ,local,

while in global attention:
W ′′

Q = WQ +BQ,globalAQ,global.

Here, WQ provides a shared backbone, and LoRA contributes lightweight, context-specific adjust-
ments.

Unlike conventional LoRA fine-tuning, our backbone remains trainable, and the LoRA parameters
are never merged into it. This design is crucial: rather than adapting a frozen model to a single task,
we enable two co-existing functional modes that can be switched dynamically. The result is efficient
parameter sharing that preserves specialization for both local and global reasoning.

A.4 DATASETS

A.4.1 IMAGE DATASETS

We use the following publicly available datasets for the detection of spliced and copy-moved images,
following previous settings (Ma et al., 2023; 2024), we didn’t use real images in all datasets:

To provide a detailed overview of these datasets, Table 8 summarizes key attributes, including the
number of images or videos, forgery types, and other relevant characteristics. All details are sourced
from official or authoritative descriptions to ensure reliability.

Table 8: Overview of benchmark datasets for image forgery detection. Forgery types include splic-
ing (S), copy-move (C), removal/inpainting (R), enhancement (E), and others (O).

Dataset Year # Authentic # Forged Forgery Types

Image Forgery Datasets
CASIA v1.0 2013 800 921 S, C, R
CASIA v2.0 2013 7,491 5,123 S, C, R
Columbia 2004 183 180 S
Coverage 2016 100 100 C
NIST16 2016 560 564 S, C, R
IMD2020 2020 414 2010 S, C, O
Defacto 2019 Variable 190k S, C, R, O

AI-Generated Forgery Datasets
AutoSplice 2023 2,273 3,621 S, O
CocoGlide 2023 Variable Variable S, O

Key characteristics of the datasets: CASIA datasets provide ground truth masks and include post-
processing artifacts; Columbia focuses on uncompressed splicing evaluation; Coverage contains
copy-move forgeries with similar genuine objects; NIST16 offers high sensor diversity from the
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Nimble Challenge; IMD2020 covers real-life manipulations from diverse camera models; and AI-
generated datasets (AutoSplice, CocoGlide) feature semantically meaningful manipulations with
mask annotations.

A.4.2 VIDEO DATASETS

For video inpainting experiments, we use the following datasets:

Dataset Clips #Frames/Masks Resolution Use

DAVIS 2016 (Perazzi et al., 2016) 50 3,455 1080p Generate training via OP / VI
MOSE (Ding et al., 2023) 2,149 431,725 1080p–4K Cross-dataset test

Table 9: Video datasets used in our workflow.

Details of usage. DAVIS 2016 contains 50 short videos (3–4s) with 3,455 densely annotated frames
at 1080p resolution, split into 30 training and 20 validation clips (Perazzi et al., 2016). We use
two video inpainting models—OP (Oh et al., 2019) and VI (Kim et al., 2019)—to generate cor-
rupted–reconstructed frame pairs for training.

The MOSE dataset includes videos and object masks across 36 categories with complex scenarios,
such as occlusions and dense crowds (Ding et al., 2023). We use the validation split of 100 clips
as a test set for evaluating, using three methods: E2FGVI (Li et al., 2022), FuseFormer (Liu et al.,
2021), and STTN (Zeng et al., 2020) models to create validation datasets.

A.4.3 DATA SPLIT SUMMARY

• Image tasks: CASIA v2.0 is used for training. Other image datasets (CASIA v1.0,
Columbia, Coverage, NIST16, IMD2020) are used for cross-dataset testing.

• Video tasks: DAVIS 2016 is used to generate training data via OP and VI models. MOSE
validation split is used for testing with E2FGVI, FuseFormer, and STTN.

This setup allows evaluation of both in-domain performance and cross-domain generalization for
image forgery detection and video inpainting.

A.5 IMPLEMENTATION DETAILS

To ensure fairness and consistency, all experiments are conducted with the IMDLBench (Ma et al.,
2024) framework and follow the training configuration of IML-ViT. ViT and SegFormer backbones
are adopted (denoted as Relay-ViT and Relay-Seg). All Transformer blocks are replaced by GLRA
modules, and the number of [GLR] tokens is set to n = 2. For 4D RoPE, following (Wang et al.,
2024), each of the four structured axes (T , id, H , W ) is assigned an equal dimension size, and any
leftover dimensions are grouped into the remaining part.

Component Setting
Backbones ViT-Base-patch16, SegFormer
[GLR] tokens n = 2
Sub-image size (image) 528× 528
Sub-image size (video) 256× 256
Temporal clip length 4 frames
Mask decoder layers (K) 3
Learnable queries 8
Frozen epoch 1 (freeze pre-trained weights)
Edge loss weight λ 20
LoRA rank 8
LoRA scaling factor 2

Table 10: Model and Architecture Settings.
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Parameter Value
GPUs 4 × NVIDIA RTX 3090
Precision AMP (mixed precision)
Per-GPU batch size 4
Gradient accumulation steps 4
Effective batch size 64
Epochs 200
Optimizer AdamW (Loshchilov & Hutter, 2019)
Base learning rate 1× 10−4

LR schedule Cosine decay (Loshchilov & Hutter, 2017)
Warmup epochs 2
Minimum learning rate 5× 10−7

Weight decay 0.05
Random seed 42
Test-time augmentation None

Table 11: Training Configuration.

Image and Video Preprocessing. Images larger than 1024×1024 are resized by scaling the longer
side to 1024 while maintaining aspect ratio, followed by zero-padding to 1024 × 1024. For video
data, we apply both spatial sub-image cropping and temporal windowing of 4 frames.

Data Augmentation. We follow IML-ViT (Ma et al., 2023) and apply:

• re-scaling and random horizontal flipping,

• Gaussian blurring and random rotation,

• copy-move and inpainting of rectangular regions.

Training is executed using PyTorch’s distributed launcher (torchrun). No test-time augmentation
or post-processing is applied.

A.6 UNDERSTANDING GLRA BEHAVIOR

To further investigate the effect of GLRA, we visualize intermediate attention maps and feature
activation patterns in Fig. 6 and Fig. 7. Without GLRA, the representations of different spatial sub-
images tend to diverge, as local self-attention lacks a mechanism for sufficient global interaction.
This leads to fragmented feature distributions that fail to capture cross-region dependencies. In con-
trast, GLRA introduces an explicit relay pathway for long-range communication, enforcing semantic
consistency across sub-images and strengthening the alignment of manipulated and pristine regions.

Moreover, we find that when employing two [GLR] tokens, each token naturally specializes in
distinct spatial regions, suggesting a clear division of labor that supports complementary global rea-
soning. However, when the number of relay tokens increases to three, one of the tokens consistently
collapses into an attention pattern nearly identical to that of another token, indicating redundancy
and an unclear functional role, as shown at the bottom of Fig. 6. We hypothesize that this re-
dundancy introduces competition among relay tokens, weakening their ability to form stable and
meaningful global interactions. Consequently, the representational ambiguity introduced by the ex-
tra token leads to diminished performance. These observations support our empirical finding that
setting the number of relay tokens to n = 2 strikes an effective balance between modeling capacity
and computational efficiency.

A.7 ADDITIONAL CROSS-DATASET EVALUATION

We further evaluate our models on three additional datasets, with results summarized in Table 12.
Overall, our Relay-based methods consistently achieve leading performance under broad testing
conditions. In particular, Relay-Seg attains the highest average F1 score (0.372), surpassing all com-
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Manipulated Images

Attention Maps of  𝐺𝐿𝑅  tokens

Sub-image

[𝐺𝐿𝑅] 1

[𝐺𝐿𝑅] 2

[𝐺𝐿𝑅] 2 [𝐺𝐿𝑅] 3[𝐺𝐿𝑅] 1

Figure 6: Attention map visualization of [GLR] tokens for analyzing their behavioral patterns.
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Figure 7: Qualitative results illustrating the role of GLRA.

peting baselines. This demonstrates that the proposed GLRA mechanism generalizes well across
diverse forgery types and input distributions.

A noteworthy observation is the impact of backbone choice when facing AI-generated forgery
datasets. For example, both Relay-ViT and IML-ViT, which are based on Vision Transformer archi-
tectures, achieve a similar level of performance. In contrast, Relay-Seg outperforms other methods,
while SparseViT also exhibits competitive results. We attribute this advantage to the architectural
design: Relay-Seg and SparseViT both adopt hierarchical Transformer encoders that produce high-
resolution coarse features and low-resolution fine features, while incorporating more convolutional
operations. Such hybrid designs appear to be particularly effective in capturing the subtle artifacts
present in AI-generated forgeries.
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These findings not only validate the robustness of our relay-based formulation but also suggest
that backbone-level inductive biases play a significant role in detecting AI-generated content. Im-
portantly, our approach benefits from these architectural strengths while introducing only minimal
overhead, thereby offering both efficiency and adaptability.

Method AutoSplice CocoGlide Defacto-12k Average

IML-ViT (Ma et al., 2023) 0.221 0.210 0.367 0.266
SparseViT (Su et al., 2025) 0.386 0.142 0.242 0.257
Mesorch (Zhu et al., 2025) 0.216 0.120 0.292 0.209

Relay-ViT 0.289 0.203 0.416 0.303
Relay-Seg 0.379 0.328 0.409 0.372

Table 12: Performance comparison of different methods on three datasets (metric: F1 score, higher
is better)

Figure 8: Impact of GLRA layer replacement strategies on CASIA v1.

A.8 MORE ABLATION STUDIES

Studies on the Model Architecture. To evaluate the effectiveness of GLRA when integrated into
different parts of the backbone, we conducted experiments with three replacement strategies on the
CASIA v1 dataset: (1) inserting GLRA into a sparse set of layers across the transformer encoder
[0, 3, 7, 11], (2) replacing all layers in the latter half of the encoder [6–11], and (3) replacing all
layers in the encoder (i.e., full replacement). As shown in Figure 8, progressively increasing the
number of GLRA-applied layers leads to consistent improvements in F1 scores: 73.24%, 74.21%,
and 75.50%, respectively. These results indicate that GLRA contributes more significantly when
applied to deeper layers and that full-layer integration yields the best performance. This suggests
that GLRA is both effective and scalable when applied throughout the model architecture.

To further understand the design choices in our proposed framework, we conduct two ablation stud-
ies: (1) evaluating the effect of quantized relay compression by comparing GLRA with a full self-
attention baseline, and (2) examining the role of 4D Rotary Position Embedding (RoPE) within the
GLRA module.

Effect of 4D RoPE. To isolate the impact of positional encoding, we remove the 4D RoPE from
the GLRA module and observe both training stability and final performance. As shown in Table 13,
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the removal of RoPE leads to significantly more unstable training dynamics, exhibiting larger gradi-
ent fluctuations and slower convergence. Performance is also consistently worse across all datasets,
with the average score dropping from 0.554 to 0.517. These findings indicate that 4D RoPE provides
essential spatial consistency for the compressed relay representations, stabilizing the optimization
process and enhancing the model’s ability to capture long-range structural information.

RoPE Coverage Columnbia NIST CASIAv1 Avg.

× 0.542 0.682 0.301 0.707 0.517
✓ 0.551 0.762 0.335 0.740 0.554

Table 13: Ablation on the use of 4D RoPE in the GLRA module. Removing RoPE results in unstable
training and degraded performance.

Ablation on Sub-Image Size and Overlap. For video inputs, we adopt a sub-image size of 256×
256. The primary constraint is the resolution of the training data, whose maximum spatial size is
512× 512. Using 512× 512 sub-images would reduce GLRA to full attention. Hence, 256× 256 is
the largest feasible choice that preserves spatial hierarchy while maintaining the intended behavior
of GLRA.

For image inputs, larger sub-images provide stronger discriminative capacity but incur higher
quadratic computational cost. We adopt 512 × 512 as a balanced choice between accuracy and
efficiency. To further illustrate this trade-off, we additionally compare 256 × 256 sub-images with
and without overlap. The results are summarized in Table 14.

Coverage Columnbia NIST CASIA IMD2020 Avg. overlap size

0.389 0.658 0.260 0.685 0.355 0.469 w/o 256
0.434 0.645 0.261 0.709 0.337 0.477 w/ 256
0.551 0.762 0.335 0.740 0.381 0.554 w/ 512

Table 14: Ablation on sub-image size and overlap for image inputs.

These results show that 512 × 512 yields notable performance gains over the 256 × 256 setting,
supporting our choice as an effective trade-off between accuracy and computational cost.

We use an overlap of 16 pixels, corresponding to exactly one ViT-Base patch. This ensures conti-
nuity across adjacent sub-images while remaining compatible with the pretrained backbone. Larger
overlaps substantially increase computation with limited benefit, whereas removing overlap weakens
cross-region consistency.

A.9 COMPLEXITY AND PARALLELISM ANALYSIS

As shown in Table 3, both Relay-ViT and Relay-Seg introduce only a negligible number of additional
parameters (∼ 2.4M) compared to their respective backbones, demonstrating that GLRA incurs min-
imal memory overhead. Despite this, our methods substantially reduce computational cost relative
to prior transformer-based baselines. For example, Relay-ViT achieves a lower GFLOPs budget than
IML-ViT even when operating with N=4 sub-images at 1024×1024 resolution. Moreover, the scal-
ability of our design is evident: the GFLOPs grow linearly with the number of sub-images, while
the parameter count remains nearly constant. This highlights the efficiency of our relay-based for-
mulation, which decouples global reasoning capacity from the quadratic growth in input resolution.
Overall, Relay-ViT and Relay-Seg strike a favorable balance between model size, computational
efficiency, and representational power, validating the practical advantage of the proposed GLRA
mechanism.

Time complexity. In the local attention stage, each sub-image Ui contains P patch tokens and
m [GLR] tokens, yielding a total of P +m tokens per sub-image. The self-attention operation in
Eq. equation 1 thus requiresO((P+m)2d) computations per layer, where d is the hidden dimension.
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Since N typically dominates m, the asymptotic cost is comparable to standard sub-image self-
attention. Across all sub-images in the batch, the total complexity scales linearly with Btotal, the
unified number of sub-images.

In the global attention stage, the complexity depends only on the number of [GLR] tokens. For
a sample with Ni sub-images, the concatenated sequence length is Ni · m, leading to a cost of
O((Nim)2d) per layer in Eq. equation 3. Compared to local attention, this is relatively lightweight,
since m≪ P and Ni is typically small.

Parallelism. The unified representation in Sec. 3.1 enables straightforward parallelization across
all sub-images. However, the number of sub-images Ni may vary across samples due to differing
input resolutions, resulting in variable numbers of [GLR] tokens. To enable efficient batched com-
putation, we pad the sequence of [GLR] tokens in each sample to the maximum length within the
batch. This ensures that global attention can be executed in parallel without irregular memory access
patterns. Since the number of sub-images per sample is usually small, the overhead introduced by
such padding is negligible in practice, while the benefit of full parallelization is substantial.

A.10 MORE VISUALIZATION RESULTS

In this section, we provide additional qualitative comparisons to further demonstrate the effective-
ness of our method. Figure 9 showcases a variety of manipulated images and videos, along with
their corresponding ground truth masks and the predicted results from different baseline methods,
including CAT-Net, PSCC-Net, Trufor, and Mesorch. Our method, RelayFormer, consistently gen-
erates more accurate and fine-grained manipulation masks, with better localization and fewer false
positives compared to previous approaches.

For manipulated video sequences, our model not only detects spatial tampering more precisely but
also captures temporal consistency across frames, which is essential for robust manipulation detec-
tion in videos.

A.10.1 SUPPLEMENTARY MATERIAL

Video Visualizations Results. To better visualize the temporal performance of our method on
manipulated videos, we provide a rich set of video demonstrations in the supplementary material.
These visualizations clearly illustrate the robustness and temporal coherence of our predictions.

Code. To ensure reproducibility, we submit the code in the supplementary material.
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Ground Truth CAT-Net PSCC-Net Trufor Mesorch RelayFormerManipulated Image

Manipulated Video

Ground Truth

Predicted Mask

Manipulated Video

Ground Truth

Predicted Mask

Manipulated Video

Ground Truth

Predicted Mask

Manipulated Video

Ground Truth

Predicted Mask

Figure 9: Qualitative comparisons on manipulated images and videos. Our method (RelayFormer)
shows superior performance in both spatial and temporal prediction accuracy compared to prior
methods.
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B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, a Large Language Model (LLM) was used solely for the
purpose of language polishing, including minor grammar correction and stylistic refinement of the
authors’ original text. The LLM did not contribute to the conceptualization of the research, the
design of experiments, the analysis of results, or the interpretation of findings. All research ideas,
methods, and conclusions presented in this paper are entirely the work of the authors.
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