
Evaluating Graph Generative Models with
Contrastively Learned Features

Hamed Shirzad
UBC

shirzad@cs.ubc.ca

Kaveh Hassani
Autodesk AI Lab

kaveh.hassani@autodesk.com

Danica J. Sutherland
UBC & Amii

dsuth@cs.ubc.ca

Abstract

A wide range of models have been proposed for Graph Generative Models, ne-
cessitating effective methods to evaluate their quality. So far, most techniques
use either traditional metrics based on subgraph counting, or the representations
of randomly initialized Graph Neural Networks (GNNs). We propose using
representations from contrastively trained GNNs, rather than random GNNs,
and show this gives more reliable evaluation metrics. Neither traditional ap-
proaches nor GNN-based approaches dominate the other, however: we give ex-
amples of graphs that each approach is unable to distinguish. We demonstrate
that Graph Substructure Networks (GSNs), which in a way combine both ap-
proaches, are better at distinguishing the distances between graph datasets. The
code used for this project is available in: https://github.com/hamed1375/
Self-Supervised-Models-for-GGM-Evaluation.

1 Introduction

Quantitative evaluation of generative models is challenging [45]; evaluating purely by visual inspec-
tion can introduce biases, particularly towards “precision” at cost of “recall” [37]. The traditional
metric, likelihood, is also not only difficult to evaluate for implicit generative models on complex,
highly structured datasets, but can also be a poor fit to users’ goals with generative modeling [37,
45]. Many quantitative proxy measures for the discrepancy between generator and real distributions
have thus been used in recent work on generative modeling of images, some of the most important
including the Inception Score (IS) [38], Fréchet Inception Distance (FID) [20], Precision/Recall (PR)
[37], and Density/Coverage [32]. FID and PR measures in particular have been shown to correlate
with human judgments in some practical settings. All of these measures use representations extracted
from CNNs pretrained on ImageNet classification [36]. Nevertheless, it is recently shown that
self-supervised representations archives more reasonable ranking in terms of FID/Precision/Recall,
while the ranking with ImageNet-pretrained embeddings often can be misleading [30].

These problems are exacerbated for the evaluation of generative models of graph data. Graphs are
often used to represent concepts in a broad range of specialized domains, including various fields
of engineering, bioinformatics, and so on, so that it is more difficult or perhaps impossible to find
“generally good” features like those available for natural images via ImageNet models. Many methods
for evaluating graph generative models are thus based on measuring discrepancies between statistics
of generic low-level graph features, including local measurements like degree distributions, clustering
coefficient distributions, and four-node orbit counts [24, 52], or simple global properties such as
spectra [25]. Differences between distributions of these features are generally measured via the
maximum mean discrepancy (MMD) [15] or total variation (TV) distance.

More recent work [46] proposes instead extracting features via randomly initialized Graph Isomor-
phism Networks (GINs) [51]. These features provide a representation for each graph, so that metrics
like FID, Precision/Recall, and Density/Coverage can be estimated using these representations. For

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/hamed1375/Self-Supervised-Models-for-GGM-Evaluation
https://github.com/hamed1375/Self-Supervised-Models-for-GGM-Evaluation

datasets with natural labels, we can alternatively find representations based on training a classifier;
such features, however, are optimized for a very different task.

One significant challenge of graph data is that it is computationally difficult to even tell whether two
graphs are the same (are isomorphic to one another). GINs are known to be as powerful at detecting
isomorphism as the standard Weisfeiler-Lehman (WL) test [51], but it is not known whether random
GIN representations have this ability. Experimental evidence [51] shows that trained GIN networks
are as powerful as the WL test, but have substantially worse power at random initialization.

Unlike for distributions of natural images, however, the relevant graph features and particularly the
semantics of node or edge features varies widely between datasets. On molecular graphs, adding
any single edge will almost always violate physical constraints about stable atomic bonds; for house
layouts, the feasibility of adding an edge depends significantly on the rest of the layout and the type
of rooms (few front doors open into a bathroom, and direct connections between rooms on the first
and third floors are unlikely); Traditional metrics and random graph neural networks are both unlikely
to be able to capture these complex inter-dependencies functioning very differently across domains,
and it similarly seems quite unlikely that pretraining on some “graph ImageNet” would be able to
find useful generic graph features.

We therefore propose to train graph encoders on the same data used to train the generative model,
using self-supervised contrastive learning to find meaningful feature extractors [18, 19, 34, 41, 44,
48, 53–56], which we then use to compare the generated graphs to a test set. The set of perturbations
introduced in contrastive learning teaches the model which kinds of graphs should be considered
similar to one another. In this work we use types of perturbations traditionally used for training
contrastive learning methods on graphs, but point out that future work focusing on domain-specific
modeling can directly incorporate knowledge about which graphs should be considered similar by
choosing different perturbation sets.

Inspired by the theoretical results for contrastive learning of [50], we also propose two variations to our
representation learning procedures. This upper bound shows that contrastively learned representations
work well for downstream tasks as long as the probability of data points yielding overlapping
augmentations is relatively large for within-class dataset pairs and relatively small for cross-class
pairs. Edit distances between graphs on typical training sets are large, however; we propose to use
subgraphs (“crops”) in our set of data augmentations for contrastive learning, which is more likely
to yield overlaps. We also suggest enforcing a layer-wise Lipschitz constraint on feature extractors,
which encourages similar graphs to have similar learned representations. We show experimentally
that both changes improve learning.

With all of these improvements, we further ask: can we theoretically guarantee that our learned GNN
representations outperform traditional local metrics? We prove that we cannot: we give examples
of graphs easily distinguishable by local metrics that first-order GNNs cannot distinguish. Yet the
converse is also true: we show graphs easily distinguishable by GNNs that appear equivalent to local
metrics. We thus propose to use models based on Graph Substructure Networks (GSNs) [6], (using
node degrees, and node clustering coefficients), and as a result, explicitly incorporating local metrics
into our models and surpassing the power of the WL test, and yield further improvements.

2 Related Work

Graph generative models. Our work is not particular to any type of graph generative model, as
it focuses on simply evaluating samples; nonetheless, it is worth briefly reviewing some methods.
Sequential generation models, such as GraphRNN [52] and GRAN [25], generate nodes and edges in
an auto-regressive manner. These models are efficient, but can struggle to capture global properties of
the graphs, and require a predefined ordering. One-shot models such as MolGAN [10], GraphDeconv
[13], GraphVAE [23], and GraphNVP [27], on the other hand, generate all nodes and edges in one
shot; they can model long-range dependencies, but generally are not efficient and cannot scale to
large graphs. For a detailed overview of graph generative models, see [16].

Evaluating graph generative models. Graph generative models can be even more challenging to
evaluate than visual or textual models, because it is generally more difficult for humans to judge the
quality of a generated graph. The classic measure of the quality of a generative model, likelihood,
also has significant issues with graphs: in addition to the kinds of issues that appear in generative

2

(a) (b) (c)

.....

Figure 1: (a) An example of two graphs that can be differentiated by GNNs but not local metrics. Both graphs
have same degree distribution, clustering coefficient and 4 node orbits. (b) An example of two graphs that can be
differentiated by local metrics (clustering coefficient and smallest cycle) but not GNNs. (c) Adding a single edge
can drastically change cluster coefficient and 4-node orbits.

models of images [45], the likelihood is particularly hard to evaluate on graphs where even checking
equality is quite difficult [33]. The most common method is to compute the Maximum Mean
Discrepancy (MMD) [15] between distributions of local graph statistics, including node degrees,
cluster coefficients, and counts of orbits up to a particular size [25, 52]. Global statistics, such as
eigenvalues of the normalized graph Laplacian, are also used [52]. These metrics, however, focus
only on low-level structure of the graph, and ignore any features that might be present on nodes or
edges [46]. Choosing an appropriate kernel is also very important to consistency of these metrics
[33]. These types of graph statistics might also encourage models to overfit to the training data, rather
than truly learning the target distribution [40].

For unlabeled image-based generative models, most work focuses on metrics including the In-
ception Score (IS) [38], Fréchet Inception Distance (FID) [20], Precision/Recall (PR) [37], and
Density/Coverage [32], all of which compare distributions in a fixed latent space (typically activations
of a late layer in an InceptionV3 [43] model trained on ImageNet). These methods are rarely adopted
in graph generative models, due to challenges with “general-purpose” graph models discussed in
Section 1. Thompson et al. [46] thus used random (untrained) graph encoders in these metrics.
We discuss these methods in more detail in the appendix. Our work, inspired by Morozov et al.’s
similar proposal in image domains [31], explores the use of self-supervised contrastive training to
find representations that work better than random initializations.

Graph Contrastive Learning. A popular method for self-supervised learning, contrastive learning
generally aims to find a representation roughly invariant to various operations (e.g. for images, taking
random crops, horizontal flipping, shifting colors) but able to identify different source data points.
Ideally, such a representation will be useful for downstream tasks not known when learning the
representation. In graph settings, learned representations may be at the node, edge, or graph levels.

Early works adopting contrastive learning to encode graphs used DeepInfoMax [21] loss to enforce
consistency between local (node) and global (graph) representations (e.g., DGI [48] and InfoGraph
[41]). These methods did not use any specific augmentations and simply used distinct graphs as
negative examples. Following works begin utilizing graph augmentations to further improve the
learned representations. For example, MVGRL [18] uses graph diffusion and sub-graph inducing as
two types of augmentations, where as GCC [34] only uses multi-hop ego network inducing. More
recent works use four types of graph augmentations including: feature masking, node dropping, edge
perturbation, and sub-graph inducing [19, 44, 53–56]. Among them, a few works rely on trial-and-
error or heuristics to choose those augmentations for a given dataset (e.g., GraphCL [54], GRACE
[55], and GCA [56]), whereas others introduce a policy network to learn to sample augmentations
and compute their parameters end-to-end along with graph representations (e.g., JOAO [53] and
LG2AR [19]).

3 GNNs Versus Local Metrics

Different methods for understanding graphs can “understand” the difference between graphs in very
different ways: a particular change to a graph might barely affect some features, while drastically
changing others. One extreme case is when a given metric cannot detect that two distinct (non-

3

isomorphic) graphs are different. Since graph isomorphism is a computationally difficult problem, we
expect that all efficiently computable graph representations “collapse” some pairs of input graphs.1 It
is conceivable, however, that one method could be strictly more powerful than another. For instance,
since recent GNN models have overcome traditional models based on local metric representations
in a variety of problems [23, 47, 51], is it the case that GNNs are strictly more powerful than local
metrics?

We show, constructively, that the answer is no: there are indeed graphs which GNNs can distinguish
and local metrics cannot, but there are also graphs which local metrics can distinguish but first-order
GNNs cannot. Figure 1(a) shows a pair of graphs with the same degree distribution, clustering coeffi-
cient, and four-node orbits, which can nonetheless be distinguished by GNNs (proof in Appendix B).
On the other hand, the graphs in Fig. 1(b) have different clustering coefficient and smallest cycle,
but first-order GNNs cannot tell them apart. Thus, neither method strictly outperforms the other on
all problems, and so there are theoretical generative models which perfectly match in GNN-based
representations but differ in local metrics, and vice versa. This motivates our addition of local features
to our graph representation models (Section 4).

It is much easier to incorporated such hard-coded structures into GNNs than it would be to add
learning to feature metrics; in particular, counting higher-order local patterns quickly becomes
prohibitively expensive, with a super-exponential time complexity. GNNs can also easily handle node
and/or edge features on the underlying graphs, which is far more difficult to add to local metrics.

Another quality we would like in our graph representations, in addition to the ability to distinguish
distinct graphs, is some form of stability: if a distribution of graphs only changes slightly, we would
like our evaluation methods to give “partial credit” as opposed to a distribution where all graphs
are dramatically different. (This is closely related to issues in training and evaluating image-based
generative models [1–3, 45].) As previously discussed, the notion of “similar graphs” is very domain-
dependent, but traditional local metrics can be highly sensitive to changes like adding a single edge:
Fig. 1(c) shows an example where two graphs differing only by a single edge can have drastically
different statistics. By learning GNN representations, we can have some control over these types of
smoothness properties; we exploit this explicitly in our methodology in Section 4.

4 Self-supervised Training of Graph Representations for Evaluation

Suppose we have two sets of graphs Gtrain = {G1, . . . GS} and Gtest = {G1, . . . GM}, each
sampled from the same data distribution p (G). Also suppose that we have access to an unconditional
graph generative model gϕ(.), which is trained on Gtrain to learn the distribution of the observed set
of graphs. We sample a set of generated graphs Ggen = {G1, . . . GN} ∼ pgϕ(G) from this model.
In order to evaluate the quality of the sampled graphs (i.e., to decide whether the model gϕ(.) has
successfully recovered the underlying distribution p (G)), we can define a measure of divergence
D (Gtest,Ggen) to quantify the discrepancy between distributions of the real and generated graphs.
One robust way to achieve this is to define the metric on latent vector representation spaces, and
expect representations of graphs rather than the original objects. Thus, to use these metrics, we need
to train a shared encoder fθ(.) and then compute the discrepancy as D (fθ(Gtest), fθ(Ggen)). There
are a few such metrics well-studied in visual domains that can differentiate the fidelity and diversity
of the model, and which we can adopt in graph domains.

For evaluating image generative models, due to similar feature space across image datasets and also
availability of large-scale data, the trunk of a model trained over ImageNet with explicit supervisory
signals is usually chosen as the encoder. However, it is not straightforward to adopt the same trick to
graph-structured data: there are no ImageNet-scale graph datasets available, and more importantly,
the semantics of graphs and their features vary wildly across commonly used graph datasets, far more
than occurs across distributions of natural images. For instance, even datasets of molecular graphs
may use different feature sets to represent the molecules [17], in addition to the many cross-domain
challenges discussed in Section 1. Thus, it is not feasible to imagine a single “universal” graph
representation; we would like a general-purpose method for finding representations useful for a new
graph dataset.

1Alternatively, an efficient graph representation might be able to distinguish non-isomorphic graphs, if it also
sometimes distinguishes isomorphic graphs. We do not consider such representations in this paper.

4

. . .

. . .

Training

. . .

FID

PR

DC

MMD

Evaluation

Figure 2: During the training phase, we use the same training data (Gtrain) to train both the generator and
the encoder networks. The encoder is trained using a contrastive loss where two augmentation τi and τj are
randomly sampled from a set of rational augmentations T to construct two views of a sampled graph Gk. During
evaluation phase, we sample the generator to form a generated set of graphs Ggen and feed it along with a
held-out set of real graphs Gtest to the encoder to compute the graph representations. The representations are
then used to compute robust metrics to quantify the discrepency between real and generated graphs.

Training with Graph Contrastive Learning To find expressive representation of real and gener-
ated graphs, we train the encoder using a contrastive objective. Assuming a set of rational augmenta-
tions T over G where each augmentation τi ∈ T is defined as a function over graph Gk that generates
an identity-preserving view of the graph: G+

k = τi(Gk), a contrastive framework with negative
sampling strategy uses T to draw positive samples from the joint distribution p (τi(Gk), τj(Gk)) in
order to maximize the agreement between different views of the same graph Gk and to draw negative
samples from the product of marginals p (τi(Gk))× p (τj(Gk′)) to minimize it for views from two
distinct graphs Gk and Gk′ , k ̸= k′.

As mentioned previously, we use a GIN architecture for our feature extractor. Other than the training
process, the rest of our evaluation pipeline is similar to that of Thompson et al. [46], who use
random GIN weights.We consider two methods for training our GIN’s parameters: GraphCL [54]
and InfoGraph [42]. GraphCL randomly samples augmentation from four possible augmentaiotns
including node dropping, edge perturbation, attribute masking, and sub-graph inducing based on
a random walk to which we would like the representation to be roughly invariant. GraphCL uses
normalized temperature-scaled cross-entropy (NT-Xent) objective [7] to maximize the agreement
between positive graph-level representations. InfoGraph works differently: it contrasts the graph-level
representation with the representations of individual nodes, which encode neighborhood structure
information. InfoGraph uses DeepInfoMax [21] objective to maximize the mutual information
between graph-level and node-level representations of each individual graph.

Using Local Subgraph Counts as Input Features for GINs To build on the insight of Section 3,
we also consider various methods for adding information about the local graph structure as node
features, similarly to Graph Substructure Networks [6]. The simplest such method is to add the degree
of a node as an explicit feature for the GIN to consider. We do this, but also add, by concatenation on
node features, higher-order local information as well: three-node and four-node clustering features
for each node. Four node clustering coefficient is calculated as:

C4(v) =

∑
(u,w)∈N (v) qv(u,w)∑

(u,w)∈N (v) [deg(u) + deg(w)− qv(u,w)− 2I(u ∈ N (w))]
(1)

5

where N (v) denotes immediate neighbors of node v, deg(v) denotes the degree of node v, and
qv(u,w) is the number of common neighbors of u and w, not counting v. Aggregating these features
across the whole graph would give information on distribution of 4 node orbits of the graph, but this
provides more localized information across the graph that is nonetheless difficult or impossible for a
GIN to examine otherwise [8].

Choice of Augmentations Wang et al. [50], building off work of Wang and Isola [49], study
contrastive learning in general settings (with an eye towards vision applications), and provide
an intriguing bound for the performance of downstream classifiers. To explain it, consider the
“augmentation graph” of the training samples: if Gi is the ith training example and G+

i is a random
augmentation of that example, we connect the nodes Gi and Gj in the augmentation graph if there
are feasible augmentations G+

i and G+
j such that G+

i = G+
j .2 Wang et al. argue that downstream

linear classifiers are likely to succeed if this augmentation graph has stronger intra-class connectivity
than it does cross-class connectivity, proving a tight connection between the two under a particular
setting with strong assumptions about this and related aspects of the setup.

Given the connection between the distribution metrics discussed in Appendix A.2 and classifier per-
formance [e.g. 26, Section 4], if we accept the argument of Wang et al. [50], evaluation metrics based
on a contrastively trained graph representation will give poor values (good classifier performance)
when generated samples are not well-connected to real samples in the augmentation graph, and vice
versa. If we choose augmentations appropriately, this is sensible behavior.

Enforcing Lipschitz Layers in Representation Networks The prior line of reasoning also suggests
that we should choose augmentations that are capable of making real graphs look like one another.
Edit distances between graphs, however, are typically large on the datasets we consider, and so
augmentations based on adding or deleting individual nodes and/or edges will struggle to do this. The
same is true for many of the augmentations used on images, except – as Wang et al. [50] note – for
crop-type augmentations, where e.g. two different car pictures might become quite similar if we crop
to just a wheel. On graphs, an analogous operation is subgraph sampling, which we include in our
GraphCL setup; InfoGraph already naturally looks at subgraph features as a core component.

Taking this line of reasoning as well as the general motivations of contrastive learning further, it is
also natural to think that if we can inherently enforce “similar graphs” to have similar representations,
this could improve the process of contrastive learning: we would save on needing to train the model
to learn these similarities, and it could help decrease the classifier performance for good generative
models whose output graphs are legitimately near the distribution of target graphs.

A line of work on GANs in visual settings [1–3, 28, 29, 35] has made clear the importance of this type
of reasoning in losses for training generative models: the loss should smoothly improve as generator
samples approach the target distribution, even if the supports differ. Viewing model evaluation metrics
as a kind of “out-of-the-loop” loss function for training generative models – hyperparameter selection
and model development focusing on variants with better evaluation metrics – suggests that these
kinds of properties may be important for the problem of evaluation as well.

We thus explicitly enforce the layers of our GIN to have a controlled Lipschitz constant, similarly to
e.g. spectral normalization in GAN discriminators [29]. To this end, we fix the λ Lipschitz factor to
1.0 in the experiments. For each linear layer with weights Wℓ, we use projected gradient descent;
after each update on the weights, if ∥Wℓ∥ > 1.0, we update the value of the weights to Wℓ =

Wℓ

∥Wℓ∥ .
This guarantees small changes in the graphs, such as adding/removing edges, or change in the input
features, will not drastically change the final representation.

5 Experimental Results

In all of the experiments we train the model on the full dataset in an self-supervised manner. Following
[46], we take the dataset and make perturbations on the dataset and see what is the trend in the

2Technically, the augmentations we use (described in Section 4) would result in a densely-connected
augmentation graph: for instance, each graph has some vanishingly small probability of being reduced to
an empty graph. We can instead think about the augmentation graph based on the augmentations from a
high-probability set for each training example.

6

measurements as the perturbation degree increases. We denote perturbation degree with r, and define
it for each type of perturbation. We use these type of perturbations:

Pre
cis

ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Ra

nk
 C

or
re

la
tio

n

mixing-random

GraphCL
GIN-Random

(a)
Pre

cis
ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nk

 C
or

re
la

tio
n

rewiring-edges

GraphCL
GIN-Random

(b)

Pre
cis

ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF

−1.0

−0.5

0.0

0.5

1.0

Ra
nk

 C
or

re
la

tio
n

mode-collapse

GraphCL
GIN-Random

(c)
Pre

cis
ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF

−1.0

−0.5

0.0

0.5

1.0

Ra
nk

 C
or

re
la

tio
n

mode-dropping

GraphCL
GIN-Random

(d)

Figure 3: Pretrained GraphCL model versus randomly initialized GIN networks, violin results. The lines in the
plots represent the quartiles. The results are gathered over all datasets and all random seeds. Self-supervised
training shows better performance overall.

• Mixing-Random: In perturbation with ratio r, we remove r chunk of the reference samples,
and replace them with Erdős–Rényi (ER) graphs with the same ratio of edges.

• Rewiring Edges: This perturbation, rewires each edge of the graph with probability r. Each
rewired edge, will change one of the sides of the edge with equal probability to another node
that is not already connected to the stable node.

• Mode Collapse and Mode Dropping: For these perturbation, first we cluster the graphs
using the WL-Kernel. First, we choose r ratio of clusters, then, for mode collapse, we
replace each graph on that dataset with the center of the cluster. For, mode dropping, we
remove the selected clusters and then for making size of the dataset fixed, we randomly
repeat samples from other clusters.

For each experiment, we measure the Spearman rand correlation between the perturbation ratio, r,
and the value of the measurement. For measurements that supposed to decrease by the increase of
ratio, we flip the values. As a result, in all experiments higher is better. We gather the results among
different datasets and several random seeds and plot them for distribution of the correlations. For
detailed experiments on the individual datasets see Appendix D.

Datasets: Following [46], we use six diverse datasets (three synthetic and three real-world) that are
frequently used in literature including: (1) Lobster [9] consisting of stochastic graphs with each node
at most 2-hops away from a backbone path, (2) 2D Grid graphs [9, 25, 52], (3) Proteins [11] where
represents connectivity among amino acids if their physical distance is less than a threshold, (4) 3-hop
Ego networks [52] extracted from the CiteSeer network [39] representing citation-based connectivity
among documents, (5) Community [52] graphs generated by Erdős–Rényi model [12], and (6) Zinc
[22] is a dataset of attributed molecular graphs which allows to study sensitivity of metrics to changes

7

in node/edge feature distributions. We follow the exact protocols used in [9, 25, 46, 52] as follows.
We randomly sample 1000 graphs from Zinc dataset and use one-hot encoding for edge/node features.
For community dataset, we set n = |V|/2, p = 0.3, and add 0.05|V| inter-community edges with
uniform probability. For all datasets, we use the node size range indicated in Table 4 in Appendix.

Contrastive Training Versus Random GIN: In the first experiment, we will examine the effects
of contrastive training. We compare results of self-supervised GraphCL models versus randomly
initialized GINs. For this comparison, we do not use structural features. The results are shown
in Figure 3, and mean/median values are given in Table 1. In general we can see that in most
measurements pretraining shows superior performance compared to the random network. Overall
InfoGraph shows similar results. For InfoGraph results check Appendix D. In this experiments we
use 5 random seeds and gather data on all datasets. In Appendix D, same results separated for each
dataset can be seen. In our experience, pretraining shows near perfect results on larger datasets, but for
Lobster and Grid datasets some correlations are not near to 1. Our observation is these measurements
are moving with the correct trend up to some perturbation ratio; but for example precision/recall
become zero after some perturbation and keeps still. Our intuition here is because of highly regular
structures in these datasets, model learns instantly to discriminate the real graphs from the fake ones
very easily. And after small amount of perturbation the perturbed graphs are all very far from the
reference graphs.

Table 1: Mean/Median values from Figures 3 and 4. Table summarizes the distributions by their mean and
median values. The results are gathered across all datasets and random seeds.

Experiment Model Name Precision Density Recall Coverage F1PR F1DC FD MMD Lin MMD RBF

Mixing Random
GIN-Random 0.97/1.0 0.97/1.0 0.59/0.69 0.92/0.95 0.97/1.0 0.97/1.0 0.94/1.0 0.91/1.0 0.97/1.0
GraphCL 1.0/1.0 1.0/1.0 0.77/0.9 0.95/0.97 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
GraphCL Full 1.0/1.0 1.0/1.0 0.78/0.89 0.96/0.97 1.0/1.0 1.0/1.0 0.97/1.0 0.95/1.0 1.0/1.0

Rewiring Edges
GIN-Random 0.87/0.96 0.88/0.98 0.71/0.82 0.87/0.96 0.89/0.97 0.88/0.97 0.87/0.99 0.91/0.99 0.93/0.98
GraphCL 0.79/0.98 0.91/0.99 0.91/0.93 0.9/0.99 0.93/0.97 0.91/0.99 0.94/0.99 0.99/1.0 0.99/1.0
GraphCL Full 0.86/0.98 0.86/0.99 0.79/0.87 0.86/0.98 0.87/0.97 0.86/0.99 0.95/0.98 0.97/0.99 0.96/0.99

Mode Collapse
GIN-Random -0.51/-0.68 -0.61/-0.86 0.89/0.98 0.95/1.0 0.86/0.96 0.73/0.88 0.57/0.88 0.43/0.74 0.98/1.0
GraphCL -0.65/-0.9 -0.73/-0.88 0.94/0.99 0.94/1.0 0.89/0.97 0.58/0.75 0.71/0.99 0.59/0.84 0.98/1.0
GraphCL Full -0.63/-0.95 -0.61/-0.76 0.95/0.99 0.97/1.0 0.91/0.97 0.63/0.73 0.75/0.99 0.74/0.91 0.98/1.0

Mode Dropping
GIN-Random -0.14/0.0 0.05/-0.08 0.98/1.0 0.99/1.0 0.98/0.99 0.94/0.98 0.79/0.92 0.77/0.83 0.98/0.99
GraphCL 0.01/0.0 0.15/0.23 0.98/0.99 0.99/1.0 0.98/0.99 0.96/0.99 0.84/0.96 0.81/0.92 0.99/0.99
GraphCL Full 0.03/0.0 0.28/0.3 0.96/1.0 0.99/1.0 0.95/0.99 0.97/0.98 0.89/0.97 0.86/0.92 0.99/0.99

Effect of Adding Structural Information: To conduct this experiment, we concatenated node
degrees and clustering coefficients for each node feature. Pretrained GraphCL models with and
without structural features are compared. Figure 4 shows the results, gathered over all datasets and
random seeds; 1 shows mean/median values. Here we can see that adding these features improves the
models power for some measurements. However, on highly regular and small datasets such as Grid
results become poorer. Again intuition is more powerful model can easier distinguish main graphs
from the fake ones. Break down of the results on the datasets in Appendix D proves this point.

Generative Models Benchmark In this experiment, we use samples generated from the GRAN
[25] after 25% of epochs, after full training, and also compare to a holdout set of the real data (half of
the original dataset). We pretrain a model with full structural features and evaluate the criteria on
them. As expected, the early-training results are worse than post-training results, while the real data
gives almost perfect results. Results are provided in Table 2.

Table 2: Comparative results for training GRAN model for 25% of epochs, full training, and 50/50 split of the
datasets. GGM stands for Graph Generative Model.

Dataset GGM Precision↑ Density↑ Recall ↑ Coverage↑ F1PR↑ F1DC↑ FD↓ MMD Lin↓ MMD RBF↓

Lobster
GRAN-25% 0.24 0.23 0.56 0.43 0.34 0.30 6.4e5 3.1e4 0.24
GRAN-100% 0.38 0.27 0.75 0.47 0.50 0.34 4.7e5 2.1e4 0.14
50/50 split 1.0 1.0 0.98 1.0 0.99 1.0 3.7 0.53 0.001

Grid
GRAN-25% 0.0 0.0 1.0 0.0 0.0 0.0 3.6e9 2.3e9 0.94
GRAN-100% 0.33 0.29 1.0 0.76 0.50 0.42 1.4e6 1.57e5 0.075
50/50 split 1.0 1.0 1.0 1.0 1.0 1.0 0.86 0.81 0.009

Ablation Study: We analyze how layer normalization and using subgraph augmentations in
GraphCL reflects on the final results. We have used no structural feature setup and conducted

8

Pre
cis

ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ra
nk

 C
or

re
la

tio
n

mixing-random

GraphCL_Full
GraphCL

(a)
Pre

cis
ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF

0.2

0.4

0.6

0.8

1.0

Ra
nk

 C
or

re
la

tio
n

rewiring-edges

GraphCL_Full
GraphCL

(b)

Pre
cis

ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF

−1.0

−0.5

0.0

0.5

1.0

Ra
nk

 C
or

re
la

tio
n

mode-collapse

GraphCL_Full
GraphCL

(c)
Pre

cis
ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF

−1.0

−0.5

0.0

0.5

1.0

Ra
nk

 C
or

re
la

tio
n

mode-dropping

GraphCL_Full
GraphCL

(d)

Figure 4: Pretrained GraphCL models with and without structural features were compared using violin results.
The GraphCL model does not have structural features, while the GraphCL_Full model has structural features in
addition to GraphCL. In the plots, the lines represent quartiles. The results are gathered across all datasets and
random seeds. The overall distribution improves with structural features in some criteria.

Pre
cis

ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF
0.0

0.2

0.4

0.6

0.8

1.0

Ra
nk

 C
or

re
la

tio
n

mixing-random

GraphCL
GraphCL2
GraphCL3

(a)
Pre

cis
ion

Den
sity

Re
cal

l

Cov
era

ge
F1

 PR
F1

 DC FD

MMD Lin
ea

r

MMD RBF
0.0

0.2

0.4

0.6

0.8

1.0

Ra
nk

 C
or

re
la

tio
n

mode-collapse

GraphCL
GraphCL2
GraphCL3

(b)

Figure 5: Comparison of the full method on no feature data versus removing layer normalization versus
removing subgraph data augmentations on pretraining the network. GraphCL is normal training. In GraphCL2
we do not enforce lipschitzness. In GraphCL3 we remove the subgraph constraints and reduce the probability of
node and edge dropping in the augmentations.

the experiment for mixing-random and mode-collapse experiments. Figure 5, shows the results on
this task. The results prove that both of these improvements are essential for getting better results.

9

6 Conclusion

We have demonstrated that self-supervised pretraining of representations can yield significantly better
metrics for graph evaluation than random ones, particularly when incorporating local graph features
with Lipschitz control, as inspired by theory. We suggest graph generative modeling papers should
consider evaluating with these metrics in addition to or instead of their existing ones.

Acknowledgments and Disclosure of Funding

This research was enabled in part by support, computational resources, and services provided by
the Canada CIFAR AI Chairs program, the Natural Sciences and Engineering Research Council of
Canada, WestGrid, and the Digital Research Alliance of Canada.

References
[1] Michael Arbel, Danica J. Sutherland, Mikołaj Bińkowski, and Arthur Gretton. “On Gradient

Regularizers for MMD GANs.” NeurIPS. 2018. arXiv: 1805.11565.
[2] Martin Arjovsky and Léon Bottou. “Towards Principled Methods for Training Generative

Adversarial Networks.” ICLR. 2017. arXiv: 1701.04862.
[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN.” ICML. 2017. arXiv:

1701.07875.
[4] Mikołaj Bińkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. “Demystifying

MMD GANs.” ICLR. 2018. arXiv: 1801.01401.
[5] Ali Borji. “Pros and cons of GAN evaluation measures.” Computer Vision and Image Under-

standing 179 (2019), pp. 41–65.
[6] Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. “Improving

graph neural network expressivity via subgraph isomorphism counting.” IEEE Transactions on
Pattern Analysis and Machine Intelligence (2022).

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. 2020. arXiv: 2002.05709.

[8] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. “Can graph neural networks count
substructures?” NeurIPS 33 (2020), pp. 10383–10395.

[9] Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. “Scalable deep generative
modeling for sparse graphs.” ICML. PMLR. 2020, pp. 2302–2312.

[10] Nicola De Cao and Thomas Kipf. “MolGAN: An implicit generative model for small molecular
graphs” (2018). arXiv: 1805.11973.

[11] Paul D Dobson and Andrew J Doig. “Distinguishing enzyme structures from non-enzymes
without alignments.” Journal of Molecular Biology 330.4 (2003), pp. 771–783.

[12] Paul Erdos, Alfréd Rényi, et al. “On the evolution of random graphs.” Publ. Math. Inst. Hung.
Acad. Sci 5.1 (1960), pp. 17–60.

[13] Daniel Flam-Shepherd, Tony Wu, and Alan Aspuru-Guzik. “Graph deconvolutional generation”
(2020). arXiv: 2002.07087.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
“Neural message passing for quantum chemistry.” ICML. 2017, pp. 1263–1272.

[15] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. “A Kernel Two-Sample Test.” Journal of Machine Learning Research 13.25 (2012),
pp. 723–773.

[16] Xiaojie Guo and Liang Zhao. “A systematic survey on deep generative models for graph
generation” (2020). arXiv: 2007.06686.

[17] Kaveh Hassani. “Cross-Domain Few-Shot Graph Classification.” Proceedings of the AAAI
Conference on Artificial Intelligence 36.6 (2022), pp. 6856–6864.

[18] Kaveh Hassani and Amir Hosein Khasahmadi. “Contrastive Multi-View Representation Learn-
ing on Graphs.” ICML. 2020, pp. 4116–4126.

[19] Kaveh Hassani and Amir Hosein Khasahmadi. “Learning Graph Augmentations to Learn
Graph Representations” (2022). arXiv: 2201.09830.

10

https://arxiv.org/abs/1805.11565
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/2002.07087
https://arxiv.org/abs/2007.06686
https://arxiv.org/abs/2201.09830

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
“GANs trained by a two time-scale update rule converge to a local Nash equilibrium.” NeurIPS
(2017).

[21] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. “Learning deep representations by mutual information
estimation and maximization.” ICLR. 2019.

[22] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.
“ZINC: a free tool to discover chemistry for biology.” Journal of chemical information and
modeling 52.7 (2012), pp. 1757–1768.

[23] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional
networks.” ICLR. 2016. arXiv: 1609.02907.

[24] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. “Learning Deep
Generative Models of Graphs.” ICLR. 2018.

[25] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L Hamilton, David
Duvenaud, Raquel Urtasun, and Richard S Zemel. “Efficient graph generation with graph
recurrent attention networks” (2019). arXiv: 1910.00760.

[26] Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J. Sutherland.
“Learning Deep Kernels for Non-Parametric Two-Sample Tests.” ICML. 2020. arXiv: 2002.
09116.

[27] Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. “GraphNVP: An
invertible flow model for generating molecular graphs” (2019). arXiv: 1905.11600.

[28] Lars M. Mescheder, Andreas Geiger, and Sebastian Nowozin. “Which Training Methods for
GANs do actually Converge?” ICML. 2018. arXiv: 1801.04406.

[29] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. “Spectral Normal-
ization for Generative Adversarial Networks.” ICLR. 2018. arXiv: 1802.05957.

[30] Stanislav Morozov, Andrey Voynov, and Artem Babenko. “On Self-Supervised Image Repre-
sentations for GAN Evaluation.” ICLR. 2021.

[31] Stanislav Morozov, Andrey Voynov, and Artem Babenko. “On self-supervised image represen-
tations for GAN evaluation.” ICLR. 2020.

[32] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo.
“Reliable fidelity and diversity metrics for generative models.” ICML. PMLR. 2020, pp. 7176–
7185.

[33] Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. “Evaluation Metrics for
Graph Generative Models: Problems, Pitfalls, and Practical Solutions” (2021). arXiv: 2106.
01098.

[34] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. “GCC: Graph Contrastive Coding for Graph Neural Network Pre-
Training.” International Conference on Knowledge Discovery and Data Mining. 2020.

[35] Kevin Roth, Aurélien Lucchi, Sebastian Nowozin, and Thomas Hofmann. “Stabilizing Training
of Generative Adversarial Networks through Regularization.” NeurIPS. 2017. arXiv: 1705.
09367.

[36] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge.” International
Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.

[37] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. “As-
sessing generative models via precision and recall.” NeurIPS. 2018, pp. 5234–5243.

[38] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
“Improved techniques for training GANs.” NeurIPS (2016), pp. 2234–2242.

[39] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. “Collective classification in network data.” AI magazine 29.3 (2008), pp. 93–93.

[40] Hamed Shirzad, Hossein Hajimirsadeghi, Amir H Abdi, and Greg Mori. “TD-GEN: Graph
Generation With Tree Decomposition” (2021). arXiv: 2106.10656.

[41] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. “InfoGraph: Unsupervised and
Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization.”
ICLR. 2020.

11

https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1910.00760
https://arxiv.org/abs/2002.09116
https://arxiv.org/abs/2002.09116
https://arxiv.org/abs/1905.11600
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/2106.01098
https://arxiv.org/abs/2106.01098
https://arxiv.org/abs/1705.09367
https://arxiv.org/abs/1705.09367
https://arxiv.org/abs/2106.10656

[42] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. “Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization”
(2019). arXiv: 1908.01000.

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. “Re-
thinking the Inception Architecture for Computer Vision.” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016.

[44] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar
Veličković, and Michal Valko. “Bootstrapped representation learning on graphs” (2021).
arXiv: 2102.06514.

[45] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note on the evaluation of generative
models.” ICLR (2016).

[46] Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. “On
Evaluation Metrics for Graph Generative Models” (2022). arXiv: 2201.09871.

[47] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. “Graph Attention Networks.” ICLR. 2018. arXiv: 1710.10903.

[48] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R
Devon Hjelm. “Deep Graph Infomax.” ICLR. 2019.

[49] Tongzhou Wang and Phillip Isola. “Understanding contrastive representation learning through
alignment and uniformity on the hypersphere.” ICML. PMLR. 2020, pp. 9929–9939.

[50] Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. “Chaos is a Ladder:
A New Theoretical Understanding of Contrastive Learning via Augmentation Overlap” (2022).
arXiv: 2203.13457.

[51] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How powerful are graph neural
networks?” (2018). arXiv: 1810.00826.

[52] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. “Graphrnn: Gen-
erating realistic graphs with deep auto-regressive models.” ICML. PMLR. 2018, pp. 5708–
5717.

[53] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. “Graph Contrastive Learning
Automated” (2021). arXiv: 2106.07594.

[54] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
“Graph contrastive learning with augmentations.” NeurIPS (2020).

[55] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. “Deep graph
contrastive representation learning” (2020). arXiv: 2006.04131.

[56] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. “Graph contrastive
learning with adaptive augmentation.” Web Conference. 2021, pp. 2069–2080.

12

https://arxiv.org/abs/1908.01000
https://arxiv.org/abs/2102.06514
https://arxiv.org/abs/2201.09871
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2203.13457
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2106.07594
https://arxiv.org/abs/2006.04131

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	GNNs Versus Local Metrics
	Self-supervised Training of Graph Representations for Evaluation
	Experimental Results
	Conclusion
	Preliminaries
	Graph Neural Networks
	Evaluating Graph Generative Models in Latent Space

	Proofs
	Implementation Details and Hyperparameters
	Training Self-Supervised Methods
	Random GINs
	Benchmark Experiment Setups

	Further Experiment Results
	Comparing Contrastive Methods, GraphCL Versus InfoGraph:
	Break Down of Experiments on Single Datasets

