
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MINT: MINIMAL INFORMATION NEURO-SYMBOLIC
TREE FOR OBJECTIVE-DRIVEN KNOWLEDGE-GAP
REASONING AND ACTIVE HUMAN ELICITATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Joint planning through language-based interactions is a key area of human-AI
teaming. Planning problems in the open world often involve various aspects of
incomplete information and unknowns, e.g., objects involved, human goals/intents,
and their impacts on planning – thus leading to knowledge gaps in joint planning.
In this paper, we consider the problem of discovering optimal interaction strategies
for AI agents to actively elicit human inputs in object-driven planning. To this end,
we propose Minimal Information Neuro-Symbolic Tree (MINT) to reason about
the impact of knowledge gaps and leverage self-play with MINT to optimize the AI
agent’s elicitation strategies and queries. More precisely, MINT builds a symbolic
tree by making propositions of possible human-AI interactions and by consulting a
neural planning policy to estimate the uncertainty in planning outcomes caused by
remaining knowledge gaps. Finally, we leverage LLM to search and summarize
MINT’s reasoning process and curate a set of queries to optimally elicit human
inputs for best planning performance. By considering a family of extended Markov
decision processes with knowledge gaps, we analyze the return guarantee for a
given MINT with active human elicitation. Our evaluation on three benchmarks
involving unseen/unknown objects of increasing realism shows that MINT-based
planning attains near-expert returns by issuing a limited number of questions per
task while achieving significantly improved rewards and success rates.

1 INTRODUCTION

The ability for AI agents and humans to jointly plan and solve problems in the open world is
instrumental to human-AI teaming. It is expected that AI agents will function as teammates instead
of simply a tool amplifying human capabilities or generating human-like responses (Xu & Gao,
2023). To this end, Large Language Models (LLMs) (Xiao & Wang, 2023) and Agentic AI (Carroll
et al., 2019) have demonstrated their potential in joint planning with humans (e.g., navigation, task
support, and collaboration (Zu et al., 2024; Zhang et al., 2024)) through natural-language interactions.
However, joint planning in the open world is rarely about solving a well-defined or known problem
– various aspects of the planning problem, such as objects involved, human goals/intents, and their
impact on planning (e.g., with respect to transition, constraints, and rewards), are often not completely
known to agents, resulting in potential knowledge gaps. Ignoring or planning through the uncertainty
may lead to conservative executions and non-optimal plans (Lockwood & Si, 2022).

The problem can be addressed by AI agents actively eliciting necessary human inputs (in the form
of language-based interactions) toward bridging knowledge gaps and supporting task objectives.
However, existing solutions such as Reinforcement Learning with Human Feedback (RLHF) and
few-shot adaptation in LLMs (Bai et al., 2022; Ji et al., 2023) are able to process additional human
feedback, but lack the ability to expressively reason and actively elicit human inputs with respect
to planning objectives (Huang et al., 2022). On the other hand, Human-in-the-Loop (HITL) ap-
proaches (Mandel et al., 2017) and interactive learning (Teso & Kersting, 2019) allow fine-tuning
using recommendations or expert demonstrations (Mosqueira-Rey et al., 2023). But they do not
directly address the knowledge gaps nor support objective-driven active elicitation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We propose Minimal Information Neuro-Symbolic Tree (MINT) to reason about the impact of
knowledge gaps and leverage self-play with MINT to optimize the AI agent’s elicitation strategy of
human inputs in objective-driven planning. More precisely, MINT defines a symbolic tree, where each
node represents a state of the planning problem with a corresponding knowledge gap, while each edge
represents a proposition of possible human-AI interaction to narrow down the knowledge gap in child
nodes. We build and expand MINT by consulting a neural planning policy, more specifically, in this
work we use UA-DQN, an uncertainty-aware DQN algorithm based on bootstrapped distributional
RL (Clements et al., 2019) to estimate the uncertainty in planning outcomes caused by the remaining
knowledge gap of each child node, until each node has a unitary impact on planning outcomes. Thus,
we enable a self-play process using MINT to analyze how different interactions between human and
AI can bridge the knowledge gap and lead to optimized planning results. Finally, we leverage LLM
to search and summarize MINT’s reasoning process and curate a set of questions/queries to optimally
elicit human inputs for best planning performance.

By considering a family of extended Markov Decision Processes (MDPs) with knowledge gaps, we
analyze the impact of the final knowledge gap in a given MINT and for a set of identified questions
(from AI to human). We prove a local pseudo-Lipschitz continuity of the planning returns and provide
an upper bound on the return-gap between MINT-based planning and an ideal case without any
knowledge gap. The results provide a performance guarantee for our MINT-based planning with
active human elicitation. To the best of our knowledge, this is the first work combining symbolic
reasoning of knowledge gaps, neural planning policy, and LLM to enable active and optimized
human elicitation in language-based planning. We evaluate MINT on three benchmarks involving
unseen/unknown objects (affecting transitions or rewards) of increasing realism: MiniGrid; Atari
ALE – modified Atari games, and real-world search and rescue in Isaac Gym. Across all domains,
MINT-based planning attains near-expert returns by issuing only 1–3 binary questions per object,
while achieving a significantly increased reward and success rate over baselines.

The primary contributions of this paper are threefold:
• We propose MINT, which consults a neural planning policy and symbolically reasons about

the impact of knowledge gaps in planning. Through self-play with relevant propositions, it
enables active and optimized human elicitation using LLM toward planning objectives.

• We show local pseudo-Lipschitz continuity of the planning returns and provide an upper
bound on the return-gap between MINT-based planning and an ideal case without any
knowledge gap, providing solid support to MINT-based planning.

• Through empirical evaluations, we demonstrate that MINT-based planning attains near-
expert returns with almost an order of magnitude fewer questions (from AI to human), in
challenging RL environments such as Minigrid, Atari Pacman and Isaac drone environment.

2 RELATED WORKS

Language-Based Planning Language-based planning has been researched before the rise of LLMs.
Previous methods integrate the planning into the RL process regarding query generation as part of the
action space. The agent will learn to execute language query commands when having difficulty in
decision making (Liu et al., 2022; Nguyen et al., 2021). However, these methods could only generate
simple queries with predefined vocabulary used. Recently, advances in LLMs show great potential
for solving language-based joint planning tasks with human-AI cooperation. Novel frameworks have
been proposed combining LLMs with classical AI planning agents in a variety of fields including
robotic and embodied AI (Izquierdo-Badiola et al., 2024; Dai et al., 2024), games (Wu et al., 2023b; ,
FAIR), creative writing (Chakrabarty et al., 2022) and real-world task planning (Xie et al., 2024).
However, these approaches have a limited ability in understanding and reasoning about knowledge
gaps and the resulting impact, which requires a better elicitation strategy of human knowledge.

Planning under Partial Observability. Partial observability poses a major challenge for classical
RL that assumes the Markov property. Recent research tackles this problem in two broad ways:
(1) Ignoring or minimizing the knowledge gap, i.e., training agents that do not explicitly model
unseen information or perform conservative and safe planning (Meng et al., 2021; Ni et al., 2021)
(2) Incorporating robust planning or Bayesian-type belief-state reasoning by maintaining an internal
representation of uncertainty or plan over a range of possible states, such as latent belief state (Wang

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2023), Bayesian inference (Gu et al., 2021), or ensembles (Ghosh et al., 2021). These
approaches do not apply to any knowledge gaps (e.g., unseen objects or unknown goals) and lack
the ability to interact with humans in joint planning problems in order to elicit inputs and bridge the
knowledge gap.

Human-in-the-Loop RL Existing works on HITL RL often focus on the phase of agent learning, in
which the human provides direct evaluations or preferences on agents’ actions as feedback (Christiano
et al., 2017; Rafailov et al., 2024). Another underexplored paradigm is the incorporation of human
demonstrations or advice on actions of expertise (Luo et al., 2023; Wu et al., 2023a; Igbinedion &
Karaman, 2024), which requires a domain-expertise policy. Recent methods further reduce the com-
munication burden by only asking humans when facing high uncertainty in decision-making (Mandel
et al., 2017; Da Silva et al., 2020; Singi et al., 2024). However, expertise actions are not always
available. Instead, the agent needs to analyze the knowledge gap first, then precisely query humans
for the key information missing, and finally conclude optimal actions by itself.

Neuro-Symbolic RL Neuro-symbolic RL (NS-RL) aims to combine the representational power
of neural networks with the interpretability offered by symbolic methods. Compared with classical
interpretable RL approaches (e.g., post-hoc saliency (Greydanus et al., 2018) or decision tree
distillation (Chen et al., 2024)), NS-RL allows for more explicit knowledge integration and rule-
based reasoning, thereby improving both interpretability and generalizability. Recent works have
proposed diversified approaches for NS-RL implementation, such as DiffSES (Zheng et al., 2024)
and INSIGHT (Luo et al., 2024). Besides, Jin et al. (2022) and Lyu et al. (2019) integrate symbolic
planning and options as a perception with deep RL to solve tasks with high-dimensional inputs. Other
works consider integrating symbolic methods into policy representation, including deep symbolic
policy search (Landajuela et al., 2021) and programmatic RL (Verma et al., 2018; 2019).

3 PRELIMINARIES

Planning problems are often formulated as Markov Decision Processes (MDPs). For human-AI joint
planning in the open world, various aspects of the planning problem, such as objects, environment
factors, and human intents, may not be known to the AI agents, leading to uncertainties in decision-
making. While there may be many different types of unknowns in the open world, they eventually
impact the MDP’s state transition probability and/or the reward function. Hence, we collectively
define such unknowns as a knowledge gap u. We model this planning problem by an MDP family
with knowledge gap, denoted by M = (S,A, u, Tu,Ru, γ), where S and A are the state and action
spaces, and γ is a discount factor, similar to standard MDPs. However, due to the knowledge
gap u, we may not know the exact state transition probability and reward function. We model
such uncertainty through two sets, Tu and Ru respectively, given the knowledge gap u. Thus,
T (s′|s, a) ∈ Tu : S × S ×A → [0, 1] is a possible probability distribution of state transition, and
R(s, a) ∈ Ru : S ×A → R is a possible reward function, under the knowledge gap u.

We consider the problem of actively eliciting human inputs to bridge the knowledge gap and to
optimize planning objects. To this end, we consider a parametric representation of the knowledge
gap and uncertainty sets. Let φ be a descriptor vector uniquely defining the transition probability
distribution Tφ(s

′|s, a) and the reward function Rφ(s, a). We can rewrite the uncertainty set using
Φu ⊆ Rd, where d ∈ N is fixed and Φu is the descriptor space under knowledge gap u. For each
descriptor φ ∈ Φu, the corresponding MDP, Mφ = (S,A, Tφ, Rφ, γ) becomes a standard known
one. The extended MDP family under knowledge gap u is therefore defined as Mu = {Mφ | φ ∈
Φu}. For a given descriptor φ ∈ Φu (thus zero knowledge gap), the corresponding MDP, Mφ can be
solved using standard approaches like RL (Mnih et al., 2015). This is achieved by finding a planning
policy to maximize the expected discounted cumulative rewards, denoted as the return J :

J(π|φ) = E
[∑∞

t=0 γ
t Rφ(st, at)

]
, where (s0, a0, s1, . . .) ∼ Mφ, π. (1)

Existing RL algorithms can be leveraged to learn an optimal policy π∗
φ(a|s) to maximize the return,

i.e., π∗
φ = argmaxπ J(π|φ). In particular, in the value-based deep RL with discrete action spaces,

we use neural networks to fit the optimal action value-function, known as Q-function, which estimates
the return under the current state and action: Q∗

φ(s, a) = maxπ J(π|φ; s0 = s, a0 = a). Thus, the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

optimal policy can be determined by taking the optimal action a∗t = π∗(s) = argmaxa Q
∗(st, a)

when no knowledge gap exists. In this paper, we focus on eliciting human inputs via natural language
to narrow down the knowledge gap Φu and thus achieve optimal planning performance.

4 OUR PROPOSED SOLUTION USING MINT

Consider an MDP in state s and with initial knowledge gap u0. To reason about the impact of u0 , we
leverage a symbolic tree representation in MINT and expand it by consulting a neural planning policy.
More precisely, starting with a root node representing u0, we consider a sequence of propositions
regarding possible human interactions, in the form of potential queries denoted by qk = ξ(uk, s) at
each step k, to elicit a corresponding human response yk for each query. In this paper, we define
each query as a yes/no proposition using natural language, and thus each response is a binary answer
yk ∈ {0, 1} based on the human’s knowledge of the latent ground-truth.

By considering such propositions in a self-play process, we build MINT as a symbolic tree repre-
sentation with the knowledge gap as nodes and propositions as edges. Thus, (qk, yk) at each step k
iteratively narrows down the knowledge gap in resulting child nodes (depending on different possible
human responses), i.e., Φuk

with uk+1 = Fqk,yk
(uk) by a processing function F . It leads to reduced

uncertainty in the potential descriptor space with Φuk+1
⊂ Φuk

at each knowledge update step k. Let
φ∗ be the latent ground-truth descriptor and thus J(π∗

φ∗ |φ∗) the ideal return without knowledge gap.
We aim to find an optimal interaction/query strategy ξ (with complexity K) for generating queries
and eliciting human responses, so that the return gap at the terminal knowledge gap uK is minimized:

ξ∗ = argmin
ξ

[
max

φ∈ΦuK

J(π∗
φ∗ |φ∗)− J(π∗

φ|φ)
]
, s.t. uk+1 = Fqk,yk

(uk), qk = ξ(uk, s),∀k. (2)

Figure 1 shows the key steps in MINT construction and its execution. The first step is to train a neural
planning policy (i.e., bootstrapped DQN) that estimates not only Q∗

φ(s, a),∀φ, but also the variance
of the optimal Q-value σ2

u(s) = varφ∼Φu
(Q∗

φ(s, a
∗)) to quantify the impact of knowledge gap u

on planning outcomes. Next, when the AI agent detects the existence of a knowledge gap u0 (i.e.,
objects with low confidence or ambiguous human intent), it expands MINT from u0 by considering
propositions that further split the current gap into child nodes (in a self-play process) and evaluating
their impact on planning through σ2

u(s), until reaching the depth limit or the variance/impacts are
small enough. Finally, an LLM will process the resulting MINT by merging equivalent sub-trees or
leaves with identical optimal actions. It then curates a binary query q dividing the tree to maximize
the information gain relating to the optimal action candidates in leaf nodes, given the current tree
structure and prompts. Each query is presented to the human in joint planning to get a response y,
which is utilized to reduce the knowledge gap during execution. This query-and-answer process
iteratively interacts with the human to minimize the return gap in objective-oriented joint planning.

4.1 EVALUATING THE IMPACT OF CURRENT KNOWLEDGE GAPS

The solution in this work consists of two phases: training and deployment. As defined in Section 3,
during the training process, we consider the extended MDP family Mu with a knowledge gap u.
Given a specific φ ∈ Φu in the knowledge gap known to the agent, the optimal Q-function Q∗

φ(s, a)
conditioned on φ can then be estimated using regular RL approaches. Besides, to estimate the
impacts of a given knowledge gap u, we train a bootstrapped DQN to estimate the variance of optimal
Q-values over φ ∼ Φu for any u and (s, a), as described later in the training session.

At deployment, the ground-truth descriptor φ∗ is unknown. The AI agent maintains a knowledge
vector uk ∈ Rd, which is associated with Φuk

, s.t. φ∗ ∈ Φuk
⊂ Φu, limiting the possible range of φ∗.

Initially, we have u = u0. In each timestep t, the agent can choose to generate a proposition with query
qk in natural language and self-play potential response yi ∈ {0, 1}. Then, the current knowledge
uk will be updated to uk+1 based on (qk, yk), iteratively narrowing down the knowledge gap:
φ∗ ∈ Φuk+1

⊂ Φuk
⊂ · · · ⊂ Φu. At the end of this iteration, we aim to bound the return gap within

a reasonable value ε at the terminal knowledge gap uK as :maxφ∈ΦuK
∥J(π∗

φ∗ |φ∗)−J(π∗
φ|φ)∥ ≤ ε.

We also provide theoretical analysis to demonstrate that this return gap can be bounded by the range
of Φuk

, thus justifying our approaches of iteratively narrowing down Φu via queries.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Evaluating, expanding, curating, and acting with MINT. (a) How we build and expand
MINT by first consulting a trained neural planning policy as an oracle, and then utilizing the LLM
to curate the queries based on MINT and elicit human responses via natural-language interactions.
(b) How MINT acts in the environment. AI agent implements the identified queries in its interaction
with human in joint planning. The human responses are processed to produce a reduced knowledge
gap uK at last, leading to an optimal action a by maximizing Q∗

φ(s, a) for all descriptors φ ∈ ΦuK
.

The estimated variance of Q-value is also used to quantify the uncertainty of the knowledge gap on
planning outcomes during deployment. If the estimated variance σ̃(s, a∗) is larger than a predefined
threshold δ and a knowledge gap exists, e.g., an uncertain object detected by the perception module in
planning, the agent will label it as unresolved, and switch to the MINT reasoning process. Otherwise,
the unknown object is deemed to have little impact on the action selection or planning outcome, and
the agent continues planning with the regular RL policy.

Adapted DQN Training Paradigm As mentioned above, we use a bootstrapped DQN architecture
and training paradigm to estimate both µu(s, a) = Eφ∼Φu

[Q∗
φ(s, a)] and σ2

u(s, a) as the mean and
variance of Q. For a single knowledge descriptor φ ∼ Φu, it is treated as an extra input appended
to the state to generate Q-values. Besides, the descriptor space Φu itself can also be encoded as
an input, yielding both the mean and the variance estimation for the Q-value on each action over
the distribution of φ. During training, the ground-truth knowledge descriptor φ∗ is set to be fully
observable. However, when collecting experience and adding an interaction sample to the replay
buffer, an additional sample with a randomly generated knowledge gap u will be added as well. This
random knowledge gap will mask out part of the information on the original φ and thus create a space
Φu in the sample state, while keeping other interaction data such as the next state and rewards the
same. Therefore, the trained model can be accurate under known descriptor φ and also estimate the
mean and variance of Q-values given a descriptor space Φu due to the knowledge gap u.

Next, we explain a bit more on how the variance is estimated. Initially, the uncertainty in the agent’s
policy can be further categorized into aleatoric uncertainty and epistemic uncertainty. The first case
refers to the inherent randomness in transitions or rewards, while the latter arises from the agent’s
limited exploration of the environment. In this work, we focus on aleatoric uncertainty due to the
knowledge gap, since in the view of the AI agent, the same knowledge gap u can result in a variety of
MDPs with different transition Tφ and rewards Rφ with φ ∼ Φu. Therefore, the only way to mitigate
it is by obtaining more latent environmental knowledge from human inputs.

To decouple the two types of uncertainty and estimate aleatoric uncertainty only, we adopt an
uncertainty-aware bootstrapped DQN architecture known as UA-DQN (Clements et al., 2019). As a
method in distributional RL, the neural network is modified on the final layer to estimate a probability
distribution of returns, parameterized by N quantiles with value qi(s, a), i ∈ [1, N] as outputs. Thus,
the aleatoric uncertainty can be estimated as σ̃2

alea(s, a) = covi∼U{1,N}(qi(s, a|θA), qi(s, a|θB), in
which U is the uniform distribution while θA and θB are two samples of neural network parameter θ
using MAP sampling (Pearce et al., 2018). The details of theories and implementation of UA-DQN
are covered in the original paper, which is not the emphasis of our work and is thus omitted.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 REASONING AND CURATING QUERIES WITH MINT

When the AI agent encounters an unseen or low-confidence object or an ambiguous task objective –
whose unknown properties lead to substantial uncertainty in either the state transition T or the reward
function R, it triggers a reasoning process using MINT. It encompasses multiple steps including node
representation, expansion, evaluation of knowledge gaps, and LLM-based curation and processing.

Node Representation. Each node represents a knowledge gap u, with Φu explicitly represented
as ⟨type, subtype, wmin, wmax⟩, summarizing the agent’s current knowledge about the unknown
object. Here, type indicates whether the perturbance is on the state transition T or the reward function
R, while subtype denotes the critical attribute of the values (e.g., positive or negative rewards,
deterministic or stochastic transitions). wmin and wmax are the minimum and maximum of the
possible value, which is either the possibility parameter in Tφ or the reward parameter in Rφ for
φ ∈ Φu. For instance, in a deterministic and discrete environment, we normalize the reward range
to [0, 1] and bound the perturbation into the form of a set of half-blocked states S̄. Thus, for any
s̄ ∈ S̄, the agent gets an immediate reward r(s̄) ∈ [0, 1] when the environment changes to s̄, and in
this case wmin and wmax provide the lower and upper bounds of r(s̄) based on the agent’s current
knowledge about the object. Similarly, for the transition case, any state transition to s̄ ∈ S̄ now has
probability p(s̄) to fail and remain in the original state, in which wmin and wmax will be the upper
and lower bounds of p(s̄) instead. Initially, the root node will be the maximal knowledge gap u with
Φu = ⟨any, any, 0, 1⟩.

Evaluation and Expansion. From the root node, the neural-symbolic information tree starts
expanding and creating new branches in the breadth-first order. When visiting each node u, we
use a modified neural network from the original deep Q-learning architecture that takes both (s, a)
and four elements in Φu as inputs, to estimate both the mean µu(s, a) and variance σ2

u(s, a) of
Q∗

φ(s, a), φ ∈ Φu for current s and ∀a ∈ A. Thus, we can obtain the optimal action of this node
as: a∗u = argmaxa µu(s, a). Next, we compare the estimated standard deviation σu(s, a

∗
u) with the

average return gap between the best action and other actions: g(u) = µu(s, a
∗
u)−maxa̸=a∗

u
µu(s, a).

With λg defined as a hyperparameter, if g(u) ≤ λgσu(s, a
∗
u) and node u has not reached the depth

limit TD, this node will be further expanded with new branches; otherwise, it will remain a leaf
node. To expand a node u, the tree will create several new child nodes with hypothetical knowledge
gap u′ based on the parent knowledge u, in the order of type, subtype and then value. If the type is
unknown, then every new child node will set the knowledge with different possible types and leave
other dimensions unchanged, similar to the subtype. If both type and subtype are filled, then there
will be two new nodes evenly dividing the value range.

LLM-Based Curation and Processing. After MINT is built, we encode it into a concise natural-
language prompt and provide it to the LLM, which then (i) merges equivalent sub-trees, (ii) formulates
an informative yes/no query for the human in each round, and (iii) updates the tree with the returned
answers, and (iv) recursively repeats the process until the optimal action is identified in the tree or the
queries reach maximum complexity.

Two types of merging operations are performed. First, if every leaf beneath a parent node leads to
the same optimal action, then all leaves are folded into their parent, eliminating redundant queries.
Second, distinct branches that ultimately associate with an identical action are integrated into a single
disjunctive node with a joint condition. For instance, branches defined by (type = 1, subtype = 1)
and (type = 2, subtype = 2) both having the optimal action 1, are reorganized as a node under the
root with the joint condition (type = 1 ∧ subtype = 1) ∨ (type = 2 ∧ subtype = 2). After pruning,
the LLM is required to synthesize a binary question whose answer will maximize information gain
on the optimal action candidates. This question will then be sent to humans and wait for the human
answer. In our experiments, we use another LLM with full knowledge to automatically generate
the yes/no answers. This response is then appended to the dialogue context and used to prune all
branches inconsistent with that answer in both the original and the reorganized tree. If ambiguity in
action selection remains, this procedure restarts with the updated tree and a new root.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 THEORETICAL ANALYSIS

We show that MINT provides a guaranteed planning performance, by iteratively narrowing down
the knowledge gap through interactions. To this end, we provide an upper bound on the return gap
between MINT-based planning and an ideal case without the knowledge gap. We derive this bound
by first defining the metric between different MDPs, then demonstrating the one-step Bellman bound
on q-functions, inductively generalizing it to the Lipschitz continuity of optimal Q-functions, and
finally proving the upper bound on returns for intermediate MDPs.
Definition 4.1. Consider two MDPs that differ slightly in their transition kernels and reward functions.
Let the two MDPs be denoted as M = (S,A, T,R, γ) and M̄ = (S,A, T ′, R′, γ), where γ ∈ [0, 1).
The pseudo-metric ∆s,a(M,M̄) between these two processes at (s, a) ∈ S ×A is defined as:

∆s,a(M∥M̄) = min{ds,a(M∥M̄), ds,a(M̄∥M)} (3)

Here, ds,a(M̄∥M) is the MDP dissimilarity defined as the unique solution to the fixed-point equation
for ds,a:

ds,a = |R(s, a)−R′(s, a)|+ γ
∑
s′∈S

V ∗(s′)|T (s′|s, a)− T ′(s′|s, a)|+ γ
∑
s′∈S

T (s′|s, a)max
a′

ds′,a′

(4)

This definition is for discrete state spaces and can be straightforwardly extended to continuous
state spaces. ∆s,a is called a pseudo-metric since it doesn’t obey the positive definiteness, i.e., we
have ∆s,a(x, x) = 0, ∀x but ∆s,a(x, y) = 0 ⇏ x = y. Hence we use the term pseudo-Lipschitz
continuity to denote that it’s in the same form as Lipschitz continuity but built on a pseudo-metric.
Before proving the continuity, we first provide a lemma on one-step Bellman bound.
Lemma 4.2 (One-step Bellman bound). With Γ defined as the Bellman Operator on any function
Q : S ×A → R as:

ΓQ(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)max
a′∈A

Q(s′, a′), (5)

for any two MDPs M and M̄ , if function Q is already bounded by ∆s,a(M, M̄), i.e., |QM (s, a)−
QM̄ (s, a)| ≤ ∆s,a(M, M̄), then we can guarantee:

|ΓQM (s, a)− ΓQM̄ (s, a)| ≤ ∆s,a(M,M̄). (6)

Lemma A.2 is an inductive condition to prove the pseudo-Lipschitz continuity of the optimal Q-
function Q∗, based on the fact that the optimal Q-function Q∗ is the unique fixed point of the Bellman
equation and thus obtained by value iteration in Q-learning algorithms from identical initial values
over different MDPs. Thus, by using induction, we can derive Lemma A.3 from Lemma A.2:
Lemma 4.3 (Local pseudo-Lipschitz continuity of optimal Q-value). For two MDPs M, M̄ , for all
(s, a) ∈ S ×A, we have: |Q∗

M (s, a)−Q∗
M̄
(s, a)| ≤ ∆s,a(M,M̄).

Recall the extended MDP family defined previously. With this theorem we can provide an upper bound
on the optimal Q-functions of any intermediate MDP between any two known MDPs Mφ1

,Mφ2
.

Furthermore, by limiting the ground-truth descriptor φ∗ associated with the unknown knowledge
gap u between two descriptor samples φ1, φ2 with known estimated returns, we can prove an upper
bound for the return gap under unknown φ∗ and its optimal policy π∗

φ∗ .
Theorem 4.4 (Upper bound of return for an unknown knowledge gap). Given two MDPs Mφ1 ,Mφ2

with φ1, φ2 ∈ Φ, for all (s, a) ∈ S ×A and an unknown intermediate MDP Mφ∗ , φ∗ = λφ1 + (1−
λ)φ2, λ ∈ (0, 1), the upper bound U on J(π∗

φ∗ |φ∗) can be defined as:

J(π∗
φ∗ |φ∗) ≤ Uφ∗(φ1, φ2) = min{J(π∗

φ1
|φ1), J(π

∗
φ2
|φ2)}+∆s0,a0(Mφ1 ,Mφ2) (7)

The theorem shows that by iteratively dividing and narrowing down the knowledge gap u with MINT,
we can in the end achieve a guaranteed return gap toward the ideal case. Additional interactions to
further narrow the knowledge gap reduce the return gap ∆s0,a0(Mφ1 ,Mφ2) in the upper bound.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

In this section, we present the environmental setting, baselines, evaluation metrics, and our numerical
results in three environments with increasing realism. We show that MINT can efficiently elicit
human inputs and leverage them to directly improve planning performance.

Method Version No uncertainty 1 uncertain object 3 uncertain objects 5 uncertain objects
Success% Avg. Reward Success% Avg. Reward Success% Avg. Reward Success% Avg. Reward

LLM
GPT-4o 100 9.26± 0.42 99 9.30± 1.36 96 8.75± 2.72 95 8.61± 2.92
o3-mini 100 9.31± 0.39 99 9.29± 1.40 100 9.33± 0.47 99 8.09± 3.83

o3 100 9.29± 0.44 100 9.35± 0.41 100 9.35± 0.48 98 7.81± 4.17

Pure RL DQN 100.0± 0.0 9.32± 0.41 83.6± 1.8 6.99± 4.99 65.0± 7.9 4.63± 6.34 15.2± 6.2 −2.01± 4.52
PPO 100.0± 0.0 9.30± 0.48 98.2± 1.0 9.04± 1.21 89.8± 3.1 7.88± 4.19 69.2± 13.0 5.42± 6.02

MINT Limited 100.0± 0.0 9.45± 0.40 99.6± 0.5 9.29± 1.47 100± 0.0 9.90± 1.09 97.0± 0.9 9.56± 2.31
Standard 100.0± 0.0 9.47± 0.33 100.0± 0.0 9.75± 0.66 99.4± 0.5 9.71± 1.88 98.2± 1.3 9.69± 1.91

Table 1: The evaluation of different planning strategy in the MiniGrid environment. Here, the
standard MINT does not have the limitation on the number of queries, while the limited version has a
maximum number of queries for each unknown object. The results show that MINT significantly
improve the planning performance with higher reward (primary planning objective) and improved
success rate (narrowly defined as task completion), as compared to pure-LLM and pure-RL methods.

Environmental Setting We evaluate our method in three environments to demonstrate the perfor-
mance, query cost, and generality. The first two are based on the publicly available environment
MiniGrid (Chevalier-Boisvert et al., 2023) and Atari Pacman (Bellemare et al., 2013), in which we
introduce the uncertainty by adding unknown objects/elements affecting observation, state transition,
and reward functions. This object is represented as an encoded block in MiniGrid or a pure-color
rectangular area in Atari Pacman, which can be a randomized reward/penalty, an obstacle that can
be passed through, or a terminal with a random possibility to happen. In MiniGrid, the agent needs
to navigate to a final goal with a high reward, while taking each step has a minor negative penalty
as cost. In Atari Pacman, the reward function remains the same except for the uncertain area. For
the final environment, we create a high-fidelity emergency response scenario based on the Nvidia
Isaac platform, in which the drone agent is asked to rescue an injured person in an unseen ware-
house environment via visual 3D reconstruction(using Gaussian splatting Chen & Wang (2025)) and
planning. The AI agent encounters objects with low confidence (e.g., equipment on fire and boxes
obfuscated by smoke) and must interact with humans to bridge the knowledge gap in planning, e.g.,
by asking whether to avoid a smoky area (i.e., uncertainty affecting transition probabilities) or to
explore potential rescue targets in a separate room (i.e., uncertainty affecting reward functions).

Method Version Return Query Time

Pure RL DQN 271.3± 21.7 -
PPO 325.0± 34.5 -

Query-A - 422.1± 24.7 27.1± 13.6

MINT Limited 411.1± 28.8 3.8± 2.4
Standard 434.9± 32.1 6.8± 5.5

Table 2: Results on Atari Pacman. Query-A
(with human-in-the-loop RL) asks for expert
action when the variance is high.

Method Version Target 1 Target 2

LLM
GPT-4o 47 5
o3-mini 89 11

o3 93 9
MINT* - 100 95

Table 3: Success rates on NVIDIA Isaac. Tar-
get 1 and target 2 refers to rescuing the main
target and a hidden target. MINT* uses LLM
for both planning and interaction.

Baselines and Metrics In MiniGrid, we compare MINT with both pure-LLMs and pure-RL
methods with human-in-the-loop to demonstrate that MINT combines the advantages of both sides –
i.e., language-based interaction and reward optimization – for significantly better performance. These
methods have no query mechanism and no knowledge about the uncertainty. The pure-LLM method
gets a prompt with encoded environment observation, and plans the entire path at once. Here, the
metrics are the success rate and the average rewards for each episode. An episode is considered
successful if the agent reaches the goal area within limited steps. The observation in Atari Pacman
is raw pixels and hard to encode as natural language; therefore, we only compare the pure-RL and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Illustrations of how MINT acts in all 3 environments. (a) The agent faces unknown objects
in MiniGrid and curates queries about its impact on transition; (b) The agent in Atari Pacman faces
unseen targets (white) and curates queries about its impact on rewards; and (c) The agent in Isaac
Search and Rescue reasons about the smoke, interacts with human, and plans its path accordingly.

Query-baseline with MINT and use average reward and query times as metrics. The Query-baseline is
the classical query method that asks for optimal action when variance is high. In Isaac environments,
we remove the RL part of MINT and only use a fixed tree structure and the LLM to plan the path
directly; thus, we show that MINT can also be generalized to non-RL planning frameworks in realistic
scenarios. We calculate the success rate for rescuing all targets without crashing into objects and
use it as the metric. For each environment, we evaluate for 100 runs and calculate the average and
standard deviation. For RL methods and MINT involving training, we trained for 5 random seeds.

Results Analysis We first report the performance results of the MiniGrid environment with average
and standard deviation in Table 1. Both LLM and RL result in low rewards as our main evaluation
metric for task performance. In particular, recent LLM methods most likely generate code using
classical navigation algorithms such as A* while ignoring the knowledge gap and uncertainty, and
then execute it to get results. Although the success rate (narrowly defined as task completion) is high,
such a method is considered a conservative strategy since the hidden bonus from the uncertainty is not
utilized. Besides, pure RL methods perform poorly since their neural network can be unpredictable
with uncertain objects. In comparison, MINT iteratively narrows down the knowledge gap through
queries, thus obtaining significantly improved performance. Also, even with a very limited number
of queries, the performance is still competitive, since the symbolic tree in MINT is used to reason
and optimize query strategy. Besides, results in Atari Pacman shown in Table 2 demonstrate that
MINT can also be integrated into environments with complicated observation spaces, and it reaches
competitive performance compared with traditional human-in-the-loop RL (HITL-RL) methods
requiring expert actions, while significantly dropping the need for queries. Finally, with the results
in the Isaac environment presented in Table 3, we show that MINT can be generalized to realistic
planning problems with continuous control commands. While LLM-based planning strategies often
have difficulty dealing with uncertain threats and hidden targets in this search and rescue task, MINT
solves this problem by reasoning and curating queries, thus largely outperforming the baselines.

6 CONCLUSION

MINT introduces a novel approach to optimize human elicitation in language-based planning tasks.
By consulting a neural planning policy and reasoning the impact of knowledge gaps, it systematically
narrows down the knowledge gap through iterative query curation and thus resolves the decision-
making uncertainty. MINT is shown to provide guarantees on planning performance through a local
Lipschitz continuity property. Empirically, we demonstrated that MINT substantially outperforms
existing pure-LLM and pure-RL baselines with human-in-the-loop, across diverse benchmarks
including MiniGrid, Atari Pacman, and the realistic Isaac scenario. MINT leads to novel solutions
for human-AI collaborative planning through neuro-symbolic reasoning and self-play.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Tuhin Chakrabarty, Vishakh Padmakumar, and He He. Help me write a poem: Instruction tuning as a
vehicle for collaborative poetry writing. arXiv preprint arXiv:2210.13669, 2022.

Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting, 2025. URL https://
arxiv.org/abs/2401.03890.

Jingdi Chen, Hanhan Zhou, Yongsheng Mei, Carlee Joe-Wong, Gina C Adam, Nathaniel Bastian, and
Tian Lan. Rgmdt: Return-gap-minimizing decision tree extraction in non-euclidean metric space.
Advances in Neural Information Processing Systems, 37:18806–18847, 2024.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. In Advances in Neural
Information Processing Systems 36, New Orleans, LA, USA, December 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

William R Clements, Bastien Van Delft, Benoît-Marie Robaglia, Reda Bahi Slaoui, and Sébastien Toth.
Estimating risk and uncertainty in deep reinforcement learning. arXiv preprint arXiv:1905.09638,
2019.

Felipe Leno Da Silva, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. Uncertainty-aware
action advising for deep reinforcement learning agents. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 5792–5799, 2020.

Yinpei Dai, Run Peng, Sikai Li, and Joyce Chai. Think, act, and ask: Open-world interactive
personalized robot navigation. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3296–3303. IEEE, 2024.

Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu,
et al. Human-level play in the game of diplomacy by combining language models with strategic
reasoning. Science, 378(6624):1067–1074, 2022.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
neural information processing systems, 34:25502–25515, 2021.

Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding
atari agents. In International conference on machine learning, pp. 1792–1801. PMLR, 2018.

Ziqing Gu, Yujie Yang, Jingliang Duan, Shengbo Eben Li, Jianyu Chen, Wenhan Cao, and Sifa
Zheng. Belief state separated reinforcement learning for autonomous vehicle decision making
under uncertainty. In 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), pp. 586–592. IEEE, 2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

10

https://arxiv.org/abs/2401.03890
https://arxiv.org/abs/2401.03890

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ifueko Igbinedion and Sertac Karaman. Learning when to ask for help: Efficient interactive navigation
via implicit uncertainty estimation. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9593–9599. IEEE, 2024.

Silvia Izquierdo-Badiola, Gerard Canal, Carlos Rizzo, and Guillem Alenyà. Plancollabnl: Leveraging
large language models for adaptive plan generation in human-robot collaboration. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 17344–17350. IEEE, 2024.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36:24678–24704,
2023.

Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen Chen, and Chao Yu. Creativity of ai:
Automatic symbolic option discovery for facilitating deep reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7042–7050, 2022.

Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan
Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep rein-
forcement learning. In International Conference on Machine Learning, pp. 5979–5989. PMLR,
2021.

Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, and Michael L
Littman. Lipschitz lifelong reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 8270–8278, 2021.

Iou-Jen Liu, Xingdi Yuan, Marc-Alexandre Côté, Pierre-Yves Oudeyer, and Alexander Schwing.
Asking for knowledge (afk): Training rl agents to query external knowledge using language. In
International Conference on Machine Learning, pp. 14073–14093. PMLR, 2022.

Owen Lockwood and Mei Si. A review of uncertainty for deep reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 18,
pp. 155–162, 2022.

Biao Luo, Zhengke Wu, Fei Zhou, and Bing-Chuan Wang. Human-in-the-loop reinforcement learning
in continuous-action space. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-end
neuro-symbolic reinforcement learning with textual explanations. In Forty-first International
Conference on Machine Learning, 2024.

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. Sdrl: interpretable and data-efficient
deep reinforcement learning leveraging symbolic planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 2970–2977, 2019.

Travis Mandel, Yun-En Liu, Emma Brunskill, and Zoran Popović. Where to add actions in human-in-
the-loop reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

Lingheng Meng, Rob Gorbet, and Dana Kulić. Memory-based deep reinforcement learning for
pomdps. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp.
5619–5626. IEEE, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Eduardo Mosqueira-Rey, Elena Hernández-Pereira, David Alonso-Ríos, José Bobes-Bascarán, and
Ángel Fernández-Leal. Human-in-the-loop machine learning: a state of the art. Artificial Intelli-
gence Review, 56(4):3005–3054, 2023.

Khanh Nguyen, Yonatan Bisk, and Hal Daumé III. Learning when and what to ask: A hierarchical
reinforcement learning framework. arXiv preprint arXiv:2110.08258, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl can be a strong
baseline for many pomdps. arXiv preprint arXiv:2110.05038, 2021.

Tim Pearce, Mohamed Zaki, Alexandra Brintrup, N Anastassacos, and A Neely. Uncertainty in
neural networks: Bayesian ensembling. stat, 1050:12, 2018.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Siddharth Singi, Zhanpeng He, Alvin Pan, Sandip Patel, Gunnar A Sigurdsson, Robinson Piramuthu,
Shuran Song, and Matei Ciocarlie. Decision making for human-in-the-loop robotic agents via
uncertainty-aware reinforcement learning. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pp. 7939–7945. IEEE, 2024.

Stefano Teso and Kristian Kersting. Explanatory interactive machine learning. In Proceedings of the
2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 239–245, 2019.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pp. 5045–5054. PMLR, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Andrew Wang, Andrew C Li, Toryn Q Klassen, Rodrigo Toro Icarte, and Sheila A McIlraith. Learning
belief representations for partially observable deep rl. In International Conference on Machine
Learning, pp. 35970–35988. PMLR, 2023.

Jingda Wu, Zhiyu Huang, Zhongxu Hu, and Chen Lv. Toward human-in-the-loop ai: Enhancing deep
reinforcement learning via real-time human guidance for autonomous driving. Engineering, 21:
75–91, 2023a.

Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents. arXiv preprint arXiv:2310.01557, 2023b.

Hengjia Xiao and Peng Wang. Llm a*: Human in the loop large language models enabled a* search
for robotics. arXiv preprint arXiv:2312.01797, 2023.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Wei Xu and Zaifeng Gao. Applying hcai in developing effective human-ai teaming: A perspec-
tive from human-ai joint cognitive systems, 2023. URL https://arxiv.org/abs/2307.
03913.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
17591–17599, 2024.

Wenqing Zheng, SP Sharan, Zhiwen Fan, Kevin Wang, Yihan Xi, and Zhangyang Wang. Symbolic
visual reinforcement learning: A scalable framework with object-level abstraction and differentiable
expression search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Weiqin Zu, Wenbin Song, Ruiqing Chen, Ze Guo, Fanglei Sun, Zheng Tian, Wei Pan, and Jun
Wang. Language and sketching: An llm-driven interactive multimodal multitask robot navigation
framework. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
1019–1025. IEEE, 2024.

12

https://arxiv.org/abs/2307.03913
https://arxiv.org/abs/2307.03913

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USAGE OF LARGE LANGUAGE MODELS

The Large Language Models are used as a significant part of the methodology proposed in this paper.
Nevertheless, they are not used for research ideation, derivations, proofs, experimental design, data
analysis, or writing to the extent that they could be regarded as a contributor to authorship or a
significant contribution under the conference policy.

A.2 THEORETICAL DERIVATIONS AND PROOFS

In this section, we provide detailed theoretical derivations and proofs of Lemma 4.2, Lemma 4.3,
which are mainly inspired by previous works (Lecarpentier et al., 2021), and thus leading to our main
theorem 4.4. Before that, we need to first prove that Definition 4.1 is valid, i.e., there is a unique
solution for ds,a.

Lemma A.1. Given two MDPs M = (S,A, T,R, γ) and M̄ = (S,A, T ′, R′, γ) that differ slightly
in their transition kernels and reward functions, the following equation on d : S × A → R is a
fixed-point equation admitting a unique solution for any (s, a):

ds,a = |R(s, a)−R′(s, a)|+ γ
∑
s′∈S

V ∗
M̄ (s′)|T (s′|s, a)− T ′(s′|s, a)|+ γ

∑
s′∈S

T (s′|s, a)max
a′∈A

ds′,a′

Proof. We denote

Ds,a(M∥M̄) = |R(s, a)−R′(s, a)|+ γ
∑
s′∈S

V ∗
M̄ (s′)|T (s′|s, a)− T ′(s′|s, a)|.

Let L be the functional operator that maps any function d ∈ F(S ×A,R) as follows:

Lds,a = Ds,a(M∥M̄) + γ
∑
s′∈S

T (s′|s, a)max
a′∈A

ds′,a′ .

Therefore, for any two functions f and g in F(S ×A,R) and any (s, a) ∈ S ×A, we have:

Lfs,a − Lgs,a = γ
∑
s′∈S

T (s′|s, a)
(
max
a′∈A

fs′,a′ −max
a′∈A

gs′,a′

)
≤ γ

∑
s′∈S

T (s′|s, a)max
a′∈A

(fs′,a′ − gs′,a′)

≤ γ∥f − g∥∞.

Hence, we have ∥Lf − Lg∥∞ ≤ γ∥f − g∥∞. Since γ < 1, L is a contraction mapping in the
complete and non-empty metric space (F(S × A,R), ∥ · ∥∞). By directly applying the Banach
fixed-point theorem, we can conclude that the previous equation on ds,a admits a unique solution.

Next, we move on to prove the one-step Bellman bound in the main text.

Lemma A.2 (One-step Bellman Bound). With Γ defined as the Bellman Operator on any function
Q : S ×A → R as:

ΓQ(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)max
a′∈A

Q(s′, a′), (8)

for any two MDPs M and M̄ , if function Q is already bounded by ∆s,a(M, M̄), i.e., |QM (s, a)−
QM̄ (s, a)| ≤ ∆s,a(M, M̄), then we can guarantee:

|ΓQM (s, a)− ΓQM̄ (s, a)| ≤ ∆s,a(M,M̄). (9)

Proof. Since ∆s,a(M,M̄) = min{ds,a(M∥M̄), ds,a(M̄∥M)}, we can separately prove that
|ΓQM (s, a) − ΓQM̄ (s, a)| is less than or equal to both ds,a(M∥M̄) and ds,a(M̄∥M), and then

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

summarize them to get the conclusion.

|ΓQM (s, a)− ΓQM̄ (s, a)|

=

∣∣∣∣∣R(s, a)−R′(s, a) + γ
∑
s′∈S

[
T (s′|s, a)max

a′∈A
QM (s′, a′)− T ′(s′|s, a)max

a′∈A
QM̄ (s′, a′)

]∣∣∣∣∣
≤ |R(s, a)−R′(s, a)|+ γ

∑
s′∈S

∣∣∣∣T (s′|s, a)max
a′∈A

QM (s′, a′)− T ′(s′|s, a)max
a′∈A

QM̄ (s′, a′)

∣∣∣∣
≤ |R(s, a)−R′(s, a)|+ γ

∑
s′∈S

max
a′∈A

QM̄ (s′, a′) |T (s′|s, a)− T ′(s′|s, a)|

+ γ
∑
s′∈S

T (s′|s, a)
∣∣∣∣max
a′∈A

QM (s′, a′)−max
a′∈A

QM̄ (s′, a′)

∣∣∣∣
≤ |R(s, a)−R′(s, a)|+ γ

∑
s′∈S

V ∗
M̄ (s′) |T (s′|s, a)− T ′(s′|s, a)|

+ γ
∑
s′∈S

T (s′|s, a)max
a′∈A

|QM (s′, a′)−QM̄ (s′, a′)|

≤ Ds,a(M∥M̄) + γ
∑
s′∈S

T (s′|s, a)max
a′∈A

∆s′,a′(M,M̄)

≤ Ds,a(M∥M̄) + γ
∑
s′∈S

T (s′|s, a)max
a′∈A

ds′,a′(M∥M̄)

≤ ds,a(M∥M̄). . . . Using Lemma A.1

Similarly, by exchanging the order of ΓQM (s, a) and ΓQM̄ (s, a), we can also derive:

|ΓQM (s, a)− ΓQM̄ (s, a)| ≤ ds,a(M̄∥M)

By combining these two inequations, we can finally prove that:

|ΓQM (s, a)− ΓQM̄ (s, a)| ≤ ∆s,a(M,M̄).

With Lemma A.2, the local pseudo-Lipschitz continuity of the optimal Q-function can therefore be
derived from induction.

Lemma A.3 (Local pseudo-Lipschitz continuity of Optimal Q-value). For two MDPs M,M̄ , for all
(s, a) ∈ S ×A, we have: |Q∗

M (s, a)−Q∗
M̄
(s, a)| ≤ ∆s,a(M,M̄).

Proof. Suppose we are using the same value iteration algorithm for both M and M̄ . Then, the initial
Q-function of each state and action should be exactly the same:

|Q0
M (s, a)−Q0

M̄ (s, a)| = 0 ≤ ∆s,a(M,M̄).

In each value iteration, the q-function is updated by the Bellman operator:

Qn+1
M (s, a) = ΓQn

M (s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)max
a∈A

Qn
M (s′, a′), ∀n ∈ N,

Hence, by applying induction and Lemma A.2, we have:

|Qn
M (s, a)−Qn

M̄ (s, a)| ≤ ∆s,a(M, M̄), ∀n ∈ N.

The value iteration converges to the optimal Q-function: limn→∞ Qn
M (s, a) = Q∗

M (s, a), therefore
we can conclude that Q∗ is pseudo-Lipschitz continuous in the local MDP space with:

|Q∗
M (s, a)−Q∗

M̄ (s, a)| ≤ ∆s,a(M, M̄).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

With Lemma A.3, we can deliver the proof of the main theorem in this paper as the upper bound of
return for an unknown knowledge gap.

Theorem A.4 (Upper bound of return for an unknown knowledge gap). Given two MDPs Mφ1 ,Mφ2

with φ1, φ2 ∈ Φ, for all s0 ∈ S and an unknown intermediate MDP Mφ∗ , φ∗ = λφ1+(1−λ)φ2, λ ∈
(0, 1), the upper bound U on J(π∗

φ∗ |φ∗) can be defined as:

J(π∗
φ∗ |φ∗) ≤ Uφ∗(φ1, φ2) = min{J(π∗

φ1
|φ1), J(π

∗
φ2
|φ2)}+∆s0,a0

(Mφ1
,Mφ2

), (10)

in which a0 = maxa∈A ∆s0,a(Mφ1
,Mφ2

)

Proof. Recalling the definition of optimal Q-function:J(π∗
φ∗ |φ∗) = maxa∈A Q∗

Mφ∗ (s0, a), we have:

|J(π∗
φ∗ |φ∗)− J(π∗

φ1
|φ1)| = |max

a∈A
Q∗

Mφ∗ (s0, a)−max
a∈A

Q∗
Mφ1

(s0, a)|

≤ max
a∈A

|Q∗
Mφ∗ (s0, a)−Q∗

Mφ1
(s0, a)|

≤ max
a∈A

∆s0,a(Mφ∗ ,Mφ1
)

≤ max
a∈A

∆s0,a(Mφ1
,Mφ2

)

Similarly, we can also prove that |J(π∗
φ∗ |φ∗)− J(π∗

φ2
|φ2)| ≤ maxa∈A ∆s0,a(Mφ1

,Mφ2
). Combin-

ing these two, we can conclude the proof.

A.3 DETAILED ALGORITHMIC IMPLEMENTATION

A.3.1 PSEUDOCODE

The overview pseudocode of MINT is divided into the training phase and deployment phase, demon-
strated in Algorithm 1 and Algorithm 2, respectively. The details of UA-DQN training can be found
in its original paper (Clements et al., 2019), while the node expansion and curation details are mainly
explained in the main text.

Algorithm 1: MINT Training Phase
Initialize replay buffer B, UA-DQN Qθ

for i = 0 → Ne do
Reset the environment Mφ with a randomized descriptor φ. Get initial state s = s0 from Mφ

while done is False do
Choose action a according to policy derived from Qθ(s, a|φ)
Execute a, observe reward r, next state s′, terminal signal done
Add (s, φ, a, r, s′) to B
Randomly generate partial knowledge gap u masking φ → Φu

Generate partial gap u, create masked descriptor space Φu

Add additional sample (s,Φu, a, r, s
′) to B

Update θ with B using the loss function defined in UA-DQN

A.3.2 HYPERPARAMETERS

Table 4 shows the major hyperparameters we use in MINT experimental settings.

A.3.3 LLM PROMPTS

Here we present LLM prompt examples for branch merging, query curation, and tree updating in
Listing 1, Listing 2, and Listing 3, respectively. The response of each LLM will be pre-processed and
then encoded for usage.

Given the following tree structure:

Node 0 (root): {Type=Unknown, Subtype=Unknown, Value range:[0,1], Optimal
Action:0, Child: Node 1, Node 2}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2: MINT Deployment Phase
while done is False do

Get current state s from the environment.
if no uncertain object detected then

a∗ = argmaxa Qθ(s, a|∅)
Execute a∗, continue

if new uncertain object detected then
Construct root node from initial gap u0 and current state s
u = u0

while u exists do
Calculate µu(s, a), σ2

u(s, a) for each a using Qθ

a∗
u = argmaxa µu(s, a)

g(u) = µu(s, a
∗
u)−maxa̸=a∗

u
µu(s, a)

if g(u) ≤ λgσu(s, a
∗
u) and not reaching depth limit then

Expand node u

Move to next node u using BFS.
for k = 0, 1, · · · ,K do

sample φ1, φ2 as the boundary of Φuk

if argmaxa Qθ(s, a|φ1) = argmaxa Qθ(s, a|φ2) then
Break

qk = LLMCuration(uk)
Get human answer yk from qk
Update uk to uk+1 using qk and yk via LLM

Execute a∗ = argmaxa µuk (s, a).

Hyperparameters Values
Learning Rate lr 1e-4

Epsilon ε 0.05
Batchsize 256

Discount factor(γ) 0.99
Number of quantiles 50
Replay Buffer Size 1e6

λd 1.0
Depth Limit TD 5

Maximum Number of Queries K 5
LLM Temperature 0.5

Episode Length(MiniGrid) 400
Training Episode 5e7

Table 4: Hyperparameters in MINT

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Node 1: {Type=Transition, Subtype=Unknown, Value range:[0,1], Optimal
Action:1, Child:Node 3, Node 4, Node 5}

...

Identify redundant branches or leaves that leading to identical optimal
action. Output the tree structure with the same format.

Listing 1: Branch Merging Prompt Example

Given the current symbolic tree structure:

Node 0 (root): {Type=Unknown, Subtype=Unknown, Value range:[0,1], Optimal
Action:0, Child: Node 1, Node 2}

Node 1: {Type=Transition, Subtype=Unknown, Value range:[0,1], Optimal
Action:1, Child:Node 3, Node 4, Node 5}

Node 2: {Type=Reward, Subtype=Unknown, Value range:[0,1], Optimal Action
:0, Child:None}

Node 3:{Type=Transition, Subtype= determined, Value range:[1,1], Optimal
Action:1, Child:None}

Node 4:{Type=Transition, Subtype= determined, Value range:[0,0], Optimal
Action:0, Child:None}

Node 5:{Type=Transition, Subtype= stochastic, Value range:[0,1], Optimal
Action:0, Child:None}

Formulate a single yes/no question based on "Type" to resolve the
uncertainty in optimal action. Your question should have the maximal
information gain and divide the original tree into two sub-trees with
nearly consistent optimal actions.

Listing 2: Curation Prompt Example

The current symbolic tree structure is as follows:

Node 0 (root): {Type=Unknown, Subtype=Unknown, Value range:[0,1], Optimal
Action:0, Child: Node 1, Node 2}

Node 1: {Type=Transition, Subtype=Unknown, Value range:[0,1], Optimal
Action:1, Child:Node 3, Node 4, Node 5}

Node 2: {Type=Reward, Subtype=Unknown, Value range:[0,1], Optimal Action
:0, Child:None}

Node 3:{Type=Transition, Subtype= determined, Value range:[1,1], Optimal
Action:1, Child:None}

Node 4:{Type=Transition, Subtype= determined, Value range:[0,0], Optimal
Action:0, Child:None}

Node 5:{Type=Transition, Subtype= stochastic, Value range:[0,1], Optimal
Action:0, Child:None}

Given the fact that the answer to the question "Is the uncertainty about
a Transition parameter?" is "yes", remove branches inconsistent with
this response and clearly state the pruned tree structure.

Listing 3: Tree Updating Prompt Example

A.4 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.4.1 ENVIRONMENT DETAILS

In this paper, we use three different environments:MiniGrid, Atari Pacman, and NVIDIA Isaac-based
environments. The screenshots of each environment are presented in Figure 3.

MiniGrid is a maze-like environment, with the agent starting from the top left. The goal of the agent
is to reach the goal, marked as the green block in the top right, within minimal steps. When the agent
gets to the green block, it will receive a reward of 10. Otherwise, the agent will get a reward of -0.1
for each step. The episode ends when the agent reaches the goal or maximum steps are used. The

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) (b) (c-1) (c-2)

Figure 3: Screenshots of the environments used in this paper. (a)MiniGrid (b)Atari Pacman (c-1) an
overview of NVIDIA Isaac environment (c-2) an example of drone view in Isaac environment.

agent can go to neighboring blocks in four directions, which is also the action space. Grey blocks
refer to a wall that the agent cannot stand on or go through. There are 1-5 uncertain objects in certain
fixed locations of the environment, marked as blue blocks, which either have an effect on transition or
reward with a random value. The observation space of the agent will be its local view (7× 7 square
in front of it) and current location.

The Atari Pacman environment is mainly based on its original game setting. However, we inject an
uncertain object marked as the white rectangle in the raw frames. This uncertain object either has an
effect on the transition or reward with a random value. By using template matching, we can locate
the agent and thus manipulate the reward function and transition when there is overlap. Besides, we
use the signal function to regularize the original reward in Atari environment into {0, 1}.

Finally, we create a high-fidelity emergency response scenario based on the Nvidia Isaac platform, in
which a drone is asked to rescue an injured person in an unseen warehouse environment via visual 3D
reconstruction, as shown in Figure 3 (c-1). Inside this warehouse, there is a fired forklift, an obstacle
hidden by the smoke, and an extra injured person in another room. A VLM model will first scan the
surroundings and execute 3D reconstruction, then locate the coordinates of each object. Next, the
drone controlled by LLM will first plan a path represented in a sequence of coordinates to achieve the
specific goals, then execute low-level control commands to move along this path.

A.4.2 COMPUTATIONAL RESOURCES

All of the experiments in this paper are conducted on a server with an AMD EPYC 7513 128-Core
Processor CPU and an NVIDIA RTX A6000 GPU.

A.4.3 PERFORMANCE COMPARISON WITH INFERENTIAL LLMS

One of the drawbacks of the pure LLM method in MiniGrid environment is that LLM can be overly
conservative in dealing with the uncertainties. It calls classical path-finding algorithms to reach the
target and likely avoids the uncertainty blocks, even though it can be a positive reward or have little
impact on transition, yielding relatively low reward compared to MINT, despite a good success rate.
On the other hand, Query-A asks for optimal action whenever the variance is high. It assumes that
a human user always gives the optimal action recommendation, thus achieving a similar reward as
MINT. But human response is limited to the current state/choices in Query-A, unlike MINT, which
can learn new knowledge with each response and apply it to reason new states/choices.

The point of comparing pure LLM approaches with MINT is that MINT combines neural policy
(UA-DQN) with LLM to provide the optimal action based on variance estimates and human binary
queries. This hybrid ensures robustness where pure LLMs fail.

Currently, we’re using GPT-4o inside MINT in MiniGrid and Atari environments (will clarify this
in the revision), and comparing it with pure LLM, also using GPT-4o and other advanced versions.
Since MINT introduces a neuro-symbolic approach, we feel this comparison can demonstrate the
advantage of MINT’s neuro-symbolic approach. In the comparison, LLM methods require a full view
of the environment (except details about the uncertainty) to plan the path. Compared with advanced
models (o3 and o3-mini), MINT achieves comparative results by only using a low-level LLM (4o)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and partial observation. We also conducted experiments using a stronger LLM inside MINT, i.e., o3
with long-form and multi-step reasoning capability, with results in Table 5.

LLMs MiniGrid Atari1 object 3 object 5 object
4o Success% 99.6± 0.5 100± 0 97.0± 0.9 -

4o Avg. Reward 9.29± 1.47 9.90± 1.09 9.56± 2.31 411.1± 28.8
o3 Success% 100± 0 100± 0 98.6± 1.2 -

o3 Avg. Reward 9.91± 0.48 9.88± 0.91 9.76± 1.37 428.7± 30.6

Table 5: Comparative results with different models used in MINT.

The result shows that using an advanced LLM doesn’t bring much improvement over the original
MINT, since the performance of MINT with 4o is already close to the optimal. However, since o3 is
a long, multi-step reasoning model with an explicit chain of thoughts, the time cost of using such an
advanced LLM is huge, demonstrating another advantage of MINT in saving the time cost.

A.4.4 UNCERTAINTY DECLINE ANALYSIS

We show the results of uncertainty decreasing over queries with human interactions in Table 6. The
experiment is taken in the MiniGrid Environment, measuring the average uncertainty (estimated by
the variance of Q-value) after a different number of queries.

Avg. Uncertainty / Queries 0 1 2 3 4
5 objects 6.50 5.36 4.13 4.07 3.88
3 objects 5.73 4.14 3.79 3.13 2.93
1 object 1.37 0.40 0.05 0.06 0.04

Table 6: Uncertainty Decline Analysis in the MiniGrid Environment.

From the results, the uncertainty decreases most at the first two queries, which meets our expectation
that MINT will generate the query that maximizes the information gain. Besides, in the 1-object
scene, the average uncertainty drops to nearly zero after only two queries, while with increasing
uncertainties, more queries are required.

19

	Introduction
	Related Works
	Preliminaries
	Our Proposed Solution Using MINT
	Evaluating the Impact of Current Knowledge Gaps
	Reasoning and Curating Queries with MINT
	Theoretical Analysis

	Experiments
	Conclusion
	Appendix
	Usage of Large Language Models
	Theoretical Derivations and Proofs
	Detailed Algorithmic Implementation
	Pseudocode
	Hyperparameters
	LLM Prompts

	Additional Experimental Details and Results
	Environment Details
	Computational Resources
	Performance Comparison with Inferential LLMs
	Uncertainty Decline Analysis

