
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MODEL METAMERS REVEAL INVARIANCES IN GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, deep neural networks have been extensively employed in percep-
tual systems to learn representations endowed with invariances, aiming to emulate
the invariance mechanisms observed in the human brain. However, studies in the
visual and auditory domains have confirmed that significant gaps remain between
the invariance properties of artificial neural networks and those of humans. To in-
vestigate the invariance behavior within graph neural networks (GNNs), we intro-
duce a model “metamers” generation technique. By optimizing input graphs such
that their internal node activations match those of a reference graph, we obtain
graphs that are equivalent in the model’s representation space, yet differ signifi-
cantly in both structure and node features. Our theoretical analysis focuses on two
aspects: the local metamer dimension for a single node and the activation-induced
volume change of the metamer manifold. Utilizing this approach, we uncover
extreme levels of representational invariance across several classic GNN archi-
tectures. Although targeted architectural and training adjustments can partially
reduce this excessive invariance, they do not fundamentally resolve it. Finally, we
quantify the deviation between metamer graphs and their original counterparts,
revealing unique failure modes of current GNNs and providing a complementary
benchmark for model evaluation.

1 INTRODUCTION

In neuroscience, a core objective is to build perceptual models that replicate both the responses and
behaviors of the brain Kell et al. (2018); Schrimpf et al. (2020). Inspired by the hierarchical struc-
ture of biological sensory systems, modern neural networks transform raw inputs into task-relevant
representations and have become the dominant framework for modeling perception Richards et al.
(2019). A prevailing hypothesis suggests that optimizing these networks for recognition tasks will
naturally induce human-like invariances—robustness to irrelevant variations such as pose, lighting,
or speaker identity. While much attention has been paid to models failing under minor perturbations
that humans easily tolerate, less discussed are cases where models remain stable under distortions
that render inputs unrecognizable to humans. These instances highlight a different issue: the in-
variances learned by neural networks can diverge sharply from those of human perception, a point
discussed by Feather et al. (2023) in their analysis of model–human mismatch.

Figure 1 conceptualizes the universe of all possible inputs as a single “stimulus space”, in which
the green-shaded region marks every input that humans would subjectively judge to belong to the
same category as a given reference sample, and the yellow-shaded region marks every input that
the model’s output assigns to that same category. When either of these regions contains inputs
that look obviously different from the reference on the surface yet evoke identical internal repre-
sentations—whether in human neural activity or the model’s intermediate activations—and are still
classified as the same category, we call those inputs “metamers” (illustrated by the shaded circles).
By comparing the size and overlap of the human and model metamer regions, we obtain an intuitive
measure of how closely the model’s learned invariances match those of human perception.

Building on this perspective, we propose graph model metamers as a tool to investigate invariance
in graph neural networks (GNNs) Yi et al. (2025); Xu et al. (2025). As shown in Figure 2, given
a reference graph G, we synthesize a graph G′ that matches its internal representation at a chosen
GNN layer, while allowing node features and/or structure to vary.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overlap between human and
model metamers in input space. Figure 2: Metamer generation for GNNs.

GNNs achieve strong results across domains but face four core limitations. Their expressiveness
matches the 1 WL test and fail to distinguish certain graph patterns Wang & Zhang (2022); K hop
propagation Feng et al. (2022) and structure aware designs Wijesinghe & Wang (2022) effectively
alleviate this limitation. Depth induces oversmoothing, eased by residual connections Scholkemper
et al. (2025) and reverse message passing Park et al. (2024). Sparse connectivity causes oversquash-
ing; multi track routing Pei et al. (2024) and non dissipative updates Gravina et al. (2025) preserve
long range signals. Under heterophily, standard GNNs underperform; specialized architectures and
graph rewiring help Chen et al. (2024); Bi et al. (2024); Yang et al. (2025).

Despite progress, it remains unclear whether GNN learned invariances are appropriate for reliable
predictions. Maron et al. (2019) characterize the full family of permutation invariant and equiv-
ariant linear layers, give explicit bases whose sizes follow Bell numbers, and use these results to
design symmetry respecting architectures. Our objective is different: rather than designing layers,
we audit trained models a posteriori by searching for inputs with distinct structures and features
that nonetheless yield identical internal activations, thereby revealing over invariance that emerges
during learning. Prior expressiveness studies ask whether models can in theory separate all non-
isomorphic graphs Joshi et al. (2023); Bouritsas et al. (2023), whereas we examine what current
networks actually do; explainability work emphasizes local feature attribution Azzolin et al. (2025);
Gui et al. (2024), while we analyze invariances of internal representations under controlled input
variation.

To investigate invariance in GNNs, we propose a metamer-based framework. This approach exposes
a high degree of representational invariance in standard GNNs. To address this, we introduce archi-
tectural and training modifications that mitigate the effect. We uncover a characteristic failure mode,
and provide a new benchmark for evaluation. The main contributions of this work are:

• We theoretically characterize metamers via the nodewise local metamer dimension and the
activation induced volume change of the metamer manifold (Appendix).

• We are the first to introduce metamer generation for GNNs, revealing that standard archi-
tectures exhibit pronounced over invariance in their internal representations (Section 3).

• By quantifying each metamer’s deviation from its source graph, we uncover a distinctive
failure mode of contemporary GNNs and establish a complementary benchmark for model
evaluation (Section 4).

• We propose targeted architectural and training modifications across five canonical GNN
variants to effectively mitigate this excessive invariance (Section 4).

2 INVARIANCES IN SENSORY MODELS AND THE HUMAN PERCEPTUAL
SYSTEM

Feather et al. (2023) proposed and validated the model metamer approach to compare invariance in
artificial models and human perception. A model metamer is a synthetic input optimized to match
the internal activations of a reference sample at a specific network layer. The method was applied to
visual and auditory models to assess the emergence of human-like invariances across layers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 3: Metamers generated from deeper layers
of the model become increasingly unrecognizable
to humans.

Figure 4: Metamer generation for GNNs.

As shown in Figure 3, in the visual domain, Feather et al. (2023) evaluated over a dozen architectures
(e.g., AlexNet, VGG-19, ResNet-50) on a 16-class object classification task. Metamers were gener-
ated from successive layers, and human participants attempted to classify them. While early-layer
metamers remained somewhat interpretable, those from deeper layers resembled noise, yielding
near-chance accuracy—suggesting a divergence from human visual invariance. In the auditory do-
main, two cochleagram-based models were tested on a 793-class word task, with human accuracy
similarly collapsing on deep-layer metamers, again revealing a mismatch with human perceptual
invariance.

The authors evaluated several strategies—such as self-supervised learning, stylized ImageNet, low-
pass filtering, and adversarial training—for their effect on metamer recognizability. Adversarial
training yielded the most improvement, though none fully bridged the gap between model and hu-
man invariance. These findings highlight a systematic mismatch in current models and provide a
general benchmark for aligning them with human perception.

3 GRAPH MODELS METAMERS GENERATION

In this section, we focus on the generation of metamers for GNNs, including both feature-based and
structure-based metamers. We detail the generation process and introduce several methods aimed at
reducing the extent of the metamer manifold. In addition, we design evaluation metrics to quantify
the invariance exhibited by GNNs. We begin with necessary preliminaries.

3.1 PRELIMINARIES

Notations. Given a graph G = (V,E,X) ∈ G with n = |V | nodes, edge set E, and G are graph
sets, node features X ∈ Rn×d where xv ∈ Rd denotes the feature of node v, the adjacency matrix
A ∈ Rn×n encodes edge connectivity. In a neighbor-aggregation GNN, the k-th layer updates each
node’s representation by aggregating features from its neighbors:

h̃(k)v =
∑

u∈N (v)

αuv ψ
(k)

(
h(k−1)
v , h(k−1)

u

)
(1)

h(k)v = σ
(
W(k) [h(k−1)

v ∥ h̃(k)v]
)

(2)

where h̃(k)v is the aggregated message at layer k, h(k−1)
v the previous-layer embedding, h(k)v the

updated embedding, and h(0)v = xv; N (v) the neighbors of v, αuv normalized edge weights, ψ(k)

the message function, W(k) the weight matrix, and [·∥·] concatenation operator.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Graph model metamer. Let f : {G → Rm} denote our GNN-based graph embedding function,
which may represent one or multiple layers of the GNN model. In this framework, the input graphG
is regarded as a stimulus, and the corresponding output f(G) produced by the embedding function
is referred to as the activation. For a given reference graph G, we define its graph metamer set as
follows:

Mf (G) =
{
G′ ∈ G | f(G′) ≈ f(G)

}
(3)

In practice, G′ is a graph model metamer of G, Mf (G) reflects the model’s invariance: its volume
indicates the extent of perturbations that preserve the embedding. A larger Mf (G) suggests stronger
invariance but reduced discriminability, while a smaller one implies greater sensitivity.

3.2 METAMER GENERATION OBJECTIVE AND OPTIMIZATION

Figure 2 provides an illustration of the objective and optimization process used for metamer gener-
ation. Given a reference graph G, our goal is to synthesize a metamer G′ that produces an identical
internal representation at a selected layer of a pretrained GNN, while allowing free variation in the
graph structure and/or node features. Let the GNN define the following mapping:

f : G 7−→
{
h(1), h(2), . . . , h(K), y

}
(4)

where h(k) ∈ Rdk denotes the activation vector at layer k, and y represents the final output of the
model (e.g., a class label).

We define the activation matching loss:

Lact =

∥∥h′(k) − h(k)
∥∥2
2∥∥h(k)∥∥2

2

(5)

which penalizes any deviation of the synthesized graph’s k-th layer activation from that of the ref-
erence graph. Here, k is manually selected to target a specific layer of the GNN, allowing us to
investigate the model’s invariance properties at different levels of representation.

The synthesis of a metamer graph G′ begins by initializing G′
0 with either random node features

(Section 3.2 for details) or random edge connections (Section 3.3 for details). Since most GNNs do
not use edge features, we do not consider metamer generation in the edge-feature space. Gradient-
based updates are applied until convergence, with the process terminating after T steps. At each
iteration t, we compute the gradient of the loss Lact with respect to the current graph input G′

t, and
perform the following update:

G′
t+1 = Proj(G′

t − η∇G′ L(G′
t)) (6)

where η denotes the learning rate, and Proj represents a projection operator that enforces validity
constraints on the graph (e.g., clipping node features to the range [0, 1], or thresholding continuous
edge weights to obtain a valid adjacency matrix). After T iterations, the resulting graph G′

T is
considered the synthesized metamer for layer k. This procedure ensures that G′

T produces a similar
internal activation at layer k to that of the reference graph G, while allowing for maximal variation
in other aspects of the input, subject to the imposed constraints.

3.3 METAMER CONSTRUCTION: NODE FEATURE GENERATION

The construction of a metamer graph G′ consists of generating the node feature matrix X ′ and the
adjacency matrix A′. We begin by introducing the process for generating X ′. The initialization of
X ′ is based on the mean µ ∈ Rd and standard deviation τ ∈ Rd of the reference graph G’s feature
matrix, ensuring that the synthesized features remain within a comparable distribution.

X ′
soft = µ1⊤

|V | + τ ⊙ ϵ, ϵ ∼ N (0, 1)|V |×d (7)

where 1N ∈ RN is the all-ones vector, “⊙” denotes elementwise multiplication with broadcast-
ing, and ϵ ∈ R|V |×d are independent and identically distributed according to the standard normal
distribution N (0, 1). Since our experimental datasets include binarized features, we next apply dis-
cretization to the subset of features that require it, using binary-valued features as a representative
example.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In the forward pass, we first apply an elementwise sigmoid function with slope parameter s > 0 to
obtain a soft probability matrix:

P = σ
(
sX ′

soft

)
∈ (0, 1)|V |×d (8)

The matrix P represents elementwise “soft” probabilities of activation for binary features. To de-
rive a discrete mask, we enforce a target sparsity ρ ∈ (0, 1)—a learnable scalar initialized to the
empirical density of the reference feature matrix X—which specifies the desired fraction of active
entries. We then identify the top ρ-fraction of entries in P to form a hard binary mask X ′

hard. To
reconcile discreteness in the forward pass with differentiability in the backward pass, we employ the
straight-through estimator (STE) Bengio et al. (2013):

X ′ = P +
(
X ′

hard − P
)∣∣

stopgrad
(9)

where
(
X ′

hard−P
)∣∣

stopgrad
contributes zero gradient, so that during backpropagation gradients flow

purely through P . As a result, X ′ is exactly binary (equal toX ′
hard) at inference time, while remain-

ing end-to-end trainable via the continuous surrogate P . Finally, we include a margin regularization
term:

Lmargin = λreg
1

|V | d

|V |∑
v=1

d∑
u=1

Pv,u

(
1− Pv,u

)
(10)

to prevent P from collapsing to the extremes 0 or 1 prematurely. Moreover, continuous feature
generation is straightforward: we apply ReLU to the soft features X ′

soft and iteratively optimize it
to ensure all entries remain strictly positive. As shown in Figure 4, the second row presents metamer
features generated from different layers of the model, while the third row displays the similarity
between these metamer features and the original features X of the reference graph G. As the layer
depth increases, the difference between X ′ and X becomes increasingly pronounced. The first row
further illustrates that the metamers progressively deviate from human-recognizable patterns as they
are derived from deeper layers.

3.4 METAMER CONSTRUCTION: STRUCTURE GENERATION

For adjacency mask generation, we initialize a continuous adjacency parameter A′
soft ∈ R|V |×|V |

by sampling a random upper-triangular matrix and symmetrizing it, ensuring that no self-loops are
present on the diagonal. In the forward pass, we compute a soft adjacency probability matrix as
follows:

P = σ
(
sA′

soft

)
∈ (0, 1)|V |×|V | (11)

using the same sigmoid slope s > 0. A learnable scalar ρ ∈ (0, 1)—initialized to the empirical edge
density of the reference adjacency matrix A—specifies the target fraction of edges. We then select
the top ρ-fraction of entries in P to construct a hard adjacency mask A′

hard, and use the STE during
backpropagation.

A = P +
(
A′

hard − P
)∣∣

stopgrad
(12)

This ensures that A is strictly binary during the forward pass, while gradients are allowed to
flow through the soft matrix P during backpropagation. The resulting symmetric binary matrix
A ∈ 0, 1|V |×|V | serves as the adjacency mask for subsequent graph convolution or message-passing
layers.

3.5 QUANTITATIVE METRICS FOR GNN INVARIANCE

To evaluate the invariance of a GNN in node classification tasks, we introduce a consistency objec-
tive that jointly accounts for feature-level similarity, structural similarity, and classification agree-
ment.

For feature-based metamers—where the graph structure is fixed—we measure the similarity between
the generated features X ′ and the reference features X using cosine similarity. Since graph features
are high-dimensional and not directly interpretable, cosine similarity serves as a distribution-aware
proxy. If the GNN yields identical outputs for inputs with substantially different feature distribu-
tions, this indicates an overly permissive invariance that may not align with human intuition.

Sfeat =
⟨X, X ′⟩
∥X∥ ∥X ′∥

∈ [−1, 1] (13)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We also compute the classification match ratio:

Smatch =
1

|V |
∑
v∈V

1
(
yv = y′v

)
(14)

where yv and y′v are the predicted labels on the original and feature-metamer graphs, respectively.
The feature consistency score (CS) is then defined as:

CSfeat = Sfeat Smatch + (1− Sfeat)(1− Smatch) (15)

This score is high when cosine similarity and classification agreement are aligned—either both
high (indicating invariance to similar inputs) or both low (indicating sensitivity to dissimilar in-
puts)—both of which reflect appropriate invariance behavior.

For structure-based metamers, we employ the Weisfeiler–Lehman (WL) graph kernel with degree-
based initialization. By iteratively aggregating neighborhood labels, WL captures higher-order sub-
tree patterns and yields a similarity score:

Sstruct = κWL

(
A, A′) ∈ [0, 1] (16)

The structure CS is then:

CSstruct = Sstruct Smatch + (1− Sstruct)(1− Smatch) (17)

Similar to the feature-based case, a high structural consistency score indicates that structural simi-
larity aligns with classification agreement.

4 EXPERIMENTS

This section evaluates model invariance across diverse graph datasets, outlines the experimental
settings and baselines, and examines layer-wise invariance trends along with mitigation strategies.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate five node classification datasets: Cora, CiteSeer, and PubMed are ho-
mophilic graphs Fowler (2006), while Squirrel and Chameleon are heterophilic Rozemberczki et al.
(2021). PubMed is the only dataset with continuous node features; the rest use discrete inputs. This
diversity in structure and feature type supports a comprehensive analysis of GNN invariance.

Setting-up. All experiments are conducted on a machine equipped with an NVIDIA RTX H200
GPU. We use the Adam optimizer, with a learning rate of 0.001 for GNN training and 0.0005 for
metamer generation. All datasets and baseline models are implemented using the PyTorch Geomet-
ric library.

Baselines. We evaluate invariance across six representative GNN architectures: GCN (spatial con-
volution) Kipf & Welling (2017), ChebNet (spectral filtering) Defferrard et al. (2016), GraphSAGE
(inductive aggregation) Hamilton et al. (2017), GAT (attention-based aggregation) Velickovic et al.
(2018), GIN (injective neighborhood functions) Xu et al. (2019), and Graphormer (transformer-
based graph modeling) Ying et al. (2021). These models span the core design paradigms of GNNs
and serve as the foundation for many contemporary variants.

4.2 ANALYZING INVARIANCE VIA FEATURE METAMERS

We evaluated six GNNs on five node-classification datasets via feature-metamer generation, fixing
each graph’s adjacency and targeting first-layer activations. For each metamer, we measured clas-
sification match rate Smatch and cosine similarity Sfeat, combining them into a consistency score
CSfeat. Table 1 reports the mean and standard deviation over five runs, with (Sfeat, Smatch) shown
on the first line of each cell and the resulting consistency score CSfeat on the second.

As discussed in Appendix A.1.1, the dimensionality of the metamer manifold is given by d−r, where
d is the input feature dimension and r is the rank of the model’s Jacobian. Thus, PubMed—having

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Invariances of GNNs on feature-metamers across datasets.

Method Cora CiteSeer PubMed Squirrel Chameleon

GCN 11.4±0.05 96.4±0.32 8.0±0.08 96.1±0.21 22.2±0.34 99.9±0.01 5.0±0.19 84.3±0.93 7.5±0.42 88.8±0.95
14.12±0.29 11.25±0.24 22.31±0.34 19.16±1.10 17.00±0.98

ChebNet 14.8±0.11 96.0±0.32 10.6±0.15 95.0±0.21 24.3±0.19 99.9±0.02 5.0±0.10 86.3±0.24 10.1±0.67 91.8±0.73
17.60±0.21 14.48±0.25 24.37±0.20 17.36±0.19 16.69±0.60

GraphSAGE 12.6±0.06 95.9±0.51 10.0±0.17 94.7±0.50 21.2±0.47 99.9±0.02 5.8±0.10 89.4±0.45 5.4±0.09 91.4±0.52
15.61±0.39 14.22±0.49 21.31±0.47 15.13±0.38 13.09±0.50

GIN 10.4±0.14 97.1±0.23 9.1±0.16 96.3±0.46 19.3±0.81 99.8±0.02 2.3±0.08 90.9±0.79 2.3±0.21 87.5±1.55
12.65±0.19 12.16±0.34 19.38±0.80 10.93±0.76 14.19±1.36

GAT 15.0±0.37 95.0±0.15 12.8±0.66 94.0±1.08 41.9±0.64 99.9±0.02 32.4±1.11 81.7±0.29 18.8±0.97 85.6±1.09
18.47±0.26 17.21±1.22 41.94±0.64 38.83±0.76 27.81±0.99

Graphormer 14.8±0.29 94.6±0.49 14.0±0.52 93.2±0.42 42.7±0.41 99.8±0.01 46.3±1.22 82.8±0.30 19.7±0.81 86.1±0.52
18.61±0.56 18.88±0.71 42.80±0.41 47.63±0.78 28.14±0.80

Figure 5: Structure-metamer evaluation on GCN and ChebNet.

the smallest d—yields a smaller manifold and lower observed invariance, although its contin-
uous features facilitate optimization and drive Smatch toward 100%. In contrast, heterophilic
datasets—where baseline accuracy is already low—produce metamers with reduced Smatch. No-
tably, GAT and Graphormer, which employ learnable adjacency weights, increase r, shrink the local
manifold dimension (d − r), and achieve higher CSfeat, explaining their superior performance.
Although GIN is an injective neural network, Davidson & Dym (2025) have shown that it cannot
effectively separate two distinct representations.

4.3 ANALYZING INVARIANCE VIA STRUCTURAL METAMERS

We conducted structure-metamer generation experiments on GCN and ChebNet, with results shown
in Figure 5. Although the structural similarity scores Sstruct, computed using the WL kernel, are
close to 100%, the classification match scores Smatch are only around 80%. This indicates that
even small changes in graph structure can significantly alter the GNN’s activations, suggesting that
structure metamers do not exist for these models.

4.4 MITIGATING MODEL INVARIANCE

Changing the model structure or training method. We experimented with three strategies to
mitigate model over-invariance: replacing the ReLU activation with ELU, applying adversarial
training, and adding residual connections. Replacing ReLU with ELU is motivated by the analysis
in Appendix A.1.2, where we show that ReLU collapses at zero and introduces additional metamer
directions. In contrast, ELU maintains similar expressiveness while avoiding such collapse. Both ad-
versarial training and residual connections aim to increase the rank of the model’s Jacobian, thereby
reducing the dimensionality of the metamer space and improving sensitivity to input variations. As
shown in Figure 6, we evaluated all three strategies across six models and five datasets and recorded
the feature-level consistency score CSfeat. All methods consistently reduced over-invariance, with
adversarial training showing the most stable improvements.

Increase hidden layer dimension. Additionally, increasing the dimensionality of the model’s
hidden (activation) layer can expand the Jacobian matrix, thereby increasing its rank and mitigat-
ing over-invariance. As shown in Figure 7, we conducted experiments on four models across five
datasets, testing hidden dimensions of 16, 32, and 64. The results show that the CSfeat increases
consistently with larger hidden dimensions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) GCN (b) ChebNet (c) GraphSAGE

(d) Graphormer (e) GIN (f) GAT

Figure 6: Comparison of three strategies for mitigating GNN over-invariance.

(a) GCN (b) ChebNet (c) GAT (d) Graphormer

Figure 7: Comparison of hidden layer dimensions for mitigating GNN over-invariance.

4.5 LAYER-WISE FEATURE METAMER GENERATION

To investigate how metamer behavior changes across different layers of a model, we trained 4-
layer GNNs and generated feature metamers by targeting activations at the 1st, 2nd, and 3rd layers,
respectively. As shown in Figure 8, experiments across four models and five datasets reveal that the
CSfeat consistently decreases with increasing layer depth. Figure 9 visualizes the original PubMed
features alongside feature metamers generated by targeting the 1st, 2nd, and 3rd layers of GAT.
The similarity between the metamers and the original features drops noticeably as the targeted layer
becomes deeper, but the activation similarity between the metamer and the reference graph in GAT
remains as high as 98.71%.

(a) GCN (b) ChebNet (c) GAT (d) Graphormer

Figure 8: CSfeat at different target layers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: GNN classification accuracy (mean ± std) on cross-architecture feature metamers.

Methods Original GCN ChebNet GraphSAGE GIN GAT Graphormer

GCN 78.35±0.24 78.40±0.30 77.43±0.12 76.32±0.28 76.38±0.49 78.32±0.31 76.08±0.35
ChebNet 75.79±0.96 77.05±0.51 77.31±0.82 76.82±0.41 75.60±0.26 77.03±0.44 76.24±0.74
GraphSAGE 76.71±0.27 76.13±0.40 76.17±0.23 75.38±0.70 76.21±0.29 74.73±0.37 77.35±0.41
GIN 76.22±1.01 77.06±0.37 77.12±0.71 77.02±0.42 75.46±0.37 76.64±0.42 76.38±0.61
GAT 75.75±0.96 73.54±1.86 76.39±0.48 71.14±2.32 76.30±0.12 73.37±1.32 73.17±1.95
Graphormer 76.43±0.31 75.78±0.58 75.65±0.46 74.16±0.68 76.28±0.46 74.57±0.33 76.51±0.59

Figure 9: Feature metamers from different GAT layers (PubMed).

4.6 EVALUATING INVARIANCE COMPATIBILITY BETWEEN GNNS

In this experiment, we first trained seven representative GNNs on the PubMed dataset and recorded
their baseline classification accuracy on the original graphs. To assess cross-model generalization,
each model was then retrained using the feature metamers generated by every other model, and
evaluated on the original test set. The resulting classification accuracies are reported in Table 2.

The results show that while each model can generally classify its own metamers reliably (diagonal
entries), there are substantial differences in cross-model transferability. Notably, ChebNet exhibited
consistently high robustness when classifying metamers from other models, whereas GraphSAGE
showed a dramatic drop in accuracy across most metamers. Metamers generated by GAT proved
to be the most disruptive for all models, completely impairing GraphSAGE’s performance in par-
ticular. These findings suggest that the invariances learned by GNNs comprise both shared com-
ponents—e.g., ChebNet tends to preserve signals crucial across models—and architecture-specific
features—e.g., the invariances captured by GAT are largely uninterpretable to other models. To-
gether, these elements shape the unique representational decision landscape of each model.

5 CONCLUSION

In this work, we present a principled framework for generating model metamers in GNNs and use
it to uncover and quantify the models’ representational invariance. Our analysis reveals that widely
used GNN architectures often exhibit excessive invariance, mapping structurally or semantically
different graphs to nearly identical internal activations. This over-invariance reflects a misalign-
ment between model perception and human intuition, and can mask critical differences in the in-
put. Through both theory and experiments, we characterize the metamer manifold, propose metrics
to assess feature- and structure-level invariance, and explore architectural and training modifica-
tions—such as ELU activations, residual connections, and adversarial training—that help mitigate
over-invariance. We also show how network depth and width affect invariance, and how cross-
model comparisons reveal shared and divergent inductive biases. Altogether, our findings expose a
core challenge in GNN design and provide tools for benchmarking and improving representational
sensitivity. As an initial step toward analyzing GNN invariance via metamers, future work can ex-
tend this approach to more graph tasks, broader model families, and improved metamer generation
techniques.

REPRODUCIBILITY STATEMENT

We aim for full reproducibility. Formal assumptions and complete proofs are provided in the Ap-
pendix. Implementation details are documented in the main text, together with an anonymous down-
loadable code package.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Steve Azzolin, Antonio Longa, Stefano Teso, and Andrea Passerini. Reconsidering faithfulness in
regular, self-explainable and domain invariant gnns. In ICLR, 2025.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In ICML, volume 97 of Proceedings of Machine Learning Research,
pp. 573–582. PMLR, 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013.

Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make heterophilic
graphs better fit GNN: A graph rewiring approach. IEEE Trans. Knowl. Data Eng., 36(12):8744–
8757, 2024. doi: 10.1109/TKDE.2024.3441766.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal.
Mach. Intell., 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319.

Lianggangxu Chen, Youqi Song, Shaohui Lin, Changbo Wang, and Gaoqi He. Kumaraswamy
wavelet for heterophilic scene graph generation. In AAAI, pp. 1138–1146, 2024. doi: 10.1609/
AAAI.V38I2.27875.

Yair Davidson and Nadav Dym. On the hölder stability of multiset and graph neural networks. In
ICLR. OpenReview.net, 2025.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-
10, 2016, Barcelona, Spain, pp. 3837–3845, 2016.

Jenelle Feather, Guillaume Leclerc, Aleksander Madry, and Josh H McDermott. Model metamers
reveal divergent invariances between biological and artificial neural networks. Nature Neuro-
science, 26(11):2017–2034, 2023.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. In NeurIPS, 2022.

James H. Fowler. Legislative cosponsorship networks in the US house and senate. Soc. Networks,
28(4):454–465, 2006. doi: 10.1016/J.SOCNET.2005.11.003.

Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Bacciu, and Carola-Bibiane Schönlieb.
On oversquashing in graph neural networks through the lens of dynamical systems. In AAAI, pp.
16906–16914, 2025. doi: 10.1609/AAAI.V39I16.33858.

Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, and Shuiwang Ji. Flowx: Towards ex-
plainable graph neural networks via message flows. IEEE Trans. Pattern Anal. Mach. Intell., 46
(7):4567–4578, 2024. doi: 10.1109/TPAMI.2023.3347470.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–
1034, 2017.

Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco Cohen, and Pietro Lio. On the expres-
sive power of geometric graph neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), ICML, volume 202, pp.
15330–15355. PMLR, 2023.

Alexander JE Kell, Daniel LK Yamins, Erica N Shook, Sam V Norman-Haignere, and Josh H Mc-
Dermott. A task-optimized neural network replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy. Neuron, 98(3):630–644, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In ICLR. OpenReview.net, 2019.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Johannes Fürnkranz and Thorsten Joachims (eds.), ICML, pp. 807–814. Omnipress, 2010.

Moonjeong Park, Jaeseung Heo, and Dongwoo Kim. Mitigating oversmoothing through reverse
process of gnns for heterophilic graphs. In ICML, 2024.

Hongbin Pei, Yu Li, Huiqi Deng, Jingxin Hai, Pinghui Wang, Jie Ma, Jing Tao, Yuheng Xiong, and
Xiaohong Guan. Multi-track message passing: Tackling oversmoothing and oversquashing in
graph learning via preventing heterophily mixing. In ICML, 2024.

Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia
Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al. A deep
learning framework for neuroscience. Nature neuroscience, 22(11):1761–1770, 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. J.
Complex Networks, 9(2), 2021. doi: 10.1093/COMNET/CNAB014.

Michael Scholkemper, Xinyi Wu, Ali Jadbabaie, and Michael T. Schaub. Residual connections and
normalization can provably prevent oversmoothing in gnns. In ICLR, 2025.

Martin Schrimpf, Jonas Kubilius, Michael J Lee, N Apurva Ratan Murty, Robert Ajemian, and
James J DiCarlo. Integrative benchmarking to advance neurally mechanistic models of human
intelligence. Neuron, 108(3):413–423, 2020.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR. OpenReview.net, 2018.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In ICML, 2022.

Asiri Wijesinghe and Qing Wang. A new perspective on ”how graph neural networks go beyond
weisfeiler-lehman?”. In ICLR, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR. OpenReview.net, 2019.

Lixiang Xu, Kang Jiang, Xin Niu, Enhong Chen, Bin Luo, and Philip S. Yu. GL-BKGNN: graphlet-
based bi-kernel interpretable graph neural networks. Inf. Fusion, 123:103284, 2025. doi: 10.
1016/J.INFFUS.2025.103284.

Jinluan Yang, Zhengyu Chen, Teng Xiao, Yong Lin, Wenqiao Zhang, and Kun Kuang. Leveraging
invariant principle for heterophilic graph structure distribution shifts. In WWW, pp. 1196–1204.
ACM, 2025. doi: 10.1145/3696410.3714749.

Lu Yi, Jie Peng, Yanping Zheng, Fengran Mo, Zhewei Wei, Yuhang Ye, Yue Zixuan, and Zengfeng
Huang. Tgb-seq benchmark: Challenging temporal gnns with complex sequential dynamics. In
ICLR. OpenReview.net, 2025.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS, pp.
28877–28888, 2021.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THEORETICAL STUDIES OF METAMER MANIFOLDS

In this section, we develop theoretical foundations for the existence of metamer manifolds and their
volume in relation to model properties. These insights will inform and support our subsequent
experimental analysis.

A.1.1 LOCAL METAMER DIMENSION FOR SINGLE NODE

Let f : Rd −→ Rm be a smooth mapping that takes as input the feature vector obtained by aggre-
gating the features of a node and its neighbors,

x̃ =
∑

u∈N (v)

αuv xu ∈ Rd (18)

Denote its output by:
h = f(x̃) ∈ Rm (19)

Jacobian and rank. The Jacobian of f at x̃ is the m× d matrix:

Df(x̃) =


∂f1
∂x̃1

(x̃) · · · ∂f1
∂x̃d

(x̃)

...
. . .

...
∂fm
∂x̃1

(x̃) · · · ∂fm
∂x̃d

(x̃)

 (20)

and we write r = rank
(
Df(x̃)

)
. If αuv is or learnable, the Jacobian includes extra terms from

∂αuv/∂x, making r sensitive to both features and learned edge weights.

Local metamer dimension. At the specific input x̃v , the local dimension of the Metamer set:

M = { x̃′ ∈ Rd | f(x̃′) ≈ f(x̃v)} (21)

is given by:
dimx̃v

M = d− r (22)
This result follows from the rank–nullity theorem Behrmann et al. (2019) applied to Df(x̃v): since
its kernel has dimension d− r, there are exactly d− r independent directions along which infinitesi-
mal changes leave f(x̃v) nearly unchanged. Equivalently, the Jacobian rank r measures the number
of feature-space directions affecting the output, while d − r quantifies the local Metamer degrees
of freedom. Designing GNNs to increase r directly reduces d − r and thus shrinks the metamer
manifold.

A.1.2 ACTIVATION INDUCED VOLUME CHANGE

Consider the coordinate-wise activation mapping σ : Rm → Rm. Its Jacobian is the diagonal
matrix:

Dσ(z) = diag

(
dσ(z1)

dz1
, . . . ,

dσ(zm)

dzm

)
(23)

where z ∈ Rm is the pre-activation vector and σ acts independently on each coordinate. So the
singular values of Dσ are |dσ(zv)/dzv|, and the local volume scaling factor is:

detDσ(z) =

m∏
v=1

dσ(zv)/dzv (24)

For ReLU Nair & Hinton (2010), dσ(zv)/dzv = 1 if zv > 0 and 0 otherwise, hence detDσ ∈
{0, 1}: zeros correspond to complete collapse along those coordinates and introduce extra Metamer
directions. More generally, any 0 < dσ(zv)/dzv < 1 contracts volume in direction v, increasing
local invariance.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 THE USE OF LLM

We used a large language model to polish the writing, including wording, clarity, and grammar.
The model did not generate data, code, or analyses, and it did not alter technical content, equations,
results, or conclusions. All scientific ideas and validations were performed by the authors.

13

	Introduction
	Invariances in Sensory Models and the Human Perceptual System
	Graph Models Metamers Generation
	Preliminaries
	Metamer Generation Objective and Optimization
	Metamer Construction: Node Feature Generation
	Metamer Construction: Structure Generation
	Quantitative Metrics for GNN Invariance

	Experiments
	Experimental Setup
	Analyzing Invariance via Feature Metamers
	Analyzing Invariance via Structural Metamers
	Mitigating Model Invariance
	Layer-Wise Feature Metamer Generation
	Evaluating Invariance Compatibility Between GNNs

	Conclusion
	Appendix
	Theoretical Studies of Metamer Manifolds
	Local Metamer Dimension for Single Node
	Activation Induced Volume Change

	The Use of LLM

