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ABSTRACT

Few-shot learning (FSL) methods aim to generalize a model to new unseen classes
using only a small number of support examples. In image classification settings,
many FSL approaches utilize a similar architecture to standard supervised learn-
ing, learning a model composed of a feature extractor followed by a linear clas-
sifier head. A common choice for the classifier is ProtoNet-style nearest neigh-
bor, but this may be suboptimal as it is context-independent. As an alternative,
some methods train a parametric classifier (e.g. logistic regression, support vector
machine) using embeddings from novel classes. However, task-specific training
requires time and resources, and poses optimization challenges such as overfit-
ting on only a few samples. Instead, we propose to generate linear classifiers for
new classes using a transformer-based hypernetwork, performing context aggre-
gation in permutation invariant manner. A transformer hypernetwork allows us to
instantiate a new task-specific classifier without any additional training on novel
tasks. Experiments conducted on 1-shot 5-way and 5-shot 5-way MiniImageNet,
TieredImageNet, and CIFAR-FS demonstrate that transformer hypernetworks are
capable of generating classifiers that achieve up to 1.4% higher accuracy than
other commonly used linear classifiers. Among the group of methods that offer
optimization-free meta-inference, we achieve new state-of-the-art in most cases.

1 INTRODUCTION

While advances in deep learning (LeCun et al., 2015) have led to significant improvements in a
variety of problem domains, the typical supervised learning approaches require collecting large
amounts of labeled data for training (Deng et al., 2009), often in the order of thousands of samples
per class. In many applications, such large-scale labeled datasets are unavailable, and collecting
them is impractical or prohibitively expensive. This is especially the case when fast adaptation to
novel unseen tasks is necessary. To address this issue, few-shot learning (FSL) methods (Vinyals
et al., 2016; Snell et al., 2017; Finn et al., 2017) have been proposed. FSL approaches seek to
generalize to previously unseen tasks, with only a few samples available for adaptation.

For few-shot classification, many methods follow the same overall structure as conventional super-
vised learning. They use a convolutional feature extractor to compute embeddings, followed by a
classifier to map an embedding to one of the output classes. Moreover, few-shot models are trained
in a way that allows the feature extractor to adapt to new tasks using only a few examples. Sev-
eral common choices for classifiers are prevalent among recent literature. Simple classifiers such
as nearest neighbor, either with euclidean or cosine distance, can work surprisingly well while also
having the added benefit of not requiring any additional training (Snell et al., 2017; Vinyals et al.,
2016). However, nearest neighbor can often be outperformed by trained classifiers such as logistic
regression (LR) or support vector machines (SVMs) (Caruana et al., 2008), and recent works have
shown that this is also the case for embeddings in few-shot settings (Tian et al., 2020; Lee et al.,
2019). On the other hand, LR and SVM classifiers require a separate and expensive training for
each novel task, and the small number of samples available in few-shot settings may elevate the risk
of overfitting. Subsequently, the learned classifier may be suboptimal.

Instead of training parametric classifiers or relying on nearest neighbors, we propose using trans-
former hypernetworks (Vaswani et al., 2017; Ha et al., 2017) to generate classifiers for novel unseen
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tasks. Such an approach does not require any task-specific training, while also having the flexibility
of producing classifiers beyond simple nearest neighbors. We parameterize the hypernetwork using
a transformer, as it has input permutation invariance and an attention mechanism capable of learning
context, both desirable properties for few-shot learning. Our transformer hypernetwork takes in av-
erage support image embeddings from novel classes, also known as class prototypes, and predicts a
context-dependent linear classifier. We meta-train our transformer hypernetwork in an episodic fash-
ion with a cross-entropy loss. Additionally, we use outlier exposure (Hendrycks et al., 2018) and
minimize cross entropy between the predicted class logits and soft labels with uniform probability
for out-of-the-task images. Our main contributions are as follows:

• We develop a transformer hypernetwork that uses class-prototypes to predict parameters of
a linear classifier for a pre-trained feature extractor. Notably, our approach infers a task-
dependent model without requiring optimization on novel tasks.

• We validate the effectiveness of transformer hypernetworks for generating few-shot classi-
fiers with experiments on MiniImageNet (Vinyals et al., 2016), TieredImageNet (Ren et al.,
2018) and CIFAR-FS (Bertinetto et al., 2018) in 1-shot and 5-shot 5-ways settings.

• Remarkably, the linear classifiers generated by our transformer hypernetwork achieve up to
1.4% higher accuracy compared to the baseline classifiers operating on the same embedding
space. Our complete model achieves new state-of-the-art performance in five out of six
cases, outperforming other existing methods with optimization-free meta-inference.

2 RELATED WORKS

2.1 META-LEARNING

Many FSL methods use meta-learning, or “learning to learn” strategy, as proposed in (Vinyals et al.,
2016). Specifically, meta-learning mimics few-shot inference setting during meta-training stage by
sampling learning episodes from a larger training set. The meta-learning based methods are often
further categorized into metric learning methods and optimization based methods.

Metric learning methods aim to use a better similarity metric to learn more transferable represen-
tations for FSL. Matching Networks (Vinyals et al., 2016) leveraged attention and a memory ar-
chitecture to learn a mapping from a support set to a classification function using cosine similarity.
Prototypical Networks (ProtoNets) (Snell et al., 2017) constructed a nearest neighbor classifier using
euclidean distance between class-average features and test features. Relation Networks (Sung et al.,
2018) proposed a transferable metric by comparing the relation between different images. Oreshkin
et al. (2018) explored the effectiveness of task-dependent metric space. Li et al. (2020) and Xing
et al. (2019) used semantic similarity to learn better representations that benefit FSL. While these
approaches learn global representations, Li et al. (2019) proposed an image-to-class module to cal-
culate similarities on local descriptors. A similar idea of using local descriptors, or spatially-aware
features, is leveraged in Doersch et al. (2020).

Optimization-based methods aim to perform fine-tuning given a few support examples from a new
task. Model-agnostic meta-learning (MAML) (Finn et al., 2017) aimed to find a set of model pa-
rameters which can be quickly adapted to novel tasks by using only a few optimization steps. La-
tent Embedding Optimization (LEO) method (Rusu et al., 2018) demonstrates the effectiveness of
learning a low-dimensional latent generative representation space to perform gradient-based meta-
learning. MetaOptNet (Lee et al., 2019) proposed to incorporate a differentiable quadratic program-
ming solver to train the model end-to-end with a linear support vector machine as the classifier.

As we perform episodic training, our work falls into the broader category of meta-learning. How-
ever, we do not belong to either metric learning or optimization based methods. We do not rely on a
similarity metric or fine-tune model parameters on a support set of novel tasks. Instead, we aim to
bring the best of both worlds, offering optimization-free meta-inference similar to metric learning
approaches and while also producing task-dependent models similar to optimization based methods.

2.2 HYPERNETWORKS

Hypernetworks were first proposed in (Ha et al., 2017) for language modeling and image recog-
nition. It is an approach to use one network known as a hypernetwork to generate the weights of
another network. Since then, hypernetworks have been successfully applied to various tasks (Zhang
et al., 2018; Nirkin et al., 2020; Spurek et al., 2020).
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Figure 1: Meta-inference stage using various classifiers composed with a fixed task-agnostic feature
extractor. We propose a task-agnostic hypernetwork (d) to generate a task-specific linear classi-
fier. Note, LR and linear SVM (c) require training during meta-inference, whereas the remaining
classifiers (a,b,d) are training-free during meta-inference.

Several works have leveraged hypernetworks for few-shot learning, though some of these works do
not mention hypernetworks explicitly. Qiao et al. (Qiao et al., 2018) proposed using a feed-forward
network to predict the classifier weights from feature activations. Gordon et al. (Gordon et al., 2018)
used an amortized network to infer rows of a classifier weight matrix in a context-free manner.
TADAM (Oreshkin et al., 2018) defined a dynamic feature extractor with scale and shift parameters
predicted from task-dependent representations. TAFE-Net (Wang et al., 2019a) used a meta-learner,
or hypernetwork, to generate the parameters of a network that compute features compatible with a
fixed classifier. In contrast to TADAM and TAFE-Net, we keep a feature extractor fixed and adapt
the final linear classifier to a given task. Furthermore, unlike (Qiao et al., 2018; Gordon et al., 2018),
we infer context-aware decision boundaries for a multi-class classifier using transformers.

3 METHOD

The goal of a K-shot N -way classification problem is to leverage KN labeled examples from N
novel classes to infer a classifier that can classify QN unlabeled examples from the same classes.
The labeled and unlabeled examples are commonly referred to as support and query examples,
respectively. We denote the labeled set as Ds = {Xs, ys}KNs=1 and the unlabeled set as Dq =

{Xq}QNq=1, where {X, y} is an image and its corresponding one-hot label. The goal is to infer a
modelM such that ŷq =M(Xq;Ds).
Generally K = 1 or 5 in few-shot classification tasks, which is a challengingly low num-
ber of samples to learn from. One strategy is to meta-train M to solve many K-shot N -way
classification tasks drawn from a large labeled train set Dtrain. The classes in Dtrain, com-
monly referred to as the base classes, are typically different from the novel classes encountered
during inference. Specifically, we draw labeled sets {DBs ,DBq } ∼ Dtrain and learn M∗ =

argminM E{DB
s ,DB

q }L(M(XB
q ;DBs ), yBq ). At inference time, given Xq and Ds, we predict la-

bels ŷq =M∗(Xq;Ds).

3.1 OUR APPROACH

We construct modelM using a task-agnostic feature extractor F and a task-specific classifier C. F
computes features from support and query images, and C predicts class-logits. One can use either
a non-parametric nearest neighbor classifier or a simple parametric linear classifier as C (see Figure
1(a-c)). The parameters of a linear classifier can either be optimized (e.g. with logistic regression,
linear SVM), or inferred using a closed-form solution (e.g. ProtoNets (Snell et al., 2017)). As
observed by Tian et al. (2020), logistic regression can learn better classifiers than nearest neighbor;
however, it requires expensive task-specific optimization on novel task, often leading to overfitting
due to the few training samples. On the other hand, ProtoNets offer an optimization-free solution,
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but one that does not account for context: the parameters specific to the decision boundary of one
class are independent from the rest of the classes in the task, resulting in suboptimal performance.

We seek a context-dependent linear classifier that does not require task-specific optimization. To
this end, we introduce a transformer hypernetworkH that uses averaged support features to produce
the parameters of a classifier C. Instead of relying on optimization, H predicts parameters of C
using a single forward pass through the network, reducing overfitting and eliminating time needed
for training during meta-inference of novel tasks. Similar to F , H is task-agnostic and is shared by
all few-shot tasks; in contrast, the generated classifier C is task-specific and is predicted from the
support set of a given task. The complete model is shown in Fig. 1(d).

Let f(X) ∈ Rd×1 be `2-normalized features of an image X , f(X) = F(X)/||F(X)||2. Let
cn = 1

K

∑KN
s=1 1[ys=n]f(Xs) be the class-prototype of the nth class. We disentangle direction and

norm of cn to build representation pn =
[

cn
||cn||2 ; ||cn||2 − 1

]
. This choice is motivated by the

ProtoNet-style linear classifier, where W and b depend on the direction and the norm of individual
class-prototypes. The hypernetwork processes representations P = [p1, ..., pN ] as follows.

P̂ =
1√
d
W2T (

√
dW1P ) (1)

Here, W1 ∈ Rt×(d+1) and W2 ∈ R(d+1)×t are projection matrices and T is a transformer (Vaswani
et al., 2017). We initialize W1 as an orthogonal matrix and W2 = WT

1 , ensuring that Eq. 1 results
in pseudo-identity at initialization. This initialization helps the hypernetwork find a solution closer
to the ProtoNet solution, yet more optimal. Note that W1 and W2 are not tied and are free to vary
independently during training. Finally, we split P̂ to predict parameters of the linear classifier C.

Ŵ , b̂ = P̂(1:d,:), P̂(d+1,:) (2)

W, b =
Ŵ

||Ŵ ||2
, sigmoid(̂b) (3)

We predict class-logits for query examples as ŷq = C(f(Xq)|W, b) = f(Xq)
TW − b.

3.2 TRAINING AND INFERENCE

We train feature extractor F and hypernetwork H sequentially. F is pre-trained to perform a con-
ventional classification on the base classes, as in previous works (Ye et al., 2020; Sun et al., 2019;
Oreshkin et al., 2018; Tian et al., 2020). H is meta-trained to predictK-shotN -way linear classifiers
while keeping parameters of F frozen. Once trained, the hypernetwork can generate a task-specific
linear classifier for any novel task without requiring additional training.

Pre-training of F . Self-supervised learning (SSL) has proven effective for few-shot classifica-
tion (Gidaris et al., 2019; Mangla et al., 2020; Rodríguez et al., 2020; Rajasegaran et al., 2020). In-
spired by this observation, we train F using a combination of supervised and self-supervised criteria
as proposed in (Rajasegaran et al., 2020). To this end, we augment image-label pair {X, y} ∈ Dtrain

to produce {Xθ, yθ, rθ}, whereXθ is an imageX rotated by θ degrees, yθ = y, rθ is a one-hot rota-
tion label and θ ∈ {0, 90, 180, 270}. Then, we introduce a stack of two linear classifiers on top ofF .
F extracts features from image Xθ and passes them to the first classifier. The first classifier predicts
class logits ŷθ and passes them to the second classifier. The second classifier predicts rotation logits
r̂θ. We trained the entire model using LCCE(softmax(ŷθ), y) + αLBCE(sigmoid(r̂θ), rθ).

Meta-training of H. We meta-train H in an episodic fashion while keeping the parameters of F
frozen. We draw a batch of M few-shot tasks with non-overlapping classes, {DBs(m),D

B
q(m)}

M
m=1 ∼

Dtrain. We extract embeddings of support and query examples using F , and let H generate pa-
rameters of M task-specific classifiers {Cm}Mm=1 as discussed in Section 3.1. The generated
classifier Cm predicts class logits ŷBq(m) for query images XB

q(m). We use the cross-entropy loss
as our training criterion. Additionally, we also use outlier exposure (Hendrycks et al., 2018),
which yields a small but consistent improvement. To this end, we build a task-specific outlier set
DBo(m) = {X

B
q(l 6=m), u|l ∈ M},∀m ∈ M using the query images in the existing batch. Here u is a

soft label with uniform probability. The generated classifier Cm also predicts class logits ŷBo(m) for
outlier images. Finally, we combine cross-entropy losses evaluated on query and outlier sets to form
a training objective L = 1

M

∑M
m=1 LCCE(softmax(ŷBq(m)), y

B
q(m)) + λLCCE(softmax(ŷBo(m)), u).
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Meta-inference. We evaluate our model on novel few-shot tasks without further optimization. Let’s
consider a novel dataset {{Xs, ys}KNs=1 , {Xq}QNq=1}. The feature extractor F extracts features f(Xs)

and f(Xq) fromXs andXq . The hypernetwork uses f(Xs) to predict parametersW and b of a linear
classifier C. We use the generated classifier to predict class labels ŷq = argmax C(f(Xq)|W, b).

4 EXPERIMENTS

We perform experiments on 1-shot 5-way and 5-shot 5-way classification tasks on three datasets.
First, we provide details about the experiment setup. Then, we compare various linear classifiers for
a fixed F . Finally, we perform ablation on various design choices made in our hypernetwork and
present a state-of-the-art comparison of a complete model.

4.1 EXPERIMENT SETUP

Datasets. We perform experiments on three popular few-shot classification datasets: MiniIma-
geNet (Vinyals et al., 2016), TieredImageNet (Ren et al., 2018), and CIFAR-FS (Bertinetto et al.,
2018). MiniImageNet and TieredImageNet contain color images of size 84×84 obtained from Im-
ageNet (Russakovsky et al., 2015). MiniImageNet includes 60K images from 100 classes divided
into train, validation, and test sets with 64, 16, and 20 classes respectively (Ravi & Larochelle,
2017). TieredImageNet contains ∼0.78M images from 608 classes divided into train, validation,
and test sets with 351, 97, and 160 classes respectively. CIFAR-FS is derived from the CIFAR-100
dataset (Krizhevsky et al., 2009), containing 60K 32 × 32 color images. The dataset comprises of
100 classes divided into 64, 16, and 20 classes for training, validation, and testing. We use the same
number of ways during meta-training and meta-inference; experiments demonstrating interpolation
and extrapolation to fewer and more classes during meta-inference are shown in Appendix A.

Feature extractor F . Similar to past FSL works (Mishra et al., 2018; Ye et al., 2020; Tian et al.,
2020; Oreshkin et al., 2018; Lee et al., 2019; Ravichandran et al., 2019), we implement F as a
ResNet-12 (He et al., 2016), which consists of four residual blocks of three convolutional layers
with 64, 160, 320, and 640 3× 3 kernels. The first three blocks are followed by 2× 2 max-pooling
layers, and the last block is followed by a global average pooling layer, resulting in features of
size d = 640. We use Dropblock (Ghiasi et al., 2018) regularization while training F and follow
the optimization procedure of (Rajasegaran et al., 2020). We set batch-size to 64 and rotate each
image three times, resulting in an effective batch-size of 256. The hyperparameter α in the training
objective is set to 2. We train F for 65 epochs for MiniImageNet, 60 epochs for TieredImageNet,
and 65 epochs for CIFAR-FS. We start with an initial learning rate of 0.05 and decay the learning
rate by 0.1 at 60 epochs for MiniImageNet and CIFAR-FS, and 0.1 each at 30, 40 and 50 epochs for
TieredImageNet. Pre-training on each dataset is done on a Tesla V100 GPU with 16GB memory in
less than a day. Experiments with a ResNet-18 backbone can be found in Appendix B.

Hypernetwork H. For projection, we use t = 1024 for 1-shot and t = 2048 for 5-shot tasks.
Transformer T has a single encoder layer with two residual blocks (Vaswani et al., 2017). The first
residual branch includes a self-attention layer with a single attention head, and the second residual
branch includes an MLP with hidden dimensions equal to 4t. Furthermore, we place LayerNorm (Ba
et al., 2016) inside the residual branch (Xiong et al., 2020). Experiments with other architectural
instantiations of the hypernetwork can be found in Appendix C. We meta-trainH for 10K iterations,
halving the learning rate every 2K iterations and monitoring validation accuracy for early stopping.
We use a Stochastic Gradient Descent (SGD) optimizer with Nesterov momentum (Sutskever et al.,
2013) of 0.9 and weight decay of 5e-4 for both training phases. In addition to four rotations, the
input images are augmented using random crop, color jitter, and horizontal flip. We perform cross-
validation to choose the initial learning rate, batch-size M , and hyperparameter λ. Meta-training is
done on a V100 GPU with 16GB memory in less than 5 hours.

Evaluation Protocol. Many prior approaches report accuracy on only 600 test episodes (Snell et al.,
2017; Sun et al., 2019; Zhang et al., 2020; Finn et al., 2017; Triantafillou et al., 2017), but it is also
common to report accuracy on 1000 (Tian et al., 2020; Simon et al., 2020), 2000 (Ravichandran
et al., 2019), or 3000 (Tian et al., 2020) test episodes. Following the recommendations of recent
work (Ye et al., 2020; Rusu et al., 2018), we report average accuracy with a 95% confidence interval
on 10,000 test episodes for a lower variance estimate of test performance. For each episode, we
draw 15 query examples, using the same protocol for all experiments.
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Table 1: Comparison of various classification heads with a fixed pretrained feature extractor. We
report average accuracy with 95% confidence interval on the test split of each dataset. Classifiers
that require optimization on novel support set are indicted with Xin the second column. ‡ Nearest
Neighbor classifier and ProtoNet classifiers with euclidean and cosine distances are equivalent.

Classifier MiniImageNet TieredImageNet CIFAR-FS
1-shot 5-way

LR X 64.95±0.20 71.54±0.22 72.78±0.21
LR-Aug X 64.93±0.20 71.69±0.22 72.84±0.21
Linear SVM X 64.66±0.20 70.95±0.22 73.04±0.21
Linear SVM-Aug X 64.13±0.20 70.60±0.22 72.10±0.22
NN / ProtoNet ‡ 64.66±0.20 70.95±0.22 73.23±0.21
Ours 66.33±0.20 72.06±0.22 74.36±0.21

5-shot 5-way
LR X 81.86±0.14 86.34±0.15 86.98±0.15
LR-Aug X 82.05±0.13 86.67±0.15 87.14±0.15
SVM X 81.20±0.14 85.46±0.15 86.44±0.15
SVM-Aug X 81.15±0.14 86.04±0.15 86.22±0.15
NN 76.50±0.15 82.24±0.17 83.51±0.16
ProtoNet-euclidean 82.06±0.14 86.36±0.15 87.01±0.15
ProtoNet-cosine 82.02±0.14 86.38±0.15 87.16±0.15
Ours 82.19±0.14 86.50±0.15 87.46±0.15

4.2 CLASSIFICATION HEAD COMPARISON WITH A FIXED FEATURE EXTRACTOR F

Baselines. We compare performance of various linear classifiers that operate on the `2-normalized
feature space of the same pre-trained feature extractor F in Table 1, isolating it from the effect of the
linear classifier choice. To this end, we draw novel few-shot tasks from the test splits of the datasets
and use a pre-trained F to extract features from the support and query examples. Then, we infer
the following linear classifiers using the support image features and labels: (i) a logistic regression
classifier (LR), (ii) a linear SVM, (iii) a ProtoNet-style linear classifier with euclidean distance, (iv)
a ProtoNet-style linear classifier with cosine distance, (v) a nearest neighbor classifier (NN), and
(vi) a linear classifier produced by our hypernetwork H. Note that the first two classifiers require
training on the support set of novel classes while the remaining classifiers are training-free. We also
train LR and SVM classifiers using a combination of five independently augmented (random crops,
color jitter and horizontal flip) copies of the support set. For ProtoNet-style classifiers, we compute
class prototypes and measure euclidean and cosine distances between the prototypes and the query
features. We emphasize that ProtoNet-style classifiers are used only during meta-inference. We do
not train feature extractor F using the ProtoNet objective.

Results. Among the baseline classifiers, logistic regression with an augmented support set performs
the best. Augmentation leads to marginal but consistent improvement in LR, as similarly observed
by Tian et al. (2020). We do not observe the same trend for linear SVM. As seen by Tian et al.
(2020), the performance gap between NN and LR is larger for 5-shot tasks compared to 1-shot tasks.
ProtoNet classifiers show competitive performance even though the feature extractor is not trained
with the ProtoNet objective, importantly demonstrating the effectiveness of the ProtoNet approach
in solving few-shot tasks (Snell et al., 2017; Wang et al., 2019b). In the case of 5-shot, ProtoNet
classifiers perform comparably to LR-Aug on two datasets without using any data augmentation.

Finally, our hypernetwork produces a classifier that outperforms the baseline classifiers in five out
of six cases, with the exception of LR-Aug for 5-shot TieredImageNet. However, LR-Aug requires
feature extraction on a 5× larger augmented support set and training on the support set, whereas a
hypernetwork facilitates training-free meta-inference. Inferring an optimal classifier is more chal-
lenging in 1-shot cases compared to 5-shot cases. Our hypernetwork infers a classifier that gains
>1% higher accuracy on two out of three 1-shot tasks. The results suggest that hypernetworks can
find a solution for the classifier parameters that is more optimal than the baseline solutions.

Analysis. Predicting a context-aware linear classifier in a training-free manner sets our approach
apart from ProtoNet and LR. In Figure 2, we visualize a 1-shot 5-way classification task drawn from
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Figure 2: T-SNE projection (Van der Maaten & Hinton, 2008) of support (star) and query (circles)
features, color-coded by classes in a novel 1-shot 5-way task from MiniImageNet. Our context-
aware approach achieves higher accuracy than context-unaware ProtoNet.

Table 2: Accuracy with 95% confidence
interval on support (S) and query (Q) sets
of novel 5-shot tasks from MiniImageNet.

S Q
LR 99.34±0.03 81.76±0.14
Ours 98.92±0.04 82.16±0.14
Ours+LR 99.37±0.03 81.99±0.14

the MiniImageNet test set. The context-aware linear
classifier produced by our model accurately classifies
many query images where context-unaware ProtoNet
struggles. While LR also produces context-aware clas-
sifier, it requires task-specific optimization which is ex-
pensive and prone to overfitting. On Intel(R) Xeon(R)
CPU, a single forward pass through a PyTorch imple-
mentation of our hypernetwork is 2× faster in predicting a linear classifier for 1-shot tasks than
optimization using scikit-learn implementation of LR. In Table 2, we show accuracy of our model
and LR on support and query sets for novel 5-shot tasks. It is evident that LR overfits on the support
set, leading to reduced generalizability and lower performance on the query set. In contrast, the
linear classifier produced by our hypernetwork is more generalizable. Additionally, we demonstrate
that further task-specific optimization on the linear classifier predicted by our model using LR leads
to overfitting, indicating that classifier produced by our model in a training-free manner is already
excellent and further task-specific optimization only leads to sub-optimal solutions.

4.3 ABLATION STUDY

We perform ablation on certain elements of our hypernetwork on the TieredImageNet dataset. First,
we verify benefits of orthogonal initialization of W1 and W2 and constraining W and b as in Eq 3.
Next, we analyze the effect of outlier exposure and batch-size M on the performance of our model.
Finally, we present an ablation study of various architecture design choices of the transformer T .

Initialization of W1 and W2. We initialize W1 with an orthogonal matrix and W2 =WT
1 , ensuring

that the hypernetwork is a pseudo-identity map at initialization. Table 3 (left) presents comparison
of orthogonal initialization with Xavier initialization (Glorot & Bengio, 2010). The orthogonal
initialization achieves significantly higher accuracy compared to standard initialization.

Constraints on W and b. In Eq 3, we restrict ||W ||2 = 1 and b ∈ (0, 1). Here, we build a classifier
using unconstrained Ŵ and b̂ from Eq 2 and compare it against a classifier built using W and b
from Eq 3. The results are presented in Table 3 (middle). We observe consistent improvement by
constraining parameters of the generated classifier.

Outlier exposure (OE). We include an outlier exposure training criterion while meta-training H.
Table 3 (right) compares the performance of our model with and without outlier exposure. We
observe a small but consistent gain by using outlier exposure, justifying its inclusion.

Batch size M . We notice that the batch size M in the meta-training phase influences the perfor-
mance of our model. In Figure 3(a), we compare performance with various batch sizes. Observe
that the performance improves as one increases batch-size up to a certain value, after which the
performance starts to drop. We perform validation to select the value of M .

Transformer Architecture. In Figure 3(b), we compare performance of our model when the trans-
former T has a hidden dimensionality t set to 512, 1024 and 2048. We observe that performance im-
proves with increasing t. To maintain a trade-off between accuracy and efficiency, we use t = 1024
for 1-shot tasks and t = 2048 for 5-shot tasks. In Figure 3(c), we experiment with 1 and 8 heads
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Table 3: (Left) Comparison of initialization methods for W1 and W2. (Middle) Comparison of
{Ŵ , b̂} and {W, b} from Eq. 2 and 3. (Right) Use of outlier exposure (OE) in meta-training of H.
We report accuracy with 95% confidence interval for 5-way tasks on TieredImageNet test split.

Initialization Classifier Outlier Exposure
(Glorot & Bengio, 2010) Orthogonal C(·|Ŵ , b̂) C(·|W, b) Without OE With OE

1-shot 65.48±0.24 72.06±0.22 71.31±0.22 72.06±0.22 71.96±0.22 72.06±0.22
5-shot 82.04±0.17 86.50±0.15 85.10±0.16 86.50±0.15 86.38±0.15 86.50±0.15
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Figure 3: (a) Effect of batch size M on model performance. Ablation study on architecture of the
transformer T : (b) hidden dimensions t (c) number of heads (d) number of encoder layers. We
report accuracy with 95% confidence interval on TieredImageNet test split.

in the multi-head attention layer of the transformer T . We do not observe any gain in the accuracy
by using more than one head. In Figure 3(d), we experiment with 1, 2, and 4 encoding layers in the
transformer T . We observe a drop in the performance with more than one layer. Hence, we use a
single layer architecture with a single attention head in our experiments.

4.4 STATE OF THE ART COMPARISON OF A COMPLETE MODEL

In this section, we compare our complete model (F +H) with existing state-of-the-art methods. To
make the comparison fair, we include only inductive approaches that use ResNet-12 as a backbone
and do not use additional unlabeled data for training. Table 4 presents a comparison for MiniIma-
geNet and TieredImageNet. Table 5 presents a comparison for CIFAR-FS. We outperform existing
methods that offer optimization-free meta-inference in five out of six cases. Remarkably, we also
outperform methods that use task-dependent optimization in four out of six cases.

MiniImageNet. Our model achieves competitive performance with state-of-the-art methods.
Among the methods that offer optimization-free meta-inference, FEAT (Ye et al., 2020) achieves
the best performance. While FEAT outperforms our transformer hypernetwork on 1-shot tasks, we
perform comparably to FEAT on 5-shot tasks1. Notably, we outperform MABAS (Kim et al., 2020),
a state-of-the-art method that requires task-specific optimization, on 1-shot tasks with margin >1%.

TieredImageNet. We achieve state-of-the-art performance on this dataset. While FEAT performs
significantly better than many other approaches, we outperform FEAT with margin >1% on 1-shot
tasks and >1.5% on 5-shot tasks1. Among the optimization-based methods, RFS (Tian et al., 2020)
achieves the best performance on this dataset. We outperform RFS on both tasks by margin of
∼0.5%, while not requiring task-specific optimization.

1For thorough comparison, we apply SSL objective from Section 3.2 to FEAT and find it to be ineffective
(see Appendix D), perhaps because FEAT already uses contrastive objective during fine-tuning.
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Table 4: State-of-the-Art comparison on test split of MiniImageNet and TieredImageNet. We divide
previous approaches into those that require task-dependent optimization (indicated with a Xin the
second column) and those that do not. Our method belongs to the latter. We highlight state-of-the-
art methods in each group separately. We report our accuracy with a 95% confidence interval on
10K tasks, setting a new state-of-the-art in three out of four cases when compared to each of the two
groups. � Results on MiniImageNet and TieredImageNet datasets are reported from original paper
and Xing et al. (2019) respectively. †Results are reported from Ye et al. (2020).

MiniImageNet TieredImageNet

Method 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way
MTL (Sun et al., 2019) X 61.20±1.80 75.50±0.80 - -
MetaOptNet-SVM (Lee et al., 2019) X 62.64±0.61 78.63±0.46 65.99±0.72 81.56±0.53
MCRNet-SVM (Zhong et al., 2021) X 62.53±0.64 80.34±0.47 - -
Neg-Cosine (Liu et al., 2020) X 63.85±0.81 81.57±0.56 - -
RFS (Tian et al., 2020) X 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49
MABAS (Kim et al., 2020) X 65.08±0.86 82.70±0.54 - -
SNAIL (Mishra et al., 2018) 55.71±0.99 68.88±0.92 - -
TADAM (Oreshkin et al., 2018) � 58.50±0.30 76.70±0.30 62.13±0.31 81.92±0.30
Shot-Free (Ravichandran et al., 2019) 59.04±0.43 77.64±0.39 66.87±0.43 82.64±0.43
TapNet (Yoon et al., 2019) 61.65±0.15 76.36±0.10 63.08±0.15 80.26±0.12
DSN (Simon et al., 2020) 62.64±0.66 78.83±0.45 66.22±0.75 82.79±0.48
ProtoNet (Snell et al., 2017) † 62.39±0.21 80.53±0.14 68.23±0.23 84.03±0.16
RelationNet2 (DCN) (Zhang et al., 2020) 63.92±0.98 77.15±0.59 68.58±0.63 80.65±0.91
FEAT (Ye et al., 2020) 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16
Ours 66.33±0.20 82.19±0.14 72.06±0.22 86.50±0.15

Table 5: State-of-the-art comparison on the test split of CIFAR-FS. Previous approaches are divided
into two groups: (i) methods that require task-dependent optimization (indicated with Xin the sec-
ond column), and (ii) methods that do not. We highlight state-of-the-art methods in each group
separately. Our method falls in the second group, where we set a new state-of-the-art. We also
outperform the state-of-the-art method in the first group in the 5-shot case. Accuracy reported with
95% confidence interval on 10K tasks. †Results are reported from (Tian et al., 2020).

Method 1-shot 5-way 5-shot 5-way
MetaOptNet-SVM (Lee et al., 2019) X 72.0±0.7 84.2±0.5
MABAS (Kim et al., 2020) X 73.5±0.9 85.5±0.7
RFS (Tian et al., 2020) X 73.9±0.8 86.9±0.5
MCRNet-SVM (Zhong et al., 2021) X 74.7±0.7 86.8±0.5
Shot-Free (Ravichandran et al., 2019) 69.2±NA 84.7±NA
ProtoNet (Snell et al., 2017) † 72.2±0.7 83.5±0.5
DSN (Simon et al., 2020) 72.3±0.8 85.1±0.6
Ours 74.4±0.2 87.5±0.2

CIFAR-FS. Among the group of methods that does not require task-specific training, we achieve
state-of-the-art performance. We observe ∼2% better accuracy than DSN (Simon et al., 2020) on
both tasks. Note that we also outperform RFS (Tian et al., 2020) by a margin of ∼0.6% on 5-shot
tasks. We emphasize that, unlike our approach, RFS requires optimization on novel tasks.

5 CONCLUSIONS

Many recent FSL methods use linear classifiers in conjunction with a fixed, task-agnostic feature ex-
tractor to classify query images but make various trade-offs. Previous training-free approaches such
as ProtoNet produce this classifier without considering the context. Context-aware approaches such
as Logistic Regression (LR) outperform context-unaware approaches but require expensive task-
specific training that is prone to overfitting to a small support set. We present a novel transformer
hypernetwork approach that combines the best of both worlds. Through experiments, we show our
approach is able to achieve contextualization with fast, training-free meta-inference while offer-
ing better generalization than LR. Additionally, comparisons of our complete model with previous
training-free approaches demonstrate state-of-the-art performance in five out of six cases. These
strong results suggest the potential of further extensions; given the impact of the representation
power of the feature extractor on our hypernetwork’s performance, we believe using a hypernetwork
to generate parameters for the feature extractor as well to be a promising future direction.
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A INTERPOLATION AND EXTRAPOLATION OF CLASSIFICATION WAYS

We analyze the capability of our transformer hypernetwork to interpolate and extrapolate the number
of classification ways during meta-inference. Specifically, we meta-train our model for 20-way (5-
way) few-shot tasks and meta-test for 5-way (20-way) tasks to study the interpolation (extrapolation)
capability. We follow the same training procedure as discussed in Section 3.2, except for the outlier
exposure. Results on TieredImageNet dataset are presented in Table 6. We observe that our model
achieves greater performance during meta-inference if meta-trained with higher number of ways.
Snell et al. (2017) made a similar observation for ProtoNet. In other words, our model has good
interpolation capabilities. On the contrary and unsurprisingly, we see a small performance drop
when we meta-train our model with lower number of ways than meta-inference.

Table 6: Accuracy of our model with 95% confidence interval on test split of TieredImageNet dataset
when meta-trained and meta-tested with different number of ways.

1-shot 5-way 5-shot 5-way

Meta-test
Meta-train 5-way 20-way 5-way 20-way

5-way 71.09±0.22 71.49±0.23 86.02±0.15 86.15±0.15
20-way 43.75±0.11 44.30±0.11 65.44±0.10 65.66±0.10

B RESNET-18 BACKBONE

We analyze performance of our model with ResNet-18, a deeper backbone than ResNet-12. We
pretrain ResNet-18 and train the hypernetwork following the same procedure and hyperparameters
as stated in Section 3.2 and 4.1 of the main paper. Table 7 shows results for MiniImageNet dataset.
We observe reduced performance with ResNet-18 with the current set of hyperparameters. While a
dedicated hyperparameter search may further improve the performance of the model with ResNet-
18 backbone, these results corroborate previous findings that shallower ResNets tend to outperform
deeper ones in FSL settings for MiniImageNet (Chen et al., 2019). We hypothesize that the size and
complexity of MiniImageNet may be too small to fully utilize the expanded capacity of ResNet-18
in the few-shot setting.

Table 7: Accuracy of our model with 95% confidence interval using ResNet-12 and ResNet-18
backbones on test split of MiniImageNet dataset.

1-shot 5-way 5-shot 5-way
ResNet-12 66.33±0.20 82.19±0.14
ResNet-18 64.53±0.20 79.99±0.15

C CONTEXT-AGGREGATION AND PERMUTATION INVARIANCE

Predicting a multi-class linear classifier requires that the hypernetwork is permutation invariant and
aggregates context to produce task-dependent classifier. Here we analyze importance of these two
properties. For clarity in the following discussion, we re-express equation 1 as follows:

P̂ =
1√
d
W2T (

√
dW1P ) (4)

P̂ =
1√
d
W2T (Q) (5)

Following Section 3.1, note that P̂ ∈ R(d+1)×N , P ∈ R(d+1)×N and Q ∈ Rt×N . A hypernetwork
is permutation invariant if it is insensitive to the permutations in the columns of P and aggregates
context if each column of P̂ depends on all columns P . To analyze these properties, we experiment
with the following architectures in place of a transformer T in the above formulation while keeping
the other components of the hypernetwork unaltered.
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• Linear layer with t× t weight matrix processes N columns of Q identically and indepen-
dently, formulating a permutation invariant hypernetwork that does not aggregate context.

• Conv1D layer withN×(N×1) filters processes t rows ofQ identically and independently,
formulating a hypernetwork that aggregates context but is not permutation invariant.

• BiLSTM considers Q as a sequence of N vectors (each of length t), formulating a hyper-
network that aggregates context but is not permutation invariant.

• Graph Neural Network (GNN) considersQ as fully-connected graph withN nodes (each
corresponding to one column of Q), formulating a hypernetwork that aggregates context
and is also permutation invariant. We follow the GNN architecture presented by Garcia &
Bruna (2017). However, note that we use GNN in the hypernetwork and Garcia & Bruna
(2017) used it in the main network.

• Transformer (our proposed method) considers Q as a sequence of N vectors, formulating
a hypernetwork that aggregates context and is also permutation invariant.

We compare the above variants in Table 8. We observe that variants of the hypernetwork that aggre-
gate context frequently outperform their counterpart. Transformer hypernetwork outperforms vari-
ants that are either permutation invariant or aggregate context but not both. Surprisingly, the GNN
underperforms the transformer despite having both desirable properties. We attribute the difference
in the performance between transformer and GNN to their architectures. Optimizing a hypernetwork
is more challenging than the main network. We hypothesize the architecture of the transformer is
easier to optimize and trains well when incorporated in the hypernetwork, achieving higher perfor-
mance than GNN.

Table 8: Analyzing properties of context-aggregation and permutation invariance on 5-shot 5-way
MiniImageNet. We report accuracy with 95% confidence interval. Transformer aggregates context
in permutation invariant manner and achieves the highest accuracy.

Permutation Context 1-shot 5-shot
invariance aggregation 5-ways 5-ways

Linear X 64.93±0.20 80.61±0.14
Conv1D X 66.07±0.20 81.42±0.14
BiLSTM X 64.40±0.10 80.12±0.15
GNN X X 64.90±0.20 79.94±0.15
Transformer X X 66.33±0.20 82.19±0.14

D SELF-SUPERVISED PRETRAINING

The pretraining objective of the feature extractor F plays a significant role in the final performance
of the model (Gidaris et al., 2019). Our method adopts self-supervised pretraining of the backbone
network. For thoroughness, we include self-supervised pretraining discussed in Section 3.1 in the
most competitive SOTA method, i.e. FEAT(Ye et al., 2020), and observe the performance. The result
presented in Table 9 shows that self-supervised pretraining does not improve FEAT. We speculate
that the fine-tuning of the feature-extractor with contrastive objective as done in FEAT renders the
self-supervised pretraining redundant.

Table 9: Accuracy of FEAT(Ye et al., 2020) with 95% confidence interval when the backbone is
pretrained using supervised (Sup.) vs supervised and self-supervised (Sup.+Self-Sup.) objectives.
Accuracy for Supp. objective is reported from (Ye et al., 2020).

1-shot 5-way 5-shot 5-way
Sup. Sup.+Self-Sup. Sup. Sup.+Self-Sup.

MiniImageNet 66.78±N/A 66.83±0.21 82.05±N/A 80.14±0.16
TieredImageNet 70.80±0.23 70.23±0.23 84.79±0.16 84.49±0.16
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