
Under review as a conference paper at ICLR 2022

TRADING QUALITY FOR EFFICIENCY OF GRAPH PAR-
TITIONING: AN INDUCTIVE METHOD ACROSS GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many applications of network systems can be formulated as several NP-hard com-
binatorial optimization problems regarding graph partitioning (GP), e.g., modular-
ity maximization and NCut minimization. Due to the NP-hardness, to balance the
quality and efficiency of GP remains a challenge. Existing methods use advanced
machine learning techniques to obtain high-quality solutions but usually have high
complexity. Some fast GP methods use heuristic strategies to ensure low runtime
but suffer from quality degradation. In contrast to conventional transductive GP
methods applied to a single graph, we propose an inductive graph partitioning
(IGP) framework across multiple associated graphs of a system or scenario to al-
leviate the NP-hard challenge. IGP first conducts the offline training of a dual
graph neural network on historical graph snapshots to capture properties of the
system. The trained model is then generalized to newly generated graphs for fast
high-quality online GP without additional optimization, where a better trade-off
between quality and efficiency is achieved. IGP is also a generic framework that
can capture the permutation invariant GP ground-truth of historical snapshots in
the offline training and tackle the online GP on graphs with non-fixed number of
nodes and clusters. Experiments on a set of benchmarks demonstrate that IGP
achieves competitive quality and efficiency over various state-of-the-art baselines.

1 INTRODUCTION

For various complex systems, e.g., communication networks, graph is a generic model to describe
the entities and their relations using a set of nodes and edges. Graph partitioning (GP) is a classic
inference task that aims to partition the nodes of a graph into several groups (i.e., clusters) with
dense linkage distinct from other groups. Since the extracted clusters are believed to correspond
to several real-world substructures of a system, e.g., cells in wireless networks (Dai & Bai, 2017),
many network applications are formulated as GP tasks (Qin et al., 2019; Patil & Kulkarni, 2021).

Mathematically, GP can be described as some NP-hard combinatorial optimization problems, e.g.,
modularity maximization (Newman, 2006) and normalized cut (NCut) minimization (Von Luxburg,
2007). Due to the NP-hardness, to balance the quality and efficiency of GP remains a challenge but
some real applications have both requirements of high quality and low runtime, e.g., accurate GP on
a wireless cellular network with several thousand nodes in a few seconds (Dai & Bai, 2017).

On the one hand, prior work has demonstrated the ability of machine learning (ML) techniques
to achieve high GP quality. Typical ML-based methods include non-negative matrix factorization
(Wang et al., 2011) and generative probabilistic models (Karrer & Newman, 2011). Graph embed-
ding emerges as a promising technique for GP in recent studies. These methods first learn low-
dimensional node representations via random walk (Perozzi et al., 2014) or deep learning (Wang
et al., 2016; Yang et al., 2016) to capture high-order proximities and nonlinear characteristics of a
graph. The GP result is derived by feeding the learned embedding to a downstream clustering mod-
ule (e.g, KMeans). However, most ML-based methods have to use iterative optimization algorithms
(e.g., gradient descent) to learn large-scale parameters for each graph with high complexity.

On the other hand, to reduce the overall runtime and satisfy real-time constraints of some appli-
cations is another major focus. Some fast GP methods apply heuristic strategies to approximate
conventional objectives, e.g., greedy modularity maximization (Blondel et al., 2008) and multi-level
coarsening for graph-cut minimization (Dhillon et al., 2007). Several graph embedding approaches

1

Under review as a conference paper at ICLR 2022

also adopt fast approximation to reduce the inference time, e.g., random projection for high-order
proximities (Zhang et al., 2018a). Despite their high efficiency (e.g., low runtime), they may suffer
from unexpected quality decline due to the inherent information loss of heuristic approximation.

The aforementioned state-of-the-art (SOTA) GP methods are inherently transductive, which inde-
pendently optimize the model on each static graph and can only tackle GP on such a unique graph.
We try to achieve a better trade-off between quality and efficiency from a new inductive per-
spective across multiple associated graphs of a system or scenario. An inductive graph partition-
ing (IGP) framework is proposed based on the fact that most real-world complex systems generate
a set of graphs via common knowledge in terms of several underlying distributions, e.g., power-law
distributions. This hypothesis is also adopted in the simulation of various network systems (Wehrle
et al., 2010). The multiple graphs can be (i) associated snapshots evolving over time or (ii) indepen-
dent (sub)graphs of a scenario without temporal dependency e.g., ego-nets in social media. IGP first
trains a high-quality GP model on historical snapshots in an offline way, which aims to fully capture
properties of the system or scenario regardless of time cost. The trained model is then generalized to
newly generated graphs for online GP without additional optimization, which significantly reduces
the runtime on these new graphs and is believed to have high-quality GP results. For instance, we
can conduct the offline training of IGP on existing known ego-nets of a social network and general-
ize it to new unseen ego-nets. In real applications, it is usually assumed that we have enough time to
prepare a high-quality model using historical known data in an offline way, which is also one-time-
effort only. Our focus is to achieve a better trade-off between quality and efficiency of online GP on
new graphs after deploying the trained model to a system with model parameters fixed.

Technically, IGP follows a graph embedding scheme for unsupervised node-level tasks (i.e., GP)
across graphs using the inductive nature of graph neural networks (GNN). Although some inductive
GNNs have the potential to be generalized to new unseen nodes and graphs (Hamilton et al., 2017;
Veličković et al., 2018), they still suffer from the following limitations for GP.

In this study, we consider GP on multiple graphs where topology is the only available information
source, i.e., without graph attributes. As some systems allow the addition and deletion of entities,
we assume that the number of nodesN is non-fixed for multiple graphs. Although existing inductive
GNNs can be applied to graphs with non-fixedN , they were originally designed for attributed graphs
and rely on fixed dimensionality of node features. Our preliminary experiments indicate that some
classic settings of GNN for the case without node features (e.g., using a constant matrix with fixed
dimensionality as the feature input) may suffer from poor GP quality. Some methods extract features
via dimensionality reduction (e.g., PCA (Nazi et al., 2019)) to map the topology (e.g., adjacency
matrix) with non-fixed N to a fixed-dimensional feature space, which is still time-consuming.

Moreover, different system snapshots can be assigned with different number of clusters K. Some
inductive GNN based approaches adopt an end-to-end (E2E) framework to achieve a better approx-
imation to classic GP objectives (e.g., GAP (Nazi et al., 2019) for NCut minimization and ClusNet
(Wilder et al., 2019) for modularity maximization), with partitioning results derived via a fully-
connected (FC) output layer. Despite their high quality, they can only tackle the inductive GP across
graphs with fixed K, due to fixed dimensionality of the output layer. These E2E methods still need
to be trained from scratch for new graphs with non-fixed K, which is time-consuming.

Although prior studies have demonstrated the ability of inductive GNNs to tackle (semi-)supervised
tasks (e.g., node classification) on new unseen nodes and graphs (Hamilton et al., 2017; Veličković
et al., 2018), few of them consider unsupervised node-level tasks (e.g., GP) across graphs. Our
experiments also indicate that some standard settings of inductive GNNs for unsupervised tasks
(e.g., using classic unsupervised training loss of graph embedding for GNN (Hamilton et al., 2017))
may still lack robustness for the online GP on newly generated graphs.

In addition to obtaining a better trade-off between quality and efficiency over conventional trans-
ductive GP methods via a novel inductive framework across graphs, we also make the following
contributions to address the aforementioned limitations of inductive GNNs. (i) To tackle the on-
line GP with non-fixed N , we develop an efficient feature extraction module for inductive GNNs
via graph coarsening. (ii) In contrast to E2E methods, IGP adopts an inductive graph embedding
scheme across graphs which can tackle the online GP with non-fixed K. (iii) Note that GP is an
unsupervised node-level task, where the cluster labels are permutation invariant, e.g., label assign-
ments (l1, l2, l3) = (1, 2, 2) and (l1, l2, l3) = (2, 1, 1) are the same in terms of GP with li as the

2

Under review as a conference paper at ICLR 2022

cluster label of node vi. IGP can further incorporate such permuttion invariant label information
(e.g., GP ground-truth) of historical graphs to the offline training by combining several GP objec-
tives (e.g., modularity maximization and NCut minimization) with a novel dual GNN structure
which ensures strong robustness for the online GP on new graphs.

2 PROBLEM STATEMENTS AND PRELIMINARIES

In this study, we consider GP on a set of graphs S = {G1,G2, · · · ,GT } from a common system
or scenario. Each graph Gt ∈ S can be represented as Gt = (Vt, Et) with Vt = {vt1, . . . , vtNt

}
and Et = {(vti , vtj)

∣∣vti , vtj ∈ Vt } as the sets of nodes and edges. For each Gt, topology is the only
available information source without graph attributes. We use an adjacency matrix At ∈ <Nt×Nt

to describe its topology with Nt nodes, where (At)ij = (At)ji = 1 if (vti , v
t
j) ∈ Et and (At)ij =

(At)ji = 0 otherwise. Since some systems allow addition and deletion of entities, we assume that
different snapshots in S can have different node sets, i.e., ∃Gt,Gs ∈ S s.t. Vt 6= Vs. Since there
may be no temporal dependency among {G1, · · · ,GT } in some cases (e.g., multiple ego-nets in
social media), we do not consider the node correspondence among {V1, · · · ,VT }. We follow the
hypothesis adopted in the simulation of various network systems (Wehrle et al., 2010) that graphs in
S are independently generated via several underlying distributions of a common system or scenario.

Graph Partitioning. Given a graph Gt, GP aims to partition the node set Vt into Kt subsets (i.e.,
clusters) Ct = {Ct1, · · · , CtKt

} so that (i) within each cluster the linkage is dense but (ii) between
different clusters the linkage is relatively loose. The result Ct also satisfies Ctr ∩Cts = ∅ for ∀r 6= s.
Mathematically, GP can be formulated as several NP-hard combinatorial optimization problems,
e.g., NCut minimization (Von Luxburg, 2007) and modularity maximization (Newman, 2006).

Given a graph Gt, NCut minimization aims to get the GP result Ct that minimizes the NCut metric:

arg minCt
NCut(Ct) =

1

2

∑Kt

r=1
[cut(Ctr, C̄

t
r)/vol(Ctr)] (1)

where C̄tr = Vt − Ctr is the complementary set of Ctr; cut(Ctr, C̄
t
r) =

∑
vi∈Ct

r,vj∈C̄t
r

(At)ij is the
cut between Ctr and C̄tr; vol(Ctr) =

∑
vi,vj∈Ct

r
(At)ij is the volume of Ctr. The objective (1) can be

equivalently expressed in the following matrix form:

arg minHt
tr(HT

t LtHt) s.t.HT
t Ht = IKt

, (2)

where Lt = INt
− D−0.5

t AtD
−0.5
t is the Laplacian matrix of At; Dt = diag(dt1, · · · , dtNt

) is a
diagonal matrix with dti =

∑
j (At)ij ; IN is anN -dimensional identity matrix. Ht ∈ <Nt×Kt is the

membership indicator, where (Ht)ir = [dti · vol(Ctr)
−1]0.5 if vti ∈ Ctr and (Ht)ir = 0 otherwise.

Modularity maximization is another conventional NP-hard objective of GP. Given a graph Gt, it aims
to find a partition Ct that maximizes the modularity metric:

arg minCt Mod(Ct) =
1

2e

∑
r

∑
vti ,v

t
j∈Ct

r

[(At)ij − d
t
id
t
j/(2e)], (3)

where e =
∑
i d
t
i/2 is the number of edges. The objective can also be rewritten in a matrix form:

argminHt
− tr(HT

t QtHt) s.t. tr(HT
t Ht) = Nt, (4)

where Qt ∈ <Nt×Nt is the modularity matrix with (Qt)ij = (At)ij − dtidtj/(2e). Ht ∈ <Nt×Kt is
the membership indicator, where (Ht)ir = 1 if vti ∈ Ctr and (Ht)ir = 0 otherwise.

Inductive Graph Embedding. Given a single graph Gt, conventional transductive graph embedding
aims to learn a function f : {vti} 7→ {uti ∈ <1×k} that maps each node vti to a k-dimensional vector
uti. The key characteristics of Gt (e.g., clustering structure) should be preserved in the embedding
space, where a node pair (vti , v

t
j) with similar properties (e.g., in the same cluster) should have

similar representations (uti,u
t
j) (e.g., with close distance in the embedding space). The learned

representations {uti} are used as the input of several downstream tasks on Gt including GP.

To alleviate the NP-hard challenge of GP, we consider a novel inductive graph embedding scheme,
where model parameters of f are shared by all the graphs in S. We divide S into a training set

3

Under review as a conference paper at ICLR 2022

Dual GNN

Structure

Clustering

Module
Model

Opt.
(Param.

Fixed)Dual GNN

Structure

Snapshots

New System

Historical

GP Results

(e.g., ground-truth)

{ }t  

{ } w.r.t. { }t tC

Historical System
{ }t 

  Snapshots

New GP Results

(a) Offline Training
(b) Online fast

high-quality GP

' '{ }w.r.t.{ }t tC

Figure 1: IGP across mul-
tiple associated graphs.

1

2

3

4 5

6

7

8

Cluster 1 Cluster 2

1

2

3

4 5

6

7

8

Componet 1 Compoent 2

Feature

Encoder

Aux. Label-

Induced

Encoder

(Dual GNN w/

shared parameters)

{1, 2,

3, 4}

{5, 6,

7, 8}

Original Graph
t

Aux. Label-Ind. Graph

Supergraph
*

t

()g

t

(HEM Graph

Coarsening)

Adjacency

Matrix At

Red.

Feat. Zt

Aux. Label-Ind.

Adj. Matrix
()g

tA

Emb. Ut

Aux. Label-

Ind. Emb.
()g

tU

FC

Classifier

Discriminator

Generator

In
n

er

P
ro

d
u

ct

In Label-Ind. Encoder,

message passing only

occurs in each component

?tU

()?g

tU
(i) Adv.

Learning Obj.

Reconstru

cted Feat.
tX

(ii) Feature

Reconstruction Obj.

Neigh-Ind.

Feature Xt

(min

error)

(Regularizing)

GP Result Ct

(ground-truth) of
t

(iii) Clustering

Reg. Obj.

1

2

3

4 5

6

7

81

2

3

4 5

6

7

8

1

2

3

4 5

6

7

81

2

3

4 5

6

7

8

In Feature Encoder,

message passing occurs in

the original topology

G

D

Figure 2: A running example of the offline training of our dual GNN structure.

Γ ⊂ S and a test set Γ′ = S − Γ, which represent the sets of historical known and newly generated
graphs. We first train f on Γ in an offline way to fully capture structural properties of historical
graphs. Although graph embedding and GP are unsupervised procedures, we assume the permuta-
tion invariant GP result Ct (i.e., label information) of each historical graph Gt ∈ Γ is available in the
offline training, which can be used to enhance the offline embedding optimization. In general, the
training label information {Ct|Gt ∈ Γ} can be from the (i) ground-truth of system applications (e.g.,
cells in wireless cellular network decomposition) or (ii) results of some high-quality (but usually
time-consuming) GP baselines. It indicates another application that we can use GP results of some
strong baselines to regularize the offline training of IGP. After the training, we directly obtain the
embedding {ut′i } from f for each new graph Gt′ ∈ Γ′ with model parameters fixed. The online GP
on a new graph Gt′ is the downstream task, where we assume the number of clusters Kt′ is given.
The GP result of Gt′ is derived by applying a clustering algorithm (e.g., KMeans) to {ut′i }.

3 METHODOLOGY

We propose an IGP framework with the overview shown in Fig. 1, including the (i) offline training
of a dual GNN structure on historical graphs and (ii) online generalization to new graphs via an
inductive graph embedding scheme. Fig. 2 gives a running example of the offline training in IGP.

Model Architecture. Inspired by the adversarial auto-encoder (AAE) (Makhzani et al., 2015),
we introduce a novel dual GNN structure, including a generator G and a discriminator D that
are jointly optimized via an adversarial process. To the best of our knowledge, the dual GNN
structure is our original design, which is different from SOTA AAE-based graph embedding
methods (Pan et al., 2018) that regularize the embedding via the adversarial process between a
probability distribution. In contrast, our dual GNN structure incorporates the permutation invariant
label information of historical graphs {Gt ∈ Γ} to the learned embedding via (i) a parameter sharing
strategy and (ii) an adversarial process between {Gt} and auxiliary label-induced graphs {G(g)

t }.
Concretely, in the offline training, we assume the topology and GP result (used as the ‘ground-truth’)
of each historical graph Gt are available, which are described by an adjacency matrix At ∈ <Nt×Nt

and an indicator matrix Rt ∈ <Nt×Kt . We define (Rt)ir = 1 if node vti is in cluster Ctr by the
‘ground-truth’ and (Rt)ir = 0 otherwise. Due to the disjoint constraint of GP, only one entry in
each row of Rt is 1 with other entries in the same row set to 0. In addition to the original graph Gt,
an auxiliary label-induced graph G(g)

t , with A
(g)
t = RtR

T
t as the adjacency matrix describing its

topology, is introduced to encode the structure of ‘ground-truth’ based on the following Fact 1.

(Fact 1) For a historical graph Gt with Kt clusters, its auxiliary label-induced graph G(g)
t has

Kt fully connected components with each component corresponding to one unique cluster of Gt.
Namely, there is an edge between nodes vti and vtj in G(g)

t only when they are in the same cluster,
thus encoding the label information of ‘ground-truth’ (see Appendix A for the proof).

In the example of Fig. 2 with 8 nodes {1, 2, · · · , 8}, G(g)
t has 2 fully connected components

{1, 2, 3, 4} and {5, 6, 7, 8} w.r.t. the 2 clusters in the GP result (i.e., ‘ground-truth’) of Gt.
The generator G includes a feature encoder and a label-induced encoder, forming a dual GNN
structure with shared parameters δG. The feature encoder takes At and a feature matrix Xt as
inputs, and derives graph embedding Ut, i.e., Ut = G(At,Xt; δG). The label-induced encoder
takes A(g)

t and Xt as inputs, and outputs auxiliary embedding U
(g)
t , i.e., U(g)

t = G(A
(g)
t ,Xt; δG).

4

Under review as a conference paper at ICLR 2022

GNN is originally designed for attributed graphs, where each node vti must have a feature vector de-
scribed by the i-th row of a feature matrix Xt. In this study, we consider GP without node attributes.
Instead of using conventional settings of GNN for graphs without attributes (e.g., use a constant
matrix for the input features), we extract additional structural feature Xt based on the neighbor sim-
ilarity encoded in At. IGP captures the permutation invariant label information of historical graphs
by combining the dual GNN structure with classic GP objectives. We adopt the objectives of (i)
modularity maximization and (ii) NCut minimization as two examples, corresponding to two set-
tings of Xt. For modularity maximization in (4), the modularity matrix Qt encodes the reweighted
neighbor similarity based on At, so we let Xt = Qt. For NCut minimization in (2), the Lapla-
cian matrix Lt gives the primary characteristics of graph structure, where Mt = D−0.5

t AtD
−0.5
t

is the key component regarding neighbor similarity. Hence, we let Xt = Mt. Both Qt and Mt

are the reweighting of At, where the pair of nodes (vti , v
t
j) with similar neighbor-induced features

((Xt)i,:, (Xt)j,:) are more likely to be partitioned into the same cluster. Our experiments further
demonstrate that the extraction of Xt is essential to ensuring the high GP quality of IGP.

However, the feature dimensionality of Xt is Nt (i.e., the number of nodes) which may not be fixed
over t. We introduce an efficient feature extraction module via heavy-edge matching (HEM) graph
coarsening (Hendrickson & Leland, 1995) to map Xt ∈ <Nt×Nt to a matrix Zt ∈ <Nt×L with
fixed dimensionality L. For Nt > L, we extract reweighted edges E(w)

t = {w(vti , v
t
j)|w(vti , v

t
j) =

(Xt)ij , (At)ij = 1} and apply HEM to E(w)
t . It merges the original graph Gt with Nt nodes into

a supergraph G∗t with L supernodes via a greedy strategy of continuously merging the node pair
with largest weight in E(w)

t into a supernode, e.g., merging a graph with 8 nodes into 2 supernodes
in Fig. 2. HEM outputs a coarsening matrix Ct ∈ <Nt×L, where (Ct)ij = |vt∗j |−0.5 if node vti
is merged into supernode vt∗j and (Ct)ij = 0 otherwise. We then let Zt = XtCt be the reduced
features. Since Ct is a sparse matrix, one can obtain Zt by setting its j-th column to (Zt):,j =∑
vi∈vt∗j

(Ct)ij(Xt):,i. ForNt < L, we let Zt = [Xt,0Nt×(L−Nt)]. In contrast to existing methods
using HEM to reduce topology complexities (Dhillon et al., 2007), we are the first to extract feature
input Zt for inductive GNNs (with non-fixed Nt) via HEM. It is more efficient than dimensionality
reduction (e.g., PCA of At) in SOTA GNNs (Nazi et al., 2019), since HEM is widely used in fast
GP methods (Liang et al., 2021). The derived Zt is also more informative than the input features in
some classic settings of inductive GNNs (e.g., let Zt be a constant matrix (Xu et al., 2019)).

Let F(l−1)
t and F

(l)
t be the input and output of the l-th layer of feature encoder or label-induced

encoder in G with F
(0)
t = Zt. The l-th GNN encoder layer is defined as

F
(l)
t = tanh(D̂−0.5

t ÂtD̂
−0.5
t F

(l−1)
t W

(l−1)
G), (5)

where Ât = A′t + INt
(A′t ∈ {At,A

(g)
t }) is the adjacency matrix with self-edges; D̂t =

diag(d̂t1, · · · , d̂tNt
) is the diagonal degree matrix; W(l−1)

G is the trainable parameter matrix shared

by the two encoders; (F
(l)
t)i,: is the latent feature vector of node vti . In (5), (F

(l)
t)i,: is the nonlinear

aggregation of the features of {vti} ∪ n(vti) in the previous layer, where n(vti) is the neighbor set of
vti . It is also known as the message passing of GNN, where neighbors of vti propagate their features
to vti for aggregation. By Fact 1, A(g)

t ensures that message passing of the label-induced encoder
only occurs in each connected component w.r.t. each cluster in the ‘ground-truth’ (e.g., the 2
components in Fig. 2), while message passing of the feature encoder occurs in the original topol-
ogy of Gt. The last layers of the feature and label-induced encoders output the graph embedding
Ut ∈ <Nt×k and auxiliary label-induced embedding U

(g)
t ∈ <Nt×k, where U

(g)
t = G(A

(g)
t ,Xt)

preserves more informative label-induced properties than Ut = G(At,Xt). We further use the
non-linear inner product of Ut to reconstruct the neighbor-induced features Xt:

X̃t = tanh(UtUT
t). (6)

The discriminator D is an auxiliary classifier to distinguish U
(g)
t from Ut, while the generator G

tries to generate plausible embedding Ut to fool D. Such an adversarial process helps G to generate
embedding Ut close to U

(g)
t . We denote D as yt = D(St; δD), where St ∈ {Ut,U

(g)
t } and δD are

the input and set of model parameters; yt ∈ <Nt is a column vector with (yt)i as the probability
that (St)i,: = (U

(g)
t)i,: rather than (St)i,: = (Ut)i,:. Let P(l−1)

t and P
(l)
t be the input and output of

5

Under review as a conference paper at ICLR 2022

the l-th layer in D with P
(0)
t = St. The l-th layer of D is defined as

P
(l)
t = ReLU(P

(l−1)
t W

(l−1)
D + b

(l−1)
D), (7)

where {W(l−1)
D ,b

(l−1)
D } are trainable model parameters. In particular, we use sigmoid as the acti-

vation function of the last layer instead of ReLU.

Model Optimization. As in Fig. 2, the offline training of IGP is based on three objectives: (i)
adversarial learning (AL), (ii) feature reconstruction (FR), and (iii) clustering regularization (CR).

The AL objective helps incorporate the permutation invariant label information of historical graphs
to the unsupervised embedding learning via an adversarial process between D and G. On the one
hand, D tries to distinguish U

(g)
t from Ut. The objective of D w.r.t. a graph Gt is

arg minδDLD(Gt) = −
[∑

i
log(1−D(Ut)i) +

∑
i
logD(U

(g)
t)i

]
/Nt. (8)

On the other hand, G tries to fool D by minimizing the following loss w.r.t. Gt:

LAL(Gt) = −
[∑

i
logD(Ut)i

]
/Nt. (9)

Such an adversarial process directsG to output the embedding Ut that is close to U
(g)
t , thus enabling

G to capture the permutation invariant label information of historical training graphs.

The FR loss forces G to derive the embedding Ut that encodes the key properties of the neighbor-
induced features Xt w.r.t. Gt by minimizing the reconstruction error between Xt and X̃t:

LFR(Gt) = ||X̃t −Xt||2F . (10)

In addition to the AL loss, IGP can also capture the permutation invariant label information via the
regularization of several GP objectives, e.g., modularity maximization (4) and NCut minimization
(2). We introduce the CR objective for a graph Gt that minimizes the following loss:

LCR(Gt) = −tr(HT
t X̃tHt), (11)

where Ht is the membership indicator encoding the ‘ground-truth’ with the same definitions in (4)
and (2). Since the constraints on Ht, e.g., tr(HT

t Ht) = Nt and HT
t Ht = IKt , are always satisfied

for the given ‘ground-truth’, we do not need to consider the discrete constraints on Ht. To the best of
our knowledge, we are the first to use the CR objective to incorporate the permutation invariant label
information (encoded by Ht of historical training data) to the unsupervised embedding learning,
whereas Ht is the parameter to be optimized or output in existing GP methods (Wilder et al., 2019).

Finally, we derive the objective of G w.r.t. Gt by combining (9), (10), and (11):

arg min δGLG(Gt) = LAL(Gt) + αLFR(Gt) + βLCR(Gt), (12)

where {α, β} are hyper-parameters to balance LFR and LCR.

In the joint offline optimization ofD andG, we use the Xavier method to initialize model parameters
{δD, δG}. The Adam optimizer is applied to iteratively update δD and δG based on the gradients of
loss (8) and (12). In each epoch, we randomly sample a certain number of historical graphs p from
the training set to update {δD, δG}. Finally, we save the model parameters {δ∗D, δ∗G} that result in
the best average GP quality on the validation set within a certain number of epochs n.

After offline training, we generalize IGP to new graphs for fast online GP. As in Fig. 1, for each
new graph Gt′ , we derive its embedding Ut′ by passing {At′ ,Xt′} forward the feature encoder of
G with its parameters δG fixed. As we assume that the number of clusters Kt′ is given, we apply
KMeans to Ut′ , which outputs the GP result w.r.t. the given Kt′ . Therefore, the runtime of online
GP on Gt′ includes (i) the feature extraction of Zt, (ii) one feedforward propagation through the
feature encoder, and (iii) the downstream clustering. Due to the space limit, we conclude the offline
training and online generalization procedures of IGP in Appendix B.

4 EXPERIMENTS

Datasets. We evaluate IGP on 2 synthetic benchmarks (with 7 settings) and 4 real datasets. Statistics
of the datasets are depicted in Table 1, where T , N , |E|, and K are the number of graphs, nodes,

6

Under review as a conference paper at ICLR 2022

edges, and clusters. The 11 datasets cover the cases with (i) fixed N and K, (ii) fixed N but
non-fixed K, as well as (iii) non-fixed N and K. GN-Net (Girvan & Newman, 2002) and LFR-
Net (Lancichinetti et al., 2008) are synthetic benchmarks that can simulate properties of real-world
network systems. In each benchmark, we generated a set of graphs and their GP ground-truth via
several distributions. GN-Net and LFR-Net use pin and µ to control clustering structures of each
graph. We denote the GN-Net with a setting of pin as GN-pin (pin ∈ {0.5, 0.4, 0.3}). The 3 datasets
of GN-Net are with fixed N and K. We use L(c, µ) (c ∈ {f, n}, µ ∈ {0.3, 0.6}) to represent
the LFR-Net with a setting of µ, where f and n denote cases with fixed and non-fixed N . As pin

decreases and µ increases, the clustering structures become increasingly difficult to identify. Taxi
(Piorkowski et al., 2009), Reddit (Yanardag & Vishwanathan, 2015), Enron (Rossi & Ahmed, 2015),
and AS (Leskovec et al., 2005) are real datasets from a vehicle network, an email network, a social
network, and an autonomous system. As the 4 real datasets do not provide ground-truth regardingK,
to ensure the fairness of comparison, where each graph is with a common K for all the methods to
be evaluated, we adopted a widely-used strategy that uses the auxiliary Louvain algorithm (Blondel
et al., 2008) to estimate K for each graph. Details of the datasets are given in Appendix C.2.

Baselines. We compared IGP over 15 baselines with 4 categories. (i) SNMF (Wang et al., 2011)
and spectral clustering (SC) (Von Luxburg, 2007) are classic transductive GP methods. (ii) VERSE
(Tsitsulin et al., 2018), MILE (Liang et al., 2021), and PhUSION (PhN) (Zhu et al., 2021) are graph
embedding approaches for high-quality representations, while NPR (Yang et al., 2020), RandNE
(Zhang et al., 2018a), and ProNE (Zhang et al., 2019) are efficient embedding methods with fast
approximation. All these embedding methods are transductive. (iii) Metis (Hendrickson & Leland,
1995), hMetis (Selvakkumaran & Karypis, 2006), and GraClus (Dhillon et al., 2007) are fast trans-
ductive GP baselines with heuristic approximation. (iv) GraSAGE (GSAGE) (Hamilton et al., 2017)
and GAT (Veličković et al., 2018) are SOTA inductive GNNs, while GAP (Nazi et al., 2019) and
ClusNet (Wilder et al., 2019) are E2E methods based on inductive GNNs. Besides the 15 methods,
we also include other strong baselines (e.g., node2vec) with details given in Appendix C.3.

Both variants of IGP were evaluated. For simplicity, we use IGP-M and IGP-C to denote the variants
adopting the objectives of modularity maximization and NCut minimization, respectively.

Quantitative Evaluation. In our quantitative evaluation, we consider GP on graphs where K is
given. On all the datasets, we adopted quality metrics of modularity and NCut as in (3) and (1).
On datasets with ground-truth (i.e., GN-Net and LFR-Net), we also used quality metrics of NMI and
accuracy (AC) (Cui et al., 2018) to measure the correspondence between GP results and ground-
truth. Usually, larger modularity, NMI and AC, as well as smaller NCut imply better quality.
Moreover, the total runtime of a method to derive its final GP result was used as the efficiency
metric with lower runtime indicating higher efficiency.

Most conventional baselines (e.g., SC) are transductive, which can only be applied to a static graph,
but IGP alleviates the NP-hard challenge of GP in an inductive framework across graphs. To illus-
trate such superiority of IGP beyond transductive baselines, for each dataset, we used the first 80%
of the graphs as the training set ΓT with the remaining 10% and 10% deployed as the validation
set ΓV and test set Γ′. In this setting, ΓT ∪ ΓV and Γ′ represent the sets of historical and newly
generated graphs, respectively. We conducted the offline training of IGP on ΓT and generalized it
to Γ′ for online GP. In the offline training, we save the model parameters of IGP with the best aver-
age quality on ΓV, where we use NMI and modularity as the validation quality metric for datasets
with and without ground-truth, respectively. Since we focus on the trade-off between quality and
efficiency on new graphs, the evaluation was conducted on Γ′, where we had to apply transductive
baselines to each test graph in Γ′ from scratch due to their transductive nature.

For inductive GNN baselines (i.e., GraSAGE and GAT), we use the same training and evaluation
settings with IGP, i.e., offline training on ΓT and online generalization to Γ′. Since we consider GP
on graphs without attributes, we use a constant matrix 1Nt×L (with fixed feature dimensionality L),
where each entry is set to 1, as the input features of these GNNs, which is a widely-used setting of
inductive GNNs for the case without attributes (Xu et al., 2019). In the offline training of inductive
GNN baselines, we adopted the widely-used unsupervised loss of GraSAGE (Hamilton et al., 2017)
to train them on ΓT, since most existing inductive GNNs (even with a supervised loss like cross-
entropy) cannot directly integrate the permutation invariant label information from ΓT.

7

Under review as a conference paper at ICLR 2022

Table 1: Statistics of the datasets.
T N |E| K

GN-0.5 2,000 5,000 48,065-49,314 250
GN-0.4 2,000 5,000 48,335-49,698 250
GN-0.3 2,000 5,000 48,488-49,981 250
L(f,0.3) 2,000 5,000 22,539-25,707 57-104
L(f,0.6) 2,000 5,000 22,585-25,639 58 - 107
L(n,0.3) 2,000 5,000-5,999 22,999-29,670 59-117
L(n,0.6) 2,000 5,000-6,000 22,680-29,931 61-118
Taxi 3,000 1,279 38,554-40,171 7-12
Reddit 1,870 501-3,648 525-4,780 14-121
Enron 410 502-3,261 554-5,097 10-31
AS 733 103-6,474 487-26,467 7-39

Table 2: Ablation study on L(n,.6).
NMI(%↑) AC(%↑) Mod(%↑) Ncut(↓)

IGP-M 56.48 53.42 34.22 82.76
w/o AL 52.13 49.30 33.35 84.05
w/o FR 11.19 6.28 10.08 1.01e3
w/o CR 49.97 46.70 32.70 86.08
w/o Zt 16.39 6.14 1.27 3.01e4
w/o GNN 1.14 3.92 0.01 1.08e4

IGP-C 52.71 47.47 31.95 92.40
w/o AL 35.12 26.15 26.70 113.10
w/o FR 15.46 5.46 0.45 2.08e4
w/o CR 35.16 26.22 26.78 111.62
w/o Zt 13.88 5.57 0.28 2.88e4
w/o GNN 8.45 4.78 0.32 5.12e4

For the E2E GNN methods (i.e., GAP and ClusNet), we could only conduct the offline training and
fast online generalization on datasets with fixed K (i.e., on GN-Net), but we had to train them from
scratch on the test set of other datasets with non-fixedK, due to the fixed dimensionality of their E2E
output layers. As recommended in (Nazi et al., 2019) and (Wilder et al., 2019), we used PCA and
node2vec to map the adjacency matrices {At} to a feature space with fixed dimensionality for the
input features of GAP and ClusNet. Moreover, we used their own unsupervised training loss, which
approximates the objectives of NCut minimization and modularity maximization, respectively.

For all the embedding-based methods (including the transductive embedding baselines, inductive
GNNs, and IGP), we usedKMeans as the downstream clustering module. We ranKMeans 10 times
to avoid its limitation of getting locally optimal solutions, which is included in the total runtime.
To ensure the fairness of comparison, the embedding dimensionality of all the embedding-based
methods was set to be the same on each dataset. For other E2E baselines (e.g., Metis, GAP, and
ClusNet), we directly derived the GP results from their outputs. Since Taxi, Reddit, Enron, and
AS do not provide the GP ground-truth (in terms of the membership Ct) on each historical training
snapshot of these datasets, we used the GP result of the baseline with best average modularity on
ΓV to derive the membership indicator Ht for IGP, which is the second source of historical label
information defined in Section 2. Note that we do not need to derive Ht in the evaluation phase
when generalizing the trained model to test set Γ′.

We tuned parameters of all the methods on ΓV of each dataset to report best quality metrics. Both
the mean and standard deviation of all the quality and efficiency metrics on Γ′ of each dataset were
recorded. Evaluation results in terms of average NMI, modularity, and runtime are visualized in
Fig. 3. Due to the space limit, we give (i) the visualization results w.r.t. AC and NCut, (ii) mean
and standard deviation of all the metrics, and (iii) parameter settings in Appendix C.5. In most cases
of Fig. 3, IGP-M (red circle) and IGP-C (blue circle) are in the top group with best quality, even
though we did not train them on test set Γ′, where other transductive baselines were fully trained.
Surprisingly, IGP even has the best or second-best quality metrics in some cases. Moreover, the
runtime of IGP-M and IGP-C is also competitive to some fast GP baselines (e.g., Metis). Although
the runtime of inductive GNN baselines (with fast online generalization) is slightly faster than IGP,
they still suffer from poor quality, which implies that the feature extraction module and hybrid
training loss of IGP are essential to ensure its high quality. From the view of alleviating the NP-hard
challenge of online GP on newly generated graphs, IGP achieves a better trade-off between quality
and efficiency. According to the visualization results in Fig. 3, we introduce the trade-off score
in Appendix C.5, which can quantitatively evaluate the trade-off between quality and efficiency by
computing the area covered by an induced rectangle of each data point in the visualized 2D space.

Ablation Study. For IGP-M and IGP-C, we also validated the effectiveness of (i) AL loss, (ii) FR
loss, (iii) CR loss, (iv) feature input Zt, and (v) GNN by respectively excluding the corresponding
components from the original model. In case (iv), we used a constant matrix 1Nt×L with all entries
set to 1 to replace Zt while we use an FC network that only takes Zt as input to replace GNNs in G
with same layer configurations. Example results on L(n, .6) in terms of NMI, AC, modularity, and
NCut are shown in Table 2. According to Table 2, the FR loss, Zt, and GNNs are key components
to ensure the high quality of IGP, since there is significant quality decline for case (ii), (iv), and
(v). The AL and CR losses further enhance the quality by incorporating permutation invariant label
information of historical graphs. Other detailed ablation studies are given in Appendix C.5.

Extended Applications. Besides the aforementioned experiments, we consider two extended appli-
cations. First, when the number of clusters K of a new graph is not given, IGP also has the potential

8

Under review as a conference paper at ICLR 2022

(a) GN-0.3

<
>

(b) GN-0.4

(c) GN-0.5 (d) L(f,0.3)

(e) L(f,0.6) (f) L(n,0.3)

(g) L(n,0.6) (h) Taxi (i) Reddit

(j) AS (k) Enron

Figure 3: Visualization results on the 11 datasets
in terms of quality metrics of NMI (↑) and mod-
ularity (↑) (y-axis), as well as efficiency metric
of runtime (↓) (x-axis). The number records,
evaluation results of AC and NCut, as well as
analysis of the trade-off between quality and ef-
ficiency are given in Appendix C.5.

to estimate K, where we apply an auxiliary model selection method (e.g., XMeans) to the derived
embedding Ut. Second, in contrast to the hypothesis that all the given snapshots are from a common
system or scenario following several underlying distributions, it is promising that one conducts the
offline training on historical data of one scenario but generalizes the model to other scenarios for
fast online GP. Especially, we consider the application where we train IGP on synthetic graphs but
generalize it to real datasets. The two extended applications are elaborated in Appendix D.

5 CONCLUSION

In this paper, we proposed a novel IGP framework to alleviate the NP-hard challenge of GP, ob-
taining a better trade-off between quality and efficiency. In IGP, we first conduct offline training
of a novel dual GNN structure on historical known graphs and generalize the model to newly gen-
erated graphs for fast high-quality online GP. IGP is a generic framework that can incorporate the
permutation invariant label information of GP to the offline training by combining unsupervised
GP objectives (e.g., modularity maximization and NCut minimization) with the dual GNN struc-
ture. Since we introduced an inductive graph embedding scheme and an efficient feature extraction
module, IGP can also tackle online GP on graphs with non-fixed number of nodes and clusters. In
Appendix E, we give discussions of possible future work, e.g., further reducing the runtime, scaling
IGP up to graphs with large number of nodes, and transferring IGP across scenarios.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Emmanuel Abbe. Community detection and stochastic block models: recent developments. JMLR,
18(1):6446–6531, 2017.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. JSTAT, 2008(10):P10008, 2008.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. In Proc. of ICLR, pp. 1801.10247, 2018.

Petr Chunaev, Timofey Gradov, and Klavdiya Bochenina. Community detection in node-attributed
social networks: How structure-attributes correlation affects clustering quality. Procedia Com-
puter Science, 178:355–364, 2020.

Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding. IEEE TKDE,
31(5):833–852, 2018.

Lin Dai and Bo Bai. Optimal decomposition for large-scale infrastructure-based wireless networks.
IEEE TWC, 16(8):4956–4969, 2017.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE TPAMI, 29(11):1944–1957, 2007.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
PNAS, 99(12):7821–7826, 2002.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proc. of
ACM SIGKDD, pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proc. of NIPS, pp. 1024–1034, 2017.

Bruce Hendrickson and Robert W Leland. A multi-level algorithm for partitioning graphs. Proceed-
ings Supercomputing, 95(28):1–14, 1995.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In Proc. of ICLR, pp. 1905.12265,
2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. In Proc. of NIPS, pp. 4563–4572, 2018.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical Review E, 83(1):016107, 2011.

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing com-
munity detection algorithms. Physical Review E, 78(4):046110, 2008.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Proc. of ACM SIGKDD, pp. 177–187, 2005.

Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile: A multi-level framework for
scalable graph embedding. In Proc. of AAAI, pp. 361–372, 2021.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv:1511.05644, 2015.

Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. Gap: Generalizable
approximate graph partitioning framework. arXiv:1903.00614, 2019.

Mark EJ Newman. Modularity and community structure in networks. PNAS, 103(23):8577–8582,
2006.

S Pan, R Hu, G Long, J Jiang, L Yao, and C Zhang. Adversarially regularized graph autoencoder
for graph embedding. In Proc. of IJCAI, 2018.

10

Under review as a conference paper at ICLR 2022

Siddheshwar V Patil and Dinesh B Kulkarni. Graph partitioning using heuristic kernighan-lin algo-
rithm for parallel computing. In Next Generation Information Processing System, pp. 281–288.
Springer, 2021.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proc. of ACM SIGKDD, pp. 701–710, 2014.

Michal Piorkowski, Natasa Sarafijanovic, and Matthias Grossglauser. A parsimonious model of
mobile partitioned networks with clustering. In Proc. of IEEE COMSNETS, pp. 1–10. IEEE,
2009.

Meng Qin and Kai Lei. Dual-channel hybrid community detection in attributed networks. Informa-
tion Sciences, 551:146–167, 2021.

Meng Qin, Di Jin, Kai Lei, Bogdan Gabrys, and Katarzyna Musial-Gabrys. Adaptive community
detection incorporating topology and content in social networks. Knowledge-based systems, 161:
342–356, 2018.

Meng Qin, Kai Lei, Bo Bai, and Gong Zhang. Towards a profiling view for unsupervised traffic
classification by exploring the statistic features and link patterns. In Proc. of ACM SIGCOMM
Workshop on Network Meets AI & ML, pp. 50–56, 2019.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proc. of
ACM SIGKDD, pp. 1150–1160, 2020.

Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. In Proc. of AAAI, pp. 4292–4293, 2015.

Navaratnasothie Selvakkumaran and George Karypis. Multiobjective hypergraph-partitioning al-
gorithms for cut and maximum subdomain-degree minimization. IEEE TCAD, 25(3):504–517,
2006.

Xing Su, Jianjun Cheng, Haijuan Yang, Mingwei Leng, Wenbo Zhang, and Xiaoyun Chen. Incnsa:
Detecting communities incrementally from time-evolving networks based on node similarity. In-
ternational Journal of Modern Physics C, 31(07):2050094, 2020.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proc. of WWW, pp. 1067–1077, 2015.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. Verse: Versatile graph
embeddings from similarity measures. In Proc. of WWW, pp. 539–548, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proc. of ICLR, pp. 1710.10903, 2018.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics & Computing, 17(4):395–416,
2007.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proc. of ACM
SIGKDD, pp. 1225–1234, 2016.

Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. Community discovery using nonneg-
ative matrix factorization. DMKD, 22(3):493–521, 2011.

Klaus Wehrle, Mesut Günes, and James Gross. Modeling and tools for network simulation. Springer
Science & Business Media, 2010.

Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind Tambe. End to end learning and optimization
on graphs. In Proc. of NIPS, pp. 4672–4683, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proc. of ICLR, pp. 1810.00826, 2019.

11

Under review as a conference paper at ICLR 2022

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proc. of ACM SIGKDD, pp. 1365–
1374, 2015.

Liang Yang, Xiaochun Cao, Dongxiao He, Chuan Wang, Xiao Wang, and Weixiong Zhang. Mod-
ularity based community detection with deep learning. In Proc. of IJCAI, volume 16, pp. 2252–
2258, 2016.

Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S. Bhowmick. Homogeneous
network embedding for massive graphs via reweighted personalized pagerank. VLDB Endow, 13
(5):670–683, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In Proc. of ICLR, pp. 1907.04931, 2020.

Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. Prone: Fast and scalable network
representation learning. In Proc. of IJCAI, volume 19, pp. 4278–4284, 2019.

Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. Billion-scale network embed-
ding with iterative random projection. In Proc. of ICDM, pp. 787–796. IEEE, 2018a.

Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. Timers: Error-bounded svd restart
on dynamic networks. In Proc. of AAAI, pp. 224–231, 2018b.

Jing Zhu, Xingyu Lu, Mark Heimann, and Danai Koutra. Node proximity is all you need: Unified
structural and positional node and graph embedding. In Proc. of SDM, pp. 163–171. SIAM, 2021.

A PROOF OF FACT 1

By the disjoint constraint of GP, i.e., Ctr ∩ Cts = ∅ for ∀r 6= s, each node can only belong to one
unique cluster. For the membership indicator matrix Rt, only one entry in each row of Rt must be
1 with the rest entries in the same row set to 0. For the auxiliary adjacency matrix A

(g)
t = RtR

T
t ,

consider each entry (A
(g)
t)ij =

∑Kt

r=1 [(Rt)ir(Rt)jr] with respect to the pair of nodes (vti , v
t
j).

If nodes (vti , v
t
j) are in the same cluster Cts, i.e., vti , v

t
j ∈ Cts, we have Ris = Rjs = 1. We can

further derive (A
(g)
t)ij = (Rt)is(Rt)js = 1. It indicates that there is an edge between (vti , v

t
j) with

weight 1, when they are in the same cluster.

If nodes (vti , v
t
j) are not in the same cluster, i.e., vti ∈ Ctr and vtj ∈ Cts (r 6= s), we have Rir = 1

and Rjs = 1, but (A
(g)
t)ij = 0. Namely, there is no edge between nodes (vti , v

t
j) when they are in

different clusters.

In summary, there is an edge between (vti , v
t
j) in the auxiliary label-induced graph G(g)

t only if they
are partitioned into the same cluster according to the given partitioning result Ct = {Ct1, · · · , CtKt

}
(used as the ‘ground-truth’). Especially, each node vti ∈ Ctr (i) must have edges connected to all
the other nodes in the same cluster Ctr and (ii) do not have edges connected to nodes in different
clusters Cts (r 6= s), thus forming a fully connected component with respect to cluster Ctr. Hence,
for a graph Gt with Kt clusters, its corresponding auxiliary label-induced graph G(g)

t has Kt fully
connected components, with each component corresponding to one unique cluster of Gt.

B DETAILED ALGORITHMS OF IGP

In contrast to conventional transductive GP methods applied to a single static graph, IGP is an
inductive framework that explores the structure properties across a set of graphs S = {G1, · · · ,GT }.
In IGP, we first train a novel dual GNN structure on historical system snapshots in an offline way
(regardless of the training time cost). We then generalize the trained model to newly generated
snapshots of the same system for fast high-quality online GP without additional optimization, where
a better trade-off between quality and efficiency can be achieved. For simplicity, we divide S into
a training set ΓT, a validation set ΓV, and a test set Γ′, where ΓT ∪ ΓV and Γ′ represent the set
of historical and newly generated system snapshots, respectively. Namely, snapshots in ΓT ∪ ΓV

should occur before those in Γ′.

12

Under review as a conference paper at ICLR 2022

Algorithm 1: HEM Graph Coarsening
Input: input graph Gt; neighbor-induced features Xt; number of nodes Nt; reduced dimensionality L
Output: coarsening matrix Ct

1 extract the node set V(0)
t and reweighted edges E(w)

t from Gt and Xt

2 E(0)t ← E(w)
t //Initialize the edge set of the 1st coarsening level

3 k ← 0 //Initialize the level index
4 N ′t ← |V

(0)
t | //Initialize the number of (super)nodes

5 while N ′t > L do
6 V(k+1)

t ← ∅ //Initialize the node set of next level
7 E(k+1)

t ← ∅ //Initialize the edge set of next level
8 sort E(k)t based on weights in descending order
9 arrange the sorted result as a queue q(E(k)t)

10 while q(E(k)t) 6= ∅ do
11 pop (v

(k)
i , v

(k)
j) from q(E(k)t)

12 if v(k)i ∈ V(k)
t and v(k)j ∈ V(k)

t then
13 delete v(k)i and v(k)j from V(k)

t

14 merge v(k)i and v(k)j into supernode v(k+1)
l

15 add v(k+1)
l to V(k+1)

t

16 adjust E(k)t and E(k+1)
t w.r.t. V(k)

t and V(k+1)
t

17 N ′t ← N ′t − 1 //Update the number of supernodes

18 if N ′t = L then
19 V(k+1)

t ← V(k+1)
t ∪ V(k)

t

20 return Ct based on the merging membership of V(k+1)
t

21 V(k+1)
t ← V(k+1)

t ∪ V(k)
t

22 E(k+1)
t ← E(k+1)

t ∪ E(k)t

23 k ← k + 1 //Update the level index k

24 return Ct based on the merging membership of V(k)
t

B.1 FEATURE EXTRACTION

For a set of graph snapshots S = {G1, . . .GT } with non-fixed node set {V1, . . . ,VT } (i.e., with
non-fixed number of nodes Nt), we introduce an efficient feature extraction strategy via HEM graph
coarsening, which maps the neighbor-induced feature Xt ∈ <Nt×Nt (Xt = Qt or Xt = Mt) to
a reduced feature matrix Zt ∈ <Nt×L with fixed dimensionality L. Algorithm 1 and Algorithm 2
summarize the procedures of HEM graph coarsening and the feature extraction module.

For each graph Gt ∈ S, if L < Nt, Algorithm 1 first merges Gt into a supergraph G∗t (with L
supernodes) based on reweighted edges E(w)

t = {w(vti , v
t
j)|w(vti , v

t
j) = (Xt)ij , (At)ij = 1} and

outputs a coarsening matrix Ct ∈ <Nt×L that describes the merging membership. Concretely,
(Ct)ij = |vt∗j |−0.5 if node vti is merged into supernode vt∗j (i.e., vti ∈ vt∗j) and (Ct)ij = 0, other-
wise. Based on Ct given by Algorithm 1, Algorithm 2 further derives a reduced feature matrix Zt via
Zt = XtCt. By the sparsity of Ct, we can set its j-th column to (Zt):,j =

∑
vi∈vt∗j

(Ct)ij(Xt):,i.
In contrast, when L > Nt, Algorithm 2 directly derives Zt = [Xt,0Nt×(L−Nt)] via a simple
padding strategy.

B.2 OFFLINE TRAINING ON HISTORICAL SYSTEM SNAPSHOTS

In the offline training of IGP, we assume that the partitioning result Ct = {Ct1, · · · , CtKt
} (i.e.,

‘ground-truth’) of each historical graph Gt ∈ ΓT ∪ ΓV is available, which is permutation invariant
in terms of cluster labels. For simplicity, we correlate each historical graph Gt ∈ ΓT ∪ ΓV with a
2-tuple (At, Ct). The offline training procedure of IGP is summarized in Algorithm 3, where L is
fixed dimensionality for the reduced features Zt; {α, β} are hyper-parameters of the training loss

13

Under review as a conference paper at ICLR 2022

Algorithm 2: Feature Extraction of IGP
Input: input graph Gt; neighbor-induced features Xt; number of nodes Nt; reduced dimensionality L
Output: reduced features Zt

1 if L ≥ Nt then
2 let Zt = [Xt,0Nt×(L−Nt)] //Pad Zt with zeros

3 else if L < Nt then
4 derive the coarsening matrix Ct ∈ <Nt×L via Algorithm 1
5 derive the merging membership V∗t based on Ct

6 for each supernode v∗j ∈ V∗t do
7 (Zt):,j ← 0Nt×1//Initialize the j-th column of Zt
8 for each node vi ∈ v∗j do
9 (Zt):,j ← (Zt):,j + (Ct)ij(Xt):,i

Algorithm 3: Offline Training of IGP (on Historical System Snapshots)
Input: training set ΓT; validation set ΓV; reduced feature dimensionality L; hyper-parameters of training

loss {α, β}; number of historical snapshots sampled in each epoch p; repetitions to update model
parameters (w.r.t. each sampled snapshot in a epoch) m; learning rates {ηD, ηG}; maximum
number of epochs n

Output: best model parameters {δ∗G, δ∗D}
1 initialize the variable q̄∗ that saves the best average quality metric
2 initialize model parameters {δG, δD} via the Xavier algorithm
3 for epoch from 1 to n do
4 for sample count from 1 to p do
5 randomly sample a graph Gt ∈ ΓT

6 get the associated 2-tuple (At, Ct) of Gt
7 derive the neighbor-induced features Xt based on adjacency matrix At

8 derive the reduced features Zt from {At,Xt} via Algorithm 2
9 derive the membership indicator Ht based on the ‘ground-truth’ Ct

10 for update count from 1 to m do
11 derive the loss function LD via equation (8)
12 update δD via δD ← Optimizer(ηD, δD,

∂LD
∂δD

) with δG fixed
13 derive the loss function LG via equation (12)
14 update δG via δG ← Optimizer(ηG, δG,

∂LG
∂δG

) with δD fixed

15 q̄ ← 0 //Initialize the variable that saves the average quality metric of current epoch
16 for each Gt′ ∈ ΓV do
17 get the associated 2-tuple (At′ , Ct′) of Gt′
18 derive the neighbor-induced features Xt′ based on adjacency matrix At′

19 derive the reduced features Zt′ from {At′ ,Xt′} via Algorithm 2
20 derive the graph embedding Ut′ from the feature encoder in G
21 apply KMeans to Ut′ to derive partitioning result C̃t′
22 evaluate partitioning quality q based on C̃t′ (and Ct′)
23 q̄ ← q̄ + q //Update q̄

24 q̄ ← q̄/|ΓV | //Compute the average quality metric
25 if q̄ better than q̄∗ then
26 {δ∗D, δ∗G} ← {δD, δG} //Update the best model parameters
27 q̄∗ ← q̄ //Update the best average partitioning quality

LG; p is the number of historical snapshots sampled in each epoch; {ηD, ηG} are learning rates of
the optimizers updating {δD, δG}; n is the maximum number of epochs. For a selected training
sample in each epoch, repeatedly updating model parameters m (m ≥ 1) times can sometimes lead
to better partitioning quality (on the validation and test set). Algorithm 3 finally saves the model
parameters {δ∗D, δ∗G} with the best quality metric on the validation set ΓV.

14

Under review as a conference paper at ICLR 2022

Algorithm 4: Online Generalization of IGP (to Newly Generated System Snapshots)
Input: newly generated graph Gt′ ∈ Γ′, adjacency matrix At′ , reduced feature dimensionality L, number

of clusters Kt′ (w.r.t. Gt′)
Output: partitioning result C̃t′ w.r.t. Gt′

1 derive the neighbor-induced feature Xt′ based on adjacency matrix At′

2 derive the reduced features Zt′ from {At′ ,Xt′} via Algorithm 2
3 derive the graph embedding Ut′ from the feature encoder in G
4 apply KMeans to Ut′ to derive the partitioning result C̃t′ with Kt′ clusters

B.3 ONLINE GENERALIZATION TO NEWLY GENERATED SYSTEM SNAPSHOTS

In the online generalization of IGP, we fix the learned model parameters {δ∗D, δ∗G} and directly
derive graph embedding Ut′ with respect to each newly generated graph Gt′ ∈ Γ′ from feature
encoder of G. Since we assume that the number of clusters Kt′ of each graph Gt′ ∈ Γ′ is given in
the online GP, we apply KMeans to Ut′ to derive the partitioning result C ′t′ with Kt′ clusters. In
this case, the total runtime of online GP on each newly generated graph Gt′ ∈ Γ′ includes (i) the
efficient feature extraction of Zt′ , (ii) one feedforward propagation of {At′ ,Zt′} through feature
encoder, and (iii) the downstream (KMeans) clustering. In conclusion, we summarize the online
generalization procedure of IGP in Algorithm 4.

B.4 COMPLEXITY ANALYSIS

For a given graph Gt, we use the efficient matrix multiplication to derive the neighbor-induced
features Qt and Mt. Concretely, we set Qt = At − dTt dt

/
(2w) and Mt = D−1/2AtD

−1/2,
where dt = [dt1, · · · , dtNt

] and Dt = diag(dt1, · · · , dtNt
) are the degree vector and degree diagonal

matrix of Gt. Although the complexities of computing Qt and Mt are both at mostO(N2
t), they can

be easily paralleled via GPUs, which significantly reduces the runtime. Moreover, the complexity of
the HEM graph coarsening (i.e., Algorithm 1) is no more than O(Nt|Et| log |Et|), with |Et| denoting
the number of edges in Gt and |Et| � N2

t . The complexity to derive Zt via Xt and Ct (i.e.,
Algorithm 2) is no more than O(NtLn

∗), where n∗ is the maximum number of nodes merged into
a supernode; L is the number of supernodes (which is also the reduced feature dimensionality of
Zt). Hence, the complexity to derive the reduced feature matrix Zt based on Xt is no more than
O(Nt|Et| log |Et|+NtLn

∗).

Let L(l−1) be the feature dimensionality of the l-th GNN layer of the feature encoder or auxiliary
label-induced encoder in G, where we have L(0) = L. We used the efficient sparse-dense matrix
multiplication to implement the graph convolutional operation described in equation (5), where the
sparsity of At is considered. The complexity of one feedforward propagation through the feature
encoder is no more than O(|Et|L(0)L(1) + |Et|L(1)L(2) + · · ·) = O(|Et|LL′), where L′ = L(1)

and L(l) < L(l−1). Hence, the overall time complexity of one feedforward propagation through the
feature encoder is linear in the number of edges of the input graph Gt.
Let k be the dimensionality of graph embedding. Usually, we have k � Nt. For a graph with Kt

clusters, the complexity of KMeans is no more than O(NtKtkI) for I iterations. In particular, the
runtime of the downstream clustering (i.e., KMeans algorithm) can also be significantly reduced via
parallel implementations.

C EXPERIMENT DETAILS

C.1 EVALUATION METRICS

In our experiments, we used the (unsupervised) metrics of modularity and NCut to evaluate the
partitioning quality of each method on all the datasets. The formal definitions of modularity and
NCut are given in equation (3) and equation (1) (see Section 2).

For datasets with partitioning ground-truth (i.e., GN-Net and LFR-Net), we also used the metrics of
normalized mutual information (NMI) and accuracy (AC) (Cui et al., 2018), which can measure the

15

Under review as a conference paper at ICLR 2022

Table 3: Detailed statistics of the datasets.
T MinN MaxN AvgN Min |E| Max |E| Avg |E| MinK MaxK AvgK

GN-0.5
2,000 5,000 5,000 5,000

48,065 49,314 48,752
250 250 250GN-0.4 48,335 49,698 48,999

GN-0.3 48,488 49,981 49,246
L(f,0.3) 2,000 5,000 5,000 5,000 22,539 25,707 23,925 57 104 79
L(f,0.6) 22,585 25,639 23,927 58 107 79
L(f,0.3) 2,000 5,000 5,999 5,503 22,999 29,670 26,311 59 117 87
L(f,0.6) 5,000 6,000 5,493 22,680 29,931 26,289 61 118 87
Taxi 3,000 1,279 1,279 1,279 38,554 40,171 39,291 7 12 9
Reddit 1,870 501 3,648 946 525 4,780 1,133 14 121 32
Enron 410 502 3,261 1,048 554 5,097 1,376 10 31 17
AS 733 103 6,474 4,183 487 26,467 16,324 7 39 29

correspondence between the partitioning result (given by the method to be evaluated) and ground-
truth (given by the dataset). In general, better correspondence indicates better partitioning quality.
For a graph Gt with Kt clusters, we use Ht = {Ht

1, · · · , Ht
Kt
} and Ct = {Ct1, · · · , CtKt

} to denote
the ground-truth and partitioning result, where Ht

r ⊆ Vt and Ctr ⊆ Vt represent node member sets
of the r-th cluster. Given Ht and Ct, the definition of NMI is as follow:

NMI(Ht, Ct) =
−2
∑
Ht

r∈Ht

∑
Ct

s∈Ct

nr,s

n log
n×nr,s

nr×ns∑
Ht

r∈Ht

nr

n log nr

n +
∑
Ct

s∈Ct

ns

n log ns

n

, (13)

where nr = |Ht
r| is the number of nodes in the r-th cluster of ground-truth; ns = |Cts| is the number

of nodes in the s-th cluster of partitioning result; nr,s = |Ht
r ∩ Cts| is the number of nodes that are

simultaneously partitioned into the r-th cluster of ground-truth and the s-th cluster of partitioning
result. Let Lt = (lt1, · · · , ltNt

) and Rt = (rt1, · · · , rtNt
) be label sequences of the partitioning result

and ground-truth with respect to node sequence (vt1, · · · , vtNt
), where lti and rti are cluster labels of

node vti . The definition of AC is as follow:

AC(Rt, Lt) =

∑Nt

i=1 δ(r
t
i ,map(lti))

Nt
, (14)

where map(·) is the Kuhn-Munkres mapping function that gives the best membership map from Lt
toRt; δ(a, b) is the Kronecker delta function with δ(a, b) = 1 when a = b and δ(a, b) = 0 otherwise.
Usually, larger modularity, NMI, and AC, as well as smaller NCut indicate better partitioning quality
of a given GP method.

C.2 DATASET DETAILS

The detailed statistics of the 11 datasets (with 7 synthetic benchmarks and 4 real datasets) used in
our experiments are depicted in Table 3, where T ,N , |E|, andK are the number of snapshots, nodes,
edges, and clusters, respectively.

GN-Net (Girvan & Newman, 2002) is a widely-used synthetic benchmark for GP, in which the
graph topology and GP ground-truth of each graph can be generated via the stochastic block model
(Abbe, 2017). We fixed N = 5, 000 and evenly partitioned the nodes into K = 250 clusters.
For two uniformly selected nodes vi and vj , if they’re assigned in the same cluster (i.e., vi, vj ∈
Cr), the probability to generate an edge (vi, vj) is pin. Otherwise (i.e., vi ∈ Cr and vj ∈ Cs
(r 6= s)), the probability to generate an edge (vi, vj) is (1− pin)/(K − 1). In particular, we set
pin ∈ {0.5, 0.4, 0.3} to generate 3 datasets. For each dataset, we independently generated 2, 000
graphs. In each graph, we also randomly shuffled the node indices to ensure that there is no index
correspondence between any two graphs in the dataset (as we defined in Section 2). Especially, with
the decrease of pin, the clustering structures become increasingly difficult to identify. For simplicity,
we denote the GN-Net with a specific setting of pin as GN-pin (e.g., GN-0.5, GN-0.4, and GN-0.3).
Note that all the datasets of GN-Net are with fixed N and K.

LFR-Net (Lancichinetti et al., 2008) is a more challenging synthetic benchmark that can simu-
late power-law properties of node degree and cluster size of real-world network systems. It uses
(k, kmax, cmin, cmax, µ) to independently generate a single graph, where k and kmax are the aver-
age and maximum node degree; cmin and cmax are the minimum and maximum cluster size; µ is

16

Under review as a conference paper at ICLR 2022

the mixing ratio between the external degree and total degree of each node vi with respect to the
cluster vi belongs to. In particular, we fixed (k, kmax, cmin, cmax) = (10, 100, 10, 200) and set
µ ∈ {0.3, 0.6}. With the increase of µ, the clustering structure is increasingly difficult to identify.
We consider both cases with fixed and non-fixed N , where we respectively fixed N = 5, 000 and
set N to a random integer within [5000, 6000] to generate 2, 000 graphs for each case. Similar to
GN-Net, we also independently generated each graph in a dataset and ensure that there is no index
correspondence between any two graphs via the random shuffle of node indices. For simplicity, we
use L(c, µ) (c ∈ {f, n}) to represent the dataset with a specific setting of µ, where f and n denote
the case with fixed and non-fixed N (e.g., L(f, 0.3), L(f, 0.6), L(n, 0.3), and L(n, 0.6)). Moreover, K
is non-fixed in LFR-Net.

Taxi1 (Piorkowski et al., 2009) is a real GPS dataset including trajectories of 1, 279 taxis in Beijing,
which forms a mobile ad hoc network system. We sampled 3, 000 graph snapshots from the dataset
in chronological order. In each graph, we treated each taxi as a node and constructed the topology
based on the top-50 neighbors with the closest distance for each node. Since Taxi does not provide
ground-truth regarding K for GP, we used Louvain algorithm (Blondel et al., 2008) to estimate the
K value for each graph in this dataset. Hence, it is with fixed N and non-fixed K.

Reddit2 (Yanardag & Vishwanathan, 2015) is a social network dataset extracted from Reddit. Each
graph snapshot in the dataset corresponds to an online discussion thread. We extracted 1, 870 graphs
with N ≥ 500 from the dataset. Different graphs are with different number of users (i.e., nodes),
varying from 501 to 3, 648. The comment interactions between users in each discussion thread
are described as topology of the corresponding graph. Since Reddit does not provide ground-truth
regarding K, we also used Louvain to estimate K for each graph. Hence, Reddit is with non-fixed
N and K. Note that different snapshots have different node sets (i.e., with non-fixed N) and node
indices in each snapshot start from 0. It indicates that there is no correspondence between node
indices of any two snapshots in the dataset.

Enron3 (Rossi & Ahmed, 2015) is a real interaction network extracted from the email system of
Enron company, which contains email records from 1980-01-01 to 2004-02-04. We extracted 410
snapshots with N ≥ 500 from the records in chronological order, in which we treated each user
as a unique node and constructed the topology based on email interactions. Note that different
graphs have different sets of users that have interaction behaviors. Moreover, we also used Louvain
algorithm to estimate K for each graph, since Enron does not provide ground-truth regarding K.
Therefore, it is with non-fixed N and K. We also ensure that there is no node index correspondence
between any two graphs by permuting node indices of each graph from 0.

AS4 (Leskovec et al., 2005) is a real dataset extracted from the border gateway protocol (BGP) logs
of a communication network, which describe the topology among a set of autonomous systems
(AS). It contains 733 daily instances spanning from 1997-08-11 to 2000-01-02. Each BGP router is
abstracted as a unique node with communication between routers extracted as the graph topology.
As the dataset allows addition and deletion of routers, different graphs are with different set of nodes.
Since AS does not provide the ground-truth K, we also applied Louvain to determine K for each
snapshot. Therefore, it is with non-fixed N and K, where there is no index correspondence between
any two graphs.

In summary, the 3 datasets of GN-Net are with fixed N and K. The 4 datasets of LFR-Net cover
both the cases of (i) fixed N but non-fixed K as well as (ii) non-fixed N and K. Taxi is a real
dataset with fixed N but non-fixed K, while Reddit, Enron, and AS are with non-fixed N and K.
Note that both GN-Net and LFR-Net are synthetic benchmarks that can simultaneously generate
graph topology and GP ground-truth of each snapshot. Taxi, Reddit, Enron, and AS are real datasets
without ground-truth (regarding K), so we applied Louvain algorithm to these datasets to determine
the K value of each single snapshot, which ensures the fairness of comparison, i.e., each snapshot
shoule be assigned with a common K for all the methods to be evaluated.

1https://www.microsoft.com/en-us/research/publication/t-drive-driving-directions-based-on-taxi-
trajectories/

2https://github.com/weihua916/powerful-gnns/blob/master/dataset.zip
3http://networkrepository.com/ia-enron-email-dynamic.php
4http://snap.stanford.edu/data/as-733.html

17

Under review as a conference paper at ICLR 2022

C.3 BASELINE METHODS

In addition to the 15 baseline methods introduced in Section 4, we also evaluated partitioning quality
and runtime of other 5 strong baselines, which include degree-corrected stochastic block model
(DCSBM), IncSNA (Su et al., 2020), (Karrer & Newman, 2011), DeepWalk (Perozzi et al., 2014),
node2vec (Grover & Leskovec, 2016), LINE (Tang et al., 2015), TIMERS (Zhang et al., 2018b)
and GIN (Xu et al., 2019). In summary, we have in total evaluated the quality and efficiency of 22
baselines with 4 categories.

• First, SNMF, DCSBM, and SC are classic transductive GP methods based on several GP
objectives (e.g., SC for NCut minimization and DCSBM for modularity maximization),
which aim to achieve high-quality partitioning results (but may have high complexity).
Moreover, IncSNA is an incrmental GP baselines that can utilize the node correspondence
between graphs to incrementally update the GP results for multiple associated graphs.

• Second, DeepWalk, node2vec, LINE, VERSE, MILE, PhUSION, NPR, RandNE, and ProNE
are unsupervised transductive graph embedding baselines. In particular, LINE, NPR,
RandNE, and ProNE are efficient embedding methods with several fast approximation
strategies for the embedding learning (but may have low partitioning quality). In con-
trast, DeepWalk, node2vec, VERSE, MILE, and PhUSION are baselines that aim to derive
high-quality representations (but may have high complexity) Besides, TIMERS is a typical
incremental graph embedding method that can incrementally update the learned embedding
for graphs with node correspondence.

• Third, Metis, hMetis, and GraClus are classic fast transductive GP baselines that aim to
achieve low runtime with the heuristic approximation of classic GP objectives (which may
suffer from quality degradation due to the information loss of heuristic approximation).

• Fourth, GraSAGE, GAT, and GIN, GAP, and ClusNet are inductive GNN baselines. In par-
ticular, GraSAGE, GAT, and GIN are SOTA inductive GNN following the graph embedding
scheme, i.e., learning node representations to support downstream tasks including GP. Note
that we do not consider supervised training loss of these inductive GNNs (e.g., using the
cross-entropy loss for a softmax output layer combined with the GNN), because GP is a
typical unsupervised task and the cluster labels are permutation invariant. In contrast, GAP
and ClusNet are E2E GP baselines based on inductive nature of GNN, where an FC output
layer is integrated into the GNN to directly output the partitioning results.

Note that the first three types of methods are inherently transductive, which only focus on GP on
a single static graph but cannot be generalized to other new graphs. Hence, we had to apply these
transductive baselines to each newly generated system snapshot (i.e., each snapshot in test set Γ′)
from scratch. For the fourth type of baselines (i.e., inductive GNN approaches), we used the same
settings with IGP (i.e., offline training on training set ΓT and online generalization to test set Γ′).
In particular, we can only use the inductive nature of E2E GNN methods (i.e., GAP and ClusNet)
on datasets with fixed number of clusters K (i.e., on GN-Net). However, we have to use the same
settings with transductive baselines (i.e., training GAP and ClusNet from scratch for each new test
graph) on rest datasets with non-fixed K, due to the fixed dimensionality of their output layers.
Note that not all the datasets have node correspondence between graphs. The incremental GP and
graph embedding baselines (i.e., IncNSA and TIMERS) can only be applied to datasets with node
correspondence. To include IncNSA and TIMERS in our evaluation, we applied them to the original
version of Taxi and AS that have node correspondence. Some other experiment settings regarding
the baseline methods have been already introduced in Section 4.

C.4 IMPLEMENTATION DETAILS

We used PyTorch to implement the dual GNN structure of IGP. The feature extraction module (i.e.,
Algorithm 1 and Algorithm 2) was implemented via NumPy and PyTorch, while we used the im-
plementation of KMeans of scikit-learn as the downstream clustering module. All the experiments
were conducted on a server with Intel Xeon CPU (E5-2650v4@2.20GHz, 48 cores), 1 Tesla V100
GPU, 61GB memory, as well as the Ubuntu Linux operating system. In this setting, modules imple-
mented by PyTorch were speeded up via GPU.

18

Under review as a conference paper at ICLR 2022

Table 4: Parameter settings and layer configurations of IGP.
IGP-M IGP-C Layer Configurations

(α, β,m, p) (ηG, ηD) (α, β,m, p) (ηG, ηD) G D
GN-0.5 (1,1,1,1000) (5e-4,5e-4) (1,1,1,1000) (1e-4,1e-4)

2048-1024-512 512-128-64-16-1GN-0.4 (1,1,1,1000) (5e-4,5e-4) (1,1,1,1000) (1e-4,1e-4)
GN-0.3 (1,5,1,1000) (5e-4,5e-4) (1,1,1,1000) (1e-4,1e-4)
L(f,0.3) (1,1,1,1000) (5e-4,5e-4) (1,1e2,5,1000) (1e-4,1e-4) 4096-2048-512-256 256-128-64-16-1L(f,0.6) (1,3,1,1000) (1e-4,1e-4) (1,1e3,2,1000) (5e-5,5e-5)
L(n,0.3) (1,1,1,1000) (5e-4,5e-4) (1,1e2,5,1000) (1e-4,1e-4) 4096-2048-512-256 256-128-64-16-1L(n,0.6) (1,3,1,1000) (1e-4,1e-4) (1,1e3,2,1000) (5e-5,5e-5)
Taxi (1,0.1,1,2000) (5e-5,5e-5) (1,1e2,1,2000) (5e-5,5e-5) 1024-512-256 256-64-32-16-1
Reddit (1,0.1,1,1000) (5e-5,5e-5) (1,0.1,1,1000) (5e-4,5e-4) 2048-1024-512-256 256-64-16-1
AS (1,0.1,1,500) (5e-5,5e-5) (1,1e2,1,500) (5e-5,5e-5) 6000-4096-2048-1024-256 256-128-64-16-1
Enron (1,5,1,300) (5e-5,5e-5) (1,1e2,1,300) (5e-5,5e-5) 1024-512-256 256-128-64-16-1

For all the embedding based methods, including transductive embedding baselines (i.e., second
type of the baseline), inductive GNNs (i.e., GraSAGE, GAT, and GIN), and IGP, we used KMeans
as the downstream clustering module. In contrast, we can directly obtain the partitioning results
from outputs of the rest baselines. Note that KMeans for graph embedding based methods and
optimization algorithms of several classic GP baselines (i.e., SNMF, DCSBM, Metis, hMetis, and
GraClus) have the limitation of obtaining locally optimal solutions. We adopted the strategy to run
KMeans of embedding based methods and optimization algorithms of classic baselines 10 times,
which was included in the total runtime of corresponding methods. The partitioning membership
with minimum loss function value (e.g., the sum of squared distance between data and cluster center
for KMeans) was reported as the final partitioning result for evaluation. When testing the runtime
of each method, we ensured that only the method to be evaluated was running on the experiment
server, i.e., there were no multiple methods simultaneously running on the test server.

On the validation set ΓV of each dataset, we tuned parameters and determine proper layer configura-
tions for the two variants of IGP. Concretely, we adjusted α ∈ {1, 10} andm ∈ {1, 2, · · · 5} for both
IGP-M and IGP-C, while we tuned β ∈ {0.1, 1, 2, · · · 5} and β ∈ {0.1, 1, 100, 1000} for IGP-M
and IGP-C, respectively. The recommended parameter settings and layer configurations of IGP-M
and IGP-C on each dataset are depicted in Table 4, where dimensionality of the first and last layer
of G are set to be L (i.e., dimensionality of reduced feature) and k (i.e., dimensionality of graph
embedding), respectively. Note that we use the same layer configurations for IGP-M and IGP-C on
each dataset. Moreover, we set the maximum number of epochs n = 100 for all the datasets.

C.5 DETAILED EVALUATION RESULTS AND DISCUSSIONS

C.5.1 QUANTITATIVE EVALUATION

In addition to the visualization results of NMI, Modularity, and runtime in Fig. 3, we also visual-
ized the evaluation results in terms of average AC, NCut, and runtime on test sets of the 11 datasets
in Fig. 4, where one can have the observation consistent with Fig. 3. In most cases, both IGP-M and
IGP-C are in the top groups with best quality metrics. The total runtime of IGP-M and IGP-C is also
competitive to the fast transductive GP baselines.

In the experiments, we recorded the mean value µ and standard deviation σ of all the evaluation
metrics and runtime for all the methods (on test set Γ′ of each dataset). In particular, we use format
‘µ (σ)’ to represent each evaluation result. The quantitative evaluation results on GN-Net and LFR-
Net in terms of NMI and AC are depicted in Table 5 and Table 6. The evaluation results on all the
datasets in terms of modularity and NCut are illustrated in Table 7, Table 8, Table 9, and Table 10.
Moreover, Table 11 and Table 12 give the runtime of all the methods. For both IGP-M and IGP-C, we
also recorded the time of (i) feature extraction (i.e., Algorithm 2), (ii) one feedforward propagation
(through the feature encoder of G), and (iii) downstream clustering (i.e., 10 independent runs of
KMeans), which together contribute to the total runtime of IGP. Runtime of the three modules is
denoted as ’Feat’, ’Prop’, and ’Clus’, respectively.

According to evaluation results in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 Table 11,
and Table 12, which are consistent with the visualization results in shown Fig. 3 (see Section 4), we
have the following major observations.

19

Under review as a conference paper at ICLR 2022

(a) GN-0.3 (b) GN-0.4

(c) GN-0.5 (d) L(f,0.3)

(e) L(f,0.6) (f) L(n,0.3)

(g) L(n,0.6) (h) Taxi (i) Reddit

(j) AS (k) Enron

Figure 4: Visualization results on the 11 datasets
in terms of quality metrics of AC (↑) and NCut
(↓) (y-axis), as well as efficiency metric of run-
time (↓) (x-axis). The number records are given
in Table 7, 8, 9, 10, 11, and 12.

• For all the datasets, IGP-M and IGP-C are in the top group with best quality metrics. More-
over, their runtime is also competitive to fast GP baselines (e.g., Metis, hMetis, GraClus,
RandNE, etc.) and other inductive GNNs with fast online generalization (e.g., GraSAGE,
GAT, and GIN). From the perspective of alleviating the NP-hard challenge of GP, IGP can
achieve a significant trade-off between quality and efficiency of online GP on newly gener-
ated system snapshots. We further quantitatively evaluate the significant trade-off obtained
by IGP via a novel trade-off score in Appendix C.5.2.

• Surprisingly, in some cases, IGP even has the best or second-best quality metrics. Note that
IGP is a novel inductive framework, in which we do not conduct additional optimization on
the test set of each dataset, but other conventional transductive baselines (e.g., SP, Deep-
Walk, etc.) can fully explore the structural properties of each test graph. It indicates the
potential of IGP to capture additional characteristics shared by multiple historical snapshots
beyond conventional transductive approaches applied to one single new graph.

• On GN-Net and LFR-Net, partitioning quality of all the methods declines with the decrease
of pin and increase of µ, where both IGP-M and IGP-C are always in the top group with
best quality metrics. It demonstrates the strong robustness of IGP, especially when the
intrinsic clustering structure of the given graph is not distinct.

20

Under review as a conference paper at ICLR 2022

Table 5: Quantitative evaluation results in terms of NMI (%) (↑).
GN-0.5 GN-0.4 GN-0.3 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6)

SNMF 99.53 (0.21) 98.79 (0.36) 94.37 (0.69) 83.53 (1.60) 49.15 (2.56) 83.59 (1.59) 49.98 (2.19)
DCSBM 67.92 (10.49) 57.68 (10.42) 49.76 (6.04) 45.64 (6.25) 27.27 (2.89) 44.73 (7.48) 27.32 (2.42)
SC 99.75 (0.10) 98.73 (0.24) 94.26 (0.41) 98.19 (0.39) 35.78 (3.65) 98.21 (0.35) 24.66 (2.76)
DeepWalk 99.40 (0.11) 97.60 (0.30) 82.81 (0.85) 93.27 (0.77) 55.71 (2.19) 93.36 (0.78) 56.40 (2.03)
node2vec 99.44 (0.09) 98.89 (0.19) 88.26 (0.77) 95.15 (0.73) 59.11 (2.21) 95.22 (0.68) 59.88 (2.07)
LINE 93.73 (0.54) 68.70 (0.75) 53.25 (0.31) 80.72 (1.44) 42.69 (2.59) 79.89 (1.56) 38.78 (3.29)
VERSE 92.09 (0.99) 84.75 (1.57) 61.15 (1.50) 89.80 (0.89) 44.97 (3.16) 89.94 (0.97) 45.87 (3.05)
MILE 99.79 (0.04) 99.17 (0.13) 93.39 (0.48) 93.87 (0.95) 20.37 (2.32) 94.11 (0.97) 20.67 (2.04)
PhUSION 99.46 (0.08) 98.81 (0.20) 93.89 (0.57) 94.85 (0.75) 54.18 (2.64) 94.90 (0.72) 55.52 (2.38)
NRP 94.98 (0.78) 90.73 (0.86) 77.90 (1.24) 55.78 (3.02) 26.60 (2.39) 51.90 (3.05) 22.26 (2.52)
RandNE 98.33 (0.26) 94.08 (0.47) 79.18 (1.01) 57.63 (2.06) 18.57 (2.16) 58.08 (2.08) 18.87 (1.95)
ProNE 99.80 (0.05) 99.54 (0.08) 96.62 (0.36) 93.33 (0.81) 55.88 (3.04) 93.31 (0.89) 57.61 (2.63)
Metis 98.68 (0.33) 94.68 (0.41) 80.86 (0.77) 84.94 (0.74) 44.52 (2.48) 85.43 (0.71) 45.53 (2.28)
hMetis 96.30 (0.16) 93.82 (0.30) 82.08 (0.68) 88.85 (1.27) 41.65 (3.28) 89.13 (1.17) 42.64 (2.99)
GraClus 99.54 (0.19) 98.10 (0.30) 90.72 (0.76) 90.58 (1.14) 53.06 (3.00) 90.60 (1.09) 53.90 (2.75)
GraSAGE 45.76 (0.13) 45.98 (0.09) 43.21 (0.21) 22.52 (2.21) 15.79 (1.89) 24.67 (2.03) 16.66 (1.77)
GAT 46.09 (0.24) 45.03 (0.25) 44.55 (0.20) 22.99 (1.88) 15.49 (1.78) 25.91 (1.94) 15.83 (1.70)
GIN 43.29 (0.19) 43.26 (0.19) 43.49 (0.17) 18.49 (1.83) 13.32 (1.47) 17.61 (1.71) 13.43 (1.22)
GAP 72.69 (0.52) 64.37 (0.39) 56.13 (0.31) 93.73 (1.76) 47.30 (3.23) 93.64 (1.65) 48.01 (3.11)
ClusNet 26.30 (1.85) 17.65 (2.10) 13.10 (1.44) 89.84 (1.31) 55.49 (2.04) 90.10 (1.27) 56.04 (1.78)
IGP-M 99.85 (0.05) 99.38 (0.11) 96.26 (0.32) 97.21 (0.49) 56.07 (2.33) 97.30 (0.44) 56.48 (2.08)
IGP-C 99.85 (0.04) 99.46 (0.09) 95.50 (0.43) 96.44 (0.57) 52.11 (2.79) 96.56 (0.59) 52.71 (2.52)

Table 6: Quantitative evaluation results in terms of AC (%) (↑).
GN-0.5 GN-0.4 GN-0.3 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6)

SNMF 98.70 (0.50) 97.46 (0.78) 90.25 (1.32) 73.37 (3.20) 41.61 (2.56) 72.96 (2.97) 41.95 (2.40)
DCSBM 38.08 (13.89) 25.83 (9.88) 16.40 (3.93) 22.35 (4.39) 13.65 (2.02) 21.37 (4.96) 13.04 (1.75)
SC 98.69 (0.39) 96.67 (0.54) 89.29 (0.85) 95.09 (0.73) 26.01 (3.62) 97.27 (0.96) 12.26 (1.59)
DeepWalk 96.40 (0.58) 93.15 (0.91) 69.03 (1.52) 87.91 (2.01) 54.97 (2.10) 87.65 (2.13) 55.12 (1.97)
node2vec 96.48 (0.51) 95.53 (0.64) 79.30 (1.47) 90.01 (2.10) 58.40 (2.07) 89.96 (2.05) 58.79 (1.96)
LINE 86.17 (1.06) 46.90 (1.34) 20.36 (0.66) 72.14 (3.07) 38.22 (2.24) 70.55 (3.17) 33.63 (3.50)
VERSE 80.76 (1.89) 70.02 (2.53) 35.39 (2.16) 83.89 (2.07) 40.25 (3.33) 83.56 (2.14) 41.03 (3.11)
MILE 98.67 (0.31) 96.91 (0.50) 87.48 (0.91) 92.60 (1.60) 10.19 (0.93) 92.57 (1.55) 9.94 (0.86)
PhUSION 96.49 (0.54) 94.76 (0.66) 86.77 (1.11) 89.14 (2.06) 51.83 (2.49) 88.80 (1.75) 52.75 (2.25)
NRP 81.61 (1.36) 72.90 (1.26) 56.39 (1.78) 42.27 (2.46) 20.42 (1.74) 38.75 (2.64) 16.43 (1.70)
RandNE 95.07 (0.68) 86.56 (1.03) 63.77 (1.49) 40.67 (1.77) 12.91 (1.25) 40.64 (1.73) 12.80 (1.17)
ProNE 98.69 (0.36) 97.66 (0.42) 92.16 (0.80) 82.56 (2.55) 52.04 (2.95) 82.23 (2.52) 53.51 (2.76)
Metis 97.90 (0.62) 91.25 (0.82) 66.48 (1.55) 58.70 (2.28) 35.13 (1.77) 58.58 (2.57) 35.37 (1.55)
hMetis 88.01 (0.44) 84.44 (0.72) 66.84 (1.20) 66.62 (3.16) 32.80 (2.91) 65.99 (2.49) 33.26 (2.63)
GraClus 97.54 (0.84) 95.11 (0.94) 83.16 (1.54) 72.00 (3.40) 46.19 (3.02) 71.81 (3.33) 46.50 (2.78)
GraSAGE 7.83 (0.13) 7.66 (0.13) 7.44 (0.12) 7.55 (0.25) 5.79 (0.15) 7.58 (0.34) 5.66 (0.19)
GAT 9.20 (0.17) 8.66 (0.16) 8.00 (0.13) 8.52 (0.36) 6.22 (0.16) 8.78 (0.40) 5.69 (0.19)
GIN 7.61 (0.12) 7.51 (0.11) 7.46 (0.11) 6.97 (0.23) 5.83 (0.15) 6.08 (0.30) 5.37 (0.21)
GAP 38.90 (1.04) 29.71 (0.76) 20.30 (0.57) 83.63 (4.16) 40.06 (3.34) 83.06 (3.92) 40.08 (3.41)
ClusNet 4.51 (0.30) 2.94 (0.28) 3.13 (0.23) 86.45 (2.47) 56.20 (1.82) 86.87 (2.36) 56.25 (1.65)
IGP-M 98.96 (0.28) 97.36 (0.46) 91.96 (0.73) 94.29 (1.41) 53.57 (2.21) 94.24 (1.38) 53.42 (2.04)
IGP-C 98.93 (0.31) 97.48 (0.46) 90.47 (0.85) 92.58 (1.49) 47.38 (2.68) 92.46 (1.46) 47.47 (2.59)

• Similar to IGP, the E2E GNN baselines (i.e., GAP and ClusNet) can also apply fast online
generalization to datasets with fixed K (i.e., on GN-Net). Namely, we also trained GAP
and ClusNet on training set of GN-Net and directly generalized them to corresponding test
sets for online GP, in which we directly derived the partitioning results from their output
layers. However, the online GP of GAP and ClusNet is with poor quality, which indicates
that the online generalization of the graph embedding scheme in IGP is more robust than
that of the E2E approaches, especially when clustering structure of a dataset is not distinct.
Furthermore, we still need to train GAP and ClusNet from scratch for each new test graph
on datasets with non-fixed K due to the fixed dimensionality of their output layers, which
is time-consuming. In contrast, the graph embedding scheme of IGP can still tackle fast
online GP with non-fixed K.

• In contrast to the reduced structural feature Zt in IGP, we used a constant matrix 1Nt×L
as feature inputs of inductive GNN baselines (i.e., GraSAGE, GAT, adn GIN), which is
a standard setting of most inductive GNNs for graphs without available node attributes
(Xu et al., 2019). The widely-used unsupervised training loss of GraSAGE (Hamilton
et al., 2017) was also adopted in the offline training of these inductive GNNs. Although
the inductive GNN baselines have slightly faster runtime over IGP, they still suffer from
poor partitioning quality on all the datasets. The results further validate that the extracted

21

Under review as a conference paper at ICLR 2022

Table 7: Quantitative evaluation results in terms of Modularity (%) (↑) on datasets with ground-truth.
GN-0.5 GN-0.4 GN-0.3 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6)

SNMF 47.95 (0.23) 37.79 (0.27) 27.28 (0.29) 56.12 (1.58) 29.22 (0.63) 56.03 (1.50) 29.43 (0.60)
DCSBM 17.31 (5.55) 9.33 (2.40) 3.86 (0.72) 11.37 (2.46) 4.77 (0.96) 11.00 (2.68) 4.71 (0.74)
SC 48.13 (0.20) 37.81 (0.23) 27.07 (0.23) 67.32 (0.20) 26.64 (1.06) 67.50 (0.26) 23.62 (2.83)
DeepWalk 47.88 (0.20) 37.27 (0.28) 21.97 (0.46) 62.31 (1.11) 33.92 (0.54) 62.35 (1.14) 34.06 (0.48)
node2vec 47.89 (0.19) 37.91 (0.21) 24.62 (0.45) 63.23 (1.14) 34.47 (0.54) 63.30 (1.14) 34.64 (0.47)
LINE 42.47 (0.59) 15.96 (0.61) 5.14 (0.17) 55.88 (1.84) 23.34 (0.98) 55.21 (1.74) 20.76 (1.93)
VERSE 41.33 (0.91) 28.62 (1.05) 12.79 (0.69) 60.50 (1.18) 29.34 (1.13) 60.52 (1.19) 29.40 (1.08)
MILE 48.21 (0.18) 38.08 (0.20) 26.96 (0.27) 66.37 (0.34) 21.33 (1.25) 66.55 (0.42) 21.59 (1.14)
PhUSION 47.89 (0.20) 37.79 (0.22) 27.03 (0.29) 63.25 (1.00) 33.80 (0.50) 63.26 (0.91) 34.06 (0.48)
NRP 45.21 (0.41) 34.31 (0.39) 22.27 (0.46) 24.32 (1.29) 7.07 (0.72) 25.00 (1.79) 5.69 (0.80)
RandNE 47.29 (0.24) 35.61 (0.34) 21.08 (0.47) 18.44 (1.20) 3.26 (0.34) 18.48 (1.21) 3.38 (0.32)
ProNE 48.20 (0.18) 38.20 (0.19) 27.92 (0.24) 60.96 (1.19) 32.64 (0.81) 60.98 (1.17) 33.24 (0.70)
Metis 47.29 (0.34) 35.24 (0.30) 21.62 (0.36) 52.38 (1.12) 30.51 (0.44) 52.41 (1.17) 30.58 (0.39)
hMetis 44.78 (0.22) 34.62 (0.28) 22.39 (0.31) 57.51 (1.14) 31.80 (0.60) 57.44 (0.96) 31.99 (0.49)
GraClus 47.83 (0.26) 37.34 (0.30) 25.00 (0.48) 53.54 (1.98) 31.61 (0.92) 53.43 (1.87) 31.71 (0.83)
GraSAGE 0.08 (0.03) 0.04 (0.03) 0.01 (0.01) 0.28 (0.17) 0.18 (0.11) 0.56 (0.27) 0.17 (0.16)
GAT 0.48 (0.05) 0.27 (0.05) 0.08 (0.03) 0.99 (0.17) 0.08 (0.12) 1.71 (0.22) 0.02 (0.11)
GIN 0.05 (0.03) 0.03 (0.03) 0.01 (0.03) 0.50 (0.11) 0.06 (0.08) 4.73 (0.29) 4.19 (0.18)
GAP 19.35 (0.63) 9.95 (0.36) 5.24 (0.19) 66.45 (0.59) 32.96 (0.73) 66.65 (0.57) 32.96 (0.77)
ClusNet 0.03 (0.10) 0.02 (0.12) 0.01 (0.13) 65.52 (0.53) 35.10 (0.51) 65.77 (0.54) 35.25 (0.44)
IGP-M 48.25 (0.18) 38.17 (00.20) 27.92 (0.22) 66.26 (0.54) 34.14 (0.53) 66.45 (0.56) 34.22 (0.47)
IGP-C 48.25 (0.18) 38.19 (00.19) 27.68 (0.25) 65.72 (0.59) 31.81 (0.65) 65.83 (0.64) 31.95 (0.62)

Table 8: Quantitative evaluation results in terms of Modularity (%) (↑) on datasets w/o ground-truth.
Taxi Reddit AS Enron

SNMF 73.72 (0.41) 68.29 (7.16) 53.32 (2.55) 73.88 (14.55)
DCSBM 73.71 (0.60) 2.81 (5.17) 4.97 (2.16) 4.36 (7.09)
SC 73.80 (0.59) 61.19 (7.68) 43.14 (6.60) 71.43 (19.05)
IncSNA 71.96 (0.79) - 4.13 (1.13) -
DeepWalk 73.72 (0.54) 65.66 (8.91) 56.48 (2.90) 74.72 (17.57)
node2vec 73.64 (0.54) 69.31 (7.90) 58.19 (2.80) 76.86 (13.31)
LINE 73.95 (0.54) 57.25 (12.92) 45.02 (4.87) 70.94 (14.86)
VERSE 73.69 (0.51) 51.70 (13.77) 52.25 (10.59) 73.43 (18.95)
MILE 72.91 (1.21) 59.09 (17.94) 56.83 (3.20) 74.78 (18.98)
PhUSION 72.93 (0.59) 67.69 (6.18) 58.18 (2.78) 67.84 (12.37)
NRP 6.07 (9.55) 4.01 (5.99) 4.61 (3.39) 0.24 (6.53)
RandNE 73.12 (0.72) 5.52 (5.04) 5.30 (0.54) 21.53 (12.32)
ProNE 73.61 (0.64) 62.88 (5.27) 49.10 (3.87) 62.80 (9.98)
TIMERS 30.80 (2.56) - 4.89 (1.29) -
Metis 70.48 (0.51) 52.34 (10.68) 52.75 (3.86) 65.04 (17.07)
hMetis 73.44 (0.80) 54.27 (11.02) 56.03 (4.33) 67.54 (18.16)
GraClus 73.05 (0.64) 45.27 (11.59) 46.81 (4.83) 62.02 (21.93)
GraSAGE 21.85 (1.11) 6.94 (3.72) 5.69 (1.47) 9.41 (6.55)
GAT 1.11 (0.42) 8.69 (11.82) 4.60 (0.84) 4.20 (4.89)
GIN 8.09 (0.44) 4.82 (7.30) 5.62 (7.60) 10.82 (3.61)
GAP 71.79 (1.30) 65.08 (6.24) 58.31 (2.68) 75.47 (12.57)
ClusNet 72.54 (1.27) 55.31 (10.37) 55.87 (2.42) 72.56 (18.75)
IGP-M 74.01 (0.51) 69.38 (5.49) 56.82 (2.71) 74.33 (13.51)
IGP-C 74.00 (0.42) 69.37 (5.47) 55.40 (2.26) 74.15 (11.78)

feature Zt as well as hybrid training loss of IGP (which can incorporate the permutation
invariant label information of historical training snapshots) are essential to ensure its high
partitioning quality.

• For the total runtime of IGP on all the datasets, the downstream clustering (e.g., KMeans
with 10 independent runs) is a major bottleneck. However, the downstream clustering
module is also the key component that enables IGP to deal with online GP with non-fixed
K. In our future work, we intend to further reduce the runtime of IGP by replacing the
downstream clustering module with a generic E2E module that can directly derive the par-
titioning result with respect to a specific (non-fixed) K via an output layer.

• In most cases, IGP-M and IGP-C have similar quality metrics. On datasets in which the
clustering structures are more difficult to identify (e.g., L(f , 0.6) and L(n, 0.6)), IGP-M
has better partitioning quality than that of IGP-C. It implies that the modularity matrix Qt

is more informative than the normalized adjacency matrix Mt to be the neighbor similarity
feature Xt in IGP. Moreover, the neighbor-induced feature Xt is also the key component to
ensure the strong robustness of IGP, especially when clustering structures of a given graph
are indistinct.

22

Under review as a conference paper at ICLR 2022

Table 9: Quantitative evaluation results in terms of NCut (↓) on datasets with ground-truth.
GN-0.5 GN-0.4 GN-0.3 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6)

SNMF 139.14 (10.90) 213.23 (14.28) 352.04 (8.94) 38.80 (5.62) 98.49 (10.95) 43.22 (6.33) 106.72 (11.89)
DCSBM 3.74e3 (2.33e3) 7.64e3 (4.37e3) 1.73e4 (6.21e3) 3.26e3 (1.72e3) 2.25e3 (1.63e3) 4.10e3 (2.14e3) 2.51e3 (1.70e3)
SC 294.67 (388.31) 286.04 (118.40) 342.36 (34.29) 35.38 (35.34) 115.48 (29.30) 40.20 (45.35) 88.11 (43.17)
DeepWalk 283.44 (114.49) 488.62 (202.14) 1.05e3 (298.59) 36.29 (39.00) 80.17 (16.20) 42.39 (50.88) 89.76 (35.83)
node2vec 224.85 (84.62) 346.07 (142.89) 664.81 (193.29) 55.11 (94.33) 80.50 (37.93) 50.57 (63.56) 87.03 (34.39)
LINE 374.65 (251.98) 1.25e3 (331.83) 3.04e3 (532.29) 2.56e3 (1.21e3) 2.20e3 (1.30e3) 2.83e3 (1.33e3) 1.93e3 (1.12e3)
VERSE 363.71 (97.62) 463.89 (64.89) 939.25 (56.17) 43.07 (44.96) 94.54 (11.16) 47.99 (70.43) 1.04e2 (11.05)
MILE 241.91 (86.40) 262.43 (81.67) 356.62 (7.27) 36.87 (62.47) 60.60 (7.52) 33.36 (32.68) 65.94 (9.75)
PhUSION 160.17 (36.11) 222.93 (5.29) 360.98 (7.67) 24.87 (4.02) 74.25 (7.70) 27.21 (3.59) 80.54 (8.46)
NRP 806.64 (190.88) 2.18e3 (374.90) 5.82e3 (621.38) 1.91e3 (660.70) 7.48e3 (1.06e3) 3.84e3 (848.78) 9.63e3 (1.36e3)
RandNE 464.84 (199.62) 1.36e3 (372.75) 5.07e3 (877.58) 2.24e3 (1.50e3) 1.31e4 (2.30e3) 2.83e3 (1.83e3) 1.41e4 (2.56e3)
ProNE 224.35 (77.47) 295.37 (92.08) 696.42 (314.10) 47.03 (125.66) 78.78 (8.51) 59.34 (168.78) 85.04 (9.65)
Metis 141.14 (3.88) 242.91 (6.56) 502.63 (12.16) 38.60 (5.76) 87.21 (9.53) 42.88 (7.72) 94.96 (10.46)
hMetis 189.03 (4.85) 304.87 (11.92) 531.05 (13.98) 69.77 (97.05) 76.78 (7.44) 80.56 (129.09) 83.35 (8.72)
GraClus 150.26 (37.63) 229.87 (74.71) 396.54 (24.44) 39.55 (7.91) 79.57 (9.25) 44.04 (7.73) 86.74 (10.02)
GraSAGE 1.87e5 (1.23e4) 2.05e5 (1.29e4) 1.42e5 (1.17e4) 3.42e4 (4.58e3) 3.71e4 (5.51e3) 4.79e4 (6.36e3) 5.50e4 (6.79e3)
GAT 7.70e4 (9.07e3) 9.49e4 (9.97e3) 1.36e5 (1.27e4) 1.81e4 (5.16e3) 3.17e4 (5.66e3) 3.26e4 (5.31e3) 3.40e4 (6.86e3)
GIN 1.36e5 (1.054e4) 1.45e5 (1.10e4) 1.53e5 (1.11e4) 2.42e4 (6.691e3) 2.77e4 (7.50e3) 4.45e4 (8.52e3) 4.05e4 (9.36e3)
GAP 4.38e3 (1.21e3) 7.99e3 (2.00e3) 1.28e4 (2.70e3) 17.33 (2.74) 69.5463 (7.8034) 18.35 (2.51) 76.2432 (9.5541)
ClusNet 5.58e4 (8.38e3) 2.80e4 (6.12e3) 2.91e4 (5.12e3) 2.97e2 (1.66e2) 1.11e3 (4.18e2) 2.91e2 (1.56e2) 1.19e3 (4.22e2)
IGP-M 240.14 (71.27) 317.82 (91.99) 345.82 (19.15) 32.39 (38.31) 75.92 (8.29) 34.84 (35.44) 82.76 (8.97)
IGP-C 232.12 (73.70) 289.53 (88.19) 354.95 (29.97) 29.22 (21.72) 85.00 (9.02) 38.96 (47.41) 92.40 (10.05)

Table 10: Quantitative evaluation results in terms of NCut (↓) on datasets without ground-truth.
Taxi Reddit AS Enron

SNMF 0.7851 (0.1299) 6.7052 (8.4353) 10.0464 (1.6011) 23.0720 (1.34e2)
DCSBM 0.7908 (0.1338) 7.22e3 (3.89e3) 4.76e2 (3.74e2) 3.05e3 (2.10e3)
SC 0.7677 (0.1294) 2.8457 (1.5721) 2.2442 (0.2929) 0.7977 (0.5563)
IncNSA 0.5393 (0.0877) - 8.26e3 (3.84e3) -
DeepWalk 0.7999 (0.1198) 56.7501 (3.51e2) 6.9109 (1.1831) 54.3684 (2.48e2)
node2vec 0.8069 (0.1201) 4.4548 (4.0488) 6.1055 (1.0540) 14.9095 (87.0920)
LINE 0.7685 (0.1260) 9.31e2 (1.45e3) 2.98e2 (5.46e2) 1.04e2 (4.30e2)
VERSE 0.7983 (0.1247) 1.26e3 (1.53e4) 11.8885 (9.2661) 1.48e2 (6.50e2)
MILE 0.8378 (0.1261) 9.98e2 (1.56e3) 8.6199 (2.3743) 1.37e2 (6.10e2)
PhUSION 0.8541 (0.1372) 40.3041 (69.9684) 6.2456 (1.0237) 91.8462 (1.35e2)
NRP 51.7825 (57.8389) 6.84e2 (7.13e2) 1.72e3 (1.15e3) 4.66e2 (5.48e2)
RandNE 0.8050 (0.1239) 5.33e3 (3.50e3) 6.62e3 (3.08e3) 3.26e3 (2.35e3)
ProNE 0.7824 (0.1251) 52.6408 (4.52e2) 12.8754 (4.0178) 35.1600 (1.09e2)
TIMERS 3.4756 (0.5099) - 1.38e3 (8.06e2) -
Metis 1.0695 (0.1264) 2.94e2 (4.45e2) 15.3312 (3.7055) 2.95e2 (4.39e2)
hMetis 0.8305 (0.1157) 6.76e2 (7.88e2) 39.3087 (1.59e2) 4.26e2 (6.40e2)
GraClus 0.8493 (0.1195) 2.20e3 (1.75e3) 17.8574 (6.7540) 3.08e2 (7.82e2)
GraSAGE 12.4076 (2.1775) 6.59e3 (3.97e3) 1.05e4 (3.85e3) 4.59e3 (1.68e3)
GAT 1.20e3 (4.26e2) 5.21e3 (2.86e3) 5.27e3 (1.84e3) 2.17e3 (9.53e2)
GIN 25.31 (4.63) 6.16e3 (3.74e3) 1.18e4 (3.01e3) 6.34e3 (2.60e3)
GAP 0.9371 (0.1529) 4.1535 (4.4771) 6.1307 (1.2355) 1.3524 (0.4140)
ClusNet 6.9216 (42.5113) 28.2975 (53.4356) 31.4675 (49.0738) 23.6067 (99.4427)
IGP-M 0.7711 (0.1241) 4.7408 (2.1934) 7.2568 (1.2706) 4.5338 (16.9436)
IGP-C 0.7736 (0.1253) 4.7084 (2.1537) 9.6586 (3.4559) 4.3581 (16.5047)

C.5.2 TRADE-OFF ANALYSIS

In this paper, we focus on the trade-off between quality and efficiency of online GP on newly gen-
erated graphs from a system. To the best of our knowledge, to evaluate the trade-off between two
aspects that conflict with each other using a comprehensive metric remains an open issue. We pro-
pose a trade-off score (TOS) to quantitatively evaluate the trade-off between quality and efficiency
of a given GP method. Concretely, the calculation of TOS is based on the normalized area covered
by an induced rectangle of a data point in the quality-efficiency visualization result (like Fig. 3).
Fig. 5 gives two running examples regarding how to calculate TOS for a given GP method. Our goal
is to let larger TOS indicate a better trade-off between quality and efficiency.

In our evaluation, we use NMI, AC, modularity, and NCut as the quality metrics, while we evaluate
the efficiency of a specific method via its total runtime. Let Q and E be the value of a quality metric
and the runtime with respect to a GP method to be evaluated. Given the tuple (E,Q), each method
used in our experiments can be visualized as a data point in a 2-D space as illustrated in Fig. 3.
When we use NMI or AC as the quality metric Q, we further derive the normalized metric via

_

Q = Q/1, (15)

23

Under review as a conference paper at ICLR 2022

Table 11: Quantitative evaluation results in terms of runtime (sec) (↓) on datasets w/ ground-truth.
GN-0.5 GN-0.4 GN-0.3 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6)

SNMF 216.25 (63.49) 232.32 (51.10) 326.90 (63.67) 129.15 (32.03) 136.21 (0.64) 155.84 (43.87) 194.13 (54.34)
DCSBM 143.91 (14.92) 143.47 (16.88) 155.99 (19.97) 123.05 (7.95) 127.26 (11.40) 161.94 (24.38) 165.57 (28.21)
SC 49.38 (0.60) 46.73 (0.69) 62.14 (1.08) 21.04 (1.28) 42.54 (2.21) 27.00 (3.85) 53.26 (6.95)
DeepWalk 35.70 (0.57) 36.63 (0.67) 42.92 (0.95) 14.90 (0.38) 18.04 (0.53) 16.87 (1.04) 19.45 (1.19)
node2vec 54.36 (0.58) 54.63 (0.71) 59.75 (1.01) 30.97 (0.62) 33.55 (0.61) 34.81 (2.03) 35.86 (2.00)
LINE 34.29 (1.72) 29.38 (1.99) 24.16 (1.74) 8.15 (0.71) 8.51 (0.62) 10.84 (1.87) 13.28 (1.52)
VERSE 185.28 (1.00) 185.95 (1.04) 184.87 (1.17) 112.85 (0.92) 114.20 (0.97) 123.72 (6.53) 125.10 (6.80)
MILE 48.95 (3.76) 50.77 (3.76) 56.96 (3.67) 16.31 (11.62) 21.36 (3.45) 17.14 (3.56) 23.38 (3.60)
PhUSION 112.53 (0.83) 113.65 (0.51) 115.98 (0.58) 85.62 (0.49) 86.59 (0.45) 105.61 (11.14) 105.61 (10.95)
NRP 13.11 (0.28) 14.03 (0.57) 16.58 (1.34) 2.44 (0.23) 2.82 (0.24) 5.24 (0.49) 5.07 (0.57)
RandNE 10.34 (0.09) 12.48 (0.14) 14.73 (0.22) 2.12 (0.18) 2.49 (0.22) 2.54 (0.30) 2.91 (0.33)
ProNE 17.83 (0.10) 18.85 (0.13) 21.36 (0.30) 6.67 (0.23) 7.46 (0.33) 7.85 (0.70) 8.81 (0.71)
Metis 2.21 (0.06) 2.60 (0.04) 3.23 (0.08) 1.07 (0.07) 1.47 (0.05) 1.21 (0.10) 1.64 (0.09)
hMetis 12.68 (0.43) 13.59 (0.48) 15.53 (0.58) 5.51 (0.21) 7.58 (0.26) 6.29 (0.50) 8.62 (0.67)
GraClus 1.59 (0.08) 1.77 (0.07) 1.88 (0.10) 0.88 (0.08) 0.94 (0.04) 0.95 (0.04) 1.03 (0.05)
GraSAGE 8.12 (0.27) 8.24 (0.31) 8.18 (0.30) 2.58 (0.17) 2.50 (0.16) 3.12 (0.33) 3.38 (0.36)
GAT 5.70 (0.12) 5.56 (0.15) 5.37 (0.12) 2.03 (0.16) 2.37 (0.19) 2.77 (0.31) 2.81 (0.29)
GIN 4.49 (0.07) 4.58 (0.10) 4.56 (0.06) 1.86 (0.14) 1.93 (0.15) 1.83 (0.22) 1.85 (0.23)
GAP 19.63 (0.66) 19.59 (0.59) 19.59 (0.61) 66.45 (1.96) 66.94 (1.75) 76.79 (6.73) 77.66 (6.57)
ClusNet 38.66 (0.23) 39.21 (0.21) 40.16 (0.24) 73.28 (4.97) 76.96 (4.27) 88.50 (7.63) 90.07 (8.14)
IGP-M 9.93 (0.25) 11.19 (0.32) 13.63 (0.55) 2.48 (0.18) 3.56 (0.26) 2.93 (0.32) 4.19 (0.46)

Feat 0.42 (0.01) 0.42 (0.01) 0.42 (0.01) 0.20 (0.01) 0.20 (0.01) 0.23 (0.02) 0.23 (0.02)
Prop 0.02 (0.001) 0.02 (0.001) 0.02 (0.0005) 0.03 (0.0006) 0.03 (0.0005) 0.03 (0.002) 0.03 (0.002)
Clus 9.49 (0.25) 10.76 (0.32) 13.18 (0.55) 2.25 (0.18) 3.33 (0.26) 2.67 (0.31) 3.93 (0.45)

IGP-C 9.93 (0.28) 11.42 (0.30) 14.11 (0.50) 2.84 (0.20) 3.55 (0.25) 3.36 (0.37) 4.24 (0.44)
Feat 0.46 (0.01) 0.46 (0.01) 0.471 (0.01) 0.24 (0.01) 0.25 (0.01) 0.28 (0.03) 0.28 (0.03)
Prop 0.02 (0.002) 0.01 (0.0003) 0.02 (0.0003) 0.03 (0.0004) 0.03 (0.0004) 0.03 (0.002) 0.03 (0.002)
Clus 9.45 (0.28) 10.95 (0.30) 13.62 (0.50) 2.57 (0.20) 3.28 (0.25) 3.05 (0.35) 3.93 (0.42)

Table 12: Quantitative evaluation results in terms of runtime (sec) (↓) on datasets w/o ground-truth.
Taxi Reddit AS Enron

SNMF 2.13 (1.40) 217.19 (372.52) 112.31 (83.53) 1.68 (1.25)
DCSBM 6.15 (0.15) 9.34 (12.63) 197.17 (135.89) 3.17 (1.54)
SC 1.34 (0.08) 0.35 (0.52) 15.13 (9.66) 0.28 (0.33)
IncSNA 0.99 (0.24) - 1.43 (0.81) -
DeepWalk 8.97 (0.09) 9.99 (6.05) 34.33 (14.71) 5.70 (1.74)
node2vec 19.70 (0.31) 25.37 (17.83) 29.90 (14.21) 4.27 (1.49)
LINE 1.00 (0.08) 2.40 (0.73) 3.76 (1.12) 1.38 (0.14)
VERSE 20.17 (0.16) 25.39 (11.43) 98.61 (40.19) 20.18 (0.17)
MILE 11.39 (5.48) 6.56 (2.79) 8.49 (2.36) 2.51 (0.66)
PhUSION 6.47 (0.07) 4.92 (5.54) 77.74 (49.35) 2.53 (1.24)
NRP 0.75 (0.06) 0.36 (0.20) 1.58 (0.63) 0.20 (0.19)
RandNE 0.18 (0.02) 0.48 (0.27) 0.74 (0.31) 0.26 (0.07)
ProNE 0.99 (0.03) 0.76 (0.51) 4.89 (2.65) 0.42 (0.13)
TIMERS 20.20 (2.94) - 19.00 (4.66) -
Metis 0.22 (0.01) 0.14 (0.06) 0.37 (0.11) 0.10 (0.02)
hMetis 2.22 (0.12) 0.42 (0.24) 2.60 (1.25) 0.32 (0.13)
GraClus 1.02 (0.01) 0.18 (0.05) 0.42 (0.15) 0.14 (0.03)
GraSAGE 0.21 (0.02) 0.35 (0.19) 1.29 (0.62) 0.17 (0.04)
GAT 0.21 (0.02) 0.33 (0.16) 0.69 (0.30) 0.14 (0.03)
GIN 0.16 (0.01) 0.24 (0.10) 0.67 (0.29) 0.13 (0.03)
GAP 8.66 (2.59) 6.32 (4.48) 70.53 (45.17) 3.20 (0.89)
ClusNet 19.10 (0.28) 6.55 (3.92) 49.93 (29.66) 4.80 (1.15)
IGP-M 0.43 (0.02) 0.29 (0.14) 2.37 (1.25) 0.21 (0.06)
Feat 0.24 (0.004) 0.007 (0.008) 1.12 (0.73) 0.03 (0.01)
Prop 0.003 (0.0001) 0.01 (0.009) 0.13 (0.05) 0.003 (0.001)
Clus 0.19 (0.02) 0.27 (0.12) 1.12 (0.48) 0.18 (0.05)

IGP-C 0.43 (0.02) 0.30 (0.14) 2.38 (1.28) 0.22 (0.06)
Feat 0.24 (0.005) 0.008 (0.009) 1.16 (0.75) 0.03 (0.01)
Prop 0.003 (0.0001) 0.01 (0.009) 0.13 (0.05) 0.003 (0.001)
Clus 0.19 (0.01) 0.28 (0.12) 1.10 (0.49) 0.19 (0.05)

since the value range of NMI or AC is Q ∈ [0, 1] and larger NMI or AC indicate better partitioning
quality. Furthermore, when we use modularity as the quality metric, the value range is Q ∈ [−1, 1],
in which larger modularity indicates better quality. Hence, we derive the normalized metric as

_

Q = (Q+ 1)/2. (16)
In contrast, smaller NCut metric implies better partitioning quality with value range Q ∈ [0,+∞).
Therefore, when using NCut as the quality metric Q, we normalize it via

_

Q = (Qm −Q)/Qm (17)

24

Under review as a conference paper at ICLR 2022

Normalized Runtime

Normalized

NMI, AC, &

Modularity

Normalized Runtime

Normalized

Ncut

Q

E
Q

E

TOS = Area covered by

the induced rectangle

Figure 5: Running examples of the calculation of trade-off score (TOS).

Table 13: Trade-off scores (↑) between NMI and runtime on datasets with ground-truth.
GN-0.3 GN-0.4 GN-0.5 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6)

SNMF 0 0 0 0 0 0.0315 0
DCSBM 0.2602 0.2206 0.2272 0.0216 0.0179 0 0.0402
SC 0.7634 0.7887 0.7697 0.8219 0.2460 0.8184 0.1789
DeepWalk 0.7194 0.8221 0.8299 0.8251 0.4833 0.8363 0.5075
node2vec 0.7213 0.7564 0.7444 0.7233 0.4455 0.7475 0.4882
LINE 0.4931 0.6001 0.7887 0.7562 0.4002 0.7454 0.3613
VERSE 0.2657 0.1691 0.1319 0.1134 0.0726 0.2123 0.1631
MILE 0.7712 0.7750 0.7720 0.8201 0.1718 0.8415 0.1818
PhUSION 0.6058 0.5047 0.4770 0.3197 0.1974 0.3301 0.2532
NRP 0.7395 0.8525 0.8922 0.5472 0.2605 0.5022 0.2168
RandNE 0.7561 0.8902 0.9363 0.5669 0.1823 0.5717 0.1859
ProNE 0.9031 0.9146 0.9157 0.8851 0.5282 0.8879 0.5500
Metis 0.8006 0.9362 0.9767 0.8423 0.4404 0.8479 0.4515
hMetis 0.7818 0.8833 0.9065 0.8506 0.3933 0.8567 0.4075
GraClus 0.9020 0.9735 0.9881 0.8996 0.5269 0.9007 0.5361
GraSAGE 0.4213 0.4435 0.4404 0.2207 0.1550 0.2419 0.1637
GAT 0.4382 0.4395 0.4488 0.2263 0.1522 0.2547 0.1560
GIN 0.4288 0.4241 0.4239 0.1822 0.1313 0.1741 0.1330
GAP 0.5277 0.5894 0.6609 0.4551 0.2406 0.4924 0.2880
ClusNet 0.1149 0.1467 0.2160 0.3887 0.2414 0.4086 0.3004
IGP-M 0.9225 0.9459 0.9526 0.9535 0.5461 0.9554 0.5526
Ranking 1 2 4 1 1 1 1

IGP-C 0.9138 0.9457 0.9527 0.9432 0.5075 0.9456 0.5156
Ranking 2 3 3 2 4 2 4

with Qm as the maximum NCut value through all the methods to be evaluated. For efficiency metric
E (i.e., runtime), smaller value of E indicates higher efficiency with value range E ∈ [0,+∞), so
we further normalize E via

_

E = (Em − E)/Em, (18)

whereEm denotes the maximum runtime through all the methods to be evaluated. Finally, we define
TOS with respect to the given quality and efficiency metrics (Q,E) as the (normalized) area covered
by the induced rectangle illustrated in Fig. 5. Namely, we have

TOS(Q,E) =
_

Q×
_

E, (19)

in which larger TOS implies a better trade-off between quality and efficiency.

The TOS values with respect to the quality metrics of NMI, AC, modularity, and NCut are depicted
in Table 13, Table 14, Table 15, and Table 16, respectively. In our experiments, we saved model
parameters of IGP with best metrics in terms of NMI and modularity on validation sets of datasets
with and without ground-truth, respectively. Namely, we used NMI and modularity as validation
metrics for datasets with and without ground-truth. For TOS metrics with respect to NMI and
modularity (see Table 13 and Table 15), both IGP-M and IGP-C have the best and second-best
TOS values in most cases, indicating that IGP can achieve the best trade-off when using NMI and
modularity as the (validation) quality metrics. Furthermore, IGP-M and IGP-C can also achieve the
top-5 TOS metrics with respect to AC and NCut on all the datasets. In summary, IGP can achieve a
better trade-off between quality and efficiency of the online GP over various baseline methods.

25

Under review as a conference paper at ICLR 2022

Table 14: Trade-off scores (↑) between AC and runtime on datasets with ground-truth.
GN-0.3 GN-0.4 GN-0.5 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6)

SNMF 0 0 0 0 0 0.0275 0
DCSBM 0.1274 0.0988 0.1274 0.0106 0.0090 0 0.0192
SC 0.7616 0.7723 0.7616 0.7960 0.1789 0.8105 0.0890
DeepWalk 0.8049 0.7846 0.8049 0.7777 0.4769 0.7852 0.4960
node2vec 0.7223 0.7307 0.7223 0.6843 0.4402 0.7062 0.4793
LINE 0.7250 0.4097 0.7250 0.6759 0.3583 0.6583 0.3133
VERSE 0.1157 0.1397 0.1157 0.1059 0.0650 0.1972 0.1459
MILE 0.7634 0.7573 0.7634 0.8091 0.0859 0.8277 0.0874
PhUSION 0.4628 0.4840 0.4628 0.3005 0.1888 0.3089 0.2405
NRP 0.7666 0.6850 0.7666 0.4147 0.2000 0.3750 0.1600
RandNE 0.9052 0.8191 0.9052 0.4000 0.1267 0.4000 0.1261
ProNE 0.9055 0.8974 0.9055 0.7830 0.4919 0.7824 0.5108
Metis 0.9690 0.9023 0.9690 0.5821 0.3475 0.5814 0.3507
hMetis 0.8285 0.7950 0.8285 0.6378 0.3097 0.6343 0.3178
GraClus 0.9682 0.9439 0.9682 0.7151 0.4587 0.7139 0.4625
GraSAGE 0.0754 0.0739 0.0754 0.0740 0.0568 0.0743 0.0556
GAT 0.0896 0.0845 0.0896 0.0839 0.0611 0.0863 0.0561
GIN 0.0745 0.0736 0.0745 0.0687 0.0575 0.0601 0.0532
GAP 0.3537 0.2720 0.3537 0.4060 0.2037 0.4367 0.2405
ClusNet 0.0370 0.0244 0.0370 0.3740 0.2445 0.3940 0.3015
IGP-M 0.9442 0.9267 0.9442 0.9248 0.5217 0.9254 0.5227
Ranking 3 3 3 1 1 1 1

IGP-C 0.9439 0.9269 0.9439 0.9054 0.4614 0.9054 0.4643
Ranking 4 2 4 2 4 2 5

Table 15: Trade-off scores (↑) between modularity and runtime on all the datasets.
GN-0.3 GN-0.4 GN-0.5 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6) Taxi Reddit AS Enron

SNMF 0 0 0 0 0 0.0294 0 0.7769 0 0.3299 0.7970
DCSBM 0.1962 0.2091 0.1962 0.0263 0.0344 0 0.0770 0.6039 0.4919 0 0.4398
SC 0.5715 0.5505 0.5715 0.7003 0.4354 0.6979 0.4485 0.8115 0.8047 0.6608 0.8454
IncSNA - - - - - - - 0.8175 - 0.5169 -
DeepWalk 0.6173 0.5781 0.6173 0.7179 0.5809 0.7272 0.6031 0.4830 0.7902 0.6462 0.6271
node2vec 0.5536 0.5274 0.5536 0.6204 0.5068 0.6410 0.5488 0.0211 0.7477 0.6710 0.6972
LINE 0.5994 0.5065 0.5994 0.7302 0.5782 0.7241 0.5625 0.8267 0.7776 0.7113 0.7965
VERSE 0.1012 0.1283 0.1012 0.1013 0.1045 0.1894 0.2301 0.0212 0.6698 0.3805 0
MILE 0.5733 0.5395 0.5733 0.7268 0.5115 0.7446 0.5347 0.3770 0.7714 0.7504 0.7653
PhUSION 0.3547 0.3519 0.3547 0.2751 0.2437 0.2840 0.3056 0.5875 0.8194 0.4791 0.7338
NRP 0.6820 0.6310 0.6820 0.6098 0.5243 0.6048 0.5146 0.5107 0.5192 0.5189 0.4963
RandNE 0.7012 0.6416 0.7012 0.5825 0.5069 0.5831 0.5092 0.8578 0.5264 0.5245 0.5998
ProNE 0.6799 0.6349 0.6799 0.7633 0.6269 0.7659 0.6360 0.8256 0.8115 0.7270 0.7971
TIMERS - - - - - - - 0 - 0.4739 -
Metis 0.7289 0.6686 0.7289 0.7556 0.6455 0.7564 0.6474 0.8431 0.7612 0.7623 0.8213
hMetis 0.6814 0.6337 0.6814 0.7540 0.6223 0.7566 0.6307 0.7717 0.7699 0.7699 0.8245
GraClus 0.7337 0.6815 0.7337 0.7625 0.6535 0.7626 0.6551 0.8215 0.7257 0.7325 0.8044
GraSAGE 0.4816 0.4825 0.4816 0.4914 0.4917 0.4931 0.4921 0.6030 0.5338 0.5250 0.5423
GAT 0.4892 0.4894 0.4892 0.4970 0.4917 0.4998 0.4929 0.5002 0.5426 0.5212 0.5175
GIN 0.4899 0.4903 0.4899 0.4953 0.4932 0.5177 0.5160 0.5362 0.5235 0.5263 0.5504
GAP 0.5426 0.5034 0.5426 0.4041 0.3381 0.4381 0.3988 0.4907 0.8014 0.5084 0.7383
ClusNet 0.4107 0.4157 0.4107 0.3581 0.2938 0.3759 0.3625 0.0471 0.7531 0.5820 0.6574
IGP-M 0.7072 0.6576 0.7072 0.8154 0.6532 0.8172 0.6566 0.8514 0.8458 0.7747 0.8626
Ranking 4 3 4 1 2 1 1 3 1 1 1

IGP-C 0.7072 0.6570 0.7072 0.8104 0.6419 0.8120 0.6453 0.8516 0.8457 0.7676 0.8612
Ranking 3 4 3 2 4 2 4 2 2 3 2

C.5.3 ROBUSTNESS ANALYSIS

We further test the robustness of IGP across graphs using a more challenging setting of the
LFR-Net. Different from the quantitative evaluation in Appendix C.5.1 where fixed settings of
(k, kmax,, cmin,cmax

) and µ were used, we randomly set µ ∈ [0.3, 0.6], k ∈ [10, 20], kmax ∈
[100, 200], cmin ∈ [10, 20], cmax ∈ [100, 200], and N ∈ [500, 10000] to independently gener-
ate 1, 000 graphs with GP ground-truth for the robustness analysis. In this case, the difference
between synthetic graphs (in terms of their underlying distributions) is much larger than that in
Appendix C.5.1. We adopted the same experiment settings and evaluation protocols as in Ap-
pendix C.5.1 to compare the quality, efficiency, and trade-off between the two aspects of all the
methods on this new dataset.

The robustness analysis results in terms of NMI, AC, modularity, NCut, runtime, and TOS val-
ues between each quality metric (from the four metrics) and one efficiency metric are depicted in
Table 17. In most cases, IGP-M can achieve the best TOS values. The TOS values of IGP-C are also
competitive to those of IGP-M. In summary, the robustness analysis results demonstrate that our

26

Under review as a conference paper at ICLR 2022

Table 16: Trade-off scores (↑) between NCut and runtime on all the datasets.
GN-0.3 GN-0.4 GN-0.5 L(f,0.3) L(f,0.6) L(n,0.3) L(n,0.6) Taxi Reddit AS Enron

SNMF 0 0 0 0 0 0.037673 0 0.8939 0 0.4300 0.9134
DCSBM 0.4637 0.3682 0.3278 0.0427 0.0617 0 0.1404 0.6949 0 0 0.4375
SC 0.8081 0.7978 0.7705 0.8362 0.6855 0.8326 0.7245 0.9332 0.9980 0.9231 0.9862
IncSNA - - - - - - - 0.9504 - 0.2978 0.9862
DeepWalk 0.8627 0.8403 0.8337 0.8837 0.8657 0.8950 0.8983 0.5557 0.9465 0.8254 0.7117
node2vec 0.8137 0.7636 0.7477 0.7590 0.7521 0.7842 0.8140 0.0244 0.8826 0.8479 0.7865
LINE 0.9078 0.8682 0.8397 0.8665 0.8818 0.8777 0.8988 0.9499 0.8615 0.9561 0.9165
VERSE 0.4318 0.1991 0.1429 0.1261 0.1611 0.2358 0.3549 0.0012 0.7290 0.4994 0
MILE 0.8238 0.7805 0.7727 0.8728 0.8418 0.8935 0.8785 0.4358 0.8358 0.9562 0.8567
PhUSION 0.6437 0.5103 0.4792 0.3368 0.3636 0.3477 0.4553 0.6790 0.9719 0.6054 0.8618
NRP 0.9134 0.9296 0.9354 0.9263 0.7819 0.8899 0.8036 0.9211 0.9039 0.8474 0.9173
RandNE 0.9234 0.9500 0.9498 0.9190 0.6348 0.9260 0.7317 0.9903 0.2610 0.4373 0.4796
ProNE 0.9304 0.9175 0.9165 0.9471 0.9432 0.9503 0.9532 0.9505 0.9892 0.9742 0.9738
TIMERS - - - - - - - 0 - 0.7980 -
Metis 0.9869 0.9877 0.9890 0.9906 0.9868 0.9917 0.9899 0.9882 0.9586 0.9968 0.9488
hMetis 0.9492 0.9401 0.9404 0.9554 0.9424 0.9596 0.9542 0.8893 0.9046 0.9835 0.9182
GraClus 0.9917 0.9913 0.9919 0.9920 0.9910 0.9932 0.9931 0.9487 0.6939 0.9964 0.9447
GraSAGE 0.0740 0 0 0 0 0 0 0.9795 0.0869 0.8882 0.2738
GAT 0.1082 0.5257 0.5742 0.4615 0.1426 0.3121 0.3755 0 0.2779 0.5514 0.6528
GIN 0 0.2875 0.2674 0.2883 0.2491 0.0695 0.2621 0.9712 0.1465 0 0
GAP 0.8617 0.8801 0.8880 0.4852 0.5076 0.5256 0.5991 0.5704 0.9704 0.6419 0.8414
ClusNet 0.7112 0.7178 0.5768 0.4289 0.4220 0.4508 0.5244 0.0543 0.9660 0.7448 0.7591
IGP-M 0.9562 0.9503 0.9529 0.9799 0.9719 0.9812 0.9769 0.9780 0.9980 0.9874 0.9889
Ranking 3 3 4 3 3 3 3 5 2 3 1

IGP-C 0.9546 0.9495 0.9529 0.9772 0.9717 0.9785 0.9765 0.9782 0.9980 0.9871 0.9883
Ranking 4 4 3 4 4 4 4 4 3 4 2

Table 17: Robustness analysis on LFR-Net with various parameter settings.
NMI AC Mod NCut Runtime TOS (4 Quality Metrics vs Runtime)

NMI AC Mod NCut
SNMF 81.17 (12.15) 74.56 (11.96) 42.28 (9.64) 73.46 (54.79) 221.88 (258.69) 0.0213 0.0195 0.0186 0.0262
DCSBM 43.97 (10.50) 23.44 (12.53) 8.63 (5.01) 8.51e3 (1.03e4) 227.85 (261.93) 0 0 0 0
SC 90.77 (16.63) 88.40 (19.25) 48.26 (11.42) 89.91 (118.07) 11.81 (12.39) 0.8607 0.838 0.7029 0.9467
DW 89.73 (11.43) 87.83 (8.99) 46.76 (9.93) 107.92 (162.86) 16.40 (9.82) 0.8327 0.8151 0.6810 0.9263
N2V 92.72 (9.68) 90.84 (8.20) 47.53 (9.88) 161.28 (443.84) 41.36 (24.57) 0.7589 0.7435 0.6038 0.8162
LINE 64.32 (21.41) 56.32 (25.18) 32.37 (14.38) 7.74e3 (9.54e3) 10.70 (8.14) 0.6130 0.5368 0.6308 0.8276
VERSE 85.39 (11.89) 81.96 (10.44) 44.23 (9.30) 86.66 (77.58) 96.86 (51.15) 0.4909 0.4712 0.4146 0.5740
MILE 86.51 (14.70) 86.19 (12.98) 47.63 (10.60) 198.78 (583.55) 14.29 (10.74) 0.8108 0.8078 0.6919 0.9341
PhUSION 91.01 (12.12) 88.08 (10.99) 47.29 (9.94) 57.01 (48.21) 127.04 (113.76) 0.4027 0.3897 0.3258 0.4420
NRP 56.13 (14.61) 43.03 (9.14) 16.68 (6.81) 5.50e3 (6.40e3) 3.21 (2.68) 0.5534 0.4242 0.5752 0.8937
RandNE 43.43 (17.83) 29.49 (9.96) 8.34 (5.61) 1.21e4 (1.54e4) 2.99 (2.51) 0.4286 0.291 0.5346 0.7838
ProNE 90.90 (13.43) 86.24 (11.52) 46.36 (9.51) 373.46 (1.39e3) 8.35 (6.53) 0.8757 0.8308 0.7050 0.9572
Metis 74.77 (7.39) 65.14 (5.20) 40.34 (6.87) 69.46 (48.30) 1.52 (0.94) 0.7427 0.6471 0.6970 0.9922
hMetis 78.53 (14.62) 68.81 (12.20) 43.17 (9.50) 891.54 (3.10e3) 9.23 (6.57) 0.7535 0.6602 0.6869 0.9449
GraClus 88.70 (9.76) 78.60 (7.70) 39.87 (7.30) 370.67 (1.64e3) 0.78 (0.35) 0.8840 0.7833 0.6970 0.9903
GraSAGE 23.38 (6.61) 9.19 (4.49) 0.88 (1.35) 5.88e4 (4.94e4) 3.11 (2.52) 0.2306 0.0906 0.4975 0.0000
GAT 24.55 (6.85) 9.83 (4.78) 0.49 (0.96) 4.57e4 (3.89e4) 2.98 (2.39) 0.2423 0.097 0.4959 0.2199
GIN 16.05 (5.41) 8.31 (5.07) 1.04 (1.28) 5.12e4 (4.23e4) 2.55 (2.04) 0.1587 0.0822 0.4995 0.1278
GAP 86.70 (11.10) 71.95 (9.78) 48.01 (9.85) 42.37 (34.88) 129.57 (112.81) 0.3740 0.31035 0.3192 0.4310
ClusNet 87.84 (9.23) 84.95 (7.70) 47.94 (10.14) 450.70 (415.82) 76.61 (51.80) 0.5831 0.5639 0.4910 0.6587
IGP-M 92.41 (10.97) 91.78 (9.08) 48.71 (9.97) 185.17 (643.65) 3.54 (2.95) 0.9097 0.9035 0.7320 0.9814
TOS Rank. - - - - - 1 1 1 3
IGP-C 87.24 (15.80) 87.59 (14.90) 47.46 (11.07) 171.96 (546.45) 3.96 (3.37) 0.8572 0.8607 0.7245 0.9797
TOS Rank. - - - - - 5 2 2 4

IGP method is robust to the large distribution difference of graphs in the same system or scenario,
while ensuring its ability to achieve significant trade-off between quality and efficiency.

C.5.4 CONVERGENCE ANALYSIS

We also analyzed the convergence of the offline training procedure of IGP (i.e., Algorithm 3). In
each epoch of the offline training on a dataset, we recorded the average partitioning quality (in terms
of NMI, AC, modularity, and NCut) with respect to the learned embedding {Ut} (i) on training
set ΓT and validation set ΓV (i.e., historical system snapshots). Moreover, we also evaluated the
average partitioning quality of the generalized embedding {Ut} on test set Γ′ (i.e., new snapshots)
in each epoch. To further validate the effectiveness of auxiliary label-induced embedding {U(g)

t },

27

Under review as a conference paper at ICLR 2022

10 20 30 40 50

Iterations

0.4

0.6

0.8

1

N
M

I

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(a) Convergence curves of average NMI

10 20 30 40 50

Iterations

0.4

0.6

0.8

1

A
C

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(b) Convergence curves of average AC

10 20 30 40 50

Iterations

0.3

0.32

0.34

0.36

0.38

M
o

d
u

la
ri

ty

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(c) Convergence curves of average modularity

10 20 30 40 50

Iterations

70

80

90

N
C

u
t

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(d) Convergence curves of average NCut

Figure 6: Convergence curves of IGP-M on L(n,.6) in terms of NMI, AC, modularity, and NCut.

10 20 30 40 50

Iterations

0.4

0.6

0.8

1

N
M

I

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(a) Convergence curves of average NMI

10 20 30 40 50

Iterations

0.2

0.4

0.6

0.8

1

A
C

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(b) Convergence curves of average AC

10 20 30 40 50

Iterations

0.2

0.25

0.3

0.35

M
o

d
u

la
ri

ty

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(c) Convergence curves of average modularity

10 20 30 40 50

Iterations

70

80

90

100

110

120

N
C

u
t

{U
t

(g)
} on training set

{U
t
} on training set

{U
t
} on validation set

{U
t
} on test set

(d) Convergence curves of average NCut

Figure 7: Convergence curves of IGP-C on L(n,.6) in terms of NMI, AC, modularity, and NCut.

the average partitioning quality of {U(g)
t } on training set was also recorded in each epoch during

the offline training. Note that we do not need to derive {U(g)
t } for ΓV and Γ′.

We use evaluation records on the challenging L(n, 0.6) dataset, whose clustering structures are dif-
ficult to identify, as an example. The convergence curves (within the first 50 epochs) of the average
NMI, AC, modularity, and NCut with respect to (i) {U(g)

t } on training set ΓT, (ii) {Ut} on train-
ing set ΓT, (iii) {Ut} on validation set ΓV, and (iv) {Ut} on test set Γ′ for IGP-M and IGP-C are
illustrated in Fig. 6 and Fig. 7, respectively.

28

Under review as a conference paper at ICLR 2022

Table 18: Detailed ablation study on L(f,0.6).
NMI (%) (↑) AC (%) (↑) Modularity (%) (↑) Ncut (↓)

IGP-M IGP-C IGP-M IGP-C IGP-M IGP-C IGP-M IGP-C
IGP 56.07 (2.33) 52.11 (2.79) 53.57 (2.21) 47.38 (2.68) 34.14 (0.53) 31.81 (0.65) 75.92 (8.29) 84.99 (9.02)
w/o AL 51.73 (2.86) 34.83 (3.29) 49.45 (2.59) 26.64 (2.79) 33.27 (0.63) 26.88 (0.80) 77.05 (7.33) 101.79 (8.61)
w/o FR 11.89 (1.80) 15.60 (1.75) 6.57 (0.34) 8.25 (0.55) 9.14 (1.38) 5.73 (0.62) 6.90e2 (1.59e2) 1.02e3 (8.22e2)
w/o CR 49.50 (3.06) 34.84 (3.25) 46.83 (2.84) 26.57 (2.65) 32.61 (0.72) 26.90 (0.76) 78.93 (7.19) 102.31 (8.70)
w/o Zt 14.13 (1.65) 15.39 (1.81) 5.71 (0.13) 5.79 (0.14) 0.24 (0.15) 0.76 (0.19) 2.62e4 (4.49e3) 1.03e4 (4.42e3)
w/o GNN 1.03 (0.20) 8.75 (0.55) 4.22 (0.15) 5.17 (0.15) 0.01 (0.01) 0.86 (0.23) 1.70e3 (4.99e2) 4.01e4 (7.24e3)

Table 19: Detailed ablation study on L(n,0.6).
NMI (%) (↑) AC (%) (↑) Modularity (%) (↑) NCut (↓)

IGP-M IGP-C IGP-M IGP-C IGP-M IGP-C IGP-M IGP-C
IGP 56.48 (2.08) 52.71 (2.52) 53.42 (2.04) 47.47 (2.59) 34.22 (0.47) 31.95 (0.62) 82.76 (8.97) 92.40 (10.05)
w/o AL 52.13 (2.52) 35.12 (3.01) 49.30 (2.41) 26.15 (2.61) 33.35 (0.58) 26.70 (0.74) 84.05 (8.63) 113.10 (10.23)
w/o FR 11.19 (2.04) 15.46 (1.68) 6.28 (0.45) 5.46 (0.18) 10.08 (1.77) 0.45 (0.11) 1.01e3 (237.66) 2.08e4 (4.79e3)
w/o CR 49.97 (2.79) 35.16 (2.92) 46.70 (2.73) 26.22 (2.50) 32.70 (0.68) 26.78 (0.71) 86.08 (8.71) 111.62 (10.39)
w/o Zt 16.39 (1.59) 13.88 (1.39) 6.14 (0.26) 5.57 (0.18) 1.27 (0.47) 0.28 (0.15) 3.01e4 (4.76e3) 2.88e4 (5.25e3)
w/o GNN 1.14 (0.25) 8.45 (0.45) 3.92 (0.18) 4.78 (0.22) 0.01 (0.02) 0.32 (0.32) 1.08e4 (2.86e3) 5.12e4 (7.94e3)

One can have similar observations in Fig. 6 and Fig. 7. Concretely, the partitioning quality (in
terms of NMI, AC, modularity, and NCut) of {Ut} continuously improves in the first several epochs
on the training, validation, and test set. More importantly, the average NMI and AC of {U(g)

t }
on training set ΓT are always 1 in all the epochs for both IGP-M and IGP-C. It indicates that the
partitioning results derived from the auxiliary label-induced embedding {U(g)

t } have perfect map-
ping to the ground-truth. For both IGP-M and IGP-C, the average modularity and NCut of {U(g)

t }
also keep at values that are much better than metrics of {Ut} on the training, validation, and test
set. The convergence curves with respect to {U(g)

t } further verify that the introduced label-induced
embedding {U(g)

t } can capture much more information regarding ‘ground-truth’ of the training set
(i.e., historical system snapshots) than the learned embedding {Ut}, which enables IGP to capture
the permutation invariant label information during the offline training. It also ensures the strong
robustness of IGP beyond existing baselines.

In summary, the convergence curves in Fig. 6 and Fig. 7 validate the effectiveness of the offline
training procedure and the dual GNN structure of IGP.

C.5.5 ABLATION STUDY

In addition to example results shown in Table 2, we conducted additional ablation studies on GN-0.3,
L(f,0.6), and L(n,0.6), in which the clustering structures are more difficult to identify compared with
other datasets. In each case of the ablation study (see Section 4), the mean value µ and standard
deviation σ of all the quality metrics (on test set Γ′) were recorded. The detailed ablation study
results on L(f,0.6), L(n,0.6), and GN-0.3 (in the format µ(σ)) are illustrated in Table 18, Table 19,
and Table 20, respectively.

Note that Table 20, Table 18, and Table 19 have consistent results. The FR loss, feature input Zt,
and GNN are key components to ensure the high quality of IGP, because there are significant quality
declines in cases without the three components. Moreover, the AL and CR losses are the components
to further enhance the partitioning quality, as they can incorporate the permutation invariant label
information of historical snapshots to the offline training of IGP.

D EXTENDED APPLICATIONS

D.1 MODEL SELECTION

As defined in Section 2, we assume that the number of clusters K is given in the downstream GP.
For online GP in which K is not given, IGP also has the potential to estimate the K value for a
given graph. As a demonstration, we applied XMeans, a model selection method, to the derived
embedding {Ut} of both IGP-M and IGP-C to estimate K for each snapshot in the test sets of
L(f, .3), L(f, .6), L(n, .3) and L(n, .6). In the 4 datasets, ground-truth regarding the K value is

29

Under review as a conference paper at ICLR 2022

Table 20: Detailed ablation study on GN-0.3.
NMI (%) (↑) AC (%) (↑) Modularity (%) (↑) NCut (↓)

IGP-M IGP-C IGP-M IGP-C IGP-M IGP-C IGP-M IGP-C
IGP 96.26 (0.32) 95.50 (0.43) 91.96 (0.73) 90.47 (0.85) 27.92 (0.22) 27.68 (0.25) 345.82 (19.15) 354.95 (29.97)
w/o AL 93.31 (0.57) 95.00 (0.41) 87.30 (1.02) 89.75 (0.85) 26.98 (0.30) 27.51 (0.25) 427.44 (97.97) 363.44 (42.56)
w/o FR 47.29 (0.69) 72.47 (0.93) 16.87 (0.57) 56.06 (1.46) 7.27 (0.27) 15.06 (0.43) 1.95e4 (2.84e3) 1.34e3 (827.27)
w/o CR 93.75 (0.45) 95.03 (0.41) 87.85 (0.83) 89.86 (0.77) 27.11 (0.26) 27.52 (0.24) 404.90 (85.24) 371.18 (83.18)
w/o Zt 44.20 (0.18) 44.91 (0.17) 7.34 (0.12) 7.73 (0.12) 0.03 (0.03) 0.03 (0.03) 1.68e5 (1.28e4) 1.65e5 (1.32e4)
w/o GNN 30.08 (0.69) 56.25 (1.28) 12.99 (0.50) 33.66 (1.20) 4.53 (0.19) 11.80 (0.32) 6.11e3 (646.84) 996.69 (439.41)

20 40 60 80 100 120 140 160 180 200

Test Set

60

80

100

120

#
C

lu
st

e
rs

L(f,.3):Ground-Truth L(f,.3):IGP-M L(f,.3):IGP-C

L(f,.6):Ground-Truth L(f,.6):IGP-M L(f,.6):IGP-C

Figure 8: Model selection results of IGP-M and IGP-C on the test set of L(f,0.3) and L(f,0.6).

given by the dataset andK is non-fixed for multiple test graphs. With the increase of µ, the clustering
structures of L(f, µ) and L(n, µ) are increasingly difficult to identify. In particular, we use the same
parameter settings and layer configurations with that in Table 4. The range ofK of XMeans for each
dataset was set according to the maximum and minimum number of clusters as illustrated in Table 3.
The model selection results and ground-truth with respect to the test sets of L(f, µ) and L(n, µ) are
depicted in Fig. 8 and Fig 9, respectively.

The model selection results in Fig. 8 and Fig 9 are similar. When µ = 0.3 (with distinct clustering
structures), the model selection results of both IGP-M and IGP-C fit well to ground-truth on most test
snapshots of L(f, 0.3) and L(n, 0.3). Note that the potential of model selection of IGP is still largely
influenced by the intrinsic clustering structures of a dataset. The estimated K values are still far
from ground-truth when µ = 0.6 (with indistinct clustering structures) on L(f, 0.6) and L(n, 0.6).
In summary, IGP has the potential to estimate the number of clusters K of newly generated graph
snapshots with distinct clustering structures.

D.2 TRANSFERRING TEST

To test the potential of IGP to transfer from one (training) scenario to other different (generalization)
scenarios, we consider a challenging application in which we first conduct offline training of IGP
on completely synthetic graphs and directly generalize the trained model to the real datasets for fast
online GP (without additional optimization).

In particular, we expect the synthetic graphs used for offline training cover various structural proper-
ties of real-world network systems. We adopt LFR-Net (see Appendix C.2) as the model to generate
synthetic training graphs. In contrast to the parameter settings of LFR-Net in our quantitative eval-
uation (see Appendix C.2), we randomly set N ∈ [500, 6000], k ∈ [10, 100], kmax ∈ [50, 200],
cmin ∈ [5, 100], cmax ∈ [50, 400], and µ ∈ [0.1, 0.7] to independently generate 2, 000 synthetic
snapshots, where we ensure that kmax > k and cmax > cmin for each snapshot.

In our experiments, we conducted offline training on the aforementioned synthetic snapshots and
generalized the trained model to test sets of the four real datasets used in our quantitative evaluation
(i.e., Taxi, Reddit, AS, and Enron as introduced in Appendix C.2). We used the same layer configu-
rations as in Table 4 with respect to each real dataset and tried different parameter settings of IGP-M
and IGP-C to report their best average quality. The recommended parameter settings of IGP-M and
IGP-C are shown in Table 21. Evaluation results on test sets of the four real datasets (in terms of
modularity and NCut) are depicted in Table 22, where ’Real’ and ’Syn.’ represent the results with
respect to (i) training on training set of the original real datasets (same as the results in Table 8 and

30

Under review as a conference paper at ICLR 2022

20 40 60 80 100 120 140 160 180 200

Test Set

60

80

100

120

#
C

lu
st

e
rs

L(n,.3):Ground-Truth L(n,.3):IGP-M L(n,.3):IGP-C

L(n,.6):Ground-Truth L(n,.6):IGP-M L(n,.6):IGP-C

Figure 9: Model selection results of IGP-M and IGP-C on the test set of L(n,0.3) and L(n,0.6).

Table 21: Parameter setting of IGP in the transferring test.
IGP-M IGP-C

(α, β,m, p) (ηG, ηD) (α, β,m, p) (ηG, ηD)
Taxi (1, 1, 1, 1000) (1e-4, 1e-4) (1, 0.1, 1, 1000) (1e-4, 1e-4)
Reddit (1, 0.1, 1000) (1e-4, 1e-4) (1, 10, 1, 1000) (5e-5, 5e-5)
AS (1, 0.1, 1, 1000) (1e-4, 1e-4) (1, 5, 1, 1000) (1e-4, 1e-4)
Enron (1, 1, 1, 1000) (1e-4, 1e-4) (1, 0.1, 1, 1000) (5e-5, 5e-5)

Table 10) and (ii) training on the aforementioned synthetic snapshots, respectively. According to
Table 22, we have the following key observations.

• In some cases (e.g., on Taxi and Reddit), the quality metrics of training on synthetic graphs
are close to those of training on the original real datasets for both IGP-M and IGP-C,
which are also competitive to the strong baselines as illustrated in Table 8 and Table 10.
It preliminarily validates the potential of IGP to be transferred from completely synthetic
graphs to real datasets.

• However, in other cases, there are still significant quality declines for both the variants of
IGP, which indicate that the transferring capability of IGP is largely affected by the domain
similarity between the synthetic training set and real test set. The negative transferring can
be alleviated by carefully generating or selecting synthetic snapshots with the assistant of
validation information from the target real datasets. We leave the study of this application
in our future work.

• Compared with IGP-C, IGP-M has better transferring quality metrics in most cases. The
quality declines of IGP-C are also more significant than those of IGP-M. It further validates
that the modularity matrix Qt used in IGP-M is more informative than the normalized
adjacency matrix Mt used in IGP-C.

Note that IGP has similar motivations with SOTA pre-training methods for graphs, e.g., Pretrain-
GNN (Hu et al., 2020) and GCC (Qiu et al., 2020), in which we pre-train a GNN-based model
on historical graphs (in an offline way) and generalize it to new snapshots. The major difference
between IGP and SOTA pre-training methods is that a fine-tuning procedure with another optimiza-
tion algorithm (based on a certain fine-tuning loss) on new test graphs is required for most pre-
training methods after the offline (pre-)training. In particular, the fine-tuning procedure may still be
time-consuming for new test graphs, where several iterative optimization algorithms (e.g., gradient
descent) are applied.

In this study, we focus on the NP-hard challenge of GP and try to achieve a better trade-off between
quality and efficiency. To some extent, the proposed IGP framework sacrifices some opportunities
to fine-tune the (pre-)trained model, which ensures the low runtime on new test graphs. In our future
research, we intend to consider a promising application that we pre-train a high-quality GP model
on completely synthetic graphs and fast fine-tune the (pre-)trained model on new graphs (via some
efficient fine-tuning strategies), with the guarantee of high partitioning quality and low runtime.

31

Under review as a conference paper at ICLR 2022

Table 22: Transferring test results on real datasets.
Modularity (%) (↑) NCut (↓)

Taxi Reddit AS Enron Taxi Reddit AS Enron

IGP-M Real 74.01 (0.51) 69.38 (5.49) 56.82 (2.71) 74.33 (13.51) 0.77 (0.12) 4.74 (2.19) 7.26 (1.27) 4.53 (16.94)
Syn. 74.04 (0.46) 69.31 (6.04) 54.71 (2.28) 73.96 (17.58) 0.77 (0.12) 4.14 (1.82) 7.24 (1.21) 18.47 (98.84)

IGP-C Real. 74.00 (0.42) 69.37 (5.47) 55.40 (2.26) 74.15 (11.78) 0.77 (0.13) 4.71 (2.15) 9.66 (3.46) 4.3581 (16.50)
Syn. 73.78 (0.51) 68.20 (5.17) 49.65 (1.00) 71.62 (10.90) 0.79 (0.12) 5.20 (2.35) 46.55 (56.27) 2.0651 (0.82)

E POSSIBLE FUTURE WORK

We summarize several promising future research directions as follows.

Further Reducing the Runtime. According to the results in Table 11 and Table 12, the downstream
clustering module (i.e., KMeans with 10 independent runs) consumes most of the runtime of IGP.
Although replacing the clustering module with an FC output layer (trained in an E2E way) to directly
output the partitioning results can further reduce the total runtime, the downstream clustering module
is a key component enables IGP to tackle online GP with non-fixed K. In contrast, existing E2E
GP methods still need to be trained from scratch for new graphs with non-fixed K. In our future
research, we intend to further reduce the runtime of IGP by exploring a generic E2E scheme that
can directly derive the GP results (e.g., via an output layer) and tackle the online GP with non-fixed
K. One possible solution is to simultaneously train multiple output layers (with different output
dimensionality) to derive multiple partitioning results with respect to all the possible values of K.
Another possible strategy is to output partitioning results in a hierarchical structure (that covers the
results with respect to all the possible values of K) based on the idea of hierarchical clustering.

Dealing with Distribution Shifts. As discussed in Appendix D.2, our IGP framework has similar
motivations with SOTA pre-training methods for graphs (Hu et al., 2020; Qiu et al., 2020). Namely,
we conduct the offline (pre-)training of inductive GNNs (regardless of time cost) but sacrifice some
opportunities to fine-tune IGP on new test graphs for a better trade-off between quality and effi-
ciency of the online GP. The fine-tuning on new graphs of targeted scenarios can avoid the negative
transferring by utilizing validation information from new targeted graphs. Moreover, to select the
proper set of pre-training datasets is still an open issue in recent researches regarding the pre-training
and fine-tuning scheme. In our future work, we intend to conduct the offline (pre-)training of IGP
on completely synthetic graphs (that covers properties of various real network systems) and explore
an efficient strategy to fine-tune the model on real new system snapshots (of other scenarios) with
the guarantee of high partitioning quality and low runtime.

Scaling Up to Large Graphs. Scaling GNNs up to graphs with large number of nodes is a signifi-
cant direction in recent researches, where several sampling strategies are used to split a large graph
into multiple subgraphs (Chen et al., 2018; Huang et al., 2018; Zeng et al., 2020), i.e., mini-batches
with small number of nodes. Note that IGP is an inductive framework across graphs, which can also
be trained on and generalized to multiple subgraphs sampled from a large graph (in terms of large
number of nodes). Most of existing GNNs that can be scaled up to large graphs usually focus on
(semi-)supervised node-level tasks (e.g., node classification) with available node attributes, while
we consider challenging inductive unsupervised node-level task (i.e., GP) across graphs without
graph attributes in this study. In our future work, we intend to further explore efficient (i) feature
extraction and (ii) subgraph sampling strategies for IGP on large graphs without available attributes.
In particular, we can first split a large graph into multiple small subgraphs via a sampling module
and extract the neigh-induced features {Xt} for each sampled graph. IGP can then be applied to
multiple sampled graphs and derive graph embedding {Ut} with respect to each subgraph. One
possible challenge in this application is to ensure the consistency of embeddings {Ut} of multiple
subgraphs sampled from a common large graph (e.g., embeddings of all the subgraphs are mapped
into a common latent space) without any auxiliary information given by the node attributes.

Theoretical Bound Analysis. Existing theoretical analysis regarding the combinatorial nature of GP
(Newman, 2006; Von Luxburg, 2007) is usually based on one single graph. However, we considered
the GP across multiple graphs using the inductive nature of GNNs. The GP quality on a test graph
is not only related to the expressive ability of an inductive GNN, but also related to the similarity
between the training and test graphs. To give strict theoretical bound analysis of IGP (e.g., for
modularity maximization and NCut minimization) is also a significant direction of in feature work.

32

Under review as a conference paper at ICLR 2022

We intend to extend the theoretical analysis of GP on one single graph to multiple associated graphs
with the consideration of (i) expressive ability of GNNs and (ii) similarity between graphs in terms
of their underlying distributions.

Application to Attributed Graphs. In this study, we considered inductive GP without attributes.
Although GP is originally defined only based on graph toplogy (e.g., NCut minimization and mod-
ularity maximization), our IGP method can be easily extended to include node attributes by con-
catenating the reduced neighbor-induced features Zt and the attribute matrix of an attributed graph.
However, prior research (Qin et al., 2018; Chunaev et al., 2020; Qin & Lei, 2021) has demonstrated
that there exist complicated correlations between graph topology and attributes. On the one hand,
attributes may provide some complementary information beyond topology that can further improve
the quality of some graph inference tasks including GP. On the other hand, attributes may also carry
some noise and mismatched characteristics, which result in unexpected quality declines, e.g., in
terms of modularity and NCut for GP. In our feature work, we intend to consider an adaptive in-
corporation scheme between these two heterogeneous sources for inductive GP. Concretely, when
attributes carry consistent characteristics with topology, we can fully utilize attributes to improve
the GP quality. In contrast, when topology ‘mismatches’ with attributes, we need to control the
contribution of attributes to avoid unexpected quality decline for GP.

33

	Introduction
	Problem Statements and Preliminaries
	Methodology
	Experiments
	Conclusion
	Proof of Fact 1
	Detailed Algorithms of IGP
	Feature Extraction
	Offline Training on Historical System Snapshots
	Online Generalization to Newly Generated System Snapshots
	Complexity Analysis

	Experiment Details
	Evaluation Metrics
	Dataset Details
	Baseline Methods
	Implementation Details
	Detailed Evaluation Results and Discussions
	Quantitative Evaluation
	Trade-Off Analysis
	Robustness Analysis
	Convergence Analysis
	Ablation Study

	Extended Applications
	Model Selection
	Transferring Test

	Possible Future Work

