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ABSTRACT

Graph Class-Incremental Learning (GCIL) seeks to learn novel classes sequentially
while preserving knowledge acquired from previously seen classes. However, to
tackle the pervasive challenge of catastrophic forgetting, recent GCIL methods
often train separate classifiers from scratch for each task, which is redundant
in design and computationally expensive. Moreover, isolating streaming data in
different tasks hampers knowledge transfer across tasks. To address these dilemmas,
we first propose Graph2Hyper, a parameter-efficient framework that utilizes a
hypernetwork to generate task-specific classifiers on the fly based solely on the input
graph of the current task. Concretely, the hypernetwork is composed of just two
linear layers: a frozen, task-shared layer that preserves cross-task knowledge, and
a trainable, task-specific layer that captures the unique characteristics of each task.
To distinguish between different tasks in the incremental learning process, task-
prototypes are extracted via pooling over global node representations, which capture
task-specific contextual knowledge. To further model the association between tasks
and corresponding classes, we construct class-prototypes with dynamic task-level
bias through a learnable mapping function. By encoding class-level discrimination
while retaining task-level context, the hypernetwork enables continual forget-free
adaptation to new classes without the need for prototype rehearsal. Extensive
experiments on four benchmark datasets demonstrate that Graph2Hyper achieves
promising performance with superior parameter efficiency.

1 INTRODUCTION

Graph continual learning (GCL), also referred to as Graph Incremental Learning, has recently emerged
as an important paradigm to extend graph neural networks (GNNs) toward dynamic and open-world
scenarios (Zhang et al., 2024; Tian et al., 2024; Febrinanto et al., 2023; Zhang et al., 2022a). The
goal is to continually learn a model that not only adapts to new and emerging graph data but also
preserves the knowledge acquired from previous graph tasks, where each graph task consists of nodes
belonging to a unique set of classes within a graph. Depending on how new knowledge is introduced,
GCL can be categorized into two settings: class-incremental learning (GCIL), where new classes
arrive sequentially across tasks, and task-incremental learning (GTIL), where task identities are
explicitly available during testing. Compared to GTIL, the absence of task IDs in GCIL introduces an
additional challenge, thereby leading to a significant performance gap between GCIL and GTIL.

Due to privacy concerns and the hardware limitations in storage and computation, GIL assumes that
data from previous graph tasks is not accessible when learning new tasks. This restriction results
in catastrophic forgetting, i.e., degraded classification accuracy on previous tasks caused by model
updates on new tasks. Existing approaches typically mitigate catastrophic forgetting by preserving
the important parameters of previous tasks (Liu et al., 2021), continually expanding model parameters
for new tasks (Zhang et al., 2022b; 2023b), or augmenting with a memory module for data replay
(Zhou & Cao, 2021; Zhang et al., 2022c; 2023c; Niu et al., 2024a; Liu et al., 2023; Niu et al., 2024a).
However, these approaches exhibit limited ability in handling intra-task class separation, resulting in
unsatisfactory GCIL classification accuracy, especially on earlier tasks. Consequently, most existing
GCL methods suffer substantially higher forgetting in GCIL than in GTIL.
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Beyond these, TPP (Niu et al., 2024b) simplifies GCIL into a GTIL problem, achieving nearly 100%
task ID prediction accuracy and a 0% forgetting ratio. However, methods like TPP require training
separate classifiers from scratch for each task, which introduces considerable training and storage
overhead. Moreover, given that a sequence of graphs often contains task-shared knowledge, existing
approaches fail to explicitly leverage cross-task knowledge transfer in the architectural design.

In this paper, we propose Graph2Hyper, a parameter-efficient framework that employs a lightweight
hypernetwork to dynamically generate task-specific classifiers conditioned on the input graph of
each task. Concretely, to achieve coarse-to-fine inter-task separation and intra-task classification,
Graph2Hyper first leverages task-oriented distribution matching to construct task-prototypes and
further introduces class-prototypes with dynamic bias to enhance intra-task discrimination. To
capture both task-shared commonalities and task-specific distinctions across a sequence of tasks,
we adopt a hypernetwork to dynamically generate classifier parameters on the fly, while updating
only a portion of the hypernetwork for each new task. We theoretically show that parameter sharing
in the hypernetwork is equivalent to knowledge transfer across classification heads, and that such
hypernetwork-based knowledge transfer preserves a tighter error upper bound in continual learning.
Following the TPP setting, Graph2Hyper achieves a forget-free property while reducing trainable
parameters. Extensive experiments on four benchmark datasets demonstrate the effectiveness of
Graph2Hyper over state-of-the-art (SOTA) baselines. The contributions of this work are as follows:

• We propose a parameter-efficient framework for rehearsal-free GCIL, termed Graph2Hyper,
which employs a lightweight hypernetwork-based adaptation with task-shared knowledge.

• We introduce both task- and class-prototypes for coarse-to-fine classification, and derive a tighter
error upper bound with cross-task knowledge transfer.

• Extensive experiments validate the effectiveness of Graph2Hyper, showing superior performance
compared to existing SOTA methods.

2 RELATED WORK

Graph Continual Learning. Graph Continual Learning (GCL) aims to integrate new knowledge into
Graph Neural Networks (GNNs) while mitigating the problem of catastrophic forgetting, that is, the
loss of previously learned information. Recent studies on GCL (He et al., 2023; Zhou & Cao, 2021;
Liu et al., 2021; Sun et al., 2023; Wang et al., 2022; Su et al., 2023; Rakaraddi et al., 2022; Zhang
et al., 2023b; Perini et al., 2022; Zhang et al., 2022c; 2023c;a) generally fall into three categories:
regularization-based, parameter isolation-based, and replay-based methods. Regularization-based
approaches constrain the learning process of new tasks by penalizing changes to parameters that are
important for previous tasks. For instance, TWP (Liu et al., 2021) incorporates regularization terms
to preserve key parameters in both topological aggregation and loss optimization from earlier tasks.
Parameter isolation-based approaches (Zhang et al., 2023b), on the other hand, allocate separate sets
of parameters to different tasks in order to avoid interference. In contrast, replay-based methods
(Zhou & Cao, 2021; Zhang et al., 2022c; 2023c; Liu et al., 2023; Niu et al., 2024a) rely on an external
memory buffer that stores task-related information and reuses it during training on new tasks. In our
work, we propose a task-oriented distribution matching to construct task-prototypes and incorporate
class-prototypes with dynamic bias adjustment to strengthen intra-task discrimination.

Hypernetworks. Hypernetworks (Ha et al., 2017) are neural networks designed to generate the
parameters of a main deep neural network (DNN) instead of learning them directly. This paradigm
has been widely explored in recent studies. For example, they have been applied to cold-start
recommendation (Lin et al., 2021), image classification Przewięźlikowski et al. (2024), and graph
neural networks (Brockschmidt, 2020), where hypernetworks modulate aggregation weights in
message passing. Beyond single-task settings, hypernetworks have shown advantages in multi-task
and transfer learning by enabling soft weight sharing across tasks. They also support data-adaptive
modeling, tailoring the main network’s weights to specific inputs, while requiring fewer parameters
than conventional DNNs, which improves efficiency in resource-constrained scenarios. In this paper,
we adopt hypernetworks for parameter-efficient adaptation, generating task-specific classifiers with
substantially fewer trainable parameters compared to training all classifiers from scratch.
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Figure 1: The framework of Graph2Hyper. During training, given a task graph Gt, the pre-trained
GNN encoder extracts node representations Zt. (1) Task-oriented distribution matching constructs a
shared task-prototype stored in a dictionary D. (2) Class prototypes ∆t with dynamic biases refine
node representations to improve intra-task discrimination. (3) A shared-parameter hypernetwork
generates task-specific classifier heads while transferring knowledge across tasks, yielding a tighter
generalization bound. During inference, the task-prototype of test graph Gtest is matched with
dictionary prototypes to determine its task ID. The hypernetwork then generates the classifier
parameters for node classification on Gtest.

3 PRELIMINARIES

GCIL Problem Formulation. We consider a class-incremental learning scenario consisting of a
sequence of tasks {G1, . . . , GT } where T is the number of tasks. Each task t is associated with a
graph snapshot Gt = (At,Xt), where At denotes the adjacency matrix, Xt ∈ RNt×d is the node
attribute matrix with feature dimension d, and yt is the label set of nodes in Gt. Following the
GCIL setting, each task introduces a disjoint set of classes, i.e., yt ∩ yj = ∅, ∀t ̸= j, and hence the
number of classes grows as t increases. Since the task ID t is unknown at inference time, the model
must classify each test node to one of the accumulated

∑T
j=1 |yj | classes. The key challenge is to

continually adapt to new tasks while avoiding catastrophic forgetting of prior knowledge.

Pre-training for GNN Encoder. Following the setup in TPP (Niu et al., 2024b), we adopt an
unsupervised pre-trained GNN as the encoder and keep it frozen for subsequent tasks. Specifically,
from the initial graph G1, we construct training triples (u, v+, v−), where v+ is a positive node
sampled from the local neighborhood of u, and v− is a negative node sampled from non-neighbors.
The node similarity is estimated by a discriminator g = MLP(sim(·, ·)). The pre-training goal is
to increase the semantic similarity between the node embedding zu and zv+ while decreasing that
between zu and zv− . We formalize the objective as,

Lpre(Ψ;Z) = −
∑

(u,v+,v−)

ln
exp(g(zu, zv+)/τ)∑

v∈{v+,v−}
exp(g(zu, zv)/τ)

, (1)

where τ is the temperature, Z = stack[ϕΨ(Xi,Ai)]
N1
i=1 is the embedding obtained by the encoder.

4 METHODOLOGY

In this section, we elaborate on the proposed parameter-efficient framework Graph2Hyper, as shown in
Figure 1. Graph2Hyper first leverages task-oriented distribution matching to construct task-prototypes,
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and further introduces class-prototypes with dynamic bias to enhance intra-task discrimination. To
enable continual adaptation on task-specific classifiers, a lightweight hypernetwork is employed to
generate parameters with task-shared knowledge transfer, which allows Graph2Hyper to achieve a
tighter generalization error bound.

4.1 HIERARCHICAL CLASSIFICATION WITH TASK- AND CLASS-PROTOTYPES

A natural solution to the GCIL problem is to first distinguish samples from different tasks and
then further differentiate all classes within a given task. To this end, we sequentially construct
task-prototypes and class-prototypes, and fully exploit their hierarchical relationships.

Task-Prototype Construction with Task-Oriented Distribution Matching. Given an input graph
G(t) = {A,X}, the non-parametric feature propagation module is deployed to smooth the node
features with K-th order as H = ÂKX, where Â = D̃

1
2 ÃD̃

1
2 is the normalized adjacency matrix

with self-loops, and D̃ is degree matrix for Ã = A+ I. This propagation scheme can be replaced
with other alternatives with diverse characteristics, such as SGC (Wu et al., 2019).

Proposition 4.1. After multi-hop propagation, let Z = HΨ = ÂKXΨ and Z′ = H′Ψ be the
representations of the original graphG(t) and its task-prototype, respectively, and P̂ is the aggregation
matrix. The distribution matching objective can be upper-bounded by:

E
Ψ∼Φ

∥∥∥H′Ψ− P̂HΨ
∥∥∥2 ≤ E

Ψ∼Φ

∥∥∥H′ − P̂H
∥∥∥2 ∥Ψ∥2 . (2)

Remark. The reformulated distribution matching objective aims to align the essential semantic infor-
mation between the sample graph and its task-prototype. We further aggregate the representations of
the original graph via pooling to compute a trivial closed-form solution P(t) = H′ = Pooling(H),
which serves as the task-prototype reflecting the distribution of the current task.

During the continual learning process, task-prototypes for all tasks are stored in a task-level prototype
dictionary D = {P1, . . . ,PT }. This dictionary is only utilized during inference and does not
participate in rehearsal for subsequent training. Specifically, when given a test graph Gtest at test
time, we predict its task ID by querying the task-prototype dictionary as t̂ = argmin(∥P test −
P1∥, . . . , ∥P test − PT ∥), where ∥ · ∥ represents Euclidean distance and t̂ is the predicted task ID.

Class-prototypes for Intra-Task Discrimination. With each class in the same task sharing the same
task-prototype, it is still necessary to enhance the discrimination of classes inside each task. To this
end, we introduce class-prototypes as dynamic biases that adaptively refine node representations.
Formally, for the feature Xt

i ∈ Xt of the i-th node, we compute

∆t
i = St

iΛ
t, St

i = Softmax(ψ(Xt
i)), (3)

where St
i is the intra-task assignment weight vector and ψ(·) is a linear projection. The class-prototype

list Λt contains |yt| learnable vectors corresponding to the classes of the current task. By augmenting
the GNN encoder representations with gated refinements Z̄t

i = Zt
i +∆t

i, Graph2Hyper dynamically
pulls together nodes from the same class and pushes apart nodes from different classes, thereby
enhancing class-level discrimination while retaining task-level context.

4.2 HYPERNETWORK-BASED PARAMETER-EFFICIENT ADAPTATION

In the GCIL setting, as the number of tasks increases, training a separate classifier head from-scratch
for each task incurs significant training overhead. Since node classification across different tasks
often exhibits shared characteristics, this motivates us to design a parameter-efficient framework that
enables cross-task sharing of model parameters. In particular, instead of updating all parameters, it
suffices to generate task-specific modifications conditioned on the characteristics of the current task.

Adaptive Parameters Generation. To capture both the commonalities and distinctions among a
sequence of tasks, we utilize a hypernetwork to dynamically generate the parameters of task-specific
classifiers on the fly, while adapting only part of the hypernetwork for each new task. Concretely,
our hypernetwork consists of two linear layers: a frozen, task-shared layer that preserves cross-task
knowledge, and a trainable, task-specific layer that captures the unique properties of each task.

4
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We denote the frozen pretrained GNN encoder as a fixed feature extractor ϕ : G(t) → Rd. For
the t-th task, the continually adapted hypernetwork parameters are given by Θ̃t = At(Θt−1) or
Θ̃t = Hyper(Zt,Θt−1), where At(·) denotes the adaptation operator on task t, Hyper(·, ·) denotes
the hypernetwork, and Zt is the task embedding. Let the classification head be parameterized by
Θ ∈ Rd, with the classifier defined as ĥΘ(G(t)) = ⟨Θ, ϕ(G(t))⟩. The classifier inherited from the
(t−1)-th task is denoted by Θt−1, with shorthand ĥt−1(x) = ĥΘt−1(x). The independently trained
classifier on task t is denoted by Θ⋆

t , with ĥ⋆t (x) = ĥΘ⋆
t
(x). By sharing a subset of hypernetwork

parameters across tasks and performing lightweight adaptation for new tasks, we explicitly enable
cross-task knowledge transfer while preserving shared knowledge.

Hypernetwork-Based Knowledge Transfer with Tighter Upper Bounds. We theoretically show
that knowledge transfer through hypernetwork parameter sharing is equivalent to transferring knowl-
edge between classifier heads, and further prove that hypernetwork-based adaptation leads to a tighter
generalization error upper bound in continual learning.
Theorem 4.2 (Necessary and Sufficient Equivalence in Parameter Space). Suppose the classification
head is linear, i.e., ĥΘ(x) = ⟨Θ, ϕ(x)⟩. Then the following statements are equivalent:

1. There exist scalars wt−1, wt (depending on task t) such that for all x,

ĥΘ̃t
(x) = wt−1 ĥt−1(x) + wt ĥ

⋆
t (x). (4)

2. There exist scalars wt−1, wt (depending on task t) such that

Θ̃t = At(Θt−1) = wt−1 Θt−1 + wt Θ
⋆
t . (5)

Moreover, if {ϕ(x)} spans Rd, then statement 1 implies statement 2; conversely, statement 2 always
implies statement 1.

Remark. Theorem 4.2 provides a necessary and sufficient condition: when the adapted hypernetwork
output Θ̃t lies in the affine span Aff{Θt−1,Θ

⋆
t }, the functional behavior is exactly equivalent to the

interpolation in Eq. (4). Conversely, if functional interpolation holds globally, the parameters must be
an affine combination. In other words, the adapted Θ̃t and the classification head that has transferred
cross-task knowledge are equivalent.
Theorem 4.3 (First-Order Equivalence and Second-Order Remainder Bound). Suppose that for
all x, the prediction function ĥΘ(x) is twice differentiable with respect to Θ. Let Jt−1(x) =

∇ΘĥΘ(x)
∣∣
Θt−1

∈ Rd denote the Jacobian evaluated at Θt−1, and let Hξ(x) be the Hessian at some
intermediate point ξ on the segment between Θt−1 and Θ⋆

t . Assume that the spectral norm of the
Hessian is bounded: ∥Hξ(x)∥2 ≤Mx for all x. Define the parameter difference ∆t = Θ⋆

t −Θt−1,
and for any a ∈ [0, 1], we set

Θ̃t = Θt−1 + a∆t. (6)

Then for all x, the prediction at the adapted parameter Θ̃t can be decomposed as

ĥΘ̃t
(x) = (1− a) ĥt−1(x) + a ĥ⋆t (x) +Rt(x), |Rt(x)| ≤ 1

2 Mx a(1− a) ∥∆t∥22, (7)

where the remainder term Rt(x) arises from the second-order expansion. In particular, when the
classification head is linear, Mx = 0, the remainder vanishes, and the equality reduces to an exact
interpolation between ĥt−1 and ĥ⋆t .

Let the loss be ℓ(y, ĥ(x)), convex in its second argument and ρ-Lipschitz. Define the expected risk
ϵt(ĥ) = E(x,y)∼Dt

[ℓ(y, ĥ(x))]. Let

ĥa(x) = (1− a)ĥt−1(x) + aĥ⋆t (x), h̃(x) = ĥΘ̃t
(x), (8)

where Θ̃t is given by Eq. (6). The transfer from interpolation to a risk bound is stated in Theorem 4.4:
Theorem 4.4 (Risk Transfer Bound from Interpolation to Adaptation). Under the conditions of
Theorem 4.3, for any a ∈ [0, 1], we have

ϵt(h̃) ≤ (1− a) ϵt(ĥt−1) + a ϵt(ĥ
⋆
t ) + ρEx∼Dt

[
|Rt(x)|

]
, (9)

whereRt(x) is given in Eq. (7). When the head is linear,Rt(x) = 0, and Eq. (9) reduces to a strict
convex combination bound.
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Remark. By Theorem 4.2 and Theorem 4.3, if the hypernetwork-generated parameters satisfy the
form Θ̃t

.
= (1 − a)Θt−1 + aΘ⋆

t (equality for linear heads, first-order approximation for general
nonlinear heads), then at the functional level the model is equivalent to interpolating between task-
specific heads. This shows that hypernetwork-based adaptation with cross-task knowledge
sharing is effectively equivalent to transferring the capability of classification heads across
tasks, with risk behavior controlled by Eq. (9). (Proofs are provided in Appendix C.2, C.3 and C.4.)

Lemma 4.5 (Error Upper Bound without Cross-Task Knowledge Transfer). Let P̃S and P̃T denote
the induced distribution over the feature space for each distribution PS and PT over the original input
space. The following inequality holds for the risk ϵT0 (ĥ) with single step adaptation on the target
distribution PT :

ϵT0 (ĥ) ≤ min{ϵS(hS , hT ), ϵT (hS , hT )}+ ϵS(ĥ) + dH(P̃S , P̃T ), (10)

where dH represents theH-divergence.

Theorem 4.6 (Error Upper Bound with Continual Cross-Task Knowledge Transfer). Let P̃Gt−1
and

P̃Gt denote the induced feature distributions of two consecutive target graphs at steps t−1 and t. The
risk ϵt(ĥ) with state-evolving prototypes (with mixed weight wt−1 + wt = 1, wt−1, wt ≥ 0, and
ĥ = wt−1ĥt−1 + wtĥt) is upper bounded by:

ϵt(ĥ) ≤ ϵt(ĥ, ht−1) + ϵt(ht−1, ht). (11)

Remark. According to Lemma 4.5 and Theorem 4.6, we conclude that the error bound ϵt(ĥ) under
continual cross-task knowledge transfer is tighter than that obtained without transfer. Detailed proofs
and comparisons of the error bounds are provided in Appendix XXX.

Optimization Objective of Hypernetwork. For the t-th task, the continually adapted hypernetwork
parameters are optimized by minimizing a node classification loss:

min
Θt

EGt∼Y tℓCE(ŷ
t
i , y

t
i), ŷti = hΘt ◦ [ϕΨ(Xi,Ai) + ∆t

i], (12)

where yti is the ground-truth label of node i from Gt, ŷti ∈ Ŷ t is the predicted label, and ℓCE(·) is a
cross-entropy loss.

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of the proposed Graph2Hyper.1 In particular,
we aim to investigate the following research questions：

• RQ1: How effective is Graph2Hyper compared with existing baselines under GCIL setting?

• RQ2: What are the impacts of different components of Graph2Hyper on the effectiveness?

• RQ3: How does Graph2Hyper perform under other task formulations?

• RQ4: How sensitive is Graph2Hyper to its hyperparameters?

5.1 EXPERIMENTAL SETTINGS

Datasets. Following the GCLB (Zhang et al., 2022a), four public graph datasets are employed,
including CoraFull (McCallum et al., 2000), Arxiv (Hu et al., 2020), Reddit (Hamilton et al., 2017)
and Products (Hu et al., 2020). Specifically, CoraFull and Arxiv are citation networks, Reddit is
derived from posts on the Reddit platform, and Products is a co-purchasing network extracted from
Amazon. For all datasets, each task is defined to include exactly two classes (Zhang et al., 2022a).
Moreover, for each class, the data are split into training, validation, and testing sets with proportions
of 0.6, 0.2, and 0.2, respectively.

Baselines. We compare our Graph2Hyper against two categories of SOTA continual learning baselin
approaches: ❶ General CIL baseline methods: EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem,

1The code of Graph2Hyper is available after acceptance.
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Table 1: Performance (% ± standard deviation) under the GCIL setting on four large datasets. The
results of baselines are derived from the published works. “↑” denotes the higher value represents
better performance. Oracle Model can get access to the data of all tasks and task IDs, i.e., it obtains
the upper bound performance. “✓” in Replay indicates the use of data rehearsal in the model, and
“×" denotes no rehearsal involved. ‘NA’ is short for Not Applicable. The best results are shown in
bold and the runner-ups are underlined (the same for tables below).

Methods Replay CoraFull Arixv Reddit Products
AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑

Fine-tune × 3.5±0.5 -95.2±0.5 4.9±0.0 -89.7±0.4 5.9±1.2 -97.9±3.3 7.6±0.7 -88.7±0.8
Joint × 81.2±0.4 NA 51.3±0.5 NA 97.1±0.1 NA 71.5±0.1 NA

Oracle Model × 95.5±0.2 NA 90.3±0.4 NA 99.5±0.0 NA 95.3±0.8 NA

EWC × 52.6±8.2 -38.5±12.1 8.5±1.0 -69.5±8.0 10.3±11.6 -33.2±26.1 23.8±3.8 -21.7±7.5
MAS × 6.5±1.5 -92.3±1.5 4.8±0.4 -72.2±4.1 9.2±14.5 -23.1±28.2 16.7±4.8 -57.0±31.9
GEM × 8.4±1.1 -88.4±1.4 4.9±0.0 -89.8±0.3 11.5±5.5 -92.4±5.9 4.5±1.3 -94.7±0.4
LwF × 33.4±1.6 -59.6±2.2 9.9±12.1 -43.6±11.9 86.6±1.1 -9.2±1.1 48.2±1.6 -18.6±1.6
TWP × 62.6±2.2 -30.6±4.3 6.7±1.5 -50.6±13.2 8.0±5.2 -18.8±9.0 14.1±4.0 -11.4±2.0

ERGNN ✓ 34.5±4.4 -61.6±4.3 21.5±5.4 -70.0±5.5 82.7±0.4 -17.3±0.4 48.3±1.2 -45.7±1.3
SSM-uniform ✓ 73.0±0.3 -14.8±0.5 47.1±0.5 -11.7±1.5 94.3±0.1 -1.4±0.1 62.0±1.6 -9.9±1.3
SSM-degree ✓ 75.4±0.1 -9.7±0.0 48.3±0.5 -10.7±0.3 94.4±0.0 -1.3±0.0 63.3±0.1 -9.6±0.3

SEM-curvature ✓ 77.7±0.8 -10.0±1.2 49.9±0.6 -8.4±1.3 96.3±0.1 -0.6±0.1 65.1±1.0 -9.5±0.8
CaT ✓ 80.4±0.5 -5.3±0.4 48.2±0.4 -12.6±0.7 97.3±0.1 -0.4±0.0 70.3±0.9 -4.5±0.8

DeLoMe ✓ 81.0±0.2 -3.3±0.3 50.6±0.3 5.1±0.4 97.4±0.1 -0.1±0.1 67.5±0.7 -17.3±0.3
OODCIL ✓ 71.3±0.5 -1.1±0.1 19.3±1.4 -1.0±0.4 79.3±0.8 -0.1±0.0 41.6±0.9 -1.6±0.4
DMSG ✓ 77.8±0.3 -0.5±0.5 50.7±0.4 -1.9±1.0 98.1±0.0 0.9±0.1 66.0±0.4 -0.9±1.6

TPP × 93.4±0.4 0.0±0.0 85.4±0.1 0.0±0.0 99.5±0.0 0.0±0.0 94.0±0.5 0.0±0.0
Graph2Hyper × 94.8±0.6 0.0±0.0 87.2±0.7 0.0±0.0 99.5±0.1 0.0±0.0 94.7±1.7 0.0±0.0

2017), GEM (Lopez-Paz & Ranzato, 2017) and MAS (Aljundi et al., 2018); ❷ Graph CIL baseline
methods: ERGNN (Zhou & Cao, 2021), TWP (Liu et al., 2021), SSM (Zhang et al., 2022c), SEM
(Zhang et al., 2023c), CaT (Liu et al., 2023) and DeLoMe (Niu et al., 2024a) and TPP (Niu et al.,
2024b). In addition, we include two further baselines: Fine-Tune and Joint. The Fine-Tune baseline
incrementally fine-tunes the model from previous tasks without employing any continual learning
strategies. The Joint baseline is an oracle model that has access to all graphs simultaneously and
performs GCL across the full dataset of all tasks. We also report the performance of an enhanced
Oracle Model, which extends the Joint baseline by assuming access to the true task ID of every test
sample during inference.

Evaluation and Implementation. We report the performance matrix M ∈ RT×T , a lower triangular
matrix whereMi,j (for i ≥ j) denotes the performance on task j after evaluating on task i. To evaluate
the performance of continual learning, we adopt two commonly used metrics, Average Accuracy
(AA) as AA = 1

T

∑T
i=1MT,i and Average Forgetting (AF) as AF = 1

T−1

∑T−1
i=1 (MT,i −Mi,i).

The proposed method is implemented under the GCLB library (Zhang et al., 2022a). Following the
same setting in TPP (Niu et al., 2024b), Graph2Hyper adopts a two-layer SGC (Wu et al., 2019) as
backbone with the same parameters in SEM (Zhang et al., 2023c). The pre-trained GNN encoder and
the hypernetwork are both randomly initialized on the first task, and the GNN encoder is frozen after
a single round of unsupervised pretraining without further parameter updates. All reported results are
averaged over 5 runs with standard deviations.

5.2 OVERALL PERFORMANCE COMPARISON (RQ1)

To answer RQ1, we compare Graph2Hyper with representative baselines in Table 1. Following the
GCIL setting, Graph2Hyper achieves the best performance across all four datasets. Specifically,
we can draw the following key observations. ❶ As shown by the Fine-Tune results, directly fine-
tuning the model learned from previous tasks on the current task data leads to severe performance
degradation, since the knowledge from earlier tasks is easily overwritten by the new tasks. ❷ Among
the existing baselines, CIL methods originally proposed for Euclidean data generally fail to achieve
satisfactory performance on GCIL, which confirms that the unique properties of graph data must
be taken into account. In addition, replay-based methods consistently outperform other baselines,
demonstrating the effectiveness of using an external memory buffer to mitigate catastrophic forgetting.
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Table 2: Ablation study results of Graph2Hyper and its variants. The best results are bold and the
runner-ups are underlined.

Methods CoraFull Arxiv Reddit Products
AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑

wo Class-P 58.55±1.54 0.00±0.00 64.31±1.84 0.00±0.00 75.294±3.52 0.00±0.00 60.16±2.00 0.00±0.00
wo Task-P 2.38±0.06 -5.32±0.32 4.81±0.05 -4.79±0.95 4.98±0.09 -12.95±0.48 4.07±0.07 -8.35±0.27

Single head 91.31±0.83 -4.34±1.52 76.76±0.99 -3.84±1.52 93.45±2.40 -8.74±1.38 86.87±1.01 -2.7±1.54
Freeze 1 94.48±0.38 0.00±0.00 85.19±1.37 0.00±0.00 99.21±1.79 0.00±0.00 92.29±1.48 0.00±0.00
Freeze 2 94.71±0.25 0.00±0.00 84.62±1.16 0.00±0.00 98.92±2.13 0.00±0.00 90.96±0.42 0.00±0.00

Train Both 95.27±0.31 0.00±0.00 86.71±1.16 0.00±0.00 99.42±0.62 0.00±0.00 94.69±1.48 0.00±0.00

Graph2Hyper 94.83±0.55 0.00±0.00 87.18±0.69 0.00±0.00 99.47±0.10 0.00±0.00 94.71±1.65 0.00±0.00

However, these methods still suffer from forgetting, as well as from inter-task separation issues.
❸ Both Graph2Hyper and the baseline TPP are fully forget-free GCIL approaches, achieving an
AF value of zero across all four datasets. Both methods also succeed in accurately predicting task
IDs. Thanks to the design of task-shared knowledge transfer, Graph2Hyper can outperform TPP in
terms of overall average performance, while only requiring the hypernetwork to generate classifier
parameters. ❹ The Oracle Model is allowed to access all previously seen data and is provided with
task IDs for classification. By relaxing the setting constraints and enlarging the available data, the
Oracle Model represents the upper bound of performance under the GCIL setting. Graph2Hyper not
only surpasses all baselines but also achieves comparable AA to the Oracle Model with significantly
fewer trainable parameters. ❺ It is worth noting that some replay-based methods yield positive
AF values, but this does not imply that our zero forgetting is undesirable. These methods gradually
accumulate knowledge of past tasks through rehearsal during subsequent learning, which can even
improve performance on earlier tasks.

5.3 ABLATION STUDIES (RQ2)

We analyze the effectiveness of the two variants:

• w/o Class-P: We remove the Class-Prototype with dynamic bias.
• w/o Task-P: We remove the Task-Prototype from task-oriented distribution matching.

Results are presented in Table 2. Removing the class prototype affects intra-task classification:
although the model can still predict the correct task ID, the lack of fine-grained discrimination leads
to suboptimal performance. In contrast, removing the task prototype directly prevents the model
from distinguishing tasks, which causes confusion among all classes under the GCIL setting. Overall,
Graph2Hyper outperforms the two variants, i.e. “w/o DP” and “w/o EA”, validating its indispensable
effectiveness.

In addition, we further analyze several additional variants:

• Single head: hypernetwork generates a single classifier head for task-specific node classification.
• Freeze 1: the first layer of hypernetwork is frozen and does not participate in parameter sharing.
• Freeze 2: the second layer of hypernetwork is frozen and does not participate in parameter sharing.
• Train Both: both linear layers of hypernetwork are trained from scratch.

Specifically, ❶ using only a single classifier head for task-specific node classification achieves
competitive performance that surpasses many existing baselines, but it cannot fully avoid forgetting.
This highlights the effectiveness of Graph2Hyper in addressing adaptation in continual learning. ❷
Freezing either of the hypernetwork’s linear layers impairs cross-task knowledge transfer; although
the method does not completely fail, its performance is negatively affected. ❸ Training both layers
from scratch also achieves strong results. However, given that the current design of Graph2Hyper
substantially reduces the number of trainable parameters, it remains more effective and efficient.

5.4 ANALYSIS UNDER MORE SETTINGS OF TASK FORMULATION (RQ3)

Robustness to Different Task Orders. For task formulation, we assign two distinct node classes
to each task and follow the commonly adopted strategy in (Zhang et al., 2022a; Niu et al., 2024a)
to ensure fair comparisons with baselines. Specifically, given a graph dataset with multiple classes,

8
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Figure 2: Performance of Graph2Hyper, TPP and Oracle Model under different task orders.
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Figure 3: The sensitivity of parameter dim1.
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Figure 4: The sensitivity of parameter dim2.

we split the classes into tasks in ascending numerical order of their original labels, i.e., classes 0
and 1 form the first task, classes 2 and 3 form the second task, and so forth. To further evaluate the
robustness of Graph2Hyper under different task formulations, we additionally construct tasks by
splitting classes in two alternative ways: descending numerical order and random ordering of the two
classes per task. As illustrated in Figure 2, we observe that under different task orders, our method
achieves robustness comparable to the two strongest baselines.

5.5 PARAMETER STUDY (RQ4)

Sensitivity Analysis of Hypernetwork Hidden Dimension. To analyze the sensitivity of the
hypernetwork hidden dimension dim1 in Graph2Hyper, we vary its value within {64, 128, 256, 512}.
The AA with respect to different selections of dim1 is shown in Figure D.1. The results confirm that
Graph2Hyper is robust to reasonable choices of dim1, though proper tuning remains important for
achieving optimal performance.

Sensitivity Analysis of GNN Encoder Output Dimension. We further investigate the effect of the
GNN encoder output dimension dim2. As shown in Figure 4, Graph2Hyper again exhibits robustness
to reasonable settings of dim2, while tuning still plays a role in obtaining the best performance.
Further analysis with more hyperparameters is in Appendix D.4.

6 CONCLUSION

In this paper, we present a parameter-efficient framework for graph continual learning, termed
Graph2Hyper. Concretely, we construct task-level prototypes via distribution matching and further
introduce class-level prototypes with dynamic bias to enhance intra-task discrimination. We further
propose a lightweight hypernetwork to dynamically generate task-specific classifiers, enabling cross-
task knowledge transfer with reduced trainable parameters, with a tighter error bound established for
continual optimization. Extensive experiments on multiple benchmarks demonstrate the superiority
of Graph2Hyper. Our future work will seek to adapt Graph2Hyper to online settings with streaming
data, promoting its scalability and real-world applicability.
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Marcin Przewięźlikowski, Przemysław Przybysz, Jacek Tabor, Maciej Zięba, and Przemysław Spurek.
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A NOTATIONS

As an expansion of the notations in our work, we summarize the frequently used notations in
Table A.1.

Notations Descriptions

T = {Gt}Tt=1 Sequence of T tasks (graphs) in GCIL
G(t) = {A(t),X(t)} Input graph of the t-th task
A(t) ∈ RNt×Nt Adjacency matrix of G(t) with Nt nodes
X(t) ∈ RNt×d Node feature matrix of G(t) with d-dim features

Â = D̃− 1
2 ÃD̃− 1

2 Normalized adjacency matrix with self-loops
Ã = A+ I Adjacency with self-loops

D̃ Degree matrix of Ã
H = ÂKX Node embeddings after K-hop propagation

H′ Aggregated prototype representation
P̂ Aggregation matrix for task-prototypes
Ψ Learnable linear transformation matrix

Z = HΨ Representation of the original graph
Z′ = H′Ψ Representation of the task-prototype
P(t) Task-prototype of the t-th task

D = {P1, . . . ,PT } Dictionary of task-prototypes
Λt Class-prototype list for the t-th task
St
i Intra-task assignment weight vector of node i

∆t
i = St

iΛ
t Dynamic refinement bias for node i

Z̄t
i = Zt

i +∆t
i Refined representation of node i

ϕ : G(t) → Rd Frozen pretrained GNN encoder
Θt Classifier parameters adapted for task t

Θt−1 Classifier parameters inherited from task t−1
Θ⋆

t Independently trained classifier for task t
Θ̃t Adapted hypernetwork parameters for task t
Zt Task embedding of task t

ĥΘ(G(t)) Classifier with parameters Θ
ĥt−1, ĥ⋆t Classifiers from previous and independent training
ϵt(ĥ) Prediction risk on task t
dH(·, ·) H-divergence between two distributions
ℓCE(·) Cross-entropy loss function
yti , ŷ

t
i Ground-truth and predicted label of node i in task t

α, β, τ Hyperparameters of Graph2Hyper

Table A.1: Summary of notations and descriptions.

B ALGORITHM

The overall optimization process of our Graph2Hyper is shown in Algorithm 1.

B.1 COMPLEXITY ANALYSIS

We analyze the time complexity of Graph2Hyper by dividing it into three main components:

• Task-Prototype Construction: O((|At|F +NdF +Nd)E1), where |At| is the number of edges,
N is the number of nodes, F is the input feature dimension, d is the hidden dimension, and E1 is
the number of propagation epochs.

• Class-Prototype Refinement: O((Nd2 +Nd)E2), where E2 is the number of training epochs
for refining class-prototypes.

• Hypernetwork-Based Adaptation: O((dC + d2)E3), where C is the number of classes and E3

is the number of adaptation epochs for the hypernetwork.
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Algorithm 1: Continual Adaptation with Task- and Class-Prototypes (Graph2Hyper).

Input: Sequence of task graphs Gt = {A(t),X(t)}Tt=1;
Pre-trained GNN encoder ϕ with frozen parameters;
Hypernetwork with parameters Θ0

Output: Adapted classifiers {Θt}Tt=1
1 Initialize model with Θ0;
2 Initialize task-prototype dictionary D ← ∅;
3 for t = 1 to T do
4 // Task-Prototype Construction
5 Propagate features: H(t) ← ÂKX(t);
6 Aggregate task-level features: H′(t) ← Pooling(H(t));
7 Define task-prototype P(t) ← H′(t);
8 Update dictionary D ← D ∪ {P(t)};
9 // Class-Prototype Refinement

10 for each node i in G(t) do
11 Compute assignment weights: St

i ← Softmax(ψ(Xt
i));

12 Compute dynamic bias: ∆t
i ← St

iΛ
t;

13 Refine representation: Z̄t
i ← Zt

i +∆t
i;

14 end
15 // Hypernetwork-Based Adaptation
16 Generate task-specific classifier: Θ̃t ← Hyper(Zt,Θt−1);
17 Compute cross-entropy loss: Lt ← EGtℓCE(ŷ

t
i , y

t
i);

18 Update hypernetwork parameters via gradient descent: Θt−1 → Θt;
19 end
20 return {Θt}Tt=1

Therefore, the overall time complexity across T tasks in GCIL is O
(
(|A1|F +NdF +Nd)E1 +∑T

t=1

[
(|At|F +NdF +Nd)E1 + (Nd2 +Nd)E2 + (dC + d2)E3

])
.

B.2 PARAMETER EFFICIENCY ANALYSIS

In this subsection, we provide a detailed comparison between the conventional “one-classifier-per-
task” strategy and our hypernetwork-based approach. We explicitly quantify the number of trainable
parameters required during continual adaptation and show that our method is significantly more
parameter-efficient.

TPP Baseline: One Classifier per Task. In the baseline setting, each task t is equipped with an
independent linear classifier head: h(t)(x) = W(t)x+ b(t), where W(t) ∈ RC×d and b(t) ∈ RC .
The number of parameters per task is therefore Phead = dC + C = (d+ 1)C. Since the classifiers
are not shared across tasks, the overall number of parameters that need to be trained and stored grows
linearly with the number of tasks T : Pbaseline,total = T (dC + C).

Graph2Hyper: Hypernetwork-based Classifier Generation. Our hypernetwork consists of two
linear layers: Linear(e→h) → ReLU → Linear(h→(dC + C)), where e is the task embedding
dimension, h is the hidden dimension of the hypernetwork, and (dC + C) is the dimension required
to generate both W and b. Importantly, the second layer is frozen, so only the first layer is updated
across tasks. Thus, the number of trainable parameters per task is Phyper,train = eh+ h = (e+ 1)h.
The frozen second layer contributes a constant storage cost of Pfrozen = h(dC + C) + (dC + C),
which does not increase with the number of tasks T .

If task embeddings are learnable, each task adds an additional e parameters, yielding a per-task cost
of (e+ 1)h+ e. However, this remains significantly smaller than (d+ 1)C when e, h≪ d,C.
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Concrete Comparison. To make the savings more explicit, consider a typical GCIL setup with
hidden dimension d = 256, number of classes per task C = 10, task embedding dimension e = 32,
and hypernetwork hidden dimension h = 64. Baseline (per-task classifier head):Phead = (256 +
1)× 10 = 2,570., while Graph2Hyper (hypernetwork per-task trainable parameters): Phyper,train =
(32+1)×64 = 2,112. Thus, even with moderate hypernetwork size, our per-task trainable parameters
are already smaller than a single classifier head. Moreover, across T = 50 tasks, the baseline requires
training and storing 50×2,570 = 128,500 task-specific parameters, whereas our method only updates
the same 2,112 parameters across all tasks (plus optional lightweight embeddings of size 32 per task).
The frozen second layer remains constant and independent of T .

Compared with the baseline that trains and stores a separate classifier head for each task, our
hypernetwork-based approach is substantially more parameter-efficient. The total number of trainable
parameters in our framework does not grow linearly with the number of tasks, but remains nearly
constant (or increases very slowly with lightweight embeddings). This design choice enables continual
learning with far fewer trainable parameters, while still adapting effectively to new tasks.

C THEORETICAL JUSTIFICATION

C.1 PROOF OF TASK-ORIENTED DISTRIBUTION MATCHING

We denote the prototype corresponding to G(t) as G̃(t) = {A′,X′}. To ensure that the extracted
prototype faithfully represents the original graph, we reformulate a prototype-oriented distribution
matching objective between the representations of the original graph and its prototype.

Proposition C.1. After multi-hop propagation, let Z = HΨ = ÂKXΨ and Z′ = H′Ψ = Â′KX′Ψ
be the representations of the original graph G(t) and its prototype G̃(t), respectively. To directly align
the distribution of the input domain with that of its prototype, the discrepancy between the propagated
features should be minimized as:

min
G̃(t)

E
Ψ∼Φ

∥P′H′Ψ−PHΨ∥2 . (C.1)

Remark. The objective is upper-bounded by:

E
Ψ∼Φ

∥∥∥H′Ψ− P̂HΨ
∥∥∥2 ≤ E

Ψ∼Φ

∥∥∥H′ − P̂H
∥∥∥2 ∥Ψ∥2 . (C.2)

where Ψ is the learnable weight matrix to transform the K-th order propagated features H′ and
H. Â′ = D̃′ 12 Ã′D̃′ 12 and Â = D̃

1
2 ÃD̃

1
2 represent the symmetric normalized adjacency matrices,

where Ã′ and Ã are adjacency matrices with self-loops. D̃′ and D̃ are degree matrices for Ã′ and Ã,
respectively. Since Ψ is independent of both G̃(t) and P̂, we can minimize the upper bound by:

arg min
G̃(t),P̂

∥∥∥H′ − P̂H
∥∥∥2 . (C.3)

According to Proposition C.1, we expect a symmetric encoding procedure between the original G(t)

and domain-specific prototype G̃(t). Therefore, our objective is to construct A′ and X′ satisfying
Â′KX′ = H′. To this end, we utilize the pre-defined graph structure and calculate X′ in a close-
formed solution. Specifically, we construct the structure via a similarity-based thresholding scheme:

A′
i,j =

{
1 if cos(H′

i,H
′
j) > τ,

0 otherwise,
(C.4)

where cos(·, ·) measures the cosine similarity and τ is the hyper-parameter for graph sparsification. To
ensure that generated features change smoothly between connected nodes, we introduce the Dirichlet
energy constraint Kalofolias (2016) in feature reconstruction loss and quantify the smoothness of
graph signals. The optimization objective for X′ is then formulated as:

argmin
X′

∥∥∥Â′KX′ −H′
∥∥∥2 + α tr(X′⊤L′X′), (C.5)

where L′ = D′ −A′ is the Laplacian matrix, D′ is degree matrix, and α controls the smoothness
strength.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proposition C.2. Assume that G̃(t) = {A′,X′} is a prototype of input sample, the closed-form
solution of Eq. (C.5) takes the form as X′ = (Q⊤Q+ αL′)−1Q⊤H′, where Q = Â′K .

Proof. Let us denote the objective in Eq. (C.5) as I =
∥∥∥Â′KX′ −H′

∥∥∥2 + α tr(X′⊤L′X′). To
solve the optimization problem in Eq. (C.5), we compute the first- and second-order derivatives of I
with respect to X′:

∂I
∂X′ = 2Q⊤(QX′ −H′) + α(L′ + L′⊤)X′

= 2(Q⊤Q+ αL′)X′ − 2Q⊤H′,

∂2I
∂X′2 = 2(Q⊤Q+ αL′).

(C.6)

According to the definition of A′ in Eq. (C.4), both L′ and Q are positive semi-definite matrices.
Therefore, the second-order derivative ∂2I

∂X′2 is positive semi-definite, and the objective function I
is convex. This implies that the first-order derivative ∂I

∂X′ corresponds to a convex function with a
unique minimum. Setting the gradient to zero yields the closed-form solution:

X′ = (Q⊤Q+ αL′)−1Q⊤H′, (C.7)

where Q = Â′K .

Specifically, when the task-prototype is represented as a single vector, G̃(t) contains only one node,
in which case X′ = H′ serves as the closed-form solution of the feature.

C.2 PROOF OF THEOREM C.3

We denote the frozen pretrained GNN encoder as a fixed feature extractor ϕ : G(t) → Rd. For
the t-th task, the continually adapted hypernetwork parameters are given by Θ̃t = At(Θt−1) or
Θ̃t = Hyper(Zt,Θt−1), where At(·) denotes the adaptation operator on task t, Hyper(·, ·) denotes
the hypernetwork, and Zt is the task embedding. A task-specific classification head is parameterized
by Θ ∈ Rd, with prediction function (classification head) defined as ĥΘ(G(t)) = ⟨Θ, ϕ(G(t))⟩.
The head from the (t − 1)-th task is denoted by Θt−1, with shorthand ĥt−1(x) = ĥΘt−1

(x). The
independently trained head on task t is denoted by Θ⋆

t , with ĥ⋆t (x) = ĥΘ⋆
t
(x). By Theorem C.3, we

establish a necessary and sufficient equivalence between hypernetwork parameters with cross-task
knowledge transfer and classification-head parameter space.
Theorem C.3 (Necessary and Sufficient Equivalence in Parameter Space). Suppose the classification
head is linear, i.e., ĥΘ(x) = ⟨Θ, ϕ(x)⟩. Then the following statements are equivalent:

1. There exist scalars wt−1, wt (depending on task t) such that for all x,

ĥΘ̃t
(x) = wt−1 ĥt−1(x) + wt ĥ

⋆
t (x). (C.8)

2. There exist scalars wt−1, wt (depending on task t) such that

Θ̃t = At(Θt−1) = wt−1 Θt−1 + wt Θ
⋆
t . (C.9)

Moreover, if {ϕ(x)} spans Rd, then statement 1 implies statement 2; conversely, statement 2 always
implies statement 1.

Proof. (2⇒1) By linearity we have

ĥΘ̃t
(x) = ⟨wt−1Θt−1 + wtΘ

⋆
t , ϕ(x)⟩ = wt−1ĥt−1(x) + wtĥ

⋆
t (x). (C.10)

(1⇒2) Assume that for all x,
⟨Θ̃t, ϕ(x)⟩ = ⟨wt−1Θt−1 + wtΘ

⋆
t , ϕ(x)⟩. (C.11)

Let v = Θ̃t − (wt−1Θt−1 +wtΘ
⋆
t ). Then ⟨v, ϕ(x)⟩ = 0 for all x. If {ϕ(x)} spans Rd, this implies

that v is orthogonal to every vector in Rd, hence v = 0. Therefore, Eq. (C.9) holds.
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Remark. Theorem C.3 provides a necessary and sufficient condition: when the adapted hypernetwork
output Θ̃t lies in the affine span Aff{Θt−1,Θ

⋆
t }, the functional behavior is exactly equivalent to

the interpolation in Eq. (C.8). Conversely, if functional interpolation holds globally, the parameters
must be an affine combination. In other words, the adapted Θ̃t and the classification head that has
transferred cross-task knowledge are equivalent.

By Lemma C.4, we provide a closed-form example of an adaptation operator with interpretable
weights as follows:
Lemma C.4 (Affine Form of One Gradient Step and One Proximal Step). Let the squared loss for
task t be Lt(Θ) = 1

2∥ΦtΘ− yt∥22, where Φt = [ϕ(xi)
⊤]i. Then:

1. (One gradient step) Starting from Θt−1 with learning rate η > 0:

Θ̃t = Θt−1 − η∇Lt(Θt−1) =
(
I − ηΦ⊤

t Φt

)
Θt−1 + ηΦ⊤

t yt. (C.12)

2. (One proximal step) Minimizing minΘ Lt(Θ)+ λ
2 ∥Θ−Θt−1∥22 yields the closed-form solution

Θ̃t =
(
Φ⊤

t Φt + λI
)−1(

Φ⊤
t yt + λΘt−1

)
. (C.13)

If the whitening condition Φ⊤
t Φt = αtI holds, and the least-squares solution is

Θ⋆
t = (Φ⊤

t Φt)
−1Φ⊤

t yt = α−1
t Φ⊤

t yt, (C.14)

then Eq. (C.12) and Eq. (C.13) respectively reduce to

Θ̃t = (1− ηαt)Θt−1 + (ηαt)Θ
⋆
t , Θ̃t =

λ
αt+λ Θt−1 +

αt

αt+λ Θ⋆
t . (C.15)

Proof. For Eq. (C.12): since ∇Lt(Θ) = Φ⊤
t (ΦtΘ− yt), one gradient descent step at Θt−1 yields

the result.

For Eq. (C.13): the optimization objective is a strictly convex quadratic function. Setting the gradient
to zero gives

Φ⊤
t (ΦtΘ̃t − yt) + λ(Θ̃t −Θt−1) = 0. (C.16)

Rearranging yields (Φ⊤
t Φt + λI)Θ̃t = Φ⊤

t yt + λΘt−1, from which Eq. (C.13) follows. Under the
whitening condition, substituting Θ⋆

t = α−1
t Φ⊤

t yt into Eq. (C.12) and Eq. (C.13) yields Eq. (C.15).

By Theorem C.3 together with Eq. (C.15), we conclude that under the linear-head and whitening
assumptions, both one gradient step and one proximal adaptation are exactly equivalent to functional
interpolation, with weights determined by (η, αt) or (λ, αt).

C.3 PROOF OF THEOREM C.5

In general, if we relax the restriction on the form of the classification head and allow it to be nonlinear,
we only assume that ĥθ(x) is differentiable with respect to θ and has bounded second derivatives.
Theorem C.5 (First-Order Equivalence and Second-Order Remainder Bound). Suppose that for
all x, the prediction function ĥΘ(x) is twice differentiable with respect to Θ. Let Jt−1(x) =

∇ΘĥΘ(x)
∣∣
Θt−1

∈ Rd denote the Jacobian evaluated at Θt−1, and let Hξ(x) be the Hessian at some
intermediate point ξ on the segment between Θt−1 and Θ⋆

t . Assume that the spectral norm of the
Hessian is bounded: ∥Hξ(x)∥2 ≤Mx for all x. Define the parameter difference ∆t = Θ⋆

t −Θt−1,
and for any a ∈ [0, 1], we set

Θ̃t = Θt−1 + a∆t. (C.17)

Then for all x, the prediction at the adapted parameter Θ̃t can be decomposed as

ĥΘ̃t
(x) = (1− a) ĥt−1(x) + a ĥ⋆t (x) +Rt(x), |Rt(x)| ≤ 1

2 Mx a(1− a) ∥∆t∥22, (C.18)

where the remainder term Rt(x) arises from the second-order expansion. In particular, when the
classification head is linear, Mx = 0, the remainder vanishes, and the equality reduces to an exact
interpolation between ĥt−1 and ĥ⋆t .
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Proof. Apply a second-order Taylor expansion around Θt−1:

ĥΘt−1+a∆t
(x) = ĥt−1(x) + a ⟨Jt−1(x),∆t⟩+ 1

2a
2 ∆⊤

t Hξa(x)∆t, (C.19)

where Jt−1(x) = ∇ΘĥΘ(x)
∣∣
Θt−1

, and Hξa(x) is the Hessian at some point along the segment.
Similarly,

ĥ⋆t (x) = ĥΘt−1+∆t
(x) = ĥt−1(x) + ⟨Jt−1(x),∆t⟩+ 1

2 ∆
⊤
t Hξ1(x)∆t. (C.20)

Eliminating the first-order terms yields

ĥΘt−1+a∆t(x) = (1− a)ĥt−1(x) + aĥ⋆t (x) +
1
2

(
a2Hξa(x)− aHξ1(x)

)
: (∆t∆

⊤
t ). (C.21)

Taking the spectral norm bound of the last term, and noting that a2 − a = −a(1− a), gives

|Rt(x)| ≤ 1
2 a(1− a) ∥∆t∥22 max{∥Hξa(x)∥2, ∥Hξ1(x)∥2} ≤ 1

2 Mx a(1− a) ∥∆t∥22. (C.22)

Let the loss be ℓ(y, ĥ(x)), convex in its second argument and ρ-Lipschitz. Define the expected risk
ϵt(ĥ) = E(x,y)∼Dt

[ℓ(y, ĥ(x))].

Let
ĥa(x) = (1− a)ĥt−1(x) + aĥ⋆t (x), h̃(x) = ĥΘ̃t

(x), (C.23)

where Θ̃t is given by Eq. (C.17). The transfer from interpolation to a risk bound is stated in
Theorem C.6:

C.4 PROOF OF THEOREM C.6

Theorem C.6 (Risk Transfer Bound from Interpolation to Adaptation). Under the conditions of
Theorem C.5, for any a ∈ [0, 1], we have

ϵt(h̃) ≤ (1− a) ϵt(ĥt−1) + a ϵt(ĥ
⋆
t ) + ρEx∼Dt

[
|Rt(x)|

]
, (C.24)

whereRt(x) is given in Eq. (C.18). When the head is linear,Rt(x) = 0, and Eq. (C.24) reduces to a
strict convex combination bound.

Proof. By convexity,

ℓ
(
y, ĥa(x)

)
≤ (1− a)ℓ

(
y, ĥt−1(x)

)
+ a ℓ

(
y, ĥ⋆t (x)

)
. (C.25)

By Lipschitz continuity,

ℓ
(
y, h̃(x)

)
≤ ℓ

(
y, ĥa(x)

)
+ ρ |h̃(x)− ĥa(x)|. (C.26)

By Theorem C.5, h̃(x)− ĥa(x) = Rt(x). Taking expectations yields Eq. (C.24).

Remark. By Theorem C.3 and Theorem C.5, if the hypernetwork-generated parameters satisfy
the form Θ̃t

.
= (1 − a)Θt−1 + aΘ⋆

t (equality for linear heads, first-order approximation for
general nonlinear heads), then at the functional level the model is equivalent to interpolating between
task-specific heads. This shows that hypernetwork-based adaptation with cross-task knowledge
sharing is effectively equivalent to transferring the capability of classification heads across
tasks, with risk behavior controlled by Eq. (C.24).

C.5 PROOF OF ERROR UPPER BOUNDS

Definition C.7 (Classification error). The classification error of the function ĥ under task Di is
defined as

ϵi(ĥ) = EX∼Di |ĥ(X)− h(X)|. (C.27)

For binary classification functions h and ĥ, we have:

ϵi(ĥ) = ϵi(ĥ, h) = EX∼Di
|ĥ(X)− h(X)|

= PX∼Di
(ĥ(X) ̸= h(X)).

(C.28)
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Definition C.8 (H-divergence). Given two induced task feature space distributions D̃s, D̃t and a
hypothesis spaceH, theH-divergence between D̃s and D̃t is defined as:

dH(D̃s, D̃t) = 2 sup
h∈H

∣∣EX∼D̃s
[h(X) = 1]− EX∼D̃t

[h(X) = 1]
∣∣ . (C.29)

Lemma C.9 (Error Upper Bound without Cross-Task Knowledge Transfer (Zhao et al., 2019)). Let
P̃S and P̃T denote the induced distribution over the feature space for each distribution PS and PT
over the original input space. The following inequality holds for the risk ϵT0 (ĥ) with single step
adaptation on the target distribution PT :

ϵT0 (ĥ) ≤ min{ϵS(hS , hT ), ϵT (hS , hT )}+ ϵS(ĥ) + dH(P̃S , P̃T ), (C.30)

where dH represents theH-divergence.

Remark: Note that this bound was first derived by Zhao et al. (2019). The first term measures
the disagreement between the source and target labeling functions, the second term is the source
error, and the third term quantifies the discrepancy between the marginal feature distributions. The
bound identifies three key factors for successful task adaptation: small source risk, close marginal
distributions, and consistent labeling functions across tasks.

Lemma C.10. Let P̃S and P̃T denote the induced distribution over the feature space for each
distribution PS and PT over the original input space. Then for any hS ∈ H, hT ∈ H, we have

|ϵS(hS , hT )− ϵT (hS , hT )| ≤ dH(P̃S , P̃T ). (C.31)

Proof. By definition, for any hS ∈ H, hT ∈ H, we have:∣∣ϵS(hS , hT )− ϵT (hS , hT )∣∣
= sup

h∈H

∣∣EX∼PS |hS(X)− hT (X)| − EX∼PT |hS(X)− hT (X)|
∣∣

= sup
h∈H

∣∣EX∼PS [h
S(X)− hT (X)]− EX∼PT [h

S(X)− hT (X)]
∣∣ . (C.32)

Since ∥ · ∥∞ ≤ 1 for all h ∈ H, we have 0 ≤ |hS(X) − hT (X)| ≤ 1 for
all X ∈ PS/PT , where hS , hT ∈ H. Here we define a hypothesis space Ĥ :={
sgn(|hS(X)− hT (X)| − z) | hS , hT ∈ H, 0 ≤ z ≤ 1

}
. Then we use Fubini’s theorem to bound:∣∣EX∼PS [|hS(X)− hT (X)|]− EX∼PT [|hS(X)− hT (X)|]

∣∣
=

∣∣∣∣∫ 1

0

(PrS(|hS − hT | > z)− PrT (|hS − hT | > z))dz

∣∣∣∣
≤
∫ 1

0

∣∣PrS(|hS − hT | > z)− PrT (|hS − hT | > z)
∣∣ dz

= sup
z∈[0,1]

∣∣PrS(|hS − hT | > z)− PrT (|hS − hT | > z)
∣∣ .

(C.33)

Combining Eq. (C.32) and Eq. (C.33), and in view of the definition ofH-divergence, we have:

sup
hS ,hT ∈H

sup
z∈[0,1]

∣∣PrS(|hS − hT | > z)− PrT (|hS − hT | > z)
∣∣

= 2 sup
ĥ∈Ĥ

∣∣∣PrS(ĥ(X) = 1)− PrT (ĥ(X) = 1)
∣∣∣

= 2 sup
ĥ∈Ĥ

∣∣∣PrS(ĥ)− PrT (ĥ)
∣∣∣

= dĤ(P̃S , P̃T )

≤ dH(P̃S , P̃T ).

(C.34)
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Theorem C.11 (Error Upper Bound with Task-specific Prototypes). Let P̃S and P̃T denote the
induced distribution over the feature space for each distribution PS and PT over the original input
space. The risk ϵT (ĥ) with task-specifc prototypes (with mixed weight w0 + w1 = 1, w0 ≥ 0,
w1 ≥ 0, and ĥ = w0ĥ

S + w1ĥ
T ) is upper bounded by:

ϵT (ĥ) ≤ ϵT (ĥ, hS) + ϵT (hS , hT ). (C.35)

Proof. The proof of the above theorem is as follows:

ϵT (ĥ) = ϵT (ĥ, hT )

= Ex∼PT [|ĥ(x)− hT (x)|]
= Ex∼PT [|ĥ(x)− hS(x) + hS(x)− hT (x)|]
≤ Ex∼PT [|ĥ(x)− hS(x)|] + Ex∼PT [|hS(x)− hT (x)|]
= ϵT (ĥ, hS) + ϵT (hS , hT )

(C.36)

Comparison of Error Upper Bounds. From Lemma XXXXX, our bound in Eq.XXXXXX is further
bounded by:

ϵT (ĥ) ≤ ϵT (ĥ, hS) + ϵT (hS , hT )

≤ ϵS(ĥ, hS) + dH(P̃S , P̃T ) + ϵT (hS , hT )

= ϵS(ĥ) + ϵT (hS , hT ) + dH(P̃S , P̃T )

(C.37)

We further introduce a density ratio PrT (x)
PrS(x)

to represent the divergence between the source and target
tasks:

ϵT (ĥ) =

∫
|ĥ(x)− hS(x)| · PrT (x)dx+ ϵT (hS , hT )

=

∫
|ĥ(x)− hS(x)| · PrT (x)

PrS(x)
· PrS(x)dx+ ϵT (hS , hT )

= Ex∼PS

PrT (x)
PrS(x)

· |ĥ(x)− hS(x)|+ ϵT (hS , hT )

=
PrT (x)
PrS(x)

ϵS(ĥ) + ϵT (hS , hT )

= ϵS(ĥ) + ϵT (hS , hT ),

(C.38)

Since the density ratio PrT (x)
PrS(x)

is generally unobservable, it is commonly treated as a constant and
omitted. Next, we consider two cases. If ϵS(hS , hT ) ≤ ϵT (hS , hT ), then we have:

ϵT0 (ĥ) ≤ ϵS(hS , hT ) + ϵS(ĥ) + dH(P̃S , P̃T ), (C.39)

Given that
ϵT (ĥ) ≤ ϵS(ĥ) + ϵT (hS , hT )

≤ ϵS(hS , hT ) + ϵS(ĥ) + dH(P̃S , P̃T ),
(C.40)

it follows that the error upper bound of ϵT (ĥ) is tighter than that of ϵT0 (ĥ).

Similarly, if ϵS(hS , hT ) ≥ ϵT (hS , hT ), then:

ϵT0 (ĥ) ≤ ϵT (hS , hT ) + ϵS(ĥ) + dH(P̃S , P̃T )

≤ ϵS(hS , hT ) + ϵS(ĥ) + dH(P̃S , P̃T ),
(C.41)

which again implies that the error upper bound of ϵT (ĥ) is tighter than that of ϵT0 (ĥ).
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Theorem C.12 (Error Upper Bound with Continual Cross-Task Knowledge Transfer). Let P̃Gt−1

and P̃Gt denote the induced feature distributions of two consecutive target graphs at steps t−1 and
t. The risk ϵt(ĥ) with state-evolving prototypes (with mixed weight wt−1 + wt = 1, wt−1, wt ≥ 0,
and ĥ = wt−1ĥt−1 + wtĥt) is upper bounded by:

ϵt(ĥ) ≤ ϵt(ĥ, ht−1) + ϵt(ht−1, ht). (C.42)

Proof. Similarly, from Theorem C.11, we have:

ϵT (ĥ) ≤ ϵT (ĥ, hS) + ϵT (hS , hT ). (C.43)

By substituting T with t and S with t−1, we obtain the following inequality, which holds throughout
the continual task adaptation process:

ϵt(ĥ) ≤ ϵt(ĥ, ht−1) + ϵt(ht−1, ht). (C.44)

That is,
ϵt(ĥ) ≤ ϵt(ĥ, ht−1) + ϵt(ht−1, ht). (C.45)

Comparison of Error Upper Bounds. In particular, we can regard Theorem C.12 as a special case
of Theorem C.11, where the t-th task serves as the initial target task for adaptation (i.e., modeling the
task-specific prototype and transferring from the source task to the target task). Therefore, the same
ordering of error upper bounds holds, and the bound remains tighter than that of ϵT0 (ĥ).

D EXPERIMENT

D.1 DATASET DESCRIPTION

Following CGLB (Zhang et al., 2022a), four large GCIL datasets are used in our experiments. The
statistics of the used graph datasets are summarized in Table D.1.

• CoraFullD.1: It is a citation network containing 70 classes, where nodes represent papers and
edges represent citation links between papers.

• ArxivD.2: It is also a citation network between all Computer Science (CS) ARXIV papers indexed
by MAG (Sinha et al., 2015). Each node in Arxiv denotes a CS paper and the edge between nodes
represents a citation between them. The nodes are classified into 40 subject areas. The node
features are computed as the average word-embedding of all words in the title and abstract.

• RedditD.3: It encompasses Reddit posts generated in September 2014, with each post classified
into distinct communities or subreddits. Specifically, nodes represent individual posts, and the
edges between posts exist if a user has commented on both posts. Node features are derived
from various attributes, including post title, content, comments, post score, and the number of
comments.

• ProductsD.4: It is an Amazon product co-purchasing network, where nodes represent products
sold in Amazon and the edges between nodes indicate that the products are purchased together.
The node features are constructed with the dimensionality-reduced bag-of-words of the product
descriptions.

D.2 BASELINE DETAILS

• EWC (Kirkpatrick et al., 2017) is a regularization-based method that adds a quadratic penalty
on the model parameters according to their importance to the previous tasks to maintain the
performance on previous tasks.

D.1https://docs.dgl.ai/en/1.1.x/generated/dgl.data.CoraFullDataset.html
D.2https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
D.3https://docs.dgl.ai/en/1.1.x/generated/dgl.data.RedditDataset.html#dgl.

data.RedditDataset
D.4https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
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Table D.1: Key statistics of the graph datasets.
Datasets CoraFull Arxiv Reddit Products
#Nodes 19,793 169,343 227,853 2,449,028
#Edges 130,622 1,166,243 114,615,892 61,859,036

#Classes 70 40 40 46
#Tasks 35 20 20 23

Avg. nodes per task 660 8,467 11,393 122,451
Avg. edges per task 4,354 58,312 5,730,794 2,689,523

• MAS (Aljundi et al., 2018) preserves the parameters important to previous tasks based on the
sensitivity of the predictions to the changes in the parameters.

• GEM (Lopez-Paz & Ranzato, 2017) stores representative data in the episodic memory and
proposes to modify the gradients of the current task with the gradient calculated on the memory
data to tackle the forgetting problem.

• LwF (Li & Hoiem, 2017) employs knowledge distillation to minimize the discrepancy between
the logits of the old and the new models to preserve the knowledge of the previous tasks.

• TWP (Liu et al., 2021) proposes to preserve the important parameters in the topological aggrega-
tion and loss minimization for previous tasks via regularization terms.

• ERGNN (Zhou & Cao, 2021) is a replay-based method that constructs memory data by storing
representative nodes selected from previous tasks.

• SSM (Zhang et al., 2022c) incorporates the explicit topological information of selected nodes in
the form of sparsified computation subgraphs into the memory for graph continual learning.

• SEM (Zhang et al., 2023c) improves SSM by storing the most informative topological information
via the Ricci curvature-based graph sparsification technique.

• CaT (Liu et al., 2023) condenses each graph to a small synthesized replayed graph and stores it
in a condensed graph memory with historical replay graphs. Moreover, graph continual learning
is accomplished by updating the model directly with the condensed graph memory.

• DeLoMe (Niu et al., 2024a) learns lossless prototypical node representations as the memory to
capture the holistic graph information of previous tasks. A debiased GCL loss function is further
devised to address the data imbalance between the classes in the memory data and the current
data.

• TPP (Niu et al., 2024a) transductively captures task-specific prototypes utilizing a Laplacian
smoothing-based matching approach, achieving 100% task ID prediction accuracy and 0%
forgetting ratio.

D.3 CONFIGURATIONS

We conduct the experiments with:

• Operating System: Ubuntu 20.04 LTS.

• CPU: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, 256GB RAM.

• GPU: Tesla V100 PCIe 32GB GPU.

• Software: Python 3.7, Pytorch 1.8, CUDA 11.0, and Pytorch-Geometric 2.0.1.

D.4 ADDITIONAL RESULTS OF ABLATION STUDY

Sensitivity Analysis of SGC Layers. To study the sensitivity of the number of layers in the SGC
backbone of Graph2Hyper, we vary it within {2, 3, 4, 5}. The AA corresponding to different choices
is reported in Figure D.1. The results indicate that Graph2Hyper is robust to reasonable selections of
SGC layers, while careful tuning is still important for achieving optimal performance.
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Figure D.1: The sensitivity of SGC layers.

E USAGE STATEMENT OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, large language models (LLMs) were used solely as general-purpose
writing assistants. Specifically, we employed an LLM for grammar correction and language polishing
to improve readability and presentation.
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