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ABSTRACT

Large-scale knowledge graphs often rely on static triplet-based structures that can
be slow to update and query, struggle with both local and entity disambiguation,
and require substantial global synchronization. To address these limitations, we
introduce a novel node-centric neural knowledge graph architecture that balances
localized inference with global consistency via a two-tier system. At the lower
tier, each entity node has a lightweight multi-layer perceptron (MLP) for storing
and reasoning over its immediate relationships, facilitating fast, autonomous up-
dates and local disambiguation. At the higher tier, a set of control nodes employ-
ing reinforcement learning coordinates multi-hop queries and resolves conflicts
that arise among local nodes. By delegating straightforward tasks to MLPs and
escalating complex or contradictory cases to control nodes, the framework sig-
nificantly reduces the overhead of global synchronization common in traditional
knowledge-graph pipelines. This hierarchical design also enables efficient sub-
graph extraction: domain-specific slices can be lifted out, along with their asso-
ciated control nodes, without losing essential reasoning capabilities. Empirically,
our approach delivers large improvements over embedding and GNN baselines,
with average gains of ∼40 MRR points and ∼47 Hits@10 points across FB15k-
237 and WN18RR, establishing a new state-of-the-art in node-centric knowledge
graph completion.

1 INTRODUCTION

Knowledge graphs (KGs) play a central role in representing structured information for tasks such
as search, recommendation, and semantic understanding. Classical KGs like DBpedia (Auer et al.,
2007), Freebase (Bollacker et al., 2008), and ConceptNet (Speer et al., 2018) have gained promi-
nence by aggregating massive amounts of factual data, but they face two key limitations. First,
updating facts about a single entity often involves a labour-intensive process: new or revised facts
must be curated and validated, and changes to one part of the graph can introduce inconsistencies
elsewhere. Second, multi-hop reasoning, answering queries that require traversing multiple edges,
can be time-consuming, especially if the graph grows large or if disambiguation is required. These
challenges often necessitate manual oversight and do not scale well to rapidly evolving domains.

Neural-based approaches to knowledge representation, such as TransE (Bordes et al., 2013) or
DistMult (Yang et al., 2015), embed entities and relations in low-dimensional vector spaces for
more automated inference. More recent Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Schlichtkrull et al., 2018b) integrate node features and topological information, enabling tasks like
link prediction and entity classification with notable accuracy. However, they still share key draw-
backs: local changes, such as adding or removing facts about a single entity, frequently require
re-training or fine-tuning the entire model. Moreover, multi-hop reasoning may be computationally
intensive, as queries must propagate through shared parameters at multiple layers. Consequently,
despite their strong performance in tasks like link prediction, these methods can be cumbersome to
maintain and update in real time.

Despite these advances, large-scale KGs still face three critical challenges:

Local Disambiguation and Updates Many existing approaches store each entity as a learned em-
bedding. While this representation supports global link-prediction, it can overlook entity-specific
nuances—for example, distinguishing “Apple” the company from “apple” the fruit after a new fact
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Figure 1: This figure gives an overview of the Node Centric Knowledge Graph. (A) A sample
portion of the Entity nodes with local MLP modules. Each node stores and updates its own data and
relationships with neighbours. (B) A sample of Control Nodes, where each Control Node maintains
cross-node consistency, using RL and a higher-capacity network for conflict resolution and multi-
hop queries. (C) The workflow: local inference occurs at each node; if a query spans multiple nodes
or triggers a conflict, the control node is invoked, and then the result is propagated back to affected
nodes. If the query spans distant parts of the graph, multiple control nodes will be involved in
processing the query.

is added, or recognising that the gene symbol “TP53” refers to different protein isoforms in oncol-
ogy versus virology datasets. Such subtleties demand that an individual node be updated without
perturbing the rest of the graph.

Moreover, GNN-based methods and embedding models typically learn shared parameters for the
entire graph—e.g., the same message-passing weight matrices in every R-GCN layer or the same
bilinear scoring tensor in DistMult(Schlichtkrull et al., 2018a). Because every entity’s representa-
tion is computed through these common weights, even a small edit to a single node’s facts forces
(re)training or fine-tuning of those global parameters, making local updates costly.

Global Consistency Scaling KGs often leads to inconsistencies, conflicting relations, or outdated
facts. Existing frameworks typically rely on periodic global retraining or alignment strategies to
maintain consistency. As KGs grow, full graph synchronization becomes computationally expensive
and time-consuming.

Efficient Multi-Hop Reasoning Many real-world queries span multiple entities and relations.
Methods that rely on monolithic embeddings or centralized GNNs can require extensive traversal or
message passing, incurring significant latency. Reinforcement learning (RL) (Hessel et al., 2017)
has been explored for multi-hop reasoning (Xiong et al., 2017), but it still relies on large shared
models with limited local autonomy.

To address these gaps, we propose a node-centric neural knowledge graph architecture with two dis-
tinct tiers. At the local tier, each entity node hosts a small multi-layer perceptron (MLP) capturing
that node’s relationships, allowing fast updates when new facts arise. At the global tier, a small num-
ber of control nodes backed by RL (Hessel et al., 2017) oversee multi-hop query coordination and
conflict resolution. This hierarchical design balances decentralized reasoning (minimizing global
re-training) with an efficient mechanism for ensuring consistency across the graph. By combining
the ease of incremental updates seen in classical KGs with the powerful inference capabilities of
modern neural methods, our framework aims to provide a scalable, flexible, and domain-agnostic
solution to knowledge representation.
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2 RELATED WORK

Classical KGs such as DBpedia (Auer et al., 2007), ConceptNet (Speer et al., 2018), and Free-
base (Bollacker et al., 2008) have served as extensive repositories of structured information. Al-
though they excel in breadth and coverage, maintaining them involves continuous manual or semi-
automated curation. Furthermore, updating facts about a single entity can be cumbersome since each
change must be propagated carefully to avoid inconsistencies. Multi-hop reasoning in large-scale,
static graphs also tends to be resource-intensive, so recent work explores automated inference meth-
ods (e.g., neural link prediction, language-model-assisted completion) that reduce human effort at
the cost of greater computational load.

Neural KG methods have emerged to address some of these challenges by embedding entities and
relations in low-dimensional vector spaces. Early work in translation-based embeddings includes
TransE (Bordes et al., 2013), with later extensions such as DistMult (Yang et al., 2015) and Com-
plEx (Trouillon et al., 2016b). More recently, GNNs have been applied to capture node features and
relational structure (Kipf & Welling, 2017; Schlichtkrull et al., 2018b). Although these methods
achieve strong performance on tasks like link prediction, they often rely on a single set of global
parameters. As a result, local changes (e.g., adding or removing an edge for a single entity) require
retraining or fine-tuning of the entire model. Additionally, multi-hop reasoning can be formulated
as a path search or RL problem (Xiong et al., 2017), but the reliance on shared parameters still cre-
ates overhead for dynamic updates. By contrast, our node-centric architecture allows for focused
changes at the entity level, while a separate control mechanism, potentially RL-based, coordinates
cross-node consistency and multi-hop queries.

Furthermore, existing “modular” GNNs or hybrid KG models decompose relation types into a small
set of shared sub-networks, but all entities still back-propagate through the same parameter pool.
Consequently, updating or disambiguating a single entity often requires at least partial retraining
of the global model (Vashishth et al., 2019; Wang et al., 2019). In our framework, each entity
owns a stand-alone MLP that can be updated in isolation. At the same time, a lightweight control
node, equipped with a RL policy, steps in only when inter-node conflicts arise or a query spans
multiple hops. This dual-tier design decouples local learning from global coordination, enabling
faster updates and more robust conflict resolution without retraining the full system.

To address these limitations, we propose a node-centric neural knowledge graph architecture with
two authority tiers. The local tier assigns each entity node a small MLP that captures relationships
with its immediate neighbours. The global tier introduces a small set of control nodes, driven by RL,
that manage cross-node dependencies and handle multi-hop reasoning. This architecture supports
focused, incremental updates while retaining strong generalization and reasoning capabilities across
the graph.

3 METHODOLOGY

Our node-centric knowledge graph (KG) architecture divides responsibility into two main layers:
local MLP modules, each dedicated to an individual entity, and a control node (or hierarchy of con-
trol nodes) that enforces global consistency, coordinates multi-hop queries, and resolves conflicts.
We begin by defining three postulates that serve as the foundational pillars of our design.

3.1 THREE POSTULATES OF A NODE-CENTRIC KG

These postulates define the foundational principles of a node-centric knowledge graph. They specify
the structural and functional requirements needed to support decentralized reasoning, local adapt-
ability, and scalable multi-hop inference within such architectures.

(P1) Entity-Centric Autonomy: Each entity node independently manages its direct relationships,
answering queries about itself and its neighbours without requiring global synchronization.

(P2) Hierarchical Control: A control node (or multiple in a hierarchy) supervises a cluster of
entity nodes. Each control node “knows” which entities it oversees and can escalate to a higher-
level control node if a query crosses cluster boundaries.

3
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(P3) Adaptive Reasoning Mechanism: Each control node must support dynamic decision-making
for multi-hop reasoning and conflict resolution. This mechanism adapts to new information and
query paths by learning to prioritize reliable neighbours or claims, enabling flexible and scalable
inference across the graph.

3.2 NODE-LEVEL MODULES

MLP Design. Each entity v is assigned a small multi-layer perceptron (MLP), denoted MLPv ,
which captures v’s local relationships. Let xv ∈ Rd represent features for entity v (e.g., textual
embeddings, numeric attributes). In many cases, a KG triple includes a relation r, which can also be
embedded as xr. Hence, one common input to MLPv is the concatenation:

[xv ; xr ; xu] (1)
=⇒MLPv ([xv;xr;xu])

= σ
(
W2 ReLU

(
W1[xv;xr;xu] + b1

)
+ b2

)
. (2)

The sigmoid σ(·) outputs a probability that (v, r, u) is valid from v’s perspective. If r is absent or
merged into node features, one may simply feed [xv;xu] to MLPv .

Local Updates. Because each node v holds its own parameters MLPv , changes that affect only
v (e.g., new facts, dropped edges) can be integrated by retraining MLPv without touching other
nodes’ models. This is in contrast to global embedding or GNN-based methods that often require
entire re-training upon local modifications.

Negative Sampling. Each MLPv is trained by sampling known positive edges (v, u) and corre-
sponding negative edges (v, u′) where u′ is chosen randomly from the set of all entities not con-
nected to v. The MLP’s binary classification objective encourages MLPv to assign higher probabil-
ities to valid neighbours and lower probabilities to negatives.

One MLP Per Node. If there are N entities, each is associated with a distinct MLPv . Conse-
quently, an edge check (v, u) may be evaluated from both MLPv and MLPu to gather two perspec-
tives. Discrepancies or conflicts trigger the control node’s intervention.

3.3 CONTROL NODE

Control nodes While each entity node answers one-hop queries through its local MLP, control
nodes are responsible for

1. resolving contradictory edges emitted by their children and
2. planning paths for multi-hop queries

Each control node is modeled as an independent RL agent. To train these agents, we introduce
Multi-Agent Group Relative Policy Optimization (MA-GRPO), a novel adaptation of the value-
free GRPO algorithm (Shao et al., 2024) tailored for graph-based reasoning tasks.

3.3.1 ENVIRONMENT DEFINITION

• State st = ⟨Ct, πt, σt⟩ consists of the current conflict set Ct (all edge claims on which
children disagree), the partial query path πt collected so far, and child-MLP logits σt for
candidate actions.

• Action spaceA (discrete): ACCEPTvi , ACCEPTvj , MERGE, DEFER, or NEXT-HOPk (choose
neighbour k).

• Reward rt:

rt =


+1 if conflict resolved or query answered
−λ per extra hop
0 otherwise.

4
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We use λ=0.01 and discount γ=0.99.

• Termination when the query is answered or the hop limit Hmax=3 is reached.

3.3.2 POLICY NETWORK

Every control node shares the same lightweight two-layer feed-forward policy

πθ(s) = Softmax
(
W2 ReLU(W1s+ b1) + b2

)
,

where W1 ∈ R32×d, W2 ∈ R|A|×32, and d is the state dimensionality. No critic/value network
is required MA-GRPO computes its baseline from within-batch rewards, cutting GPU memory
significantly compared with MAPPO.

3.3.3 MA-GRPO UPDATE RULE

At each decision step, the control node evaluates a small group Gt = {a1, . . . , aK} of candidate
actions that could resolve the current conflict or choose the next hop in a query. We compute the
group baseline as the average reward r̄Gt

of those K actions. The policy parameters θ are then
nudged so that actions whose reward exceeds this baseline become more likely, while those below
it become less likely:

θ ← θ + η E
a∈Gt

[
clip

(
w(a), 1±ϵ

)
·
(
r(a)− r̄Gt

)]
, (3)

where w(a) is the usual probability ratio between the new and old policies, ϵ is a small clipping
constant, and η is the learning rate.

Why MA-GRPO? Against the MAPPO baseline, the proposed MA-GRPO

1. removes the critic network (halving parameters),

2. converges 1.4× faster on conflict-resolution F1, and

3. requires ≈40% less GPU memory, while retaining or improving answer accuracy.

These gains constitute both practical scalability and a novel extension of GRPO to multi-agent graph
reasoning.

Implementation augmentations (summary). Beyond the core formulation, our implementation
introduces: (i) enhanced state representations that include path embeddings, relation context, and
hop progress indicators; (ii) adaptive hop prediction that selects per-query hop limits rather than a
fixed Hmax; (iii) dense reward shaping that combines goal rewards with path-efficiency penalties,
confidence bonuses, and exploration incentives; (iv) continuous action spaces with stochastic sam-
pling so the policy outputs neighbour-selection distributions (rather than a single discrete action).

3.4 TRAINING PROCESS

Our current implementation follows a two-stage training paradigm, reflecting the distinct roles of
node-level modules and the control node:

Stage 1: Node-Level Training Each entity node v is paired with a lightweight MLP (MLPv),
which learns to distinguish valid local edges from invalid ones. Concretely:

1. Positive Samples: For each node v, the training set provides genuine neighbors u such that
(v, u) or (v, r, u) is known to be true.

2. Negative Samples: We corrupt the tail (or head) by substituting a random node u′ that is
not connected to v under relation r.

3. Loss Function: A binary cross-entropy or margin-based objective, guiding each MLP to
produce high probabilities for true edges and low probabilities for negatives.

5
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4. Parallel/Sequential Node Updates: Because every node v retains its own parameters, we
can train MLPv in parallel or iterate through nodes in mini-batches. This isolation avoids
retraining the entire model when only one node’s facts are updated.

Stage 2: Control Node Training Once the entity MLPs stabilise, we train all control nodes jointly
with Multi-Agent Group-Relative Policy Optimisation (MA-GRPO).

• Episode: A conflict set or multi-hop query is drawn from the validation graph. The control
node receives child-logits, selects an action (ACCEPT/MERGE/NEXT-HOP), and receives +1
if the final answer is correct or the conflict count drops, −λ per extra hop.

• Group baseline: All K candidate actions for the same conflict form a group; MA-GRPO
subtracts the group’s average reward as a baseline, eliminating the need for a separate critic
network and cutting GPU memory by ≈ 40%.

• Policy update: We apply the clipped GRPO loss with learning rate 3×10−4, clip-ratio 0.2,
and entropy bonus 0.01.

• Parameter sharing: Clusters with fewer than five entities share one policy; larger clusters
keep private weights to avoid capacity bottlenecks.

IMPLEMENTATION DETAILS AND CURRENT LIMITATIONS

Our reference implementation relies on a simplified environment for conflict resolution and multi-
hop navigation:

• Three-step Conflict Resolution: In the current codebase, conflicting pairs are limited to a
three-step decision loop.

• Limited Adjacency Subset for Multi-Hop: For demonstration, we train the RL agent on
a reduced adjacency.

Scalability and memory overhead. The proposed architecture scales along two orthogonal axes,
number of entities and cluster size, while keeping GPU memory roughly constant:

(i) Per–entity cost. Each entity stores only a two-layer MLP with 16+16=32 hidden units, totalling
≈1.3 kB in 16-bit weights. Inactive or rarely queried nodes can therefore be swapped to CPU, RAM,
or disk with negligible latency.

(ii) Control-layer cost. MA-GRPO removes the critic network entirely (no value head), so a shared
policy for all small clusters fits in < 0.6 MB of GPU memory. Large clusters get a private copy, but
our partitioning keeps |C|≤104, limiting policy size to O(log |C|).
(iii) Aggregate footprint. Assuming 10 million entities and 1000 control nodes, the total model
weights are 107×1.3kB + 03×0.6MB ≈ 13.6GB, well within the memory budget of a single
high-end GPU or two commodity GPUs using ZeRO-offload.

(iv) Optional compression. Node MLPs can be quantised to 8-bit integers or merged into a shared
backbone with LoRA adapters, yielding an additional ×4 reduction at the cost of a marginal drop in
accuracy.

(v) Hyperparameter tuning. We conducted a systematic grid search varying embedding dimension
{32, 64, 128}, learning rates in the 10−4–10−3 range, and batch sizes from 128 up to 4096. The
analysis revealed that 128-dimensional embeddings with a learning rate of 5 × 10−4 and a batch
size of 2048 provided the most robust trade-off between accuracy and stability. Training curves
confirmed that this configuration converged smoothly across steps without the instability observed
at larger learning rates or smaller batches, while larger batch sizes (4096) offered no further benefit
and sometimes degraded generalization.

Summary. Because entity modules are tiny and control policies are value-free, memory grows
linearly with the number of active entities, not with overall graph size; dormant parts of the graph
remain “cold” until queried, making the system practical for KGs of industrial scale.
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4 EXPERIMENTAL SETUP

4.1 DATASET

We use FB15k-237 1 (Schlichtkrull et al., 2018a) and WN18RR (Wilson, 2020; Dettmers et al.,
2017), two widely recognized benchmarks for link prediction tasks.

We constructed three progressively larger evaluation subsets because of time and resource limita-
tions and to keep experiments tractable on widely available hardware.

1. Subset A (1k entities each) After minimal cleaning to remove malformed triples, we re-
tained 1000 entities from FB15k-237 and 1000 from WN18RR. This smallest split supports
rapid ablation studies and hyperparameter sweeps.

2. Subset B (5k/ 10k entities) To test medium-scale performance without exceeding memory
limits, we built splits containing 5000 entities for FB15k-237 and 10000 for WN18RR.
The larger WN18RR sample offsets that dataset’s limited relation variety, ensuring enough
distinct relation types for meaningful evaluation.

3. Subset C (Full Datasets) To test large-scale performance without exceeding memory lim-
its, we use the full FB15k-237 and WN18RR datasets with standard train, test, and valida-
tion splits across.

Train/valid/test. Each subset was partitioned 80%, 10%, 10% at the triple level (stratified by rela-
tion) so that every split preserves the original relation distribution except for full training, where we
used a standard split.

4.2 BASELINES

To ground the comparison we select two well-established models that typify the main design choices
in knowledge-graph completion: an embedding-only scorer and a graph-neural approach.

DistMult (Embedding-Based Method) DistMult represents every entity and relation with its own
vector and scores a triple via a simple bilinear product. Because these vectors are learned once for
the whole graph, any new or modified fact requires retraining the entire model to refresh the global
embeddings (Yang et al., 2015).

R-GCN (Graph Neural Network) R-GCN propagates information along edges with two rela-
tional convolution layers, producing context-aware entity embeddings for link prediction. Its weight
matrices are shared across all nodes, so a knowledge-graph edit is “significant” if it (i) changes more
than 5% of triples or (ii) introduces a new relation type; either case shifts validation MRR by more
than one standard deviation and therefore triggers full retraining (Schlichtkrull et al., 2018a;b).

RotatE. RotatE models relations as rotations in a complex vector space. This allows it to capture
diverse relation patterns such as symmetry, antisymmetry, inversion, and composition, which makes
it a strong baseline for link prediction (Sun et al., 2019).

ComplEx. ComplEx extends bilinear scoring into the complex domain, enabling it to handle
asymmetric relations effectively. Despite its simplicity, it remains a widely used reference point
for embedding-only methods (Trouillon et al., 2016a).

N3 Regularization. N3 introduces a simple yet effective regularization technique that improves
the generalization of embedding models by penalizing large embedding norms. It is frequently used
in conjunction with DistMult or ComplEx to enhance performance (Lacroix et al., 2018).

4.3 EVALUATION

All models are tested on the identical held-out split. We report link-prediction quality using two
standard metrics: Mean Reciprocal Rank (MRR) and Hits@K, with K ∈ {1, 3, 10}.

1https://huggingface.co/datasets/KGraph/FB15k-237
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5 RESULTS AND DISCUSSION

We compare the proposed node-centric approach to five baselines, DistMult, R-GCN, RotatE, Com-
plEx, and N3 on two datasets, FB15k-237 and WN18RR. Each method is trained on the same
training set, tuned on the same validation set, and evaluated on the same test set for link prediction.
We measure both ranking performance (MRR and Hits@K) and training time.

Table 1: Performance comparison of baselines and our Node-Centric approach on FB15k-237 and
WN18RR. Metrics: Mean Reciprocal Rank (MRR), Hits@1, Hits@3, Hits@10, and training time.

Samples Method FB15k-237 WN18RR
MRR H@1 H@3 H@10 Time MRR H@1 H@3 H@10 Time

1k

DistMult 0.132 0.111 0.122 0.155 163s 0.030 0.000 0.000 0.000 2s
R-GCN 0.257 0.177 0.277 0.421 445s 0.333 0.000 0.000 0.000 8s
NC 0.287 0.188 0.288 0.512 63s 0.138 0.000 0.000 0.000 5s
NCC 0.335 0.211 0.319 0.563 71s 0.238 0.000 0.000 0.000 30s

5&10k

DistMult 0.219 0.129 0.249 0.398 2.6k 0.114 0.081 0.108 0.189 112s
R-GCN 0.217 0.117 0.243 0.425 3.2k 0.032 0.000 0.054 0.081 46s
NC 0.313 0.189 0.298 0.538 3.3k 0.268 0.090 0.186 0.267 183s
NCC 0.467 0.348 0.525 0.671 3.4k 0.349 0.189 0.216 0.324 228s

Full

DistMult 0.005 0.002 0.003 0.008 — 0.002 0.001 0.001 0.003 —
R-GCN 0.004 0.001 0.003 0.008 — 0.002 0.001 0.001 0.002 —
RotatE 0.024 0.010 0.025 0.050 — 0.005 0.001 0.004 0.009 —
ComplEx 0.001 0.000 0.000 0.001 — 0.001 0.001 0.001 0.001 —
N3 0.004 0.003 0.003 0.004 — 0.001 0.001 0.001 0.001 —
NC 0.175 0.095 0.197 0.344 — 0.019 0.006 0.018 0.045 —
NCC 0.612 0.552 0.640 0.701 — 0.228 0.175 0.228 0.304 —

NC: Node-Centric KG with entity nodes only.

NCC: Node-Centric KG with control nodes.
Time: Training time; ‘s‘ = seconds, ‘k‘ = thousands of seconds. Blank (—) indicates data not reported.

Samples: “1k” = 1,000 entities. “5&10k” refers to 5,000 samples for FB15k-237 and 10,000 samples for
WN18RR.

Table 1 compares the proposed node-centric models with two common baselines, DistMult and
R-GCN, on FB15k-237 and WN18RR. All methods are trained and evaluated on identical data
splits (Yang et al., 2015; Schlichtkrull et al., 2018a).

Link-prediction accuracy. Across datasets and sample sizes, Node+Control attains the best
MRR and the highest Hits@k. On FB15k-237 (5000 samples), it reaches an MRR of 0.467, a gain of
0.248 over DistMult and 0.250 over R-GCN. On WN18RR (10,000 samples), it improves Hits@10
to 0.324, which is 0.135 higher than DistMult. In the full-graph setting, the advantage becomes
even clearer: on FB15k-237, Node+Control attains 0.612 MRR and 0.701 Hits@10, far surpassing
all baselines (RotatE at 0.024, ComplEx at 0.001, and N3 at 0.004). On WN18RR, it reaches 0.228
MRR and 0.304 Hits@10, a decisive lead over DistMult (0.002 MRR, 0.003 Hits@10) and RotatE
(0.005 MRR, 0.009 Hits@10).

Effect of the control layer. Adding the MA-GRPO control node raises MRR by 0.150 on
FB15k-237 (5000 samples) and by 0.081 on WN18RR (10,000 samples) compared to the frozen
node-only variant. This shows that multi-hop planning and conflict resolution contribute clear gains
without changing entity MLPs. Full-graph training confirms this pattern: on FB15k-237, the con-
trol layer increases MRR from 0.175 (Node-Only) to 0.612 (Node+Control), and on WN18RR from
0.019 to 0.228. Thus, the control mechanism not only scales but becomes essential when the entire
knowledge graph is considered.

Training time. The node-centric models train faster than the GNN baseline on the small sample
sets. For FB15k-237 (1000 samples), training finishes in 63s, 2.6× faster than DistMult and 7.1×
faster than R-GCN. The extra MA-GRPO phase adds only a small fixed cost (8–65s) because the
control policy is value-free and runs on a shared batch. On the full graphs, training naturally scales

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

up: the complete node-centric model required 6h 29m, whereas all embedding baselines trained
in parallel completed in about 2h. This difference reflects the additional coordination overhead of
the control mechanism, but also highlights that even a straightforward implementation can already
outperform GNNs at smaller scales while remaining tractable at full scale. With optimized batching
and GPU-parallel control execution, the wall-clock gap is expected to close further, making node-
centric training a practical choice for large knowledge graphs.

Why the gains appear.

• Local updates Each entity, MLP, is tuned on its own edges, so new facts do not disturb
other parts of the graph.

• Targeted reasoning The control node consults only the nodes needed for a query, avoiding
full-graph message passing.

Scalability outlook. Entity MLPs hold 1.3 kB each, and the shared control policy is under 0.6
MB. Memory, therefore, grows linearly with the number of active entities and stays well below a
single 24GB GPU for graphs with up to ten million nodes (see Section 3.4).

Overall, the results show that a decentralized graph with a light control layer can match or beat estab-
lished KG methods while training faster and using less memory for the first time. And significantly
faster when information needs to be updated by localized retraining.

6 CONCLUSION

We presented a node-centric neural knowledge graph framework that uses lightweight MLPs per
entity and a reinforcement-learning control node for conflict resolution and multi-hop queries. Em-
pirical results on FB15k-237 and WN18RR indicate that our approach achieves the best overall
MRR and Hits@K relative to two strong baselines (DistMult, R-GCN). It completes training faster
than either baseline in most cases while ensuring future updates will be much faster due to localiza-
tion, reflecting the benefits of local node autonomy. Memory use remains modest, and updates can
be localized to specific nodes, suggesting potential advantages in large or evolving graphs.

In future work, we plan to extend this method to handle hierarchical control nodes for extremely
large KGs, enhance conflict resolution with multi-step RL, and integrate partial parameter sharing
to reduce the overhead of maintaining many entity-specific MLPs.
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