
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWE-MIRROR: SCALING ISSUE RESOLVING DATASETS
BY MIRRORING ISSUES ACROSS REPOSITORIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Creating large-scale verifiable training datasets for issue-resolving tasks is a crit-
ical yet notoriously difficult challenge. Existing methods on automating the Gym
environment setup process for real-world issues suffer from low success rates and
high overhead. Meanwhile, synthesizing new tasks within existing Gym environ-
ments leaves the vast pool of real-world issue-resolving history untapped. To max-
imize the utilization of existing Gym environments and also the rich data of issue-
resolving history on GitHub, we introduce SWE-MIRROR, a pipeline that distills
a real-world issue’s semantic essence, mirrors it into another repository with a
configured Gym environment, and re-animates it as a verifiable issue-resolving
task. SWE-MIRROR reuses existing Gym environments along with the vast pool
of issue-resolving history hosted on GitHub to construct a large-scale dataset of
mirrored authentic and verifiable tasks. Applying SWE-MIRROR to 40 reposi-
tories across 4 languages, we have curated a dataset with 60,671 issue-resolving
tasks and demonstrated the value of our dataset by training and evaluating coding
agents at various scale. Post-training experiments show that models trained with
the dataset exhibit improvements in issue-resolving capabilities. Furthermore, by
extending the dataset size to over 12,000 high-quality trajectories, we established a
new state-of-the-art (SOTA) among Qwen2.5-Coder-Instruct based LLMs on the
OpenHands agent framework, which increases the resolve rate on SWE-Bench-
Verified by +21.8% for the 7B model and +46.0% for the 32B model and vali-
dates the effectiveness of our approach.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in various code gener-
ation tasks (Chen et al., 2021; Austin et al., 2021; Liu et al., 2023; 2024; Jain et al., 2024; Li et al.,
2022; Luo et al., 2025; Guo et al., 2024; Wan et al., 2025), fundamentally reshaping the landscape
of software development. As the research community broadens its focus to more complex and real-
world challenges (Zhang et al., 2024a;b; Jiang et al., 2025), resolving real-world issues has emerged
as a critical frontier (Jimenez et al., 2024; OpenAI, 2024; Zan et al., 2025; Wei et al., 2025). A ver-
ifiable issue-resolving task instance, exemplified by benchmarks like SWE-Bench (Jimenez et al.,
2024; OpenAI, 2024; Yang et al., 2025b), consists of two primary components:

• Task Context: This includes the issue with related pull-request(i.e., PR) and the corre-
sponding repository snapshot(i.e., CodeBase). Normally we can get a problem statement
detailing a specific issue (e.g., a bug report or feature request) as the task description, and
reference patches for validation and ground-truth.

• Gym: This is an executable environment equipped with validation harness, including test
commands and log parsers to verify proposed solutions and provide reward for training.

A severe imbalance exists (Pan et al., 2025; Badertdinov et al., 2025) in the effort required to ac-
quire these two components. While Task Contexts can be gathered from platforms like GitHub with
relative ease, engineering a functional Gym is a significant bottleneck, demanding meticulous and
often unscalable manual effort (Jimenez et al., 2024; Zan et al., 2025; Pan et al., 2025). This dif-
ficulty arises because a universal, one-fits-all Gym is infeasible in the diverse software ecosystem.
Each repository—and often, each specific version—requires a unique configuration of dependencies,
build processes, and testing frameworks. Consequently, the immense effort invested in creating a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

single Gym typically supports only one specific task or, at best, a small cluster of closely related
ones. This reality forges a rigid one-to-one dependency between Task Context and Gym, posing a
fundamental barrier to scaling up the issue-resolving datasets.

Faced with this scaling challenge, the research community has pursued two orthogonal approaches
to scaling the issue-resolving dataset for training: ❶ Scaling tasks via synthesizing problems. This
approach maximizes the utility of Gyms by synthesizing new tasks that are compatible with them.
Works like SWE-smith (Yang et al., 2025b) and SWE-Synth (Pham et al., 2025) programmatically
mutate or rewrite repositories’ components to inject bugs and generate a large volume of artificial
tasks. ❷ Scaling tasks via setting up Gyms. This orthogonal approach confronts the Gym creation
bottleneck directly by attempting to automate the setup process (Badertdinov et al., 2025).

While both approaches offer paths to scale, they present a difficult trade-off. The synthesis approach
achieves scale but generates problems that are artificially created, failing to leverage the vast and
history of authentic software evolution found on platforms like GitHub—the very source of prob-
lems this research field aims to solve. Conversely, the Gym automation approach engages with this
real-world data but faces significant engineering hurdles. The success rate of automatically config-
uration remains low, and incurs staggering storage costs. With each Gym environment consuming
approximately 1GB, scaling to 100,000 instances would demand a 100 Terabytes of storage.

This presents the community with an untenable choice: pursue scalability with tasks disconnected
from rich source of real-world software evolution, or engage with authentic data at a prohibitive
engineering and storage cost. This dilemma leads to a research question:

How can we leverage the vast and ever-growing history of software evolution on
GitHub using only a small, manageable set of reusable Gyms?

To answer this question, we must break the one-to-one dependency between the Task Context and
the Gym. Our approach involves hosting an issue-resolving task from one repository within a pre-
existing Gym configured for another. We draw inspiration from research on issue mirroring (Guan
et al., 2025), which observes that programs with analogous functionalities often share analogous
bugs and features. While prior work has leveraged this insight to find bugs across similar frameworks
(e.g., PyTorch1 and TensorFlow2), we propose to significantly extend this idea to programmatically
mirror them—re-instantiating a PR from a source project into a target project to create a new task.
Observations supporting the feasibility can be summarized as follows:

1. Shared Analogous Components: Similar projects often share analogous components rooted in
common architectural patterns, dependencies and APIs and may suffer similar issues.

2. Portable Problem Logic: Software issues often encapsulates core logical problem that can be
abstracted from its original context and can re-instantiated within a similar project.

3. Transferable Validation: Issues from a repository is typically accompanied by a validation
mechanism (e.g., a test case that fails before the fix and passes after). which can be adapted
and transferred to the target repository to verify the successful replication of the issue.

To this end, we introduce SWE-MIRROR, a pipeline that systematically mirrors real-world PRs and
issues from a source repository in the wild into a functionally similar target repository which has a
configured Gym. By breaking the one-to-one dependency between Task Context and Gym, SWE-
MIRROR dramatically multiplies the available tasks of any single Gym and unlocking a vast pool of
authentic issue-resolving histories. The main contributions of this paper are summarized as follows:

❶ Technique: We propose SWE-MIRROR, a novel paradigm and methodology for scaling issue-
resolving datasets by mirroring real-world issues across repository.

❷ Large-Scale Dataset: We release SWE-MIRROR-60K, a large-scale dataset containing over
60,000 verifiable tasks. These tasks are composed of authentic issues mirrored into a small set
of robust Gyms. A comparison with other datasets is shown in Table 1.

❸ Empirical Validation and Methodology: We conduct extensive experiments exploring var-
ious agentic posttraining methods on SWE-MIRROR-60K. Our results not only demonstrate

1https://pytorch.org
2https://www.tensorflow.org

2

https://pytorch.org
https://www.tensorflow.org

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

that finetuned models achieve significant performance gains on SWE-bench Verified (OpenAI,
2024) and Multi-SWE-bench-Flash (Zan et al., 2025), but also provide insights into training
strategies for this domain. We also provide strong empirical evidence for scaling law (Kaplan
et al., 2020) of dataset size in software engineering tasks.

Table 1: Comparison of SWE-MIRROR with other issue-resolving datasets. The symbols indicate
whether a dataset possesses the feature (✓), lacks it (✗), or possesses it partially (✓).

Dataset #Tasks # Repos Hidden Tests? Verifiable?
SWE-rebench (Badertdinov et al., 2025) 20k 2k ✓ ✓
SWE-Gym (Pan et al., 2025) 2.4k 11 ✓ ✓
SWE-Fixer (Xie et al., 2025) 110k 856 ✓ ✗
SWE-Smith (Yang et al., 2025b) 50k 128 ✗ ✓

SWE-MIRROR-60K (Ours) 60k 40 ✓ ✓

2 METHODOLOGY

As illustrated in Figure 1, this process is structured as a three-phase pipeline: (1) Task Collection,
where we collect high-quality and mirror-able real-world issues from GitHub; (2) Task Mirroring,
where we mirror these issues into target codebases; and (3) Task Verification, which validates the
integrity of the mirrored task instances. Worth-noting, SWE-MIRROR is an orthogonal method on
scaling dataset to prior efforts working on setting up Gyms for SWE instances. Due to the limit
of resources and time, we select Gyms for newest issue from SWE-Gym (Pan et al., 2025), SWE-
rebench (Badertdinov et al., 2025) and Multi-SWE-RL (Zan et al., 2025), and set the time limit of
running the whole test suites to 5 minutes and the memory limit to 1GB. In addition, we also perform
basic functional check of each Gym via running all test suites and check the output manually.

2.1 PHASE 1: TASK COLLECTION

The objective of this initial phase is to source a pool of potentially mirror-able issues for each target
CodeBase with existing Gym. Given the vast volume of issues on GitHub, we employ a two-stage
search strategy to narrow the candidate pool to a manageable scope. For a given CodeBase, we first
leverage QWEN3-32B (Yang et al., 2025a) to analyze its README file and generate five descriptive
keywords. Using the GitHub REST API3, we then search for repositories using these keywords as
query, retrieving the top 20 repositories ranked by stars and issue counts. Subsequently, we collect all
pull-requests and linked issues from these candidate repositories and apply a filtering process, using
a combination of hand-crafted rules and LM-based heuristic to identify high-quality and mirror-able
issues. We expand the rules and LM-based heuristic in Section A.1.

2.2 PHASE 2: TASK MIRRORING

The objective of this phase is to mirror the candidate issues into their designated target Gyms. The
process begins by employing GPT-4O-2024-0513 (OpenAI, 2024) to distill the related function-
ality, core logic, current and expected behavior and observable symptoms of a source issue into a
concise abstract description which serves as a primary input for our three-step mirroring workflow
with GPT-4.1 (OpenAI, 2025) as the backbone LM:

• Mirroring Validation: The primary goal of this initial step is to establish a concrete, exe-
cutable contract that formally defines what constitutes a correct resolution of the issue-resolving
task. An agent referred as Test Agent, prompted with the abstract description, is responsible
for generate a new test case within the target Gym’s existing test suite. Those tests are designed
to pass under the current codebase state, but will fail once the next step introduced the issue
successfully. The output of this step is the test.patch. This patch serves a dual purpose: it
acts as a precise guide for the next step and, ultimately, as the hidden tests for evaluating the
correctness of submissions from coding agents.

3https://docs.github.com/en/rest

3

https://docs.github.com/en/rest

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

effective tests

effective fix

no regression

Similar Projects

2.Mirroring Symptoms

3.Mirroring Problem Statement

Task Mirroring

Candidate PRs

new codebase

Apply patches and run tests

Task Collection

exam
ples from

 SW
E-gym

1.Mirroring Validation

Abstract Description

Issue Type : Edge Case Handling
Core Problem:
Technical Context:
Symptom :....
Root Cause Pattern:

(i) search on Github
(ii) stars > 1000

merged pull-requests

(i) High-Quality(HQ)
(ii) Mirrorable

HQ&Mirrorable PRs

Test Agent

Target CodeBase

Target
CodeBase

test.patch

related files

Target
CodeBase

mirror.patch

related files

Mirror Agent

reverse
fix.patch

problem_statement

Task Validation

Log Analysis

Checks:
unambiguous

Mirrored Instance

Reuses PR:

Apply before agent rollout

Abstract the bug pattern
Abstract the feature request

patch genlocalize

localize patch gen

run.log test.log fix.log

HQ&Mirrorable PR

Create tests for this issue

Introduce bug/Revert feature

Describe the bug/feature

Figure 1: Overview of SWE-MIRROR pipeline.

• Mirroring Symptom: With the validation tests established by the test.patch, this second step
aims to re-animate the issue within the target repository’s code. A different agent-Mirror
Agent takes the abstract description for semantic context and the file paths and function names
from the test.patch as a strong structural prior. Its objective is to surgically modify the appli-
cation’s source code to specifically cause the new test case to fail. The resulting modification,
packaged as the mirror.patch after removing comments, becomes the starting point of the task.
We also programmatically create its inverse, the fix.patch, which serves as a reference solution.

• Mirroring Problem Statement: This final step is responsible for synthesizing a natural-
language problem description that will be presented to the coding agents. The goal is to create
a description that is not only accurate to the mirrored bug but also feels native. To achieve
this, the LM is prompted with a rich set of context following the quality criteria described
in SWE-bench-Verified (OpenAI, 2024), including: (1) the original GitHub issue description
for semantic context; (2) the generated test.patch and the fix.patch to ground the description
in the specific files and functions of the target codebase; and (3) few-shot examples of other
issues from the SWE-Gym to ensure stylistic consistency. The resulting problem statement
synthesizes these inputs into a self-contained description.

The successful execution of this workflow yields a final mirrored task. Each task instance is a self-
contained data structure containing the following fields:

• mirror.patch: A patch that introduces a bug or reverts a feature in the codebase. Applying
this patch creates the starting point of the issue-resolving task.

• test.patch: A patch used to test the correctness of a submission, in line with benchmarks
like (Multi-)SWE-Bench (Jimenez et al., 2024; Zan et al., 2025; OpenAI, 2024). This
should not be revealed to the coding agent system.

• fix.patch: Reference solution for the task, created by reversing the mirror.patch.

• problem statement: Task description presented to coding agents in natural language.

Detailed workflow design, prompts used in this phase are demonstrated in Section A.2.

2.3 PHASE 3: TASK VERIFICATION

In this Phase, we first perform a sanity check to ensure all patches can be applied without er-
ror. Concretely, the mirror.patch can be applied to the base commit of the original code base, the
test.patch and fix.patch should be appliable after the application of mirror.patch. Then we conduct
an execution-based validation, executing the full test suite under three states.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1. Run.log: Run all tests after apply mirror.patch.
2. Test.log: Run all tests after apply mirror.patch and test.patch.
3. Fix.log: Run all tests after apply all three patches.

Following Multi-SWE-bench (Zan et al., 2025), we analyze the test status transitions across these
logs and apply strict filtering rules to accept only unambiguously correct mirrored tasks:

1. Effective Tests: the application of test.patch should introducing new tests without affecting
existing tests. Comparing test status in Run.log and Test.log. Only PASSED→PASSED,
FAILED→FAILED SKIPED→SKIPED, and NONE→FAILED are permitted.

2. Effective Fix: The fix.patch must fixes somethings. So comparing status in three logs, least
one test with ANY→FAILED→PASSED transition is required.

3. No Regressions: No test may exhibit a transition that indicates the fix in-
troduced a new bug, so transitions in PASSED→PASSED→FAILED and
SKIPPED→SKIPPED→FAILED are not allowed.

4. No Flaky Tests: Instances with flaky tests are discarded, detected with multi-runs.

Only instances that pass this rigorous validation are included in our final dataset. We perform de-
tailed framework analysis in Section A.3 which studies ❶ How effective is our LM-based pre- filter?
❷ What is the end-to-end mirror success rate for promising candidates? and ❸ Are the final mirrored
tasks semantically consistent with the original issues and seems realistic?

2.4 DATASET STATICS AND FEATURES

We apply SWE-MIRROR on 40 repositories across 4 language. Since we enable sampling in Sec-
tion 2.2, we can sometimes get more than one mirroring results, we perform deduplication to ensure
that every instance have different F2P tests and each fix.patch modifies different content of the code
base. The final dataset comprises 60,671 validated tasks. Table 2 presents a detailed statistical
overview of the SWE-MIRROR-60K.

Repos Instances Fix patches Unit tests
Language #Num #Num #Hunks #Lines #P2P #F2P

Python 31 46,820 3.0 38.5 1,025.8 31.2
Rust 6 7,183 2.4 36.8 627.3 80.2
Go 2 4,056 3.3 42.5 107.1 7.5
JavaScript 1 2,612 2.7 36.2 216.0 33.8

Table 2: Dataset stastics of SWE-MIRROR-60K

3 EXPERIMENTS

In this section, we present a comprehensive empirical evaluation of our approach. We first detail
the experimental setup, including our agent framework, data collection process, and post-training
methodology. We then present the main results on two challenging benchmarks, demonstrating that
our datasets boost the performance of base models. Finally, we conduct in-depth ablation studies to
analyze the impact of data scale, training strategies, and the generalization of multi-lingual training.

3.1 EXPERIMENTAL SETUP

Agent Scaffolding. We selected OpenHands (Wang et al., 2025), an open-source, event-driven
platform, as the agent framework for all experiments. OpenHands enables LLM agents to iteratively
edit files, execute shell commands, and browse the web within sandboxed containers. This frame-
work is known for establishing strong and reproducible baselines on benchmarks like SWE-Bench.
For our experiments, we equipped the agent with 3 tools: str-replace-editor for file editing and read-
ing, execute-bash for command execution and finish to stop and submission. We use MOpenHands4

for languages other than Python as the agent scaffold.
4https://github.com/multi-SWE-Bench/MopenHands

5

https://github.com/multi-SWE-Bench/MopenHands

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Agent Trajectory Collection. To generate training data, we employed high-performing expert
LLMs (Claude-3.7-Sonnet and Claude-4-Sonnet) to produce agent trajectories on a 15k subset of
our SWE-MIRROR-60K dataset. For each task, we executed 3 trials with a temperature of 1.0 and a
maximum of 100 rounds. A trajectory was considered successful only if ❶ it ends with a finish action
and ❷ the set of tests passed after applying the submitted patch are a superset of the tests fixed by the
ground-truth patch. This rigorous process filtered out 6,431 successful and high quality trajectories.
We combined these with 6,025 trajectories from prior experiments on SWE-rebench (Badertdinov
et al., 2025), creating a final post-training dataset of 12,456 trajectories.

Agentic Post-training. We use QWEN2.5-CODER-INSTRUCT-7B (QWEN ET AL., 2025) and
32B models as our base, resulting in our final models, SWE-MIRROR-LM-7B and SWE-MIRROR-
LM-32B. The models were trained for maximum 3 epochs. We utilized AdamW (Loshchilov &
Hutter, 2019) optimizer with weight decay of 0.01 and cosine learning rate schedule with warmup
ratio of 0.1, peaking at learning rate of 5e-5. Specifically, our loss masking technique ensures that
the loss is computed only for valid assistant turns that result in well-formed actions, a strategy we
analyze in detail in Section 3.3. For experiments involving trajectories less than 4k, we set maximum
learning rate as 1e-4 and trained 5 epochs using trajectories only from SWE-MIRROR-60K.

Evaluation Benchmarks and Metrics We evaluate our models on two primary benchmarks. The
first, SWE-Bench-Verified (Jimenez et al., 2024; OpenAI, 2024), is a high-quality, human-curated
set of 500 real-world software engineering issues in Python. The second, Multi-SWE-Bench-Flash
(Zan et al., 2025), is a benchmark of 300 tasks designed for rapid evaluation of multi-lingual gener-
alization capabilities. Performance is measured by the Resolved Rate (%), which is the percentage
of tasks solved successfully. Key hyperparameters were set as follows: the inference temperature
was fixed at 0 for all experiments. The models were trained using a context length of 32,768. For
evaluation our model in Table 3, we extended the context length to 131,072 with yarn and allowed
for a maximum of 100 interaction rounds. For the ablation studies, we used a context length of
32,768 and a maximum of 100 rounds, but keep the model’s only the last 5 observations’ content
from environment in the context.

3.2 EXPERIMENT RESULTS

Our main experimental results presented in Table 3 demonstrate the effectiveness of our approach.
On the challenging SWE-Bench-Verified benchmark, our SWE-MIRROR-LM-32B achieves a re-
solve rate of 52.2%, matching the performance of much larger models like DEEPSEEK-R1 and
GPT-4.1 under the same agent framework. Furthermore, on Multi-SWE-Bench-Flash our SWE-
MIRROR-LM-32B achieves score of 21.33%, outperforming both DEEPSEEK-R1 and GPT-4.1.
These results validate that training on a large-scale dataset of mirrored, real-world issues signifi-
cantly enhances an model’s abilities on agentic coding tasks.

3.3 ABLATION STUDIES

To dissect the key components contributing to our model’s performance, we conduct a series of
ablation studies designed to answer four fundamental questions. ❶ What are the effects of data
scale and the training strategy used to handle errors within demonstration trajectories? ❷ How to
better utilize the trajectories from expert model? ❸ does training enable the model to generalize
across programming languages? ❹ Is the quality of tasks in SWE-MIRROR-60K comparable to
real-world tasks? These experiments validate our core design choices regarding the dataset and
training methodology and offer valuable insights for future work in agentic post-training for coding.

3.3.1 IMPACT OF DATA SCALE AND TRAINING STRATEGY

A fundamental challenge in training agents from demonstrations is how to handle intermediate error
steps within otherwise successful trajectories. Expert-generated trajectories are not always mono-
tonic paths to success; they often contain erroneous actions (e.g., invalid function calls, incorrect
arguments) that the expert subsequently self-corrects. Our guiding hypothesis is that training should
focus gradient updates on generating valid, productive actions rather than replicating an expert’s

5https://github.com/multi-swe-bench/MopenHands

6

https://github.com/multi-swe-bench/MopenHands

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance on SWE-Bench-Verified(SWE-V) and Multi-SWE-Bench-Flash (MSWE-
Flash). The primary metric is Resolved Rate (%). For Multi-SWE-Bench-Flash evaluation, we
use MOpenHands5, the multi language version of OpenHands.

Model Scaffold SWE-V MSWE-Flash
Proprietary Models
GPT-4.1-0414 (OpenAI, 2025) OpenHands 57.6 14.33
Claude-4-Sonnet (Anthropic, 2025) SWE-Agent 66.6 –

OpenHands 70.4 25.00

Open-Source Models
Qwen2.5-Coder-Instruct-7B (Yang et al., 2025a) OpenHands 1.0 0.33
SWE-agent-LM-7B (Yang et al., 2025b) SWE-Agent 15.2 –

Qwen2.5-Coder-Instruct-32B (Yang et al., 2025a) OpenHands 6.2 0.67
SWE-gym-32B (Pan et al., 2025) OpenHands 20.6 –
SWE-agent-LM-32B (Yang et al., 2025b) SWE-Agent 40.2 –
DeepSWE-32B-Preview (AI, 2025) OpenHands 42.2 –
Skywork-SWE-32B (Zeng et al., 2025) OpenHands 47.9 –

SWE-fixer-72B (Xie et al., 2025) SWE-Fixer 32.8 –
Lingma-SWE-GPT-72B (Ma et al., 2024) SWE-Syninfer 32.8 –

DeepSeek-R1-0528 (DeepSeek-AI et al., 2025) OpenHands 45.6 15.33
Qwen3-Coder (Yang et al., 2025a) OpenHands 69.6 27.00

Ours
SWE-Mirror-LM-7B OpenHands 22.8 6.33
SWE-Mirror-LM-32B OpenHands 52.2 21.33

mistakes. This approach should not only prevent the model from learning to make errors but also
improve its ability to recover from them.

To systematically answer this question, we designed and compared three strategies, each embodying
a different hypothesis about the role of errors in learning:

• Response Only: This standard approach fine-tunes the model on all expert responses, including
those that lead to errors. It risks teaching the model to replicate the expert’s mistakes.

• Error Pruning: This strategy posits that error steps are detrimental and removes any error
turn. While this avoids reinforcing mistakes, it comes at the high cost of discarding the context
of how an agent recovers from an error, thereby losing learning opportunity for self-correction.

• Error Masking: This strategy, which embodies our central hypothesis, preserves the full tra-
jectory context but surgically masks the loss on erroneous agent responses. This allows the
model to learn from the context of a mistake without learning to make the mistake. By apply-
ing all gradient updates to valid actions, this method provides a rich learning signal for both
action generation and error recovery.

Figure 2 plots the resolve rate on SWE-Bench-Verified as a function of the number of trajectories
from SWE-MIRROR-60K. The results validate the quality of dataset and reveal two observations:

Observation ❶: Model performance scales strongly with the amount of training trajectories.
For both model sizes and across all strategies, performance consistently improves as the number of
training data increases (Kaplan et al., 2020). The 32B model trained with our Error Masking strategy
improves its resolve rate from a baseline of 6.2% to 35.6% when trained on 4096 trajectories. This
demonstrates a direct and powerful correlation between data volume and issue-resolving capability.

Observation ❷: Error Masking consistently outperforms other training methods. The perfor-
mance gap between Error Masking and the other methods widens as the dataset grows, suggesting
that the benefits of its richer learning signal compound with more data. By observing the entire se-
quence, the model learns how to recover from error states—a crucial skill that is lost when imperfect
data is pruned. This makes Error Masking a more data-efficient and effective approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 512 1024 2048 4096
Number of Training Trajectories

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S
W

E
-b

en
ch

-V
er

ifi
ed

 R
es

ol
ve

 R
at

e
(%

)

11.8 12.2

15.6
16.8

11.2

13.2

15.8

17.2

10.4

14.4

16.4

18.2

1.0

Method
Error Prune
Response Only
Error Mask

(a) Scaling results for the 7B model.

0 512 1024 2048 4096
Number of Training Trajectories

5

10

15

20

25

30

35

S
W

E
-b

en
ch

-V
er

ifi
ed

 R
es

ol
ve

 R
at

e
(%

)

17.4

21.8

26.2

29.2

18.8

23.4

28.6

33.6

20.2

24.8

31.4

35.6

6.2

Method
Error Prune
Response Only
Error Mask

(b) Scaling results for the 32B model.

Figure 2: Performance on SWE-Bench-Verified as a function of training data scale for our three dif-
ferent training strategies. The Error Masking approach consistently outperforms the other methods.

3.3.2 CROSS-LINGUAL GENERALIZATION

To quantify the benefit of our multi-lingual dataset, we evaluated whether non-Python data could
improve performance on the Python-only SWE-Bench Verified benchmark. We trained the 7B model
on several monolingual subsets of our data (512 trajectories each) using the Error Masking recipe.

Observation ❸: The model demonstrates strong cross-lingual generalization from non-Python
data to Python tasks.. The results as presented in Table 4 shows that the 7B model trained exclu-
sively on non-Python data still achieves a notable resolve rate on Python tasks. This provides strong
evidence of cross-lingual generalization, wherein the model learns abstract problem-solving pat-
terns and code semantics that transfer across languages. Notably, the model trained on Rust data
yielded the most significant performance gain, which we attribute to the language’s complexity and
rich type system fostering more robust reasoning capabilities.

3.4 SYNTHETIC V.S. REAL ISSUE-REOLVING TASKS

To better investigate the quality of the task instances synthesized by SWE-MIRROR, we compare
models trained on our synthetic data against those trained on real-world data. We trained the 7B
model on 512 trajectories from SWE-REBENCH (real-world tasks) and 512 Python trajectories from
our synthetic dataset, SWE-MIRROR-60K.

Observation ❹: Synthetic data quality is competitive with real data. The results presented in
Table 4 show that the model trained on our synthetically generated Python data (SWE-MIRROR)
achieves highly competitive performance. Specifically, the model trained on synthetic data reaches
a resolve rate of 10.8%, which is remarkably close to the 11.4% achieved by the model trained on
real-world trajectories from SWE-REBENCH. This demonstrates that our synthetic data generation
process produces training signals of a quality and effectiveness comparable to those derived from
real-world issue-resolving tasks, validating it as a scalable method for creating training data.

4 RELATED WORK

Coding Agents. Recent advancements in Software Engineering have spurred the development of
agents capable of resolving real-world issues in repositories. These agents are evaluated on bench-
marks like SWE-bench (Jimenez et al., 2024) and Multi-SWE-bench (Zan et al., 2025). A significant
body of work focuses on agent design. For instance, OpenHands (Wang et al., 2025) introduces an
event-driven platform that empowers LLM agents to iteratively edit files and execute commands.
SWE-Agent (Yang et al., 2024) introduces Agent-Computer Interface (ACI) to provide LLM agents

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Training Language Resolve Rate (%) Improvement (%)
Base model 1.0 –
+ Go 10.2 ↑ 9.2
+ Rust 11.3 ↑ 10.3
+ JavaScript 9.4 ↑ 8.4
+ Python (SWE-MIRROR) 10.8 ↑ 9.8
+ Python (SWE-REBENCH) 11.4 ↑ 10.4

Table 4: Performance on SWE-Bench-Verified of models trained on 512 trajectories each language
from SWE-MIRROR-60K and 512 Python trajectories from SWE-REBENCH(Real).
with actions for operating computer like editors and shells. In contrast to relying on an LLM’s
autonomous decision-making, another line of research argues for utilizing structured workflow ar-
chitectures. Agentless (Xia et al., 2024), Agentless-Mini (Wei et al., 2025) and Moatless (moa)
demonstrate that combining workflow with test-time scaling can outperform many sophisticated
SWE agents on SWE-bench while reducing computational costs. Some research works also ex-
plored the self-evolution of coding agents, exemplified by GDM (Zhang et al., 2025), SE-Agent (Lin
et al., 2025) and SWE-Exp (Chen et al., 2025), showing impressive improvement. Another research
area has focused on enhancing the models themselves. SWE-Fixer (Xie et al., 2025) represents
a learning-based approach, improving file retrieval and patch generation capabilities using super-
vised fine-tuning to effectively train open-source LLMs for specialized SWE tasks. SWE-Gym (Pan
et al., 2025) and SWE-Smith (Yang et al., 2025b) have explored rejection sampling fine-tuning,
an approach that we also adopt in our work. Furthermore, reinforcement learning (RL) has been
utilized to refine model capabilities, with SWE-RL (Wei et al., 2025) using patch similarity as a
reward signal and SWE-Swiss (swe), DeepSWE (AI, 2025) and SkyRL (Cao et al., 2025) exploring
execution-based rewards as a promising future direction.

Issue-Resolving Datasets. The development of datasets for training and evaluating issue-
resolving agents has rapidly progressed from static code collections to dynamic, interactive environ-
ments. A foundational contribution is SWE-Gym (Pan et al., 2025), which established the paradigm
of using real-world Python issues paired with executable environments and unit tests, enabling in-
teractive agent training and verification. To combat the growing problem of data contamination in
static benchmarks, SWE-rebench (Badertdinov et al., 2025) and SWE-Factory (Guo et al., 2025)
introduced a dynamic pipeline that continuously sources fresh, decontaminated tasks from active
GitHub repositories, ensuring a more robust and reliable evaluation of an agent’s true generalization
capabilities. Recognizing that manual curation remains a significant bottleneck, subsequent efforts
have focused on scalable, automated data generation. SWE-Smith (Yang et al., 2025b) pioneered a
synthetic approach by inverting the typical workflow, starting with working code and automatically
injecting bugs to create thousands of new tasks. Similarly, SWE-Synth (Pham et al., 2025) uses
LLMs to simulate the entire debugging process, generating not just code fixes but also test cases
and structured repair trajectories. Complementing these, R2E-Gym (Jain et al., 2025) leverages a
procedural generation pipeline to curate large-scale training environments directly from code com-
mits, reducing the reliance on human-written issues. Together, these works highlight a critical trend
towards creating more scalable, realistic, and verifiable data sources to advance agentic coding.

5 CONLUSION

This paper introduces SWE-MIRROR, a novel pipeline which multiplies the utility of each Gym
and unlocks the vast history of software evolution on platforms like GitHub as a source of training
data. Our primary contribution is the release of SWE-Mirror-60K, a large-scale dataset of 60,000
verifiable tasks built using this methodology. Our empirical evaluations demonstrated that models
finetuned on SWE-MIRROR-60K exhibit significant improvements in their issue-resolving capabil-
ities, validating the quality and effectiveness of our approach. Furthermore, our in-depth ablation
studies provide critical insights for the field. We have also confirmed a strong scaling law where
performance consistently improves with data volume, demonstrated the efficiency of Error Masking
training strategy and revealed the evidence of cross-lingual generalizability, where models trained
exclusively on non-Python data still exhibit notable proficiency on Python tasks, highlighting the
value of multi-lingual data in learning generalized, abstract problem-solving patterns.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. All datasets used were sourced in compliance with
relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
discriminatory outcomes in our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code have packaged in supplementary mateirials to facilitate replication and verification. The exper-
imental setup, including training steps, model configurations, and hardware details, is described in
detail in Section 3. All code, datasets and models will be open-sourced. We believe these measures
will enable other researchers to reproduce our work and further advance the field.

REFERENCES

Moatless tools. https://github.com/aorwall/moatless-tools.

Swe-swiss: A multi-task fine-tuning and rl recipe for high-performance issue resolution. https:
//github.com/zhenyuhe00/SWE-Swiss.

Together AI. Deepswe: Training a fully open-sourced, state-of-the-art coding agent by scaling rl.
https://www.together.ai/blog/deepswe, 2025. [Accessed 31-08-2025].

Anthropic. Claude Sonnet 4. https://www.anthropic.com/claude/sonnet, 2025. [Ac-
cessed 31-08-2025].

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents, 2025. URL https://arxiv.org/abs/2505.20411.

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao
Wang, Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz,
Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon
agents via reinforcement learning, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Silin Chen, Shaoxin Lin, Xiaodong Gu, Yuling Shi, Heng Lian, Longfei Yun, Dong Chen, Weiguo
Sun, Lin Cao, and Qianxiang Wang. Swe-exp: Experience-driven software issue resolution. arXiv
preprint arXiv:2507.23361, 2025.

10

https://github.com/aorwall/moatless-tools
https://github.com/zhenyuhe00/SWE-Swiss
https://github.com/zhenyuhe00/SWE-Swiss
https://www.together.ai/blog/deepswe
https://www.anthropic.com/claude/sonnet
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2107.03374

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Hao Guan, Guangdong Bai, and Yepang Liu. Crossprobe: Llm-empowered cross-project bug
detection for deep learning frameworks. Proc. ACM Softw. Eng., 2(ISSTA), June 2025. doi:
10.1145/3728984. URL https://doi.org/10.1145/3728984.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Lianghong Guo, Yanlin Wang, Caihua Li, Pengyu Yang, Jiachi Chen, Wei Tao, Yingtian Zou, Duyu
Tang, and Zibin Zheng. Swe-factory: Your automated factory for issue resolution training data
and evaluation benchmarks, 2025. URL https://arxiv.org/abs/2506.10954.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
Procedural environments and hybrid verifiers for scaling open-weights swe agents, 2025. URL
https://arxiv.org/abs/2504.07164.

Yilei Jiang, Yaozhi Zheng, Yuxuan Wan, Jiaming Han, Qunzhong Wang, Michael R. Lyu, and Xi-
angyu Yue. Screencoder: Advancing visual-to-code generation for front-end automation via mod-
ular multimodal agents, 2025. URL https://arxiv.org/abs/2507.22827.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

11

https://arxiv.org/abs/2501.12948
https://doi.org/10.1145/3728984
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2506.10954
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2504.07164
https://arxiv.org/abs/2507.22827
https://arxiv.org/abs/2310.06770

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-
9203. doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.
abq1158.

Jiaye Lin, Yifu Guo, Yuzhen Han, Sen Hu, Ziyi Ni, Licheng Wang, Mingguang Chen, Daxin Jiang,
Binxing Jiao, Chen Hu, et al. Se-agent: Self-evolution trajectory optimization in multi-step rea-
soning with llm-based agents. arXiv preprint arXiv:2508.02085, 2025.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evalu-
ating language models for efficient code generation. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=IBCBMeAhmC.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2025. URL https://arxiv.org/abs/2306.08568.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua
Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric language
model for automated software improvement, 2024. URL https://arxiv.org/abs/2411.
00622.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence, 2024. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence.

OpenAI. Introducing SWE–Bench Verified. https://openai.com/index/
introducing-swe-bench-verified/, 2024. Accessed: 07 Jun 2024.

OpenAI. Gpt-4.1 model card. https://platform.openai.com/docs/models/gpt-4.
1, 2025. [Accessed 31-08-2025].

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2025. URL https:
//arxiv.org/abs/2412.21139.

Minh V. T. Pham, Huy N. Phan, Hoang N. Phan, Cuong Le Chi, Tien N. Nguyen, and Nghi D. Q.
Bui. Swe-synth: Synthesizing verifiable bug-fix data to enable large language models in resolving
real-world bugs, 2025. URL https://arxiv.org/abs/2504.14757.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

12

https://arxiv.org/abs/2001.08361
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=IBCBMeAhmC
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2411.00622
https://arxiv.org/abs/2411.00622
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://platform.openai.com/docs/models/gpt-4.1
https://platform.openai.com/docs/models/gpt-4.1
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2504.14757
https://arxiv.org/abs/2412.15115

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuxuan Wan, Chaozheng Wang, Yi Dong, Wenxuan Wang, Shuqing Li, Yintong Huo, and Michael
Lyu. Divide-and-conquer: Generating ui code from screenshots. Proceedings of the ACM on
Software Engineering, 2(FSE):2099–2122, June 2025. ISSN 2994-970X. doi: 10.1145/3729364.
URL http://dx.doi.org/10.1145/3729364.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2025. URL https://arxiv.org/abs/2407.16741.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via re-
inforcement learning on open software evolution, 2025. URL https://arxiv.org/abs/
2502.18449.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer:
Training open-source llms for effective and efficient github issue resolution, 2025. URL https:
//arxiv.org/abs/2501.05040.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

John Yang, Kilian Leret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025b. URL https://arxiv.org/abs/2504.21798.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Liang Zeng, Yongcong Li, Yuzhen Xiao, Changshi Li, Chris Yuhao Liu, Rui Yan, Tianwen Wei,
Jujie He, Xuchen Song, Yang Liu, and Yahui Zhou. Skywork-swe: Unveiling data scaling laws
for software engineering in llms, 2025. URL https://arxiv.org/abs/2506.19290.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
llm-based multi-agent systems, 2024a. URL https://arxiv.org/abs/2410.02506.

Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin godel machine: Open-
ended evolution of self-improving agents, 2025. URL https://arxiv.org/abs/2505.
22954.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
arXiv preprint arXiv:2404.13501, 2024b.

13

http://dx.doi.org/10.1145/3729364
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2501.05040
https://arxiv.org/abs/2501.05040
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2504.21798
https://arxiv.org/abs/2506.19290
https://arxiv.org/abs/2410.02506
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2505.22954

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PULL-REQUEST COLLECTION AND FILTER

We use following rules to collect high-quality pull-requests:

• It must have linked issues;

• It must have been merged and closed;

• It must edit code files.

Unlike SWE-bench (Jimenez et al., 2024), our filtering criteria do not require pull requests to modify
test files. This is for two reasons: first, it is difficult to isolate test modifications in languages like
Rust where tests are co-located with source code; second, we generate tests separately using a Test
Agent. To finalize our dataset, we use an LLM for quality control and to predict mirrorability, as
guided by the following prompt.

Prompt for LLM Filter

prompt = """You are a senior software engineer.

You are given a pull request from another repository.

You are going to check, response True in final answer if the pull request is a bug
↪→ fix or a feature addition, and response False if the pull request is just
↪→ fixing some error messages or documentations.

1. is the pull request a bug fix or a feature addition
2. is the pull request non-trivial, just fixing error messages, docs, also, this

↪→ not-related to external dependencies.
3. if some functionality related to the bug or feature exists in the current

↪→ repository.

Belowing is the description of the pull request:
<pull_request>

<body>
{body}
</body>
<diff>
{diff}
</diff>

</pull_request>

Belowing is the readme and the test suite of the current repository:
<current_repo>

<readme>
{readme}
</readme>
<test_suite>
{test_suite}
</test_suite>

</current_repo>

Think Step by Step with following questions
1. What is the bug fixed or the feature added in the pull request?
2. What is the related functionality of the bug?
3. Does the current repository have the related functionality:

1. If yes, what is the related functionality?
4. Is it possible to introduce the bug/feature in the current repository?

Note:
- The language of repos does not matter, you should focus on the functionality of

↪→ the bug.

Respond with python list with two elements, "exists", "reason", in the following
↪→ format:

```python
[True/False, "The pull request is a bug fix or a feature addition, related to

↪→ ...., the current repository has the related functionality."]
```
"""

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 TASK MIRRORING WORKFLOW

The first step is to distill the core symptoms and logic from pull requests in similar repositories.
We introduced this step for a critical reason: raw pull request and issue descriptions often contain
repository-specific information (e.g., variable names, file paths, and stack traces). This context-
specific data can mislead the model into localizing non-existent files or generating patches that
result in compilation or syntax errors. The distillation process, therefore, focuses on extracting the
underlying functionality, core logic, current and expected behavior, and observable symptoms. The
prompts used for this task are provided below.

Prompt for Problem Abstraction

Consider the following pull request that fixes a bug:
<pull_request>

<body>
{body}
</body>
<diff>
{diff}
</diff>

</pull_request>

Your task is to abstract the bug pattern from the pull request, focusing
↪→ exclusively on systemic issues that require changes in multiple locations
↪→ across the codebase.

Here is an example of a complex bug pattern that requires multiple edits:
<pull_request>

<body>
Fix inconsistent error handling across API endpoints

Multiple API endpoints were handling validation errors differently, leading to
↪→ inconsistent error responses and poor user experience. Some endpoints
↪→ returned 400 status codes while others returned 500, and error message
↪→ formats varied. This PR standardizes error handling across all
↪→ user-facing endpoints to provide consistent behavior.

The fix involves:
- Updating user registration endpoint error handling
- Fixing profile update validation responses
- Standardizing login error messages
- Adding consistent error formatting in shared utilities

Fixes #456
</body>
<diff>
@@ -8,7 +8,8 @@ class UserController:

def register(self, user_data):
if not self.validate_user_data(user_data):

- return {{"error": "Bad input"}}, 500
+ return {{"error": "Invalid user data", "details":

↪→ self.get_validation_errors(user_data)}}, 400

@@ -22,7 +23,8 @@ class UserController:
def update_profile(self, user_id, profile_data):

if not self.validate_profile_data(profile_data):
- raise Exception("Validation failed")
+ return {{"error": "Invalid profile data", "details":

↪→ self.get_validation_errors(profile_data)}}, 400

@@ -35,6 +37,7 @@ class AuthController:
def login(self, credentials):

if not self.validate_credentials(credentials):
- return {{"message": "Login failed"}}, 500
+ return {{"error": "Invalid credentials", "details": "Username or

↪→ password incorrect"}}, 401

@@ -5,6 +5,10 @@ class ValidationUtils:
+ def get_validation_errors(self, data):
+ # Standardized error formatting
+ return [str(error) for error in self.validator.errors(data)]
+

def validate_user_data(self, data):
return self.validator.is_valid(data)

</diff>

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

</pull_request>

Follow this pattern when abstracting the bug - identify systemic issues that
↪→ manifest across multiple files and functions:

```md
### Bug Pattern

**Issue Type**: Inconsistent Error Handling / API Response Standardization

**Core Problem**:
The application lacks consistent error handling patterns across similar functions

↪→ or modules, leading to unpredictable behavior and poor user experience.
↪→ Different parts of the codebase handle similar error conditions in
↪→ incompatible ways.

**Technical Context**:
- API endpoints or service methods that perform similar validation or processing
- Error handling logic scattered across multiple controllers, services, or utility

↪→ functions
- Inconsistent status codes, error message formats, or exception handling

↪→ approaches
- Missing standardized error response structures

**Symptom**:
- Different error responses for similar failure conditions
- Inconsistent HTTP status codes across related endpoints
- Varying error message formats that confuse API consumers
- Some functions throw exceptions while others return error objects

**Root Cause Pattern**:
- Lack of centralized error handling utilities or standards
- Copy-paste development without following established patterns
- Missing shared validation or error formatting functions
- Inconsistent exception handling strategies

**Impact Scope**:
Multiple locations typically affected:
- All API endpoints that perform user input validation
- Service layer methods that process similar data types
- Controller functions handling authentication or authorization
- Utility functions used for data processing or validation
- Error response formatting across different modules
```

Please wrap the bug pattern in the following format:
```md
.. the bug pattern ..
```
"""

For Test Agent and Mirror Agent, we implement them in Agentless style, each go through: (1)
localize related file and (2) genearte patch in Search/Replace format.

Test Agent: Prompt for Localization

TEST_LOCALIZE = """\
Please look through a given issue description and repository structure and provide

↪→ two list of files related to the issue:
- `source_files`: the files may contains code related to the functionality

↪→ described in the issue
- `test_files`: the files which should contain the test cases for the

↪→ functionality described in the issue

--- BEGIN ISSUE ---
{issue}
--- END ISSUE ---

--- BEGIN REPOSITORY STRUCTURE ---
{structure}
--- END REPOSITORY STRUCTURE ---

Only provide the full path and return at most {n} files for each list.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Respond in the following format, wrapped your results in a markdown python code
↪→ block with a dictionary with two keys `source_files` and `test_files`.

```python
{{

"source_files": [
"most/important/file1.xx",
"less/important/file2.yy",
...

],
"test_files": [

"most/important/file1.xx",
"less/important/file2.yy",
...

]
}}
```

Test Agent: Prompt for Patch Generation

TEST_PATCHGEN = """We are currently adding unit tests to the avoid the future
↪→ regression for functionality described in the issue.

--- BEGIN ISSUE ---
{issue}
--- END ISSUE ---

Below are some source code segments related to the functionality described in the
↪→ issue.

--- BEGIN SOURCE FILES ---
{source_files}
--- END SOURCE FILES ---

Below are some files you can edit to add unit tests.
--- BEGIN TEST FILES ---
{test_files}
--- END TEST FILES ---

Please first localize the code in SOURCE FILES to the functionality described in
↪→ the issue and \

then generate *SEARCH/REPLACE* edits to test to some of TEST FILES to test the
↪→ issue.

Every *SEARCH/REPLACE* edit must use this format:
1. The file path
2. The start of search block: <<<<<<< SEARCH
3. A contiguous chunk of lines to search for in the existing source code
4. The dividing line: =======
5. The lines to replace into the source code
6. The end of the replace block: >>>>>>> REPLACE

Here is an example:

```
{diff_example}
```

Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION. If you
↪→ would like to add the line ' print(x)', you must fully write that
↪→ out, with all those spaces before the code!

Wrap each *SEARCH/REPLACE* edit in a code block as shown in the example above. If
↪→ you have multiple *SEARCH/REPLACE* edits, use a separate code block for
↪→ each one.

Please make sure the tests you add are not too simple and can be passed by the
↪→ existing code.

"""

Mirror Agent: Prompt for Localization

MIRROR_LOCALIZE = """\
Please look through a given issue description, repository structure, a patch

↪→ related to test the issue and provide a list of files related to the issue

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Below is the issue description and repository structure.
--- BEGIN ISSUE ---
{issue}
--- END ISSUE ---

Below is the repository structure.
--- BEGIN REPOSITORY STRUCTURE ---
{structure}
--- END REPOSITORY STRUCTURE ---

Below is the patch applied to the repository to test the issue.
--- BEGIN TEST PATCH ---
{testgen_patch}
--- END TEST PATCH ---

Only provide the full path and return at most {n} files.

Respond in the following format, wrapped your results in a markdown python code
↪→ block with a list of files.

```python
[

"most/important/file1.xx",
"less/important/file2.yy",
...

]
```

""".strip()

Mirror Agent: Prompt for Patch Generation

MIRROR_PATCHGEN = """We are currently implementing the issue described in the
↪→ following issue description.

--- BEGIN ISSUE ---
{issue}
--- END ISSUE ---

Below are some code segments related to the issue.

--- BEGIN FILES---
{files}
--- END FILES---

Below is the patch applied to the repository to test the issue, please DO NOT
↪→ modify any test code or test files.

--- BEGIN TEST PATCH ---
{testgen_patch}
--- END TEST PATCH ---

Here is the list of testcases related to the issue.
--- BEGIN TESTS ---
{tests}
--- END TESTS ---

Please first localize the related source code based on the issue description, and
↪→ then generate *SEARCH/REPLACE* edits to re-implement the issue via breaking
↪→ the tests in the TESTS section.

DO NOT modify any test code or test files, you should only modify the non-test
↪→ files and code related to the issue.

Every *SEARCH/REPLACE* edit must use this format:
1. The file path
2. The start of search block: <<<<<<< SEARCH
3. A contiguous chunk of lines to search for in the existing source code
4. The dividing line: =======
5. The lines to replace into the source code
6. The end of the replace block: >>>>>>> REPLACE

Here is an example:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

```
{diff_example}
```

Please note that the *SEARCH/REPLACE* edit REQUIRES PROPER INDENTATION. If you
↪→ would like to add the line ' print(x)', you must fully write that
↪→ out, with all those spaces before the code!

Wrap each *SEARCH/REPLACE* edit in a code block as shown in the example above. If
↪→ you have multiple *SEARCH/REPLACE* edits, use a separate code block for
↪→ each one.

"""

A.3 FRAMEWORK ANALYSIS

To assess the effectiveness and fidelity of SWE-MIRROR, we conducted a detailed analysis of our
framework. Our goal was to answer three core questions: (1) How effective is our LM-based pre-
filter? (2) What is the end-to-end mirror success rate for promising candidates? (3) Are the final
mirrored tasks semantically consistent with the original issues and seems realistic?

Effectiveness of LM-based Pre-filter. A critical component of our framework’s efficiency is the
LM-based heuristic, which acts as an intelligent filter to identify high-quality and mirrorable tasks
in Section 2.1. To rigorously evaluate its performance, we constructed a balanced evaluation set of
100 issues manually select from issues after the rule-based filtering. This set contains 50 positive
instances, which are high-quality and mirrorable, and 50 negative instances, comprising issues that
are either low-quality or impossible to mirror. The filter’s task is to accept the positive instances
while rejecting the negative ones. As Table 5 shown, the filter demonstrates a high precision of
84.3%. This ensures that the vast majority of issues passed to the expensive downstream stages
are indeed valuable candidates, thus minimizing wasted computation. Furthermore, with a recall of
86.0% , the filter successfully captures a large portion of the usable issues.

Accepted Rejected
Positive 43 7
Negative 8 42

Table 5: Confusion matrix for the LM-based filter.

Language Yield Rate (%) Error(%)
Compile/Syntax Semantic

Python 68.0 2.0 30.0
Rust 28.0 36.0 36.0
Go 36.0 28.0 36.0
JavaScript 52.0 6.0 42.0

Overall 46.0 18.0 36.0

Table 6: Detailed breakdown of outcomes from the task mirroring phase, with error types catego-
rized.

Effectiveness of Mirroring. We next evaluate the core of our framework: the task mirroring en-
gine. The goal here is to measure the success rate when the pipeline is provided with ideal inputs.
For this experiment, we manually select each 100 issues for Python, Rust, Go and Javascript follow-
ing the same criteria as previous experiment. Result is considered success if it passed the validation
in Section 2.3. To gain deeper insight into the failure modes, we further categorized each unsuccess-
ful attempt into one of two types. The first is Compile/Syntax Error, which we define as any instance
where no tests could be run, typically because the generated patch prevents the project from building
or leads to a fatal syntax error. The second is Semantic Error, which encompasses all other failures

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where the code runs, but does not correctly produce the required ”fail-to-pass”. The results, pre-
sented in Table 6, show an overall yield rate of 46.0%. Performance, however, varies significantly
by language. Python achieves the highest success rate at 68.0%, while compiled languages like Rust
(28.0%) and Go (36.0%) prove more challenging. The error breakdown reveals why: Compile/Syn-
tax errors are the dominant failure mode for Rust and Go, accounting for 36.0% and 28.0% of their
respective totals. In contrast, this error type is rare for the dynamically-typed Python (2.0%) and
JavaScript (6.0%).

Table 7: The human classify results on the semantic faithfulness of 184 mirrored tasks.

Agreement Pattern
Final Classification Unanimous (3-0) Majority (2-1) Total
High Consistency 90 25 115
Moderate Consistency 30 11 41
Inconsistent 15 6 21

Unclassifiable (No Majority) 7

Faithfulness of Mirroring. A high yield rate is only meaningful if the generated tasks are faithful
representations of the original problems. A task that passes our validation but does not reflect the
source issue’s core logic is not a useful addition to a dataset. Therefore, our final analysis evaluates
the semantic fidelity of the successfully mirrored tasks. To assess this, the 184 tasks successfully
generated in Section A.3 were independently audited by three human annotators. They compared
each generated task instance against the original GitHub issue and PR pair. The results of this audit
were highly encouraging. As shown in Table 7, a consensus was reached on the vast majority of
tasks. Out of the 177 tasks with majority results, 156 tasks (88.1%) were deemed to have either High
or Moderate consistency, providing strong evidence that SWE-MIRROR succeeds in preserving the
semantic essence of real-world software engineering challenges.

B UTILIZATION OF LARGE LANGUAGE MODELS

In the development of this research, large language models (LLMs) were utilized to refine the
manuscript, conduct thorough literature reviews, and generate visualizations.

20

	Introduction
	Methodology
	Phase 1: Task Collection
	Phase 2: Task Mirroring
	Phase 3: Task Verification
	Dataset Statics and Features

	Experiments
	Experimental Setup
	Experiment Results
	Ablation Studies
	Impact of Data Scale and Training Strategy
	Cross-Lingual Generalization

	Synthetic v.s. Real Issue-Reolving Tasks

	Related Work
	Conlusion
	Appendix
	Pull-Request Collection and Filter
	Task Mirroring Workflow
	Framework Analysis

	Utilization of Large Language Models

