
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

PDE-CONTROLLER: LLMS FOR AUTOFORMALIZATION
AND REASONING OF PDES

Mauricio Soroco1∗, Jialin Song1∗, Mengzhou Xia2, Kye Emond3,4,
Weiran Sun4† , Wuyang Chen1†
1School of Computing Science, Simon Fraser University
2Department of Computer Science, Princeton University
3Department of Mathematics, Simon Fraser University
4Department of Physics, Simon Fraser University

ABSTRACT

While recent AI-for-math has made strides in pure mathematics, areas of applied
mathematics, particularly PDEs, remain underexplored despite their significant
real-world applications. We present PDE-Controller, a framework that enables
large language models (LLMs) to control systems governed by partial differential
equations (PDEs). Our approach enables LLMs to transform informal natural
language instructions into formal specifications, and then execute reasoning and
planning steps to improve the utility of PDE control. We build a holistic solution
comprising datasets (both human-written cases and 2 million synthetic samples),
math-reasoning models, and novel evaluation metrics, all of which require signif-
icant effort. Our PDE-Controller significantly outperforms prompting the latest
open-source and GPT models in reasoning, autoformalization, and program syn-
thesis, achieving up to a 62% improvement in utility gain for PDE control. By
bridging the gap between language generation and PDE systems, we demonstrate
the potential of LLMs in addressing complex scientific and engineering challenges.
We promise to release all data, model checkpoints, and code upon acceptance.

1 INTRODUCTION Scientists Natural Language Instructions:

Physics Mechanics

𝑓 𝑡, 𝑥, 𝑢,
𝜕𝑢
𝜕𝑡 	

𝜕𝑢
𝜕𝑥 = 0 Control PDEs

(e.g. Heat Equation)
for scientific problems.

LLMs

Problem Reasoning

Formal Specifications

Informal Problems

“I want to control the temperature of
the material to be lower than 330.”

𝐺(∀𝑥: 𝑢 𝑥 < 330)

Figure 1: We build LLMs for automated, ac-
celerated PDE control.

Recent advancements have significantly enhanced capa-
bilities of Large Language Models (LLMs) (McKinzie
et al., 2025; Huang et al., 2023). LLMs possess pre-
trained common knowledge and solves daily life tasks
that require commonsense reasoning without domain-
specific expertise. However, this reliance on generalized
knowledge exposes significant weaknesses in complex
domains. LLMs struggle with precise mathematical rea-
soning (Mirzadeh et al., 2024; Feng et al., 2024; Ahn et al.,
2024), understanding nuanced constraints (Williams &
Huckle, 2024), or making decisions grounded in physical-
world consequences (Wang et al., 2024; Jia et al., 2024;
Cheng et al., 2024). Addressing these limitations will
require enhancing LLMs with external tools or domain-
specific reasoning.

Recent advancements in AI-for-math (Lu et al., 2022;
Li et al., 2024) have significantly enhanced LLMs in logical, formal, and quantitative reasoning,
particularly for pure mathematics (geometry, probability, calculus, algebra, number theory, and
combinatorics). These efforts address challenges from grade school math (Cobbe et al., 2021) to
the International Mathematical Olympiad (Hendrycks et al., 2021; Trinh et al., 2024). However,
the advancement of LLMs for applied mathematics, such as partial differential equations (PDEs),

∗Equal contribution
†Corresponding author

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

remains underexplored. Unlike pure mathematics for abstract theory, applied mathematics directly
addresses practical challenges, bridging theory and real-world needs. For example, PDEs are
fundamental in modeling physical dynamics (aerospace engineering, quantum mechanics, fluid
dynamics), providing a framework to understand and control systems. Integrating LLMs into applied
mathematics, particularly for PDE control, holds substantial potential for advancing scientific and
engineering applications.

Solving PDE control has never been easy. Traditional approaches like optimization (McNamara
et al., 2004) and formal methods (Alvarez, 2020) suffer from two bottlenecks: First, manual PDE
control requires significant human efforts to understand problem descriptions and formalize into
specifications (Alvarez, 2020). Second, PDE control requires highly specialized knowledge on both
coding and physics, which are challenging even for seasoned mathematicians and engineers. The
alternative is to leverage pretrained LLMs. However, commonsense captured by popular language
datasets (Gao et al., 2020; Weber et al., 2024) largely deviates from scientific reasoning that requires
math and physics backgrounds, leading to poor performance (Table 3 and 6). Moreover, unlike
conventional programming languages (Python, Java, etc.) that are rich on GitHub (Chen et al., 2021),
formal languages and special libraries required by PDE control (Fig. 4) are mainly used by relatively
few mathematicians and engineers, resulting in limited language datasets. Thus, our core question is:

Can LLMs control PDEs with scientific reasoning?

In this work, we aim to advance AI-for-math for PDEs, making PDE control automated and
accessible to broad scientific practitioners with reduced efforts (Fig. 1). Our framework, PDE-
Controller, provides affirmative answers. PDE-Controller enables autoformalization of informal
PDE control problems into formal specifications and executable code, and enhances scientific
reasoning by proposing novel subgoals to improve control utility. This leads to a new methodology
for integrating LLMs into scientific computing. Our technical contributions are summarized below:
1. Scientific Reasoning. Our PDE-Controller achieves up to a 62% improvement in PDE control

utility gain, compared to prompting the latest LLMs. This demonstrates a promising approach to
future LLM-based scientific reasoning. Our Controller is trained via reinforcement learning from
human feedback (RLHF), with rewards derived from PDE simulations labeled as win or lose.

2. Autoformalization and program synthesis. We train LLMs via supervised fine-tuning (SFT) to
automatically formalize PDE control problems, transforming informal natural language descrip-
tions into formal specifications (over 64% accuracy) and executable programs that integrate with
external tools (over 82% accuracy).

3. New Datasets. We build the first comprehensive datasets for PDE control designed for LLMs,
including over 2 million samples of natural and formal language, code programs, as well as PDE
control annotations. We also collect manually written samples by human volunteers to evaluate
LLMs in real-world scenarios. Our novel dataset will serve as a high-quality testbed for future
research in AI for PDE reasoning.

2 PRELIMINARIES

2.1 BACKGROUND OF PDE CONTROL

Heat Source 𝑞
(time-variant)

Force 𝐹
(time-variant)

Displacement

Temperature

𝑥 = 0											 ⋯ 														𝐿

𝑥 = 0											 ⋯ 														𝐿

Constraints

“The temperature between 𝑥! and
𝑥" must be within 300 ± 30.”

“The section between 𝑥! and 𝑥" must be
stretched/compressed according to 𝑘𝑥 + 𝑏.”

How to control the
heat/force to satisfy
the constraint(s)?

Heat Equation

𝜌
𝜕!𝒖
𝜕𝑡! − 𝐸

𝜕!𝒖
𝜕𝑥! = 0

Wave Equation

𝜌𝑐
𝜕𝒖
𝜕𝑡 − 𝜅

𝜕!𝒖
𝜕𝑥! = 0

𝐸
𝜕𝒖
𝜕𝑥 𝐿, 𝑡 = 𝑭(𝑡)	

𝜅
𝜕𝒖
𝜕𝑥 𝐿, 𝑡 = 𝒒(𝑡)	

Figure 2: PDE control adjusts inputs (heat, force) to ensure
systems (modeled by PDEs) satisfy spatiotemporal constraints.

Partial differential equations (PDEs)
model nearly all of the physical systems
and processes of interest to scientists and
engineers. PDE control involves adjusting
external inputs like heat or force to guide a
system governed by physical laws (PDEs)
to meet specific goals or constraints. For
example, heat flow and mechanical stretch-
ing/compression in a rod are modeled and
controlled by the heat and wave equations (Fig. 2). The goal is to maintain the rod’s temperature or
deformation within a safe range, which requires precise, time-varying control of the heat source and
applied force. This is challenging because PDEs describe complex interactions across space and time,
and small changes at one point can affect the entire system. Essentially, PDE control ensures the
system behaves predictably and stays within desired limits. We provide more details in Appendix A.1.

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

§3.5 Program
Synthesis

PDE-Constrained
Optimization via
External Solver

Utility

Coder
Translator Formal Language (FL)

STL (Signal Temporal Logic)

Controller

§3.4 Multi-Step Reasoning

Subgoal STL Proposal

§3.2 Data
Informal Problem

Natural Language (NL)

Prompt:
• Instruction
• Problem

§3.3 Autoformalization

RLHF

Reasoning
Step

i.

ii.

iii.

Init.
Condition

End of
Control

Figure 3: Overview of our PDE-Controller framework. The Translator directly autoformalizes an informal
PDE control problem (yellow) into formal specifications with STL (blue). The Controller proposes novel
STL subgoals (purple). Each STL is synthesized into specialized Python programs by the Coder (green) and
optimized externally (white). From the initial condition (i.), our PDE reasoning optimizes a subgoal (ii.) before
the original problem, improving the utility at the end of control (iii.). We train the Controller with reinforcement
learning from human feedback (RLHF).

2.2 FORMAL METHODS FOR PDE CONTROL

Signal Temporal Logic. Following previous works, we use signal temporal logic (STL) (Maler &
Nickovic, 2004; Alvarez, 2020) to formally represent constraints in PDE control problems:

ϕ = T[t1,t2] (∀x ∈ [x1, x2], u(x) ≶ (ax+ b)) (1)

where T ∈ {G,F} and ≶ indicates a choice from {<,>,=}. Specifically:

• Each STL ϕ defines a spatiotemporal constraint on the target variable u (the quantity to be controlled,
like temperature, displacement). For simplicity, we only consider time-invariant linear constraints
ax+ b. For example: ∀x ∈ [x1, x2],∀t ∈ [t1, t2], u(x, t)−

(
x
2 + 300

)
≥ −3.

• G (“globally”) means the constraint holds during a specified interval. F (“eventually”) means the
constraint is satisfied at least once during the temporal interval.

• Composing constraints can form more complicated constraints.

Representing PDE constraints using STL can clearly and precisely express complex specifications
into logical formulas, thus removing possible ambiguity in informal natural language. In addition
to binary semantics (“satisfied”/“unsatisfied”) defined above, STL admits continuous semantics as
utility (Kress-Gazit et al., 2009; Donzé & Maler, 2010). The utility an STL ϕ achieves (via simulation
and optimization) can be denoted as r(ϕ) ∈ R. Please see Appendix A.2 for the calculation of r(ϕ).

Problem Example: Heat Equation. Consider a metallic rod of 100 mm. The temperature at one
end of the rod is fixed at 300K, a heat source is applied to the other end. The temperature of the rod
follows a heat equation. We want the temperature of the rod to be within 3K of the linear constraint
µ(x) = x

4 + 300 at all times between 4 and 5 seconds between 30 and 60 mm. Furthermore, the
temperature should never exceed 345K at the point where the heat source is applied (x = 100). We
can formulate this specification using the following composite STL formula:

ϕ = G[4,5]

((
∀x ∈ [30, 60] : u(x)−

(x
4
+ 303

)
< 0

)
∧(

∀x ∈ [30, 60] : u(x)−
(x
4
+ 297

)
> 0

))
∧

G[0,5](∀x ∈ [100, 100] : u(x)− 345 < 0).

For more examples, please read Appendix B.

2.3 OPTIMIZATION

To solve the PDE control problem defined by initial conditions and STL constraints (Eqn. 1), the PDE
is first discretized into a set of difference equations with the finite element method. Then, together
with STL constraints, they are formulated into a mixed integer linear program (MILP) (Sadraddini
& Belta, 2015; Alvarez, 2020) where the utility r can be optimized via external optimizers like
Gurobi (Gurobi Optimization, LLC, 2024). After the optimization, if r > 0, that means the system
successfully satisfies ϕ using the control input (i.e. constraints are successfully met). This is a
non-convex optimization problem. Please see Appendix A.3 for detailed formulations.

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

The temperature staying within 3K of 𝜇(𝑥) =
𝑥/4 + 300 between 4-5 s for 𝑥 ∈ [30, 60]mm.
The temperature must not exceed 345K at 𝑥 =
100. Consider a 100mm rod with one end at
300K and a heat source at the other. The
temperature follows a heat equation.

System Descriptions
(Geometry, PDE, Initial/Boundary Conditions)

Constraints

“Below is a natural language
description of partial differential
equation optimization problem.
Translate the problem into Latex code
following spatial-signal temporal logic.”

Prompt:
• Instruction
• Target Problem

Formal Problem

Formal Language (FL):
STL (signal temporal logic) in LaTeX

Python

Utility

Te
m

pe
ra

tu
re

 (K
)

Location (mm)

Informal Problem
Natural Language (NL)

Translator

Coder

PDE-Constrained
Optimization via
External Solver

Figure 4: Workflow for supervised fine-tuning (SFT) of autoformalization (Translator LLM) and program
synthesis (Coder LLM). Note that the utility is only used for evaluation and not used for SFT. Without reasoning,
the Translator and Coder try to faithfully and directly solve the original problem.

3 METHODS

Our core is to automate the formalization and reasoning of PDE control using large language models.

3.1 OVERVIEW

Problem Definition. As introduced in Sec. 2, the input of a PDE control problem is the natural
language describing the initial state, system conditions, and target constraints. The solution is a
time-variant trajectory of the control input. The final output we collect is the control utility r(ϕ) ∈ R.

Framework Overview (Fig. 3). We automate PDE control problems with the following four steps:
1. Input. Our LLM prompt is composed of 1) an instruction (to prompt the LLM to formalize

the problem, perform reasoning, or synthesize Python programs) and 2) the target PDE control
problem. We build a large-scale dataset to support diverse inputs and prompts (Sec. 3.2).

2. Autoformalization. Our Translator LLM will extract information about the problem constraints
from the prompt, and formalize these into STLs (Sec. 3.3).

3. Reasoning. Before directly solving the target PDE control problem, our Controller LLM will
propose novel STLs as subgoals. The aim is to better solve the original PDE control problem by
leveraging this subgoal as an intermediate step, i.e., we will first solve the problem defined by this
subgoal which leads to a new system state, then solve the original problem (Sec. 3.4).

4. Program Synthesis. Our Coder LLM will take both the prompt and the formalized STLs as
inputs, and generate Python code to be fed into the external tool (Gurobi optimizer (Gurobi
Optimization, LLC, 2024)) to solve the PDE control problem (Sec. 3.5).

3.2 PRINCIPLED DATA SYNTHESIS WITH AUGMENTATIONS

Training LLMs for PDE problems requires diverse data, which existing math datasets (Cobbe et al.,
2021; Yang et al., 2024; Glazer et al., 2024) lack. We collect key PDE control problems as templates
and augment them for quantity and diversity.

Overview. As shown in Fig. 4 left, each PDE control problem consists of two components: 1)
constraints (red background), 2) system descriptions (blue background, including PDE, geometry,
initial/boundary conditions). We generate dataset in three steps:

1) Constraints: Principled Syntax Formats via STL. We first design and organize eligible syntax
formats for generating STLs in two levels:

• For each constraint, the format in Eqn. 1 leads to 6 different syntax formats ({G,F} × {<,>,=}).
• We consider STLs up to 3 constraints. For 2 constraints, we connect ϕ1 and ϕ2 with logical

connectives ∧ or ∨. For 3 constraints, we consider both logical connectives and operator precedence
via parentheses: ϕ1∨ϕ2∨ϕ3, ϕ1∧ϕ2∧ϕ3, (ϕ1∨ϕ2)∧ϕ3, ϕ1∨(ϕ2∧ϕ3), (ϕ1∧ϕ2)∨ϕ3, ϕ1∧(ϕ2∨ϕ3).
In total, STLs with 1, 2, 3 constraints will respectively result in 6, 72, 1296 unique syntax formats,
i.e. 1374 in total (LaTeX in Fig. 4 middle top).

However, STLs are still abstract, with hyperparameters (a, b, x1, x2, t1, t2 in Eqn. 1) not yet realized.

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

2) System Descriptions: Sampling Initial Conditions and Hyperparameters. To realize each
STL format into a concrete problem, we need to fill numerical values for its initial conditions
and hyperparameters (blue highlight in Fig. 4 left). We describe our sampling distributions in
Appendix C.1 for the following aspects:
• Initial conditions: initial temperature or displacement of the system before PDE simulations begin.
• Simulation domains: the spatial range xmax and temporal range tmax.
• Physical properties: such as density, specific heat capacity, thermal conductivity.
• Coefficients: the linear parameters (a, b) and spatiotemporal ranges (x1, x2, t1, t2) for constraints.

3) Dataset Synthesis with Augmentations. We synthesize STLs into informal natural language
descriptions equipped with system descriptions. For each problem, we also synthesize ground-truth
Python code for optimization with the Gurobi solver (Fig. 4 middle bottom). These synthesized
samples give us a one-to-one mapping from the informal problem (natural language) to its STL and
Python code. Details about our dataset synthesis, are in Appendix C.2. More importantly, to further
promote the diversity of our informal natural language problems, we use ChatGPT (GPT4o-mini) for
augmentation by rephrasing without affecting semantics. In particular, we prompt five paraphrases
from ChatGPT for every synthesized informal description. Please see Appendix C.3 for an example
of augmentation via ChatGPT. Table 1: Dataset for autoformalization and program synthesis.

Num. Constraints 1 2 3 Total Num.

STLs 6 72 1296 1374
Heat (Train) 3840 45792 817776 867408
Heat (Test) 960 11448 204768 217176
Wave (Train) 3840 45504 795744 845088
Wave (Test) 960 11304 196992 209256

In total we have n = 2.13 million pairs
of (natural language, STL, Python) sam-
ples (Table 1). We merge the training set
for both heat and wave problems for the
training of Translator and Coder.

Real-World Manually Written Problems.
To evaluate our LLMs on real-world problems with high variance and noise, we collect PDE control
samples designed by humans via questionnaires. To ensure data quality, we recruit undergraduate
and graduate students as participants with highly relevant backgrounds (majoring in Math, Electic
Engineering, Computer Science, Physics). During four questionnaire sessions (one hour each), we
provide comprehensive introductions to the settings of our PDE control problems, with concrete
examples and interactive communication. We collect 17 manually written heat problems and 17 wave
problems. Details of this collection and differences between our training set are in Appendix D.

3.3 AUTOFORMALIZATION

After building our dataset, we train our Translator to extract constraints from informal natural language
and autoformalize into STLs. Our LLM needs to (1) separate constraints from system descriptions,
(2) align informal definitions and concepts to formal STL syntax, and (3) connect multiple constraints
with correct logic operators. This task is further complicated by context changes in different PDEs.
We leverage a pretrained MathCoder2-DeepSeekMath-7B (Lu et al., 2024) checkpoint (MathCoder2),
to fine-tune using LoRA (Hu et al., 2021) and supervised fine-tuning (SFT) with the cross-entropy
loss. This measures the error in predicting each token in the output formal sequence (F̂L) given
tokens in the informal input (NL). It is defined as:

Ltranslator
SFT = −

n∑
i=1

logP
(
F̂Li | NLi,θtranslator

)
(2)

3.4 PDE REASONING VIA CONTROLLER LLM

3.4.1 WHAT IS REASONING FOR PDE CONTROL?

Beyond autoformalization, an important question is: can LLMs perform reasoning and planning on
scientific problems like PDE control, where pretrained commonsense knowledge may not be helpful?

Problem Definition. As described in Sec. 2.3, the PDE control problem is non-convex. Directly
optimizing the target anchor problem may lead to suboptimal solutions or intractability due to
potentially poor initial conditions, loss landscape barriers, local minima, etc. Inspired by recent works
in robotics (Lin et al., 2024; Wang et al.) and AI-for-math (Zawalski et al., 2022; Zhao et al., 2023b;a)
where subgoals are decomposed from the original problem, we propose the following PDE control
reasoning strategy: The solution to a PDE control problem can be improved by decomposing it into
subgoals to be optimized sequentially.

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

PDE Control Reasoning. We design the following reasoning steps for solving PDE control:

1. Given a target PDE control problem ϕ (dubbed “anchor”), we sample its STL constraints into a
subgoal STL, ϕ′, of different spatiotemporal constraints.

2. We directly solve the anchor problem (ϕ) and collect its utility r(ϕ) and runtime cost t.
3. We solve ϕ′ → ϕ: We optimize ϕ′, apply the system state as the new initial condition1 solve the

anchor problem ϕ, and collect the final utility r(ϕ|ϕ′).
4. If r(ϕ|ϕ′) > r(ϕ) (the utility of directly solving ϕ), we call ϕ′ a successful reasoning.
5. We repeat the above steps multiple times to calculate the expected performance gain.

Whether the subgoal reasoning step can be satisfied (i.e. whether or not r(ϕ′) > 0 or not) is not
our concern. All we pursue is a new initial condition of the system that can better solve the original
problem. As such, the time constraints of the subgoal should apply in the period prior to the anchor
constraints and within the global time frame. Please see Fig. 6 for concrete examples where r(ϕ|ϕ′)
outperforms r(ϕ), and more examples in Appendix B.

3.4.2 BUILDING THE CONTROLLER LLM.

Having defined PDE control reasoning in Sec. 3.4.1, our question is: How to develop LLMs to perform
PDE control reasoning and automatically decompose subgoals?

Subgoal STL
Proposal

𝜙!
"($), 𝜙!

"(&)

⋯
𝜙'
"($), 𝜙'

"(&)

⋯
𝜙(
"($), 𝜙(

"(&)

𝑢())

𝜙

𝜙"
𝑢" 𝜙

𝑟(𝜙)

𝑟 𝜙|𝜙"𝑢∗"
𝑢∗

∆𝑡!= 𝑡" ∆𝑡+= 𝑡 − 𝑡"

∆𝑡 = 𝑡Prompt:
• Instruction
• Problem

𝜙($'() 𝜙(&,-.)≻

Preference Data
RLHF

≻

Controller

SolverCoder

Figure 5: Learning PDE control reasoning via RLHF.
Given the input prompt, our Controller LLM trained
with preference data via reinforcement learning, will
propose a subgoal STL ϕ′. From the initial condition
u(0), the PDE system is controlled by ϕ′ to reach state
u′, and then further controlled by the original STL
ϕ to reach the final state u∗′. We expect the utility
achieved via this reasoning, r(ϕ|ϕ′), to outperform
r(ϕ) achieved by directly solving ϕ.

In this section, we explain how to train a Con-
troller LLM via reinforcement learning with hu-
man feedback (RLHF) to perform PDE control
reasoning. We illustrate our training strategy in
Fig. 5.

1) Preparing Preference Dataset. We first
build a dataset of paired STLs (ϕ′(w), ϕ′(l)) as
win-lose pairs, where ϕ′(w) is preferred over ϕ′(l).
This dataset is used to train our Controller LLM
via RLHF. To build this dataset, given an anchor
(target) STL ϕ, we randomly sample ϕ′ based on
ϕ, solve both, and collect their utilities.

It is up to human preference to determine
which STL is favored. In this work, we prefer
r(ϕ|ϕ′(w)) > r(ϕ) > ϕ′(l). In total, we collect
10772 pairs of win-lose STLs.

2) Fine-tuning Controller LLM with RLHF. During training, our Controller loads the Translator’s
pretrained checkpoint (inheriting the ability to faithfully formalize natural language into STLs). We
train Controller with Direct Preference Optimization (DPO) (Rafailov et al., 2024). Unlike the
Translator’s direct formalization into true STLs, we prompt our Controller to make modifications in
proposing new STL variants. We leverage win-lose pairs in our preference dataset as feedback to
fine-tune the generative distribution of the Controller to shift to the preferred STL:

Lcontroller
DPO = −E(NL,ϕ′(w),ϕ′(l))

[
log σ

(
β log

P
(
ϕ′(w) | NL

)
Pref (ϕ′(w) | NL)

− β log
P
(
ϕ′(l) | NL

)
Pref (ϕ′(l) | NL)

)]
+ λ logP

(
F̂L|NL

)
.

(3)

σ is the sigmoid function. We load the pretrained checkpoint of our Translator as the frozen
reference model (“ref”), serveing as the KL divergence target in DPO training. P and Pref indicate
the generative probability of Controller and Translator respectively (θ omitted for simplicity). β
controls the deviation of the Controller from the reference Translator. To further avoid the degradation
of Controller’s generation, we regularize it we the SFT loss, with a weight of λ (Pang et al., 2024).

1To avoid long runtime of subgoal STLs, we set the Gurobi runtime threshold to 120 seconds for solving ϕ′.

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3.5 PROGRAM SYNTHESIS

Finally, taking both the prompt (instruction plus the target PDE control problem) and the formalized
STL as inputs, we train a Coder LLM with supervised fine-tuning (SFT) to synthesize Python
programs provided to the PDE simulator and Gurobi optimizer to solve the PDE control problem.

Lcoder
STF = −

n∑
i=1

logP
(
Ĉodei | F̂Li,NLi,θcoder

)
(4)

We merge the training set for both heat and wave problems for the Coder’s fine-tuning.

4 EXPERIMENTS

We study 1D heat and wave problems as pioneering showcases. All our models are fine-tuned
from MathCoder2, and we compare against few-shot evaluations of MathCoder2, GPT 4o, and GPT
o1-mini (Achiam et al., 2023). Please read Appendix E for model and training details.

4.1 ACCURATE AUTOFORMALIZATION AND PROGRAM SYNTHESIS

We first evaluate Translator for autoformalization and Coder for program synthesis.

Table 2: Metrics for the evaluation of autoformal-
ization (Translator) and program synthesis (Coder).

Purpose Metric

LLM-generated STL
(ϕ̂) could be valid, but
there might be seman-
tic mistakes.

IoU: Intersection over
union (satisfying areas)
between the true STL,
ϕ, and the LLM’s gen-
eration, ϕ̂.

Python programs gen-
erated by Coder may
not be runnable due to
bugs.

Executability: The ra-
tio of executable pro-
grams to the total. This
doesn’t ensure the exe-
cuted result (utility r) is
correct.

Compare the final PDE
control utility r(ϕ̂) to
true utlity r(ϕ).

Utility RMSE: Rela-
tive mean square error
on utility.

Evaluation Metrics. To progressively evaluate the
performance of our Translator and Coder LLMs in
a decoupled and fine-grained manner, we propose
to leverage multiple metrics for different purposes,
as summarized in Table 2. Among all metrics, the
“Utility RMSE” (lower the better) is the most im-
portant final performance. However, it is important
to emphasize that we can only calculate RMSE for
executable Python programs. Consequently, if we
observe a coder achieving a low RMSE but also low
executability, it still implies poor quality.

Results In general, IoU is sufficient to quantify
the quality of autoformalization (STL). The code
generation should aim to achieve high executability
and low utility RMSE at the same time2. As shown
in Table 3, our Translator and Coder achieve the best
across all three metrics with low standard deviations,
indicating strong and reliable autoformalization and
program synthesis capability.

Table 3: Autoformalization and program synthesis. De-
viations over 3 seeds are in parentheses. Bold indicates
the best, underline denotes the runner-up.

PDE Model IoU (↑)
(Translator)

Executability (↑)
(Coder)

Utility
RMSE (↓)

Heat

Ours 0.992 (0.07) 0.9978 (0.0015) 0.0173 (0.0065)
MathCoder2 0.772 (0.35) 0.9592 (0.0166) 0.2058 (0.0672)

GPT (4o) - 0.5807 (0.3244) 0.0445 (0.0437)
GPT (o1-mini) - 0.3561 (0.2857) 0.0898 (0.0165)

Wave

Ours 0.992 (0.07) 0.9620 (0.0098) 0.0076 (0.0011)
MathCoder2 0.772 (0.35) 0.9340 (0.0242) 0.1089 (0.0485)

GPT (4o) - 0.6799 (0.2523) 0.0868 (0.0500)
GPT (o1-mini) - 0.4041 (0.2771) 0.0757 (0.0149)

We further evaluate manually written problems.
As shown in Table 4, the autoformalization may
produce STLs with worse quality (lower IoU),
suffering from noisy and unstructured texts writ-
ten by humans. Our Translator and Coder gener-
ally outperform other baselines, with the accuracy
of autoformalization over 64% (STL’s IoU) and
program synthesis over 82% (code executability).
Importantly, despite the low utility RMSE of GPT
o1-mini, since it suffers from poor executability
(only 39.22%), its RMSE cannot faithfully char-
acterize its stability in the real world.

2Otherwise, the code generation might trivially generate for example a runnable “return 0”, which is
obviously incorrect; or it might get lucky and generate the correct code for only a very limited set of problems.

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Heat
Initial Condition Anchor Reasoning

Wave

Location (m) Location (m) Location (m) Location (m)

Te
m

pe
ra

tu
re

 (K
)

D
is

pl
ac

em
en

t (
m

m
)

Location (mm) Location (mm) Location (mm) Location (mm)

Figure 6: Case study of LLM reasoning for PDE control on heat (top) and wave (bottom) problems (symbols
are aligned with Fig. 5). From left to right: Directly solving ϕ from the initial condition u(0) (1st column)
yields r(ϕ) (2nd column); Reasoning: solving ϕ′ from u(0) to get u′ (3rd column) then solving ϕ from u′ to get
r(ϕ|ϕ′) (4th column). Black curves indicate the system’s states (temperature for heat, displacement for wave)
at t or t′. Colored segments are constraints, with dashes for inequalities (≥ when dashes are above the solid,
and vice versa). Although we plot constraints, they may constrain temporal ranges [t1, t2] ̸∋ t, t′. STLs can be
found in Appendix B.3.

4.2 IMPROVED UTILITY VIA PDE REASONING OF CONTROLLER

Table 4: Autoformalization and program synthesis on
manually written data (Sec. 3.2). Deviations over 3
seeds are in parentheses. Bold indicates the best, un-
derline denotes the runner-up.

PDE Model IoU (↑)
(Translator)

Executability (↑)
(Coder)

Utility
RMSE (↓)

Heat

Ours 0.7108 (0.0043) 0.8235 (0.0) 2.4687 (0.0)
MathCoder2 0.3383 (0.068) 0.9804 (0.0277) 0.0004 (0.0005)

GPT (4o) - 0.4314 (0.3328) 1.8555 (0.0136)
GPT (o1-mini) - 0.3530 (0.3050) 0.1738 (0.0207)

Wave

Ours 0.6493 (0.0) 1.0 (0.0) 0.0119 (0.0)
MathCoder2 0.1953 (0.045) 1.0 (0.0) 0.0129 (0.0012)

GPT (4o) - 0.5882 (0.4437) 0.0105 (0.0)
GPT (o1-mini) - 0.3922 (0.4160) 0.0098 (0.0)

Beyond autoformalization and program synthesis,
our most important contribution is the scientific
reasoning on PDE problems by the Controller.
In addition to the MathCoder2 and GPT models,
we consider another baseline, random sampling,
which naively generates reasoning steps by ran-
domly sampling the anchor’s constraints.

Evaluation Metrics. During inference, we
sample from the Controller multiple times. We
evaluate the reasoning performance on PDE con-
trol problems with two metrics:

• Success Rate P : The percentage of sampled reasoning step (ϕ′) that can improve the anchor
problem (ϕ), averaged across all anchor problems. P ≜ EϕP (ϕ) = Eϕp (r(ϕ|ϕ′) > r(ϕ)).

• Utility Gain ∆r: The expected improvement in utility via a sampled reasoning step, averaged
across all anchor problems. ∆r ≜ EϕEϕ′ [r(ϕ|ϕ′)− r(ϕ)].

Table 5: Overview of our reasoning data. We thresh-
old 3 difficulty levels of questions by the Success
Rate P of random sampling.

Heat Training Testing Total

Num. (ϕ′(w), ϕ′(l)) Pairs 4813 1181 5994
Easy P ∈ (0.8, 1) 27.1% 26.1% 26.9%
Medium P ∈ (0.5, 0.8] 37.3% 37.8% 37.4%
Hard P ∈ [0, 0.5] 35.6% 36.2% 35.7%

Wave Training Testing Total

Num. (ϕ′(w), ϕ′(l)) Pairs 3812 966 4778
Easy P ∈ (0.88, 1) 32.5% 33.6% 32.7%
Medium P ∈ (0.55, 0.88] 33.1% 32.5% 33.0%
Hard P ∈ [0, 0.55] 34.4% 33.9% 34.3%

Difficulty Levels. Intuitively, some anchor prob-
lems are easy to improve via reasoning, while others
may be more challenging to improve. To comprehen-
sively study the performance of our controller, we
design three difficulty levels based on the Success
Rate, P , of random sampling. We group problems
by choosing thresholds on P of random sampling
such that all difficulty levels share a balanced num-
ber of problems during testing. We overview our
reasoning data in Table 5 and provide examples in
Appendix B.

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 6: Scientific reasoning over PDE control problems via our Controller LLM. Deviations over 5 seeds are
in parentheses. “Valid STL ϕ′ (%)”: ratio of valid proposed subgoal STL ϕ′ (i.e. without any syntax errors or
improper time constraints). Bold indicates the best, underline denotes the runner-up. “x” indicates no valid STLs
were generated for evaluation. “-” indicates not applicable.

PDE Difficulty
Level

Success Rate P (↑) Utility Gain ∆r (↑)

Ours Random
Sampling

Math-
Coderv2

GPT
(o1-mini)

GPT
(4o) Ours Random

Sampling
Math-

Coderv2
GPT

(o1-mini)
GPT
(4o)

Heat

Easy 0.966 (0.0453) 0.886 (0.0365) 0.396 (0.2419) x 0.718 (0.1012) 2.233 (0.6662) 1.594 (1.0333) 0.795 (07985) x 1.614 (0.0262)

Medium 0.877 (0.1010) 0.694 (0.0909) 0.340 (0.2324) 0 (0) 0.468 (0.0912) 1.090 (0.5030) 0.526 (0.6986) -0.109 (0.2659) -0.601 (0) 0.222 (0.0560)

Hard 0.592 (0.1692) 0.356 (0.1319) 0.236 (0.1887) 0 (0) 0.469 (0.1147) 1.035 (0.8486) -0.380 (1.2688) -0.964 (0.5101) -1.489 (0) 0.855 (0.0611)

All 0.812 (0.1052) 0.645 (0.0864) 0.324 (0.221) x 0.552 (0.1024) 1.453 (0.6726) 0.580 (1.0002) -0.093 (0.5249) x 0.897 (0.0477)

Wave

Easy 0.936 (0.0600) 0.928 (0.0232) 0.954 (0.0725) x 1 (0) 1.423 (0.4135) 1.110 (0.4986) 1.601 (0.1794) x 1.706 (0)

Medium 0.833 (0.1009) 0.737 (0.0894) 0.769 (0.0362) x 0.933 (0.0408) 0.901 (0.4389) 0.704 (0.7072) 0.830 (0.2122) x 0.652 (0.0191)

Hard 0.328 (0.1220) 0.294 (0.1620) 0.324 (0.1036) x 0.386 (0.1013) -0.349 (0.4357) -0.531 (0.8028) -0.670 (0.1945) x -0.609 (0.0196)

All 0.699 (0.0943) 0.653 (0.0915) 0.682 (0.0708) x 0.773 (0.0474) 0.658 (0.4293) 0.427 (0.6695) 0.587 (0.1954) x 0.583 (0.0129)

Valid STL ϕ′ (%) (↑) 82.70 (1.97) - 42.45 (10.54) 0.04 (0.10) 2.55 (0.65) 82.70 (1.97) - 42.45 (10.54) 0.04 (0.10) 2.55 (0.65)

Results. We observe the following from Table 6:

• In general, our Controller consistently outperforms other models for both heat and wave problems.
While second to GPT-4o by wave success rates, GPT-4o suggests very few valid STLs caused by
syntax errors or time constraints that occur after the anchor problem.

• In general, our Controller most significantly improves the utility. For example, on heat problems,
our ∆r = 1.453, which improves 62% over the second-best (GPT 4o, ∆r = 0.897). Although no
model improves utility for “hard”-level wave problems, our Controller still proposes the highest
quality subgoals.

• Our Controller suggests far and away the highest ratio of valid STLs (ϕ′), almost doubling the
second-ranked MathCoder2.

• In most heat cases, MathCoder2 and GPT models are worse than random sampling. GPT o1-mini
fails entirely due to invalid hallucinations in subgoal STL proposals.

On manual data, due to invalid subgoal STL proposals, all models fail to generate meaningful
reasoning steps. Firstly, inconsistencies in the natural language of the manual data cause the models
to generate invalid constraint values, such as different units to describe time within a sentence.
Secondly, new notation such as “:=” in NL, result in unbalanced brackets, hallucinated numbers, and
quantifiers. Thirdly, the models propose invalid time constraints for reasoning steps, which should
occur before the anchor’s time constraints.

4.2.1 CASE STUDY.

To better illustrate our PDE controller, we show one case for heat and wave with visualizations in
Fig. 6. In both examples, first optimizing the reasoning steps leads to new initial conditions that better
solve each anchor problem.

5 CONCLUSION

This paper demonstrates how LLMs can fully automate PDE control by interpreting natural language
descriptions, formalizing mathematical expressions, and applying scientific reasoning. Our approach
not only streamlines automation but also improves control performance, making PDE solutions more
accessible and scalable across scientific and engineering domains. By integrating reinforcement
learning and structured reasoning, our framework enables LLMs to propose subgoal-driven strategies
that enhance PDE control. This research paves the way for AI-driven scientific computing tools
that complement human expertise, reducing complexity in solving high-dimensional PDE problems.
Future work should focus on real-time adaptive PDE control, robustness against noisy inputs, and
multi-physics applications. By bridging AI and applied mathematics, our research advances intelligent
automation, unlocking new possibilities in computational science and engineering.

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

ACKNOWLEDGEMENTS

We thank Dr. Danqi Chen for her helpful comments. We thank all participants in our questionnaire
for manually writing PDE control problems. For privacy reasons, we do not disclose their names.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Francisco Penedo Alvarez. Formal Methods for Partial Differential Equations. PhD thesis, Boston
University, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Guangran Cheng, Chuheng Zhang, Wenzhe Cai, Li Zhao, Changyin Sun, and Jiang Bian. LLM+ a:
Grounding large language models in physical world with affordance prompting. 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over real-valued signals.
In International Conference on Formal Modeling and Analysis of Timed Systems, pp. 92–106.
Springer, 2010.

Amir-massoud Farahmand, Saleh Nabi, and Daniel N Nikovski. Deep reinforcement learning for
partial differential equation control. In 2017 American Control Conference (ACC), pp. 3120–3127.
IEEE, 2017.

Guhao Feng, Kai Yang, Yuntian Gu, Xinyue Ai, Shengjie Luo, Jiacheng Sun, Di He, Zhenguo Li,
and Liwei Wang. How numerical precision affects mathematical reasoning capabilities of LLMs.
arXiv preprint arXiv:2410.13857, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Paul Garnier, Jonathan Viquerat, Jean Rabault, Aurélien Larcher, Alexander Kuhnle, and Elie Hachem.
A review on deep reinforcement learning for fluid mechanics. Computers & Fluids, 225:104973,
2021.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. Communications of the ACM, 64(12):
86–92, 2021.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
man Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Frontiermath: A
benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint arXiv:2411.04872,
2024.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

10

https://www.gurobi.com
https://www.gurobi.com

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics.
arXiv preprint arXiv:2001.07457, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot
navigation. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp.
10608–10615. IEEE, 2023.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained
control problems using operator learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4504–4512, 2022.

Jingru Jia, Zehua Yuan, Junhao Pan, Paul E McNamara, and Deming Chen. Decision-making behavior
evaluation framework for LLMs under uncertain context. arXiv preprint arXiv:2406.05972, 2024.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755, 2023.

Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-logic-based reactive
mission and motion planning. IEEE transactions on robotics, 25(6):1370–1381, 2009.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
Huang, Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive
decision-making. Advances in Neural Information Processing Systems, 35:31199–31212, 2022.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving. arXiv preprint arXiv:2404.09939, 2024.

Xinrui Lin, Yangfan Wu, Huanyu Yang, Yu Zhang, Yanyong Zhang, and Jianmin Ji. Clmasp:
Coupling large language models with answer set programming for robotic task planning. arXiv
preprint arXiv:2406.03367, 2024.

JL Lions. Optimal control of systems governed by partial differential equations, 1971.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning for
mathematical reasoning. arXiv preprint arXiv:2212.10535, 2022.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathcoder2: Better math reasoning from continued pretraining on model-translated
mathematical code. arXiv preprint arXiv:2410.08196, 2024.

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Inter-
national symposium on formal techniques in real-time and fault-tolerant systems, pp. 152–166.
Springer, 2004.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Anton Belyi, et al. Mm1: methods, analysis and insights
from multimodal llm pre-training. In European Conference on Computer Vision, pp. 304–323.
Springer, 2025.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid control using the adjoint
method. ACM Transactions On Graphics (TOG), 23(3):449–456, 2004.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral, Tanmay
Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, et al. Lila: A unified benchmark for
mathematical reasoning. arXiv preprint arXiv:2210.17517, 2022.

11

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Amartya Mukherjee and Jun Liu. Actor-critic methods using physics-informed neural networks:
Control of a 1d pde model for fluid-cooled battery packs. arXiv preprint arXiv:2305.10952, 2023.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autofor-
malizing euclidean geometry. arXiv preprint arXiv:2405.17216, 2024.

Jiayi Pan, Glen Chou, and Dmitry Berenson. Data-efficient learning of natural language to linear
temporal logic translators for robot task specification, 2023. URL https://arxiv.org/
abs/2303.08006.

Yangchen Pan, Amir-massoud Farahmand, Martha White, Saleh Nabi, Piyush Grover, and Daniel
Nikovski. Reinforcement learning with function-valued action spaces for partial differential
equation control. In International Conference on Machine Learning, pp. 3986–3995. PMLR, 2018.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization, 2024. URL https://arxiv.org/abs/
2404.19733.

Bartosz Protas. Adjoint-based optimization of pde systems with alternative gradients. Journal of
Computational Physics, 227(13):6490–6510, 2008.

Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade, and Nicolas Cerardi. Artificial neural
networks trained through deep reinforcement learning discover control strategies for active flow
control. Journal of fluid mechanics, 865:281–302, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Leonardo A Ramos, Rafael F Van Kan, Marcello Mezaroba, and Alessandro L Batschauer. A control
strategy to smooth power ripple of a single-stage bidirectional and isolated ac-dc converter for
electric vehicles chargers. Electronics, 11(4):650, 2022.

Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Peng Xu,
Leila Takayama, Fei Xia, Jake Varley, et al. Robots that ask for help: Uncertainty alignment for
large language model planners. arXiv preprint arXiv:2307.01928, 2023.

Sadra Sadraddini and Calin Belta. Robust temporal logic model predictive control. In 2015 53rd
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 772–779.
IEEE, 2015.

Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action. In Conference on robot learning, pp. 492–504. PMLR,
2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Teun van de Laar, Zengjie Zhang, Shuhao Qi, Sofie Haesaert, and Zhiyong Sun. Vernacopter: Disam-
biguated natural-language-driven robot via formal specifications. arXiv preprint arXiv:2409.09536,
2024.

Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng Shu, Enze Shi, Huawen Hu, Chong Ma, Yiheng
Liu, Xuhui Wang, et al. Large language models for robotics: Opportunities, challenges, and
perspectives. arXiv preprint arXiv:2401.04334, 2024.

12

https://arxiv.org/abs/2303.08006
https://arxiv.org/abs/2303.08006
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://github.com/tatsu-lab/stanford_alpaca

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Jun Wang, Jiaming Tong, Kaiyuan Tan, Yevgeniy Vorobeychik, and Yiannis Kantaros. Conformal
temporal logic planning using large language models.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset
for training large language models. arXiv preprint arXiv:2411.12372, 2024.

Long Wei, Peiyan Hu, Ruiqi Feng, Yixuan Du, Tao Zhang, Rui Wang, Yue Wang, Zhi-Ming Ma,
and Tailin Wu. Generative pde control. In ICLR 2024 Workshop on AI4DifferentialEquations In
Science.

Long Wei, Peiyan Hu, Ruiqi Feng, Haodong Feng, Yixuan Du, Tao Zhang, Rui Wang, Yue Wang,
Zhi-Ming Ma, and Tailin Wu. Diffphycon: A generative approach to control complex physical
systems. arXiv preprint arXiv:2407.06494, 2024a.

Shu Wei, Yanjie Li, Lina Yu, Min Wu, Weijun Li, Meilan Hao, Wenqiang Li, Jingyi Liu, and Yusong
Deng. Closed-form symbolic solutions: A new perspective on solving partial differential equations.
arXiv preprint arXiv:2405.14620, 2024b.

Sean Williams and James Huckle. Easy problems that LLMs get wrong. arXiv preprint
arXiv:2405.19616, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in LLMs through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024.

Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang, Yichun Yin, Zhengying Liu, Lin Li, Zhijiang
Guo, Qingxing Cao, Yinya Huang, et al. Trigo: Benchmarking formal mathematical proof reduction
for generative language models. arXiv preprint arXiv:2310.10180, 2023.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Processing Systems, 36, 2024.

Michał Zawalski, Michał Tyrolski, Konrad Czechowski, Tomasz Odrzygóźdź, Damian Stachura,
Piotr Piękos, Yuhuai Wu, Łukasz Kuciński, and Piotr Miłoś. Fast and precise: Adjusting planning
horizon with adaptive subgoal search. arXiv preprint arXiv:2206.00702, 2022.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. arXiv preprint arXiv:2305.16366, 2023a.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Subgoal-based demonstration learning for formal
theorem proving. In Forty-first International Conference on Machine Learning, 2023b.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
Don’t trust: Verify–grounding LLM quantitative reasoning with autoformalization. arXiv preprint
arXiv:2403.18120, 2024.

A MORE BACKGROUND ON FORMAL METHODS FOR PDE CONTROL

A.1 PDES

We consider controlling systems governed by two popular PDEs (in 1D space):

• Heat Equation: Describes how heat diffuses through a material over time. Applications: temperature
in buildings, pollution in the environment.

ρc
∂u

∂t
− κ

∂2u

∂x2
= 0,

κ
∂u

∂x
(L, t) = q(t),

u(0, t) = g0, ∀t ∈ [0, tmax],

u(x, 0) = u0(x), ∀x ∈ [0, L].

(5)

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

ρ, c, κ > 0: density, specific thermal capacity, thermal conductivity of the material respectively. u
the spatiotemporal temperature of the material. x ∈ [0, L] is the spatial location. t ∈ [0, tmax] is
the time. q is the time-variant external heat source, applied at x = L. g0 is the boundary condition
applied at x = 0. u0 is the initial condition (temperature).

• Wave Equation: Models the propagation of waves (sound, electromagnetic, or water waves).
Applications: Acoustic control, vibration control in structures (e.g., bridges, buildings).

ρ
∂2u

∂t2
− E

∂2u

∂x2
= 0,

E
∂u

∂x
(L, t) = F (t),

u(0, t) = g0, ∀t ∈ [0, tmax],

u(x, 0) = u0(x), ∀x ∈ [0, L].

(6)

ρ,E > 0: density, Young’s Modulus of the material respectively. u the spatiotemporal displacement
of the material. x ∈ [0, L] is the spatial location. t is the time. F is the time-variant external
fource, applied at x = L. g0 is the boundary condition applied at x = 0. u0 is the initial condition
(displacement), and typically we set it as 0.

A.2 UTILITY OF STL

The continuous utility value of STL r(ϕ) is calculated with the following cases and rules:

r (u,u ≥ ax+ b, t) = u(x, t)− (ax+ b) (7)
r (u,u ≤ ax+ b, t) = (ax+ b)− u(x, t) (8)
r (u, ϕ1 ∧ ϕ2, t) = min {r (u, ϕ1, t) , r (u, ϕ2, t)} (9)
r (u, ϕ1 ∨ ϕ2, t) = max {r (u, ϕ1, t) , r (u, ϕ2, t)} (10)

r
(
u,F[a,b)ϕ, t

)
= sup

tf∈[t+a,t+b)

{r (u, ϕ, tf)} (11)

r
(
u,G[a,b)ϕ, t

)
= inf

tg∈[t+a,t+b)
{r (u, ϕ, tg)} (12)

Here, Eq. 7 and 8 indicates the linear constraint we consider in Eq. 1.

A.3 MILP FORMULATION OF CONTROL SYNTHESIS

Solving the PDE control problem can be relaxed and formulated into a PDE-constrained optimization
problem, which can be further solved by mixed-integer linear programming (MILP). We brief the
high-level steps, and we recommend readers to read Sadraddini & Belta (2015); Alvarez (2020) for
more details.

We start with spatially and temporally discretizing the PDE. This is achieved by the finite element
method (FEM):

1. The PDE is converted into its weak (variational) form by integrating against suitable test functions
v(x). The purpose is to reduce the second-order derivatives of u to first derivatives so that we
can obtain (linear) approximations to u. This also simplifies boundary condition handling and
smoothness requirements in the original PDE.

2. The spatial domain of the PDE’s weak form is discretized by dividing it into small, simple
geometric elements (intervals in 1D, triangles/quadrilaterals in 2D; tetrahedra in 3D), essentially
forming a mesh, and choosing local basis functions on each element.

3. Contributions from local (spatial) elements are assembled across the entire mesh into a global
linear system, often written as M ˙̃u + Kũ = F . The stiffness matrix (K) and mass matrix
(M) encode the PDE’s structure. The banded stiffness matrix (K) arises from terms involving
derivatives (e.g., ∇u · ∇v in the weak form). The diagonal mass matrix (M) comes from
non-derivative terms (e.g., u · v). F is the “force” vector (from external source terms/boundary
conditions like heat and force). This step transforms the PDE into an ordinary differential equation
(ODE) in time for the discretized spatial domain.

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

4. The temporal domain is further discretized using finite difference schemes, obtaining a set of
difference equations that must be solved at each time step. This final step produces the final linear
(or nonlinear) system of equations that is solved numerically to approximate the solution of the
original PDE.

M
ũn+1 − ũn

∆t
+Kũn+1 = F n+1. (13)

This can be further rearranged to a linear system:

(M +∆tK)ũk+1 = Mũk +∆tF k+1. (14)

At this moment, we can re-formulate the original PDE control problem into the following PDE-
constrained optimization problem:

max r (ϕ, ũ) (15)

s.t. (M +∆tK)ũk+1 = Mũk +∆tF k+1, (16)

ũ0 = ũ(0).

This formulation is equivalent to an MILP problem because:

• ϕ is only applied to limited spatiotemporal ranges. After the discretization of PDE, essentially ϕ is
only selectively applied to certain areas of grids over our (1D) mesh. That means, we need binary
variables to encode the absence/presence of ϕ over the spatiotemporal domain.

• The discretized PDE constraints Eq. 16 is linear in ũ. Additionally, based on Appendix A.2, the
objective function r(ϕ, ũ) (Eq. 15) is also linear in ϕ and ũ.

This MILP problem is non-convex, due to the min,max operation and non-differentiability (Ap-
pendix A.2) of the objective function r (ϕ, ũ) in Eq. 15. This MILP problem is solved using the
off-the-shelf Gurobi solver Gurobi Optimization, LLC (2024).

B CASE EXAMPLES AND VISUALIZATIONS

To better illustrate our PDE reasoning, we show more cases with visualizations and their corresponding
STLs (constraints). All time constraints are rounded to two decimal places, and parameters that
describe the linear profiles are rounded to four decimal places.

B.1 HEAT

We show easy/medium/hard problems in Fig. 7, with their anchor STL (ϕ) and subgoal STL (ϕ′)
listed below.

1) Easy:

Anchor Constraints STL (ϕ):

F[1.17,3.48](∀x ∈ [10, 25](u(x)− (−0.2169 · x+ 286.5171) > 0))∧
(G[4.64,5.13](∀x ∈ [41, 55](u(x)− (−0.2225 · x+ 311.8826) < 0))∨
F[6.04,11.77](∀x ∈ [61, 89](u(x)− (0.0988 · x+ 310.7904) > 0)))

Subgoal STL Proposal (ϕ′) by Controller:

F[0.42,0.99](∀x ∈ [10, 25](u(x)− (−0.2907 · x+ 323.3970) > 0))∧
(G[0.10,0.57](∀x ∈ [31, 46](u(x)− (−0.1338 · x+ 368.9958) < 0))∨
F[0.30,0.96](∀x ∈ [61, 89](u(x)− (0.0788 · x+ 390.7948) > 0)))

2) Medium:

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Heat
Easy

Initial Condition Anchor Reasoning

Med.

Hard

Location (mm) Location (mm) Location (mm) Location (mm)

Te
m

pe
ra

tu
re

 (K
)

Te
m

pe
ra

tu
re

 (K
)

Te
m

pe
ra

tu
re

 (K
)

Figure 7: Case study of heat problems with different difficulty levels: easy (top), medium (middle), hard
(bottom). Symbols are aligned with Fig. 5. From left to right: Directly solving ϕ from the initial condition u(0)

(1st column) yields r(ϕ) (2nd column). Reasoning: solving ϕ′ from u(0) to get u′ (3rd column) then solving ϕ
from u′ to get r(ϕ|ϕ′) (4th column) Black curves indicate the system’s states (temperature for heat, displacement
for wave) at t or t′. Colored segments are constraints, with dashes for inequalities (≥ when dashes are above
the solid, ≤ when dashes are below the solid). Note that although we always plot constraints (segments), they
actually constrain different temporal ranges [t1, t2] and it is possible that t, t′ /∈ [t1, t2].

Anchor Constraints STL (ϕ):

G[2.18,2.70](∀x ∈ [0, 30](u(x)− (0.4159 · x+ 293.2549) > 0))∨
(G[4.03,7.79](∀x ∈ [46, 63](u(x)− (−0.0956 · x+ 296.0596) < 0))∧
F[8.33,13.41](∀x ∈ [75, 96](u(x)− (0.2602 · x+ 309.7111) > 0)))

Subgoal STL Proposal (ϕ′) by Controller:

G[0.66,1.68](∀x ∈ [0, 30](u(x)− (0.3616 · x+ 387.4454) > 0))∨
(G[0.52,2.03](∀x ∈ [46, 63](u(x)− (−0.1061 · x+ 435.4267) < 0))∧
F[0.22,1.17](∀x ∈ [75, 96](u(x)− (0.1779 · x+ 374.4556) > 0)))

3) Hard:

Anchor Constraints STL (ϕ):

G[2.62,4.50](∀x ∈ [22, 87](u(x)− (−0.0122 · x+ 294.2976) > 0))

Subgoal STL Proposal (ϕ′) by Controller:

G[1.29,2.50](∀x ∈ [22, 87](u(x)− (−0.0157 · x+ 408.1535) > 0))

B.2 WAVE

We show easy/medium/hard problems in Fig. 8, with their anchor STL (ϕ) and subgoal STL (ϕ′)
listed below.

1) Easy:

16

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Wave Initial Condition Anchor Reasoning

Location (m) Location (m) Location (m) Location (m)

D
is

pl
ac

em
en

t (
m

m
)

Easy

Med.

Hard

D
is

pl
ac

em
en

t (
m

m
)

D
is

pl
ac

em
en

t (
m

m
)

Figure 8: Case study of wave problems with different difficulty levels: easy (top), medium (middle), hard
(bottom). Symbols are aligned with Fig. 5. From left to right: Directly solving ϕ from the initial condition u(0)

(1st column) yields r(ϕ) (2nd column). Reasoning: solving ϕ′ from u(0) to get u′ (3rd column) then solving ϕ
from u′ to get r(ϕ|ϕ′) (4th column) Black curves indicate the system’s states (temperature for heat, displacement
for wave) at t or t′. Colored segments are constraints, with dashes for inequalities (≥ when dashes are above
the solid, ≤ when dashes are below the solid). Note that although we always plot constraints (segments), they
actually constrain different temporal ranges [t1, t2] and it is possible that t, t′ /∈ [t1, t2].

Anchor Constraints STL (ϕ):

(G[0.25,0.54](∀x ∈ [7207, 23479](u(x)− (2.2684e− 05 · x+ 1.4129) < 0))∧
F[0.76,0.84](∀x ∈ [42469, 65095](u(x)− (1.8952e− 06 · x− 1.7928) > 0)))∨
F[1.12,1.33](∀x ∈ [77653, 85444](u(x)− (−4.0675e− 05 · x+ 2.1560) > 0))

Subgoal STL Proposal (ϕ′) by Controller:

(G[0.10,0.24](∀x ∈ [7207, 23479](u(x)− (3.0242e− 05 · x+ 1.1961) < 0))∧
F[0.05,0.09](∀x ∈ [42469, 65095](u(x)− (2.3575e− 06 · x− 1.5473) > 0)))∨
F[0.10,0.18](∀x ∈ [77653, 85444](u(x)− (−4.4208e− 05 · x+ 2.7018) > 0))

2) Medium:

Anchor Constraints STL (ϕ):

G[0.10,0.24](∀x ∈ [13787, 21080](u(x)− (−9.5400e− 06 · x− 0.3744) < 0))∨
F[0.05,0.09](∀x ∈ [49923, 59039](u(x)− (1.2003e− 05 · x− 1.5231) > 0))∨
G[0.78,1.31](∀x ∈ [78762, 86964](u(x)− (4.3983e− 05 · x− 1.5994) > 0))

Subgoal STL Proposal (ϕ′) by Controller:

G[0.06,0.16](∀x ∈ [9084, 26246](u(x)− (−4.3491e− 05 · x− 2.1348) > 0))∧
G[0.04,0.04](∀x ∈ [27204, 39168](u(x)− (4.2688e− 06 · x− 2.6843) > 0))∧
G[0.01,0.07](∀x ∈ [58194, 97070](u(x)− (−4.0965e− 05 · x+ 0.2641) < 0))

17

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3) Hard:

Anchor Constraints STL (ϕ):
(G[0.23,0.30](∀x ∈ [12400, 20684](u(x)− (4.0369e− 05 · x− 0.9002) > 0))∧
F[0.72,0.82](∀x ∈ [33059, 46052](u(x)− (3.5491e− 07 · x− 1.4933) < 0)))∨
F[1.10,1.11](∀x ∈ [67963, 79313](u(x)− (1.6090e− 06 · x− 1.1675) > 0))

Subgoal STL Proposal (ϕ′) by Controller:
(G[0.07,0.22](∀x ∈ [12400, 20684](u(x)− (3.4256e− 05 · x− 0.5172) > 0))∧
F[0.04,0.11](∀x ∈ [33059, 46052](u(x)− (2.9472e− 07 · x− 1.8896) < 0)))∨
F[0.01,0.20](∀x ∈ [67963, 79313](u(x)− (2.3060e− 06 · x− 0.7148) > 0))

B.3 STLS FOR EXAMPLES IN FIG. 6

Heat:

Anchor Constraints STL (ϕ):
G[1.63,3.13](∀x ∈ [2, 29](u(x)− (0.4565 · x+ 287.7909) > 0))∨
(G[4.25,4.58](∀x ∈ [38, 47](u(x)− (0.2137 · x+ 287.1038) < 0))∧
F[5.94,9.86](∀x ∈ [54, 77](u(x)− (0.3008 · x+ 299.3877) > 0)))

Subgoal STL Proposal (ϕ′) by Controller:
G[0.69,1.49](∀x ∈ [2, 29](u(x)− (0.4088 · x+ 294.5123) > 0))∨
(G[0.26,0.33](∀x ∈ [38, 47](u(x)− (0.2907 · x+ 404.7615) < 0))∧
F[0.06,0.10](∀x ∈ [54, 77](u(x)− (0.3503 · x+ 316.1354) > 0)))

Wave:

Anchor Constraints STL (ϕ):
(G[0.16,0.20](∀x ∈ [14057, 29980](u(x)− (2.8994e− 05 · x− 2.5372) > 0))∧
G[0.28,0.37](∀x ∈ [38096, 58208](u(x)− (−2.9597e− 05 · x− 0.8070) > 0)))∨
F[0.45,0.92](∀x ∈ [71793, 88339](u(x)− (1.2523e− 05 · x− 2.4337) < 0))

Subgoal STL Proposal (ϕ′) by Controller:
(G[0.00,0.01](∀x ∈ [14057, 29980](u(x)− (3.0385e− 05 · x− 1.3785) > 0))∧
G[0.03,0.07](∀x ∈ [38096, 58208](u(x)− (−2.2655e− 05 · x− 0.5356) > 0)))∨
F[0.00,0.11](∀x ∈ [71793, 88339](u(x)− (1.6430e− 05 · x− 1.7368) < 0))

B.4 SOLUTIONS TO EXAMPLES IN FIG. 6

Fig.9 presents the optimized control inputs for the heat and wave problems shown in Fig.6. The
figure illustrates how the heat source (qt) and the force (Ft) applied at the end of the rod change over
time. We provide the solutions for 2 cases, the first column shows the solution obtained by directly
solving the problem ϕ, while the second column shows the solution to solve the problem ϕ after the
subgoal ϕ′.

C DATASET DETAILS

C.1 PDE PARAMETER RANGES

For generating our dataset, we sample hyperparameters (that define control problems) in the following
range (Table 7 and 8). Note that our heat and wave problems are all 1D, making some dimension-
related units different from those in 3D.

18

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(N
)

(m
W
)

(S) (S)

Figure 9: Synthesized control inputs for the heat (top) and the wave (bottom) problems in Fig.6. Left: Solution
for directly solving ϕ. Right: Solution for solving ϕ based on subgoal ϕ′, where red vertical dashes indicate the
control shift from ϕ′ to ϕ.

Table 7: Ranges for hyperparameters used in heat problems.
Rod Length

(mm)
Fixed Temp.

(K)
Max Time

(s) Linear Profile Param. Thermal Conductivity
(mW ·mm/K)

Density
(kg/mm)

Specific Heat Capacity
(µJ/kg/K)

L temp tmax a b κa (×106) κb (×106) ρa (×10−6) ρb (×10−6) ca (×108) cb (×108)
[50, 300] [250, 350] [5, 15] [-0.5, 0.5] temp + [-20, 20] [1.2, 1.8] [0.4, 1.2] [3, 6] [3, 6] [3, 4.5] [4.5, 4.8]

Table 8: Ranges for hyperparameters used in wave problems.
Rod Length

(mm)
Density

(kg/mm)
Young’s Modulus

(N)
Max Time

(s) Linear Profile Param.

L ρsteel (×10−6) ρbrass (×10−6) Esteel (×108) Ebrass (×108) tmax a (×10−5) b
[60000, 140000] [7.6, 8] [8.4, 8.8] [2, 2.4] [1, 1.8] [0.5, 2] [-5, 5] [-3, 3]

C.2 RULES FOR DATA GENERATION

From STL to Natural Language. Each natural language problem consists of two parts: one part
defines the premises, such as the material density, initial temperature, and rod length; the other part
describes the constraints, which can be expressed as an STL formula.

To convert the STL formula into informal language, each constraint and condition is mapped to
corresponding phrases. For instance, the constraint conditions F and G are described as “for one
point during” and “for all time between”, respectively. The comparison conditions are mapped based
on the problem type: for heat problems, > indicates “the temperature distribution of the rod should
be greater than”; for wave problems, > indicates “the displacement of the rod should be stretched
over”.

We then consider the ∨ and ∧ logical operators after converting each individual constraint. For
problems with two constraints, we introduce transition words such as “moreover” for ∧ and “ei-
ther. . . or. . . ” for ∨. For problems with three constraints, we design templates that account for the
hierarchy of constraints based on the placement of parentheses in the STL formula that defines the
logical order.

For example, given the STL syntax (A ∧ B) ∨ C, the template is: “Either satisfy the conditions
that A and also B; or satisfy the condition that C.” For A ∧ (B ∨C), the template is: “Satisfy A.
Afterwards, either consider B or C.”

From STL to Python. To parse the predicted STL into Python in Table 6, we first extract logical
connectives (∨,∧), rod intersections, and constraint equations. Based on the number of constraints,
the corresponding variables are inserted into a Python script template. The time intervals and

19

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

constraint conditions (G,F) are passed directly into the script to preserve the original STL syntax.
The generated outputs may fail to convert due to hallucinations or syntax errors.

For example, given the STL Logic below:

G[0.049,0.053](∀x ∈ [9829, 19907](u(x)− (1.882e− 05 · x+ 0.187) < 0))∧
F[0.051,0.149](∀x ∈ [40199, 56082](u(x)− (3.356e− 06 · x+−0.510) < 0)))∨
F[0.061,0.169](∀x ∈ [75646, 98769](u(x)− (−1.390e− 05 · x+ 2.844) > 0)

We convert into its Python snippet:

apc0 = l o g i c . APCont ([9 8 2 9 , 19907] , " <" ,
lambda x : 1 .882 e −05 * x + 0 . 1 8 7 , lambda x : 1 .882 e −05)

apc1 = l o g i c . APCont ([4 0 1 9 9 , 56082] , " <" ,
lambda x : 3 .356 e −06 * x + −0.510 , lambda x : 3 .356 e −06)

apc2 = l o g i c . APCont ([7 5 6 4 6 , 98769] , " >" ,
lambda x : −1.390 e −05 * x + 2 . 8 4 4 , lambda x : −1.390 e −05)

c r e g i o n s = {"A" : apc0 , " B " : apc1 , " C " : apc2 }
c s p e c = " (((G_ [0 . 0 4 9 , 0 . 0 5 3] (A)) &

(F_ [0 . 0 5 1 , 0 . 1 4 9] (B))) |
(F_ [0 . 0 6 1 , 0 . 1 6 9] (C))) "

C.3 CHATGPT AUGMENTATION

We adopt the data augmentation pipeline proposed by (Pan et al., 2023), where ChatGPT 4o-mini is
prompted to rephrase each natural language problem five times. The problems are formulated based
on STL logic with PDE parameter variables enclosed in squared brackets, which are further replaced
with randomly values sampled from ranges in Appendix C.1. For example:

Prompt: Rephrase the source sentence in 5 different ways. Make the outputs as diverse as possible.
Make sure not to change the equations starting with mu and parameters in the squared brackets, and
maintain all the parameters while rephrasing.

Source (original problem): For one point during the time interval [t0] and [t1], the temperature
distribution of the rod should be larger than the linear profile mu0(x) = [a0] * x + [b0] between
section [r0] and [r1].

GPT Outputs:

1. At a specific moment within the time period [t0] to [t1], the temperature distribution along the rod
must exceed the linear profile mu0(x) = [a0] * x + [b0] in the segment defined by [r0] and [r1].

2. Within the time frame of [t0] to [t1], there should be at least one instance where the rod’s
temperature distribution surpasses the linear profile mu0(x) = [a0] * x + [b0] from [r0] to [r1].

3. During the interval between [t0] and [t1], there is a moment at which the temperature across the
rod must be greater than the linear profile mu0(x) = [a0] * x + [b0] within the range of [r0] and [r1].

4. Throughout the duration from [t0] to [t1], there exists a point in time where the temperature
distribution of the rod should be greater than the linear profile mu0(x) = [a0] * x + [b0] applicable
between the sections [r0] and [r1].

5. At some time during the interval between [t0] and [t1], it is required that the temperature distribution
of the rod exceeds the linear profile mu0(x) = [a0] * x + [b0] in the region from [r0] to [r1].

Table 9 shows the character-level relative edit distance between each natural language problem and
its 5 augmentations based on the problem type and the number of constraints.

D COLLECTION OF MANUALLY WRITTEN PDE CONTROL PROBLEMS

We overview our questionnaire in Fig. 10. For the questionnaire collection, each Zoom session takes
one hour, including background instruction and manual design (with interactive guidance). We further
show the statistics of the background of participants in Fig. 11.

20

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 9: Averaged relative edit distance between the problem’s natural language and 5 GPT augmentions.
Deviations are in parentheses.

PDE

Relative Edit Distance

Number of Constraints
1 2 3

Heat 0.431 (0.0545) 0.456 (0.0505) 0.490 (0.0398)

Wave 0.455 (0.0524) 0.472 (0.0433) 0.484 (0.0352)

Difference between Synthetic and Manual Data We observe some differences between synthetic
and manually generated data that may lead to the model’s failure to produce valid STL logic:

• Ambiguous symbol usage, such as using “ho” instead of “rho” to denote material density.

• Inconsistent units within a single sentence. For example, “Assume that the discretized time interval
is 0.05s and the maximum time is 7400 milliseconds.”

• Insufficient information, where four samples fail to fully describe the material properties. For
instance, the manual data only provides the density of one material after the statement "the rod is
composed of two materials".

Figure 10: Google Form for collecting manually written PDE control problems.

Major

16 responses

Education Level

16 responses

Math
EE/CS
Physics
Mechanics
Others6.3%

50%

43.8%

PhD (graduated or
current)
Master (graduated or
current)
Undergraduate
(graduated or current)

18.8%43.8%

37.5%

Major

16 responses

Education Level

16 responses

Math
EE/CS
Physics
Mechanics
Others6.3%

50%

43.8%

PhD (graduated or
current)
Master (graduated or
current)
Undergraduate
(graduated or current)

18.8%43.8%

37.5%

Figure 11: Background of our questionnaire participants.

21

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E TRAINING DETAILS

We leverage the pretrained MathCoder2-DeepSeekMath-7B Lu et al. (2024) checkpoint (MathCoder2)
which has a 4096-token context length. All our trained models are evaluated zero-shot. For fair
comparison of our models with MathCoder2, we provide two few-shot examples for the latter to
leave sufficient tokens to generate a valid output (whether STL or Python). We similarly provide two
few-shot examples for GPT-4o and o1-mini.

Our instructions are structured in the Alpaca format Taori et al. (2023).

E.1 AUTOFORMALIZATION: SFT OF TRANSLATOR

The Translator was trained with two 6000Ada GPUs using a per-GPU batch size of 16 and 4 gradient
accumulation steps for a total of 3000 steps. We fine-tuned the MathCoder2-DeepSeekMath-7B
parameter model from Lu et al. (2024) with LoRA rank r = 64 and α = 256.

Prompt: Below is a natural language description of partial differential equation optimization problem.
Translate the problem into Latex code following spatial-signal temporal logic.

E.2 PROGRAM SYNTHESIS: SFT OF CODER

The Coder further fine-tuned the Translator with supervised fine-tuning and LoRA, rank r = 64 and
α = 256, to produce Python code from natural language and STL pairs. This was trained with two
6000Ada GPUs using a per-GPU batch size of 8 and 8 gradient accumulation steps for a total of 3000
steps.

We design two prompts, firstly for generating python code aligned with the anchor STL, and secondly
for generating python code aligned with the proposed subgoal STL. The natural language problem is
provided in both cases to extract system settings.

Prompt: Below is a natural language description of partial differential equation optimization problem,
paired with your spatial-signal temporal logic description of the same problem provided earlier. Note
that there may be mistakes in the spatial-signal temporal logic statement but the natural language
description is accurate. Translate the problem into Python code following spatial-signal temporal
logic.

Prompt: Below is a natural language description of partial differential equation optimization problem,
paired with your spatial-signal temporal logic description of an intermediate problem provided earlier.
Instead of optimizing the natural language problem directly, we want to optimize the intermediate
problem to produce a state that will better serve to achieve the final conditions outlined in the natural
language problem. Your spatial-signal temporal logic description in latex paired to the original
problem describes this intermediate problem. Translate the intermediate problem into Python code
following spatial-signal temporal logic.

In practice, we find it to be helpful to supervise fine-tune the Coder with misaligned (NL, STL) pairs
to promote the subgoal STL constraints when synthesizing the corresponding Python program for the
subgoal STL.

E.3 REASONING: RLHF OF CONTROLLER

The Controller is trained with DPO Rafailov et al. (2024) from the Translator checkpoint with LoRA
rank r = 64 and α = 256. We train with two 6000Ada GPUs using a per-GPU batch size of 2 and 4
gradient accumulation steps for a total of 16,800 steps. For DPO, we set β = 0.1, and λ = 1 in Eq. 3.

Prompt: Below is a natural language description of partial differential equation optimization problem.
Instead of optimizing the provided problem directly, we want to optimize an intermediate problem to
produce a state that will better serve to achieve the final conditions outlined in the natural language
problem. Generate a spatial-signal temporal logic description in Latex code for such an intermediate
problem.

22

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

F MORE EXPERIMENT RESULTS

F.1 END-TO-END EVALUATION OF PROGRAM SYNTHESIS

In Table 10 and Table 11, we provide end-to-end results of program synthesis on synthetic and
manual data, respectively. In these results, coders take LLM-generated (noisy) STLs in their prompt.
Overall, our Coder LLM still achieves strong results. Moreover, we also show another baseline
“Coder-only”, where the Coder LLM takes only natural language as the input without explicitly
formalized STLs. In Table 11, we can see that our method (autoformalization + program synthesis)
outperforms “Coder-only” (direct program synthesis without autoformalization), emphasizing the
importance of leveraging formal language (STL).

Table 10: End-to-end autoformalization and program synthesis. The Coder produces Python using the Transla-
tor’s STL output. MathCoder2 produces Python using its own STL output. Coder-only is a MathCoder2 model
fine-tuned to produce python directly from natural language and seeing no STL. To be comparable with the
Translator + Coder autoformalization and program synthesis, Coder-only is trained for 6000 steps with the same
settings as the Translator and Coder (Appendix E). The evaluation for Coders is zero-shot. MathCoder2 is
evaluated with two few-shot examples. Bold indicates the best, underline indicates the runner up.

PDE Model Executability (↑)
(Coder)

Utility
RMSE (↓)

Heat
Ours 0.9978 (0.0015) 0.0174 (0.0065)

MathCoder2 0.9197 (0.02731) 1.3841 (0.1196)
Ours (Coder-only) 0.9978 (0.0009) 0.0235 (0.00163)

Wave
Ours 0.9620 (0.0098) 0.0076 (0.0011)

MathCoder2 0.8305 (0.0475) 0.8332 (0.0965)
Ours (Coder-only) 0.9779 (0.002148) 0.02522 (0.000583)

Table 11: End-to-end autoformalization and program synthesis on manually written data (Sec. 3.2). The Coder
produces Python using the Translator’s STL output. MathCoder2 produces Python using its own STL output.
Coder-only is a MathCoder2 model fine-tuned to produce python directly from natural language and seeing
no STL. To be comparable with the Translator + Coder autoformalization and program synthesis, Coder-only
is trained for 6000 steps with the same settings as the Translator and Coder (Appendix E). The evaluation for
Coders is zero-shot. MathCoder2 is evaluated with two few-shot examples. Deviations over 3 seeds are in
parentheses. Bold indicates the best, underline indicates the runner up.

PDE Model Executability (↑)
(Coder)

Utility
RMSE (↓)

Heat
Ours 0.4510 (0.0832) 0.1837 (0.0095)

MathCoder2 0.4902 (0.1386) 0.2928 (0.0780)
Ours (Coder-only) 0.6078 (0.0555) 2.442 (0.0)

Wave
Ours 1.0 (0.0) 0.0119 (0.0)

MathCoder2 0.9020 (0.0277) 1.767 (0.8109)
Ours (Coder-only) 0.4706 (0.0) 0.0890 (0.0)

F.2 PDE REASONING

F.2.1 END-TO-END EVALUATION OF PDE REASONING

We include end-to-end evaluation results, where we use the Coder LLM to generate Python code after
the Controller LLM propose subgoal STLs in Table 12. In general, our Controller still shows strong
reasoning capability (both the success rate and utility gain), and also high rate of proposing valid
subgoal STL (ϕ′).

F.2.2 PROPORTION OF VALID PREDICTIONS

We notice that the number of valid predictions varied significantly depending on the model. Therefore,
we include Table 13 for STL and Table 14 for Python program to comprehensively show the number
of valid predictions that each model makes under each type of problem and difficulty level. Please
note that the values in Table 13 and Table 14 are not expressed as percentages.

23

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 12: End-to-end scientific reasoning over PDE control problems via our Controller LLM. Deviations over
5 seeds are in parentheses. “Valid STL ϕ′ (%)” is the ratio of proposed subgoal STL ϕ′ without any syntax
errors. Bold indicates the best, underline denotes the runner-up. “x” indicates no valid STLs were generated for
evaluation. “-” indicates not applicable.

PDE Difficulty
Level

Success Rate P ↑ Utility Gain ∆r ↑

Ours Math-
Coderv2

GPT
(o1-mini)

GPT
(4o) Ours Math-

Coderv2
GPT

(o1-mini)
GPT
(4o)

Heat

Easy 0.490 (0.1666) 0.399 (0.2605) 0.154 (0) 0.160 (0.0686) 0.651 (1.1150) 0.352 (1.3309) -1.262 (0) -0.865 (2.0310)

Medium 0.345 (0.1640) 0.339 (0.2345) 0 (0) 0.121 (0.0497) -1.055 (0.9657) -0.061 (0.4098) -2.455 (0) -2.294 (1.7773)

Hard 0.307 (0.1363) 0.239 (0.1895) 0.074 (0.0262) 0.150 (0.0797) -1.788 (2.1369) -1.254 (0.8047) -3.992 (0.5175) -2.603 (2.4486)

All 0.381 (0.1556) 0.326 (0.2282) x 0.144 (0.0660) -0.731 (1.4059) -0.321 (0.8485) x -1.921 (2.0856)

Wave

Easy 0.897 (0.0502) 0.854 (0.0894) x 1 (0) 1.423 (0.4135) 1.173 (0.6424) x 1.907 (0.0333)

Medium 0.836 (0.0936) 0.743 (0.0410) x 0.958 (0.0105) 0.865 (0.4508) 0.758 (0.4265) x 0.803 (0.2279)

Hard 0.331 (0.1214) 0.336 (0.1041) x 0.416 (0.1113) -0.289 (0.5723) -0.649 (0.3948) x -0.376 (0.2142)

All 0.688 (0.0884) 0.644 (0.0781) x 0.791 (0.0406) 0.698 (0.5773) 0.427 (0.4879) x 0.778 (0.1585)

Valid STL ϕ′ (%) (↑) 75.65 (1.50) 27.95 (5.72) 0.09 (0.78) 3.25 (0.63) 75.65 (1.50) 27.95 (5.72) 0.09 (0.78) 3.25 (0.63)

Table 13: Proportion of valid subgoal STL generations

PDE Difficulty
Level

Proportion (∈ [0, 1]) of valid STL ϕ′ (↑)

Ours Math-
Coderv2

GPT
(o1-mini)

GPT
(4o)

Heat

Easy 0.8851 (0.0110) 0.507 (0.1354) 0 0.028 (0.0078)

Medium 0.891 (0.0243) 0.491 (0.0962) 0.0004 (0.0015) 0.031 (0.0046)

Hard 0.881 (0.0148) 0.493 (0.0956) 0.002 (0.0045) 0.052 (0.0113)

All 0.886 (0.0167) 0.497 (0.1091) 0.0008 (0.002) 0.037 (0.0079)

Wave

Easy 0.756 (0.0228) 0.309 (0.1113) 0 0.008 (0.0066)

Medium 0.748 (0.0257) 0.397 (0.0947) 0 0.015 (0.0052)

Hard 0.799 (0.0197) 0.349 (0.0990) 0 0.018 (0.0036)

All 0.768 (0.0227) 0.352 (0.1016) 0 0.014 (0.0051)

Table 14: Proportion of valid subgoal Python program generations

PDE Difficulty
Level

Proportion (∈ [0, 1]) of valid Python program (↑)

Ours Math-
Coderv2

GPT
(o1-mini)

GPT
(4o)

Heat

Easy 0.754 (0.0244) 0.301 (0.0624) 0.014 (0.0193) 0.047 (0.0113)

Medium 0.767 (0.0261) 0.295 (0.0503) 0.012 (0.0124) 0.039 (0.0048)

Hard 0.828 (0.0113) 0.329 (0.0532) 0.027 (0.0147) 0.058 (0.0085)

All 0.783 (0.0206) 0.308 (0.0553) 0.018 (0.0155) 0.048 (0.0082)

Wave

Easy 0.702 (0.0080) 0.211 (0.0675) 0 0.012 (0.0048)

Medium 0.713 (0.0113) 0.278 (0.0538) 0 0.018 (0.0041)

Hard 0.776 (0.0086) 0.265 (0.0561) 0 0.021 (0.0044)

All 0.730 (0.0093) 0.251 (0.0591) 0 0.017 (0.0044)

G MORE RELATED WORKS

G.1 AUTOFORMALIZATION IN AI-FOR-MATH

Autoformalization, the process of converting informal mathematical statements or instructions into
formal representations, is explored through a variety of techniques. A significant subset of works
employed LLMs to translate informal descriptions into formal representations. VernaCopter van de
Laar et al. (2024) leveraged LLMs to convert natural language commands into Signal Temporal
Logic (STL) specifications, integrating syntax and semantic checkers for correctness. Pretrained
LLMs like GPT-3.5 and GPT-4o were leveraged to translate informal problems into Isabelle proof
sketches, refining outputs through iterative prompting and heuristic-based validation Zhou et al.
(2024). Back-translation Jiang et al. (2023) trained LLMs to map between informal and formal
theorem statements in Lean4 and Isabelle. These approaches focused on leveraging LLMs for direct
autoformalization while incorporating filtering mechanisms to improve reliability. In contrast, hybrid
approaches interact between manual and autoformalization. Several studies combined expert-curated
manual formalization with automated techniques to improve accuracy. DeepSeek-Prover Xin et al.
(2024), Trigo Xiong et al. (2023), and Murphy et al. (2024) used an iterative pipeline where initial
formalization was manually crafted, followed by automated expansion and refinement. LILA Mishra
et al. (2022) similarly applied domain-specific rules and Python-based DSL annotations for automatic

24

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

formalization while relying on human annotators for cases where automation failed. These hybrid
approaches aimed to balance the scalability of automation with the precision of manual verification.
In our work, we for the first time train LLMs to autoformalize informal PDE control problems into
formalized STL logic.

G.2 PDE CONTROLS

PDEs are essential for modeling physical phenomena, helping researchers predict behaviors, optimize
processes, and drive innovation across fields like climate modeling and material design. PDE control
focuses on manipulating system behaviors, ensuring stability in applications like robotics and reactors,
while enabling systems to adapt to changing conditions for more sustainable solutions Alvarez (2020);
Holl et al. (2020); Ramos et al. (2022); Mukherjee & Liu (2023); Wei et al.; 2024b). Adjoint methods
have been widely used for controlling physical systems governed by PDEs due to their accuracy,
despite being computationally expensive Lions (1971); McNamara et al. (2004); Protas (2008), while
deep learning-based approaches, such as supervised learning Holl et al. (2020); Hwang et al. (2022),
optimize control directly via backpropagation through time. Reinforcement learning (RL) Farahmand
et al. (2017); Pan et al. (2018); Rabault et al. (2019) optimizes control by treating signals as actions
for sequential decision-making in fluid dynamics applications like drag reduction, heat transfer,
and swimming Garnier et al. (2021). PDE control can also be discretized and formulated into a
mixed-integer linear programming (MILP) problem via finite element method (FEM) Sadraddini
& Belta (2015); Alvarez (2020). More recently, diffusion-based generation has been leveraged to
jointly optimize the PDE simulations and control signals Wei et al. (2024a). From an optimization
perspective, our work leverages LLMs to propose better initializations (initial conditions) to solve the
PDE control problem.

G.3 LLM-BASED TASK PLANNING

Natural language (NL)-based task planning in robotics has gained increasing attention. Approaches
such as Pan et al. (2023) enable task-specific translations from informal language to Linear Temporal
Logic (LTL), allowing robots to follow structured plans even in low-resource scenarios. Building on
this foundation, recent research has explored the use of LLMs for task planning, demonstrating models’
potential in decision-making and executing complex plans Singh et al. (2023); Shah et al. (2023); Li
et al. (2022). For instance, Wang et al. leveraged LLMs to arrange and predict execution sequences
for robots, achieving a comparable success rate to human users. Additionally, Ren et al. (2023)
addressed the hallucination issue from LLM-based planners by incorporating uncertainty alignment,
improving the reliability of generated plans. More recently, CLMASP Lin et al. (2024) refined
LLM-generated skeleton plans using Answer Set Programming (ASP) for robotic task execution.
Inspired by these subgoal approaches, we for the first time train LLMs to perform reasoning and
planning on PDE control problems.

H DATASHEETS FOR DATASETS

This document is based on Datasheets for Datasets by Gebru et al. (2021).

H.1 MOTIVATION

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a description.
The dataset was created to enable large language models (LLMs) to tackle complex Partial Differential
Equation (PDE) control problems. The specific purpose is to advance automated formalization and
reasoning in applied mathematics, addressing the lack of datasets tailored to PDE-related tasks. The
dataset bridges informal natural language problems and formal specifications/code for PDE systems,
fostering research in scientific computing and engineering.

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?
The dataset was created by the anonymous authors of this PDE-Controller paper, affiliated with a

25

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

research group focused on AI-for-math applications.

What support was needed to make this dataset? (e.g.who funded the creation of the dataset? If
there is an associated grant, provide the name of the grantor and the grant name and number, or if it
was supported by a company or government agency, give those details.)
The creation of the dataset was supported by research funding for developing novel applications of
LLMs in applied mathematics. Further support included computational resources for fine-tuning
LLMs and manual curation by domain experts.

Any other comments?
The dataset represents a pioneering effort to merge AI capabilities with PDE-based scientific
reasoning, significantly expanding the potential applications of LLMs.

H.2 COMPOSITION

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description.
Each instance represents a PDE control problem, including: 1) Informal problem descriptions in
natural language; 2) Formal specifications in Signal Temporal Logic (STL); 3) Python code that
integrates PDE simulation and optimization tools.

How many instances are there in total (of each type, if appropriate)?
The dataset comprises over 2.13 million synthetic (natural language, STL, Python code) triplets, with
additional real-world examples including 17 manually written heat problems and 17 wave problems.

Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the
sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable).
It is a synthesized dataset designed to cover a diverse range of PDE control problems, sampled and
augmented from representative templates to ensure coverage of key scenarios and complexities.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.
Each instance includes: 1) Informal natural language descriptions of PDE problems; 2) Formal
representations in STL syntax; 3) Python code for solving the PDE problem using optimizers such as
Gurobi.

Is there a label or target associated with each instance? If so, please provide a description.
Yes, each instance includes ground-truth STL and Python code, verified for alignment and
executability.

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.
Not Applicable.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.
Yes, relationships between natural language, STL specifications, and Python code are explicitly

26

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

maintained for traceability.

Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them.
Yes, the dataset is split into training and testing sets, with specific splits for heat and wave problems.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.
Synthetic data is validated through automated checks and human verification. Errors may arise from
annotation inconsistencies, especially in manually curated problems.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival versions
of the complete dataset (i.e., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please provide descriptions of all external resources and
any restrictions associated with them, as well as links or other access points, as appropriate.
The dataset is self-contained, with no reliance on external or dynamic resources.

Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of
individuals’ non-public communications)? If so, please provide a description.
No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.
No.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.
No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions within
the dataset.
No.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.
No.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)? If so, please
provide a description.
No.

Any other comments?
The dataset’s richness in complexity and diversity makes it a significant resource for advancing
applied mathematics via AI.

27

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

H.3 COLLECTION

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If
so, please describe how.
The data was synthesized from key PDE control templates, augmented through principled methods,
and verified by experts. Real-world problems were collected via a questionnaire-based manual
curation process involving students and researchers.

Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created. Finally, list when
the dataset was first published.
The synthetic dataset was generated in late 2024, with real-world problems curated in 2025.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated?
Procedures included automated STL generation, natural language augmentation using GPT-4, and
manual problem formulation.

What was the resource cost of collecting the data? (e.g. what were the required computational
resources, and the associated financial costs, and energy consumption - estimate the carbon footprint.)
Resource costs included computational expenses for data synthesis and human time for manual
curation and validation.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?
Not applicable.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?
Graduate students and researchers with expertise in applied mathematics and AI.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or
other access point to any supporting documentation.
No.

Does the dataset relate to people? If not, you may skip the remainder of the questions in this
section.
No.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?
Our manually written data is collected from each individual with questions.

Were the individuals in question notified about the data collection? If so, please describe (or
show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.
N/A

28

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Did the individuals in question consent to the collection and use of their data? If so, please
describe (or show with screenshots or other information) how consent was requested and provided,
and provide a link or other access point to, or otherwise reproduce, the exact language to which the
individuals consented.
N/A

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? If so, please provide a description, as well as a link
or other access point to the mechanism (if appropriate)
N/A

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis)been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.
No. Our data are intended to be used in evaluation only and all charts are publicly avialable.

Any other comments? N/A

H.4 PREPROCESSING / CLEANING / LABELING

Was any preprocessing/cleaning/labeling of the data done(e.g.,discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remainder of the
questions in this section.
Yes, preprocessing included: 1) Reformatting natural language prompts; 2) Validating STL and
Python code for correctness and executability; 3) Augmenting natural language data using rephrasing
techniques.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
Yes, raw data and intermediate representations are retained for reproducibility and future use.

Is the software used to preprocess/clean/label the instances available? If so, please provide a
link or other access point.
The tools and scripts for preprocessing are included in the supplementary materials of the
PDE-Controller framework.

Any other comments?
Preprocessing ensures high-quality alignment between natural language, formal logic, and executable
code.

H.5 USES

Has the dataset been used for any tasks already? If so, please provide a description.
Yes, it was used to train and evaluate the PDE-Controller framework and benchmark its performance
against state-of-the-art LLMs.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.
N/A

29

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

What (other) tasks could the dataset be used for?
The dataset could be used for: 1) Training models for scientific reasoning and formalization; 2)
Developing tools for automated program synthesis; 3) Advancing research in AI-driven engineering
and physics.

Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? For example, is there anything that
a future user might need to know to avoid uses that could result in unfair treatment of individuals or
groups (e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial harms,
legal risks) If so, please provide a description. Is there anything a future user could do to mitigate
these undesirable harms?
N/A

Are there tasks for which the dataset should not be used? If so, please provide a description.
The dataset is not suitable for tasks unrelated to PDE control or tasks requiring real-world human data.

Any other comments?
The dataset’s structured format supports reproducible and extensible research in applied mathematics.

H.6 DISTRIBUTION

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.
Yes, the dataset will be made publicly available for research purposes.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?
The dataset will be distributed via GitHub and academic repositories, with accompanying
documentation.

When will the dataset be distributed?
The dataset is expected to be released following the ICML 2025 conference.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU,
as well as any fees associated with these restrictions.
Yes, it will be distributed under a permissive license (e.g., CC BY-SA 4.0) to encourage research use.

Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? If so, please describe these restrictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.
All charts are subjected to their respective copyrights by the authors of this paper.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation.
N/A

Any other comments?
Distribution will include detailed usage guidelines to ensure proper application of the dataset.

30

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

H.7 MAINTENANCE

Who is supporting/hosting/maintaining the dataset?
The authors of the PDE-Controller framework.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Contact information will be provided with the dataset release.

Is there an erratum? If so, please provide a link or other access point.
N/A

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to users (e.g.,
mailing list, GitHub)?
Yes, periodic updates will incorporate additional real-world problems and refinements.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were individuals in question told that their data would be retained for a
fixed period of time and then deleted)? If so, please describe these limits and explain how they
will be enforced.
N/A

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users.
Yes, previous versions will remain accessible for reproducibility.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified? If
so, please describe how. If not, why not? Is there a process for communicating/distributing these
contributions to other users? If so, please provide a description.
Yes, contributions will be encouraged through a collaborative platform (e.g., GitHub).

Any other comments?
The dataset’s maintainers are committed to ensuring its long-term usability and relevance for scientific
research.

I MISC.

URL to benchmark. The benchmark URL can be found here: N/A

URL to Croissant metadata. The Croissant metadata URL can be found here: N/A

Author statement & license information. We the authors bear all responsibility in case of violation
of rights.

Hosting and maintenance. We will have a dedicated GitHub page for hosting instructions. We are
committed to performing major maintenance every 6 months.

Dataset Structure. All files are stored in the JSONL format. For the translator dataset, we store
separate files based on STL syntax formats, the number of constraints, and the train-test split. Each
training file contains more than 600 samples, and each test file contains more than 150 samples. Each
sample includes the informal question in natural language, the STL representation in LaTeX, and the
corresponding Python script.

For the preference dataset, we split the files based on three difficulty levels and the train-test split.
Each sample in the file contains the informal question in natural language, the winner STL that

31

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

improves the informal question, and the loser STL that worsens it. For each STL, we also provide the
resulting utility score.

32

	Introduction
	Preliminaries
	Background of PDE Control
	Formal Methods for PDE Control
	Optimization

	Methods
	Overview
	Principled Data Synthesis with Augmentations
	Autoformalization
	PDE Reasoning via Controller LLM
	What is Reasoning for PDE Control?
	Building the Controller LLM.

	Program Synthesis

	Experiments
	Accurate Autoformalization and Program Synthesis
	Improved Utility via PDE Reasoning of Controller
	Case Study.

	Conclusion
	More Background on Formal Methods for PDE Control
	PDEs
	Utility of STL
	MILP Formulation of Control Synthesis

	Case Examples and Visualizations
	Heat
	Wave
	STLs for Examples in Fig. 6
	Solutions to Examples in Fig. 6

	Dataset Details
	PDE Parameter Ranges
	Rules for Data Generation
	ChatGPT Augmentation

	Collection of Manually Written PDE Control Problems
	Training Details
	Autoformalization: SFT of Translator
	Program Synthesis: SFT of Coder
	Reasoning: RLHF of Controller

	More Experiment Results
	End-to-End Evaluation of Program Synthesis
	PDE Reasoning
	End-to-End Evaluation of PDE Reasoning
	Proportion of valid predictions

	More Related Works
	Autoformalization in AI-for-math
	PDE Controls
	LLM-based Task Planning

	Datasheets for Datasets
	Motivation
	Composition
	Collection
	Preprocessing / Cleaning / Labeling
	Uses
	Distribution
	Maintenance

	Misc.

