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Abstract

Recent literature has effectively leveraged diffusion models trained on continuous variables
as priors for solving inverse problems. Notably, discrete diffusion models with discrete la-
tent codes have shown strong performance, particularly in modalities suited for discrete
compressed representations, such as image and motion generation. However, their discrete
and non-differentiable nature has limited their application to inverse problems formulated
in continuous spaces. This paper presents a novel method for addressing linear inverse prob-
lems by leveraging generative models based on discrete diffusion as priors. We overcome
these limitations by approximating the true posterior distribution with a variational dis-
tribution constructed from categorical distributions and continuous relaxation techniques.
Furthermore, we employ a star-shaped noise process to mitigate the drawbacks of traditional
discrete diffusion models with absorbing states, demonstrating that our method performs
comparably to continuous diffusion techniques with less GPU memory consumption.

1 Introduction

Diffusion models have gained significant attention as deep generative models, achieving remarkable success
in image (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Dhariwal & Nichol, 2021; Esser
et al., 2024), audio (Liu et al., 2023; Chen et al., 2024a), and video generation (Ho et al., 2022b;a). These
models operate by iteratively corrupting data and then learning to reverse this corruption process, ultimately
generating high-quality samples from noise. In parallel with continuous diffusion models, discrete diffusion
models have emerged as a compelling alternative. These models have gained traction by demonstrating
notable results not only in image (Gu et al., 2022), audio (Yang et al., 2023), and text generation (Austin
et al., 2021; Lou et al., 2023a) but also in more specialized areas such as motion data (Lou et al., 2023b;
Pinyoanuntapong et al., 2024), protein synthesis (Gruver et al., 2024), and graph generation (Vignac et al.,
2023).

Building on these advancements, researchers have made significant progress in expanding the application of
diffusion models. They have explored using diffusion models, trained either directly on pixel space or on
latent representations derived from variational autoencoders (VAEs), to address inverse problems (Kawar
et al., 2022; Chung et al., 2023b; Wang et al., 2023) and carry out various conditional-generation tasks (Yu
et al., 2023; Bansal et al., 2024; He et al., 2024) without the need for additional training. These efforts
aim to use the powerful generative capabilities of diffusion models to tackle intricate problems and generate
conditional outputs, all while preserving the models’ original trained parameters.

The research on applying diffusion models to inverse problems and conditional generation has been pri-
marily restricted to diffusion models trained in continuous spaces, and methods using pre-trained discrete
diffusion models as priors remain limited (Gruver et al., 2024; Chen et al., 2024b; Li et al., 2024). One
of the main reasons is that the inherent nature of the generation process in discrete diffusion models in-
volves non-differentiable operations, posing a challenge for their application to inverse problems formulated
in continuous spaces. Therefore, controlling discrete diffusion models often necessitates an additional trained
network (Gruver et al., 2024; Nisonoff et al., 2024; Klarner et al., 2024; Vignac et al., 2023). Additionally,
training-free methods have been confined to relatively low-dimensional data (Chen et al., 2024b) or to specific
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Figure 1: Illustration of G2D2. At each time step t, variational categorical distribution p̃α is optimized
with respect to sum of prior loss and likelihood loss, followed by sampling zt−1. Both terms are continuously
differentiable, enabling continuous optimization.

tasks such as image inpainting (Gu et al., 2022). Recent work by Singhal et al. (2025) proposes Feynman Kac
steering, a general inference-time framework for steering diffusion models with reward functions. While this
approach does not require differentiating through reward functions and thus can be applied to discrete diffu-
sion models, the reward functions they employ, such as human preference scores, impose weaker constraints
on the generation process compared to typical inverse problems like deblurring, potentially significantly
compromising consistency with measurements.

Despite these limitations in applying discrete diffusion models to inverse problems, their potential advantages
in representing complex data distributions and generating high-fidelity samples motivate their exploration
as priors. When examining existing approaches for continuous diffusion models, conventional approaches
in continuous settings typically leverage gradient-based adjustments of the generation trajectory. These
methods aim to refine intermediate latents by computing gradients of a likelihood loss function, ensuring
they align well with the measurement equation or guidance target. This has been demonstrated in Chung
et al. (2023b) and Yu et al. (2023). However, directly extending this gradient-based control to discrete
diffusion models is challenging due to their inherently non-differentiable operations.

To address the fundamental challenge of non-differentiability in discrete diffusion models, we propose
Gradient-Guided Discrete Diffusion (G2D2), an inverse problem solving method that uses a discrete diffu-
sion model as a prior. Our focus is on solving inverse problems using a generative model based on a discrete
diffusion model specifically designed for discrete latent variables such as those found in vector-quantized
(VQ)-VAE models. G2D2 bridges the gap between continuous and discrete domains by using a continuous
relaxation technique to optimize the parameters of a variational distribution.

In addition to the differentiability issue, discrete diffusion models present another challenge when used for
inverse problems. These models often adopt “mask-absorbing” noise processes as their data corruption
process due to generation quality. However, this mask-absorbing approach has a significant drawback in
inverse-problem solving. For example, in discrete diffusion models for images, while a substantial portion
of the image structure is determined in the initial stages of generation (i.e., when only a few tokens are
determined), the mask-absorbing type does not allow transitions from an unmasked state to either a masked
state or other unmasked states. Our experiments demonstrate that this restriction imposes a significant
limitation on performance in solving inverse problems.

To overcome this structural limitation of mask-absorbing processes, we incorporate the star-shaped noise
process previously proposed in the context of continuous diffusion models (Okhotin et al., 2024; Zhang et al.,
2024). This process removes the dependency between consecutive sampling steps, expanding the space that
can be explored during generation. This process was originally proposed to enhance the performance of
diffusion models (Okhotin et al., 2024), but was later introduced as a decoupled noise annealing process
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in the context of inverse problems using continuous diffusion models, demonstrating its effectiveness for
continuous diffusion models (Zhang et al., 2024). In this study, we not only demonstrate that this process
can be effectively applied to discrete diffusion models, but also discover that it uniquely addresses potential
issues inherent in mask-absorbing-type discrete diffusion processes, specifically the inability to correct errors
introduced in the early stages during later inference steps.

To validate our proposed approach, we conduct comprehensive experiments comparing G2D2 to current
methods using standard benchmark datasets. Our results demonstrate that G2D2 achieves comparable
performance to continuous counterparts (within 0.02–0.05 LPIPS points) while reducing GPU memory usage
by up to 77% (4.7GiB vs 20.9GiB for PSLD). We also explore the application of a discrete prior-based
motion-data-generation model to solve an inverse problem, specifically path-conditioned generation, without
requiring further training. The results of our study indicate that G2D2 shows promise in tackling various
inverse problems by leveraging pre-trained discrete diffusion models.

2 Preliminaries

2.1 Discrete diffusion models for image generation

We first provide a brief overview of VQ-Diffusion (Gu et al., 2022; Tang et al., 2022), an image-generation
model based on discrete diffusion processes. VQ-Diffusion generates images in a two-step process. It first pro-
duces discrete latent representations z0 using a discrete diffusion model trained on representations obtained
from a pre-trained VQ-VAE model (Van Den Oord et al., 2017). It then transforms these representations
into the continuous image space using a decoder. Each element of z0 ∈ {1, . . . , K}dz corresponds to one of
the embedding vectors from the codebook, denoted as B := {b1, . . . , bK}, bk ∈ Rdb . During decoding, a
variable Z ∈ Bdz is constructed through codebook assignment, where (Z)i = bz0,i

and z0,i denotes the i-th
element of z0. This variable is then fed into a decoder D : Rdb×dz → Rdx0 that maps from the discrete token
embeddings to the continuous image space to obtain the final image: x0 = D(Z).

In discrete diffusion models, a forward Markov process gradually corrupts the discrete latent representation
z0, and a reverse process is learned to invert this process. A single step of the forward process of the Markov
chain z0 → · · · → zt → · · · → zT can be represented as,

q(zt,i|zt−1) = vT(zt,i)Qtv(zt−1,i), (1)

where v(zt,i) denotes a one-hot encoded vector representing the token at time step t, and Qt represents
the transition matrix, which determines the probabilities of transitions between tokens. VQ-Diffusion uses
a mask-absorbing-type forward process, which introduces a special masked token denoted as [MASK] in
addition to the K states from the VQ-VAE. The transition matrix is defined as follows, where the last
column represents the transition probabilities for the [MASK] token:

Qt =


αt + βt βt βt · · · 0

βt αt + βt βt · · · 0
βt βt αt + βt · · · 0
...

...
...

. . .
...

γt γt γt · · · 1

 , (2)

where the transition probabilities are determined by three parameters: αt, βt, and γt. In this process,
once a token transitions to the masked state, it remains masked in all subsequent steps, hence the term
“absorbing.” Specifically, αt represents the probability of a token remaining unchanged, βt denotes the
probability of transitioning to a different unmasked token, and γt indicates the probability of the token
being replaced with the [MASK] token. These parameters satisfy the constraint αt + (K − 1)βt + γt = 1 to
ensure valid probability distributions. The probability βt between unmasked tokens is generally set to a very
small value. These parameters are typically set so that q(zT |z0) assigns all probability mass to the [MASK]
token, and we also adopt this assumption.
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During inference, the latent variable z0 corresponding to the clean image is obtained by executing the
following reverse process:

pθ(zt−1|zt) =
∑
z0

q(zt−1|zt, z0)p̃θ(z0|zt), (3)

where q(zt−1|zt, z0) represents the posterior distribution determined by the forward process, and p̃θ denotes
the denoising network that predicts the denoised token distribution at t. The output of p̃θ is generally
modeled as independent categorical distributions for each dimension in z0. In practical applications such as
text-to-image generation, p̃θ is trained with conditional information (e.g., text prompts in VQ-Diffusion), al-
lowing for controlled generation. While the true data distribution q(z0) has dependencies across dimensions,
the denoising network p̃θ(z0|zt) typically models each dimension independently as categorical distributions.
However, the complete reverse process defined in (3) implicitly captures some of these dependencies through
the iterative application of the conditional distributions pθ(zt−1|zt). We distinguish between two distribu-
tions: the clean distribution p̃θ(z0|zt) directly estimated by the denoising network at a single step (which
treats dimensions independently), and the distribution pθ(z0|zt) obtained by running the reverse diffusion
process from t to t = 0, which better approximates the true data distribution with its dimensional depen-
dencies.

2.2 Linear-inverse-problem settings

Inverse problems involve estimating unknown data from measurement. The relationship between the mea-
surement data y ∈ Rdy and unknown ground-truth data x0 ∈ Rdx0 can be represented as

y = Ax0 + η, (4)

where A ∈ Rdy×dx0 is referred to as the forward linear operator, which describes the process by which the
measurement data y is obtained from data x0. We assume this operator is known. The term η represents
measurement noise, which we assume follows an isotropic Gaussian distribution with a known variance σ2

η.
Consequently, the likelihood function q(y|x0) can be described as N (y; Ax0, σ2

ηI).

One of the primary challenges in inverse problems is their ill-posed nature. This means that for any given
measurement y, multiple candidate solutions may exist. To address this issue and determine x0, a common
approach is to assume a prior distribution for x0, such as a Laplace distribution. Diffusion models have
been utilized as more powerful and expressive priors, offering enhanced capabilities in solving these inverse
problems (Kawar et al., 2022; Chung et al., 2023b; Wang et al., 2023; Rout et al., 2023). These diffusion-based
methods are able to produce data that not only fit the measurement data but also exhibit high likelihood
under the prior model. Given a prior q(x0), the objective in the inverse problem is to sample from the
posterior distribution q(x0|y), which, according to Bayes’ theorem, is proportional to q(y|x0)q(x0).

These methods can be categorized based on how they incorporate the information from the measurement data
y into the generation trajectory of diffusion models. Methods such as denoising diffusion restoration models
(DDRM) (Kawar et al., 2022) and denoising diffusion null-space models (DDNM) (Wang et al., 2023) leverage
the assumption of linear operators, using singular value decomposition of the forward process to control the
generative process. In contrast, methods such as diffusion posterior sampling (DPS) (Chung et al., 2023b)
and posterior sampling with latent diffusion (PSLD) (Rout et al., 2023) operate by propagating the gradient
of a loss term through the generative process. This loss term is designed to maximize the measurement
likelihood, specifically by minimizing the term ∥y − Ax0∥2

2.

However, while these methods work well with continuous diffusion models, their application to generative
models that use discrete diffusion models as priors is not straightforward. This limitation stems from two
primary factors. First, the former methods (DDRM and DDNM) are specifically designed for diffusion models
trained directly in the pixel domain. Second, while the latter methods (DPS and PSLD) can be extended to
latent diffusion models that operate in continuous latent spaces, they encounter difficulties when handling
discrete diffusion models, where the generative process involves inherently non-differentiable operations.
The core challenge lies in the lack of a direct mechanism to propagate gradients of the loss function through
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Figure 2: Empirical demonstration of mask-absorbing characteristics in discrete diffusion models. All images
are generated using the text prompt “a face of monkey”. Top row: Diverse samples from text-conditioned
sampling (pθ(z0)). Middle row: Multiple samples conditioned on the same zt=90 (pθ(z0|zt=90)). Bottom
row: Multiple samples conditioned on the same zt=80 (pθ(z0|zt=80)). This demonstrates that in mask-
absorbing processes, image structure is largely determined in early sampling steps, with decreasing diversity
as sampling progresses, making it difficult to correct inconsistencies with measurement data during inverse
problem solving.

the generative process in discrete diffusion models. In such models, after generating discrete data, a non-
differentiable operation (i.e., codebook assignment) is followed by a decoding operation into continuous space,
which prevents the application of conventional gradient-based guidance.

3 Gradient-Guided Discrete Diffusion, G2D2

In this section, we propose Gradient-Guided Discrete Diffusion (G2D2), an inverse problem solving method
that leverages discrete diffusion models as priors. Our approach addresses two key challenges: the non-
differentiability of discrete diffusion models and the limitations imposed by widely-used mask-absorbing
noise processes. First, we introduce a star-shaped noise process to address the latter issue and define a
more tractable variant of the star-shaped noise process distribution, which we call the star-decomposed
distribution. We then address the former challenge of non-differentiability by bridging the gap between
discrete and continuous domains through optimizing a variational distribution with continuous relaxation.
These methodological components are integrated into a unified, practical inference algorithm.

3.1 Star-shaped noise process for enabling inherent re-masking

A key challenge in applying discrete diffusion models to inverse problems is addressing the limitations of
mask-absorbing noise processes. As described in Section 2.1, discrete diffusion models commonly adopt
a mask-absorbing process, where in the forward process, an unmasked token either remains the same or
transitions to a mask token. While this design leads to higher performance in standard generation tasks,
it poses a significant constraint in solving inverse problems. Specifically, in the reverse process (i.e., the
generative process), once an unmasked token has been set at an early stage of sampling, the probability of it
reverting to a masked state or changing to a different token becomes extremely low (see Figure 3b), making
it difficult to correct errors made in the early stages.

Figure 2 demonstrates this characteristic: when generating images using discrete diffusion models that
employ mask absorbing process, most of the image structure is determined in the initial stages, suggesting
that in inverse problem scenarios, there is little opportunity to correct inconsistencies with the measurement
data y during sampling. One solution to this problem is the “re-masking” operation, which reverts unmasked
tokens back to masked tokens. This approach has been implemented in discrete predictor-corrector methods
(Lezama et al., 2023) and predictor-corrector techniques for continuous-time discrete diffusion (Campbell
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Figure 3: (a) Graphical model comparison between Markov noise process (top) and star-shaped noise pro-
cess (bottom). The star-shaped model introduces conditional independence between zt variables given z0,
enabling more flexible error correction during sampling. (b) Comparison between mask-absorbing Markov
process (left) and mask-absorbing star-shaped process (right). In the Markov process, unmasked tokens
cannot revert to [MASK], while the star-shaped process allows tokens to naturally revert to [MASK] state
(inherent “re-masking”), facilitating error correction in later sampling steps.

et al., 2022; Zhao et al., 2024) to improve image-generation quality. However, these methods often involve
reverting the sampler to earlier time steps and can be computationally expensive.

Here, drawing inspiration from Okhotin et al. (2024) and Zhang et al. (2024), we adopt a star-shaped noise
process that decouples each time step t from previous steps, which addresses the aforementioned issue of
early-stage errors becoming permanently “frozen.” In this star-shaped noise process, the noisy variables
z1, . . . , zT are conditionally independent given z0. Formally, we assume qstar(z1:T |z0) =

∏T
t=1 qstar(zt|z0) =∏T

t=1
∏dz

i=1

[
vT(zt,i) Qt v(z0,i)

]
, where the matrix Qt = Qt · · · Q1 is the cumulative transition from the orig-

inal Markov forward process in discrete diffusion, but the forward graphical model is star-shaped, as shown
in Figure 3a.

Compared to the original Markov forward process, the star-shaped noise process maintains the same con-
ditional marginal distribution qstar(zt|z0), yet the locations of [MASK] tokens are uncorrelated between zt

corresponding to different time steps. In the Markov noise process, once a token is [MASK]ed, it remains
so, and in subsequent steps, only unmasked tokens can transition to [MASK] tokens. In contrast, in the
star-shaped noise process, each noisy token zt is viewed as being generated directly from z0 rather than from
zt−1, making the [MASK] token positions independent between adjacent zt−1 and zt.

A key characteristic of the star-shaped process is observed in the reverse step qstar(zt−1|zt). Unlike the
Markov noise process with mask-absorbing state, which requires that tokens already unmasked remain fixed
and prohibits their reversion to a masked state, the star-shaped formulation permits tokens to transition
from an unmasked state back to a masked state within a single reverse step. This inherent “re-masking”
operation enables flexible error correction during sampling, as illustrated in Figure 3b, where tokens can
naturally revert to the masked state without the need to roll back the sampler.

Our goal here, similar to other diffusion model-based inverse problem methods, is to sample from qstar(z0|y)
based on this graphical model. More specifically, we aim to develop a feasible algorithm for sampling
from qstar(z0:T |y). However, attempting to perform ancestral sampling from this distribution, such as by
proceeding from zT → zT −1 → · · · → z0, results in a posterior of the form qstar(zt|zt+1:T , y), which depends
on all subsequent samples and is therefore not computationally feasible.

To address this challenge, we first introduce a proxy joint distribution, qstar-decomp(z0:T |y), obtained by
factorizing the star-shaped posterior into a product of local conditionals. Importantly, this preserves the
marginal qstar-decomp(z0|y) = qstar(z0|y) as we will discuss in the next subsection, so it can serve as a valid
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surrogate for qstar while reducing the complexity of the graph structure so that dependencies exist only
between consecutive time steps. Although the full joint qstar-decomp is still intractable, this decomposition
is a necessary preparatory step that leads to the variational approximation described in Sec. 3.3. The
resulting algorithm separates the complex inter-dependencies between time steps while maintaining the
essential properties of the star-shaped model, making it possible to efficiently sample from qstar(z0|y).

3.2 Defining the decomposed star-shaped distribution qstar-decomp which is a tractable variant of qstar

We define the star-decomposed distribution as follows:

qstar-decomp(z0:T |y) = qstar(zT |y)
T∏

t=1
qstar(zt−1|zt, y), (5)

where qstar(zt−1|zt, y) represents the conditional distribution of qstar. This decomposition of the joint distri-
bution resembles the Markovian reverse process of diffusion models, but has the following properties:

1. A single step of qstar-decomp inherently enables the “re-masking” operation. In the star-shaped
noise process, the positions of mask tokens in zt−1 and zt are mutually independent and uncorrelated as
shown in Figure 3b. Consequently, the conditional distribution qstar-decomp(zt−1|zt, y) (= qstar(zt−1|zt, y))
enables a “re-masking” operation, wherein unmasked tokens present in zt can become masked tokens in zt−1.
This property suggests that in mask-absorbing discrete diffusion, errors that occur in the initial stages of
sampling can be corrected in subsequent steps, which provides an advantage when solving inverse problems.

2. The marginal distribution qstar-decomp(z0|y) is identical to the target distribution qstar(z0|y).
The statement and proof are provided in the Appendix. This suggests that for solving inverse problems, we
do not necessarily need to sample from the joint distribution of qstar, but can instead aim to sample from the
more tractable distribution qstar-decomp. Ultimately, we perform approximate sampling from the posterior by
approximating this qstar-decomp using a variational distribution.

3. The conditional joint distribution of qstar-decomp differs from that of qstar, i.e.,
qstar-decomp(z0:T |y) ̸= qstar(z0:T |y). The decomposition of the joint distribution of a star-shaped noise
process takes the form qstar(z0:T |y) = qstar(zT |y)

∏T
t=1 qstar(zt−1|zt:T , y). However, qstar-decomp deviates

from this formulation by disregarding the dependencies on larger time steps, zt+1:T .

In subsequent sections, we introduce a variational distribution to approximate qstar-decomp, which possesses
Property 1 that inherently enables the re-masking operation. As established by Property 3, the joint dis-
tribution of qstar-decomp differs from that of the star-shaped noise process graphical model. Nevertheless,
Property 2 guarantees that they share identical marginal distributions given the measurement y, providing
justification for our approach of targeting the more tractable qstar-decomp for sampling. Furthermore, since
qstar-decomp focuses only on two adjacent variables, we can formulate a simple algorithm to approximate its
distribution using a variational approach.

3.3 Variational approximation for feasible inference algorithm

Based on the discussion in the previous section, we aim to implement qstar-decomp which inherently in-
corporates a re-masking process for efficient inverse problem solving. However, since qstar-decomp is still
not tractable, we introduce a variational distribution pα(z0:T |y) = qstar(zT |y)

∏T
t=1 pα(zt−1|zt, y) to ap-

proximate qstar-decomp(z0:T |y), with the ultimate goal of ensuring that the marginal distribution pα(z0|y)
approximates the true posterior qstar-decomp(z0|y). The distribution pα is decomposed as

pα(zt−1|zt, y) =
∑
z0

qstar(zt−1|z0)p̃α(z0|zt, y), (6)

where p̃α(z0|zt, y) is a categorical distribution parameterized by α, where for each time step t and dimen-
sion i, αt,i,· is a probability vector in the simplex ∆K−1, defined as p̃α(z0,i|zt, y) = Cat (z0,i; αt,i,·), i.e.,
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p̃α(z0,i = k|zt, y) = αt,i,k. In the subsequent discussions and optimization steps, we assume that αt,i,· is
always normalized to lie on the simplex. This decomposition stems from the fact that the distribution
qstar-decomp(zt−1|zt, y) (= qstar(zt−1|zt, y)) can be expressed as

∑
z0

qstar(zt−1|z0)qstar(z0|zt, y) based on the
conditional independence. Note that both qstar(zt−1|z0) and p̃α(z0|zt, y) have a mean field structure with
independent categorical distributions across dimensions. Consequently, pα(zt−1|zt, y), obtained by marginal-
izing over z0, inherits this mean field property. For notational convenience, we denote the slice of distribution
parameter α at time step t as αt ∈ Rdz×K .

To ensure that the marginal distribution of the variational distribution pα closely approximates that of
qstar-decomp, the parameters α of the variational distribution are obtained by optimizing an objective function
derived from the following theorem:
Theorem 3.1. Let pα be a distribution with the parameterization given by the decomposition in (6). Then,
for any measurements y, the following inequality holds for the KL divergence between the marginal distribu-
tions:

DKL (pα(z0|y)∥qstar-decomp(z0|y)) ≤
T∑

t=1
Ezt∼pα(zt|y) [DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y))] , (7)

where pα(z0|y) is the variational marginal distribution parameterized by α, qstar(z0|y) is the true posterior
distribution, p̃α(z0|zt, y) is the variational conditional distribution as defined in (6), qstar(z0|zt, y) is the
true conditional distribution, pα(zt|y) is the marginal distribution at time step t, and T is the total number
of time steps in the diffusion process.

The proof is provided in the Appendix. Based on this inequality, we aim to minimize each term in the sum
on the right-hand side. Since p̃α is a different categorical distribution at each t, we minimize α for each
time step, ultimately aiming to minimize the left-hand side. Each term on the right-hand side of (7) can
be decomposed into a term representing deviation from the prior and a term representing likelihood with
respect to the observed data:
Lemma 3.1. The KL divergence between the variational distribution p̃α(z0|zt, y) and the true posterior
qstar(z0|zt, y) can be decomposed into two terms:

DKL (p̃α(z0|zt, y)∥q(z0|zt, y)) = DKL (p̃α(z0|zt, y)∥qstar(z0|zt)) − Ez0∼p̃α(z0|zt,y) [log qstar(y|z0)] , (8)

This decomposition enables us to separately consider the fit to the prior and the consistency with the
measurement data, and we approximate both terms in a computationally tractable form as follows. First,
the first term on the right-hand side of (8) remains intractable. However, we note that the star-shaped noise
process shares the conditional distribution qstar(zt|z0) with the original Markov noise process. Consequently,
the reverse conditional distribution qstar(z0|zt) will also be identical for both processes. Since the prior of
the pre-trained discrete diffusion models is trained to approximate this distribution, we substitute this prior
model p̃θ(z0|zt) for qstar(z0|zt) into the objective function of (8). This substitution transforms the term into
a KL divergence between two categorical distributions, enabling the computation of gradients with respect
to the parameter α.

The second term involves an expectation calculation over a categorical distribution, for which we use the
Gumbel-Softmax re-parameterization trick (Jang et al., 2016; Maddison et al., 2016). The implementation
of this trick is discussed in the subsequent section. This approach makes the term differentiable with respect
to the categorical distribution’s parameter α, facilitating continuous optimization. The explicit form of the
resultant loss function is detailed in the Appendix.

Based on Theorem 3.1 and Lemma 3.1, our proposed inverse problem solving method with discrete diffusion
prior, G2D2, optimizes the parameter α of pα for t = T, . . . , 1 while sequentially sampling z0:T . In the
optimization step, any continuous optimization method, such as Adam (Kingma, 2014) and RAdam (Liu
et al., 2020), can be used. Implementation considerations are discussed in the following section. This
algorithm is detailed in Algorithm 1, and G2D2 is illustrated in Figure 1.
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Algorithm 1 Gradient-Guided Discrete Diffusion, G2D2
Require: Input condition y, pre-trained discrete diffusion model pθ, forget coefficient γ

1: zT ∼ qstar(zT )
2: for t = T, . . . , 1 do
3: if t = T then
4: Initialize: αt ∝ log p̃θ(z0|zt)
5: else
6: Initialize: αt ∝ exp(γ log αt+1 + (1 − γ) log p̃θ(z0|zt))
7: end if
8: // Continuous optimization
9: αt = arg minαt

DKL (p̃α(z0|zt, y)∥p̃θ(z0|zt)) − Ez0∼p̃α(z0|zt,y) [log qstar(y|z0)]
10: Sample zt−1 ∼ pα(zt−1|zt, y) =

∑
z0

qstar(zt−1|z0)p̃α(z0|zt, y)
11: end for
12: return x0 by decoding z0

3.4 Implementation considerations

Gumbel-Softmax dequantization We use the Gumbel-Softmax trick (Jang et al., 2016; Maddison
et al., 2016) to make the computation of the second term in (8) differentiable. At time step t, this
process begins by generating Gumbel-Softmax samples using parameters of p̃α as follows: ẑ0,i,k =
softmax ((log αt,i,k + gi,k) /τ), where gi,k represents samples drawn from the Gumbel distribution, and τ
(> 0) is the temperature parameter. This procedure generates a “soft” categorical sample for each dimen-
sion in z0, indicating the proportional selection of each codebook element. As these proportions corre-
spond to the contribution rate of each codebook element, we construct ZGumbel ∈ Rdz×db as their weighted
sum: (ZGumbel)i =

∑K
k=1 ẑ0,i,kbk. Finally, we pass ZGumbel through the decoder to obtain the image

x0 = D(ZGumbel). By substituting this image into the likelihood function qstar(y|x0), we have the differen-
tiable objective with respect to the variational parameter αt, enabling continuous optimization. For linear
inverse problems, the objective function will include the term ∥y − Ax0(αt)∥2

2, excluding the constant term
derived from measurement noise.

Optimization initialization strategy At time step t, we are required to optimize the variational param-
eter αt. To expedite this process, we can leverage the optimized values from the previous time step as the
initialization for the optimization process, effectively reducing the number of required optimization steps. To
achieve this, we introduce a forgetting coefficient γ (where 0 ≤ γ ≤ 1) and initialize αt through a weighted
sum of the previous optimized variables and the prior model’s output in the logarithm domain, given by
αt ∝ exp(γ log αt+1 + (1 − γ) log p̃θ(z0|zt)). The effectiveness of this strategy is discussed in Appendix E.6.

3.5 Application of G2D2 to masked generative models

As discussed in (Zheng et al., 2024), mask-absorbing discrete diffusion models and masked generative models,
such as MaskGIT (Chang et al., 2022), share a similar framework. Apart from temporal conditioning,
these models are nearly identical and are trained to approximate qstar(z0|zt). Therefore, G2D2 can be
straightforwardly applied to masked generative models. We empirically show this by providing an example
of solving inverse problems using a masked generative model as a prior for motion data in the experimental
section.

4 Experiments

4.1 Experimental setup

We evaluate G2D2 on inverse problems in image processing and compare it with other diffusion model-
based inverse-problem-solving methods. We also demonstrate gradient-based guidance on a discrete-latent
variable-based motion-domain generative model without additional training, showing the applicability of
G2D2 to other domains.
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Ground truth

Measurements

Figure 4: Images sampled from the prior model p̃θ(z0|zt) using intermediate zt during the process of G2D2
in image inverse problem solving. The progression demonstrates how initial structural errors are gradually
corrected as the sampling proceeds in G2D2.

Image inverse problems and evaluation metrics We conduct experiments on two tasks: (1) super-
resolution (SR) and (2) Gaussian deblurring. For the SR task, the linear forward operator downscales the
image by a factor of 4 using a bicubic resizer. For the Gaussian-deblurring task, we set the kernel size to
61 × 61 with a Gaussian kernel standard deviation of 3.0. The measurements are obtained by applying the
forward operator to the ground truth images normalized to the range [−1, 1], followed by the addition of
Gaussian noise with a standard deviation of 0.05. As metrics, we use the learned perceptual image patch
similarity (LPIPS) (Zhang et al., 2018) score to measure perceptual proximity to the original image, and the
peak signal-to-noise ratio (PSNR) to measure the closeness of the signal.

Datasets Following previous studies, we use the ImageNet (Deng et al., 2009) and Flickr-Faces-HQ
(FFHQ) (Karras et al., 2019) datasets. The sizes of both datasets are 256×256. For comparison, we
use a subset of 100 images from each validation set.

Baselines We compare DPS (Chung et al., 2023b), DDRM (Kawar et al., 2022), which use diffusion models
trained in the pixel domain, and PSLD (Rout et al., 2023) and ReSample (Song et al., 2024), which use
diffusion models trained in the latent space acquired from VAE (latent diffusion models) as baselines with
G2D2.

Implementation details Regarding G2D2, for both the ImageNet and FFHQ experiments, we use a pre-
trained VQ-Diffusion model 1 that is trained on the ITHQ dataset (Tang et al., 2022). In all experiments,
we optimize the parameters αt of the variational categorical distribution within the G2D2 algorithm’s opti-
mization step using the RAdam optimizer (Liu et al., 2020). To balance the prior and likelihood terms in the
objective function, we introduce hyperparameters. For the image inverse problem experiments, we used text
prompts for the VQ-Diffusion model: “a photo of [Class Name]” for ImageNet and “a high-quality
headshot of a person” for FFHQ. All experiments are performed on one RTX3090 (24 GiB), but G2D2
itself never exceeded 4.7 GiB of VRAM and required 194 s per ImageNet image (Table 5 in the Appendix).
Hence the full pipeline can be executed on widely-available 8 GiB cards.

Details of the experiments and comparison methods are provided in the Appendix.

4.2 Image inverse problem solving on ImageNet and FFHQ

Figure 5 shows the qualitative results of image inverse problem solving, and Tables 1 and 2 list the quantita-
tive results. As shown in Tables 1 and 2, G2D2 performs comparably to the methods using diffusion models

1https://huggingface.co/microsoft/vq-diffusion-ithq
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trained in continuous domains. Notably, G2D2 achieves this performance while consuming significantly less
GPU memory (4.7GiB compared to 10.7GiB for DPS and 20.9GiB for PSLD, as detailed in Table 5 in the
Appendix) and maintaining competitive computational speed among gradient-based methods. Note that
the pre-trained models used for each method are different, which particularly contributes to the superiority
of pixel-domain methods on FFHQ. With DDRM, it is assumed that the amount of measurement noise is
known and require the singular value decomposition of the linear operator. We also show images in the
intermediate phase of the G2D2 algorithm in Figure 4.

Table 1: Quantitative evaluation on ImageNet 256×256. Performance comparison of different methods on
various linear tasks in image domain. Values show the mean over 100 images.

Prior Type Method SR (×4) Gaussian deblurring
LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

Pixel-domain DPS (Chung et al., 2023b) 0.367 22.61 0.443 19.04
DDRM (Kawar et al., 2022) 0.352 24.00 0.246 27.30

LDM PSLD (Rout et al., 2023) 0.332 24.43 0.365 24.04
ReSample (Song et al., 2024) 0.382 22.63 0.438 22.32

Discrete G2D2 (proposed) 0.351 23.37 0.370 23.14
G2D2 w/ Markov noise process 0.413 22.23 0.428 22.05
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Figure 5: Qualitative results of G2D2 and DPS.

Table 2: Quantitative evaluation on FFHQ 256×256. Performance comparison of different methods on
various linear tasks in image domain. Values show mean over 100 images.

Prior Type Method SR (×4) Gaussian deblurring
LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

Pixel-domain DPS (Chung et al., 2023b) 0.227 26.73 0.225 26.02
DDRM (Kawar et al., 2022) 0.242 28.23 0.201 31.12

LDM PSLD (Rout et al., 2023) 0.276 27.62 0.304 27.37
ReSample (Song et al., 2024) 0.507 22.98 0.329 25.69

Discrete G2D2 (proposed) 0.259 27.44 0.273 27.00
G2D2 w/ Markov noise process 0.330 26.17 0.354 25.36
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4.3 Ablation study on Graphical Models

It is possible to derive a similar algorithm to G2D2 that uses a Markov noise process as the graphical model.
However, as discussed at the beginning of Section 3, this graphical model does not allow for the “re-masking”
operation, which means it cannot correct errors that occur early in the sampling process. We refer to this
variant as G2D2 w/ Markov noise process, and its performance is presented in Tables 1 and 2 on
ImageNet and FFHQ, respectively. Additional qualitative results are provided in the Appendix E.3. The
results indicate that the introduction of the star-shaped noise process significantly improves performance,
making G2D2 comparable to continuous-based methods.

4.4 Motion inverse problem solving

As discussed in Section 3.5, our method can also be applied to Masked generative models. We conduct
experiments to manipulate Generative Masked Motion Model (MMM) (Pinyoanuntapong et al., 2024) us-
ing gradient guidance for a path following task where generation is conditioned on hip joint position
information. Since joint positions can be calculated from motion data, this fits within the inverse problems
framework. While path following has been achieved with continuous latent space models (Song et al., 2023b;
Uchida et al., 2024), we are the first to accomplish this using a discrete latent variable motion model without
additional training. Appendix E.11 provides additional samples and experimental details.

We compare G2D2 with OmniControl (Xie et al., 2024) and Guided Motion Diffusion (GMD) (Karun-
ratanakul et al., 2023) on controllable motion generation. Following OmniControl’s setup, we evaluate using
the HumanML3D test set with sparse conditioning (5 frames out of 196) on metrics including: FID, R-
Precision, Diversity, Foot Skating ratio, Trajectory error (50cm), Location error (50cm), and Average error.

Table 3 presents the results. While OmniControl and GMD are specifically fine-tuned for this task, G2D2
requires no additional training yet achieves good FID and foot skating scores. However, OmniControl
and GMD demonstrate better trajectory and location errors, indicating room for improvement. Note that
G2D2 could potentially be combined with fine-tuned approaches (as OmniControl does) and enhanced with
techniques like FreeDoM’s time-traveling method (Yu et al., 2023) to further improve performance.

Method FID R-prec. Diversity Foot Traj. Err Loc. err. Avg.
(↓) (↑) (9.503→) skating (↓) (50cm, ↓) (50cm, ↓) err. (↓)

G2D2 0.248 0.770 9.381 0.048 0.272 0.116 0.230
OmniControl (Xie et al., 2024) 0.278 0.705 9.582 0.058 0.053 0.015 0.043
GMD (Karunratanakul et al., 2023) 0.523 0.599 N/A 0.086 0.176 0.049 0.139

Table 3: Comparison of methods for controllable motion generation.

5 Conclusion

We proposed G2D2 for solving inverse problems using discrete diffusion models as priors. We demonstrated
that G2D2 effectively addresses the limitation of discrete diffusion in inverse problem-solving by using a
continuous relaxation technique and star-shaped noise process. Specifically, G2D2 approximates the posterior
in inverse problems by optimizing the parameters of a variational distribution, composed of parameterized
categorical distributions, at each time step of the diffusion process. Our experiments show that G2D2
performs comparable to its continuous counterparts, opening up possibilities for training-free applications of
discrete diffusion models across a wide range of tasks.

Limitations and future work While G2D2 already matches the image quality of continuous counterparts,
its key advantage is an order-of-magnitude reduction in GPU memory footprint, enabling inference on
consumer-grade 8 GiB cards. Future work will focus on further accelerating sampling speed. We expect these
gaps to narrow through efficiency optimizations and stronger prior models. Future work will also explore
more challenging settings–such as nonlinear inverse problems–and extend G2D2 to additional modalities,
including audio and video.
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A Ethics statement

Our G2D2 method, which uses discrete diffusion models as priors for solving inverse problems, carries
potential risks similar to those of previously proposed techniques in this field. We acknowledge that these
methods, including ours, may inadvertently perpetuate biases present in training data or be misused for
generating misleading or harmful content. We are committed to addressing these ethical concerns and
promoting responsible use of our technology. We urge users of our method to exercise caution and consider
the ethical implications of its applications.

B Reproducibility statement

We will provide as detailed a description as possible regarding the reproduction of experiments in the
Appendix, and we plan to release our code when this paper is published.

C Related work

In this section, we review the relevant prior works.

C.1 Leveraging Diffusion Models as Prior Models for Inverse Problems

Pixel-Domain Diffusion Models for Inverse Problems Several methods have been proposed that
utilize pixel-domain diffusion models for solving inverse problems. DDRM and DDNM (Kawar et al., 2022;
Wang et al., 2023) assume linear operators and known noise levels, leveraging the singular value decom-
position (SVD) of these operators. ΠGDM (Song et al., 2023a) can handle certain classes of non-linear
operators, such as low dynamic range, where a pseudo-inverse operator can be defined. Notably, ΠGDM
does not require SVD or gradient computations for such a case.

DPS (Chung et al., 2023b) broadens the applicability to cases where operator gradients can be computed,
enabling it to handle both linear and non-linear operators like phase retrieval and non-linear blur. Other
notable methods in this category include RePaint (Lugmayr et al., 2022) and RED-Diff (Mardani et al.,
2024).

Latent Diffusion Models for Inverse Problems Recent work has also explored the use of latent
diffusion models for inverse problems. PSLD (Rout et al., 2023) extends the ideas of DPS to latent diffusion
models, demonstrating provable sample recovery for linear inverse problems. ReSample (Song et al., 2024)
achieves data consistency by solving an optimization problem at each step during sampling.

Of particular relevance to our work is DAPS (Zhang et al., 2024), which, like our approach, adopts a graphical
model during sampling that differs from the one used during training of the prior model. This approach,
known as the noise decoupling scheme, offers new possibilities for adapting diffusion models to various inverse
problems.

Application of Inverse Problem Solving in Various Domains Solving inverse problems using dif-
fusion models has enabled various real-world applications. In the image domain, diffusion models have been
extensively studied and applied to tasks such as image deblurring, super-resolution, and inpainting (Lugmayr
et al., 2022; Chung et al., 2023a; Zhu et al., 2023). In the audio domain, methods such as those proposed
by Song et al. (2021a), Chung et al. (2023c), and Bian et al. (2024) have been developed to address tasks
like dereverberation and audio restoration. Similarly, in the medical imaging domain, approaches like those
introduced by Song et al. (2021a), Chung et al. (2023c), and Bian et al. (2024) have been used to improve
image reconstruction and enhance diagnostic accuracy. These advancements demonstrate the versatility and
effectiveness of diffusion models across different domains.
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C.2 Conditional Generation Using Discrete Diffusion Models as Priors

While our work focuses on inverse problems, it is important to consider related approaches in conditional
generation tasks using discrete diffusion models as priors. These methods, primarily developed in the context
of graph generation and protein design, introduce new conditioning to pre-trained models rather than directly
addressing inverse problems.

The predominant strategy in this field involves training additional guidance networks. For instance, in
protein sequence generation, LaMBO-2 (Gruver et al., 2024) and Cemri et al. (2024) learn networks that
evaluate how intermediate features of samples during generation achieve the desired objectives. Similarly,
CGD (Klarner et al., 2024) learns a guidance model for corrupted data. Other examples requiring additional
training include Nisonoff et al. (2024) and DiGress (Vignac et al., 2023) for graph generation.

In contrast, Chen et al. (2024b) proposes a training-free approach to guide discrete diffusion models for
generating Electronic Health Record data. This method employs Langevin dynamics sampling to minimize
a given loss function by adjusting the parameters of the final layer of the prior model’s transformer output.
However, this approach faces scalability issues with models having large discrete latent spaces, such as
VQ-Diffusion, as it requires evaluating all possible discrete states to compute the loss function.

Another training-free method for guiding generative models with discrete latents is proposed by Li et al.
(2024). This approach avoids gradient computation of the loss function, instead evaluating the loss on
multiple generated samples and conducting sampling based on these values. However, like Chen et al.
(2024b), this method is expected to be inefficient for models with relatively large discrete latent spaces.

D Proofs

In this section, we provide detailed proofs for the main theoretical results presented in the paper.

Theorem 3.1. Let pα be a distribution with the parameterization given by the decomposition in (6). Then,
for any measurements y, the following inequality holds for the KL divergence between the marginal distribu-
tions:

DKL (pα(z0|y)∥qstar-decomp(z0|y)) ≤
T∑

t=1
Ezt∼pα(zt|y) [DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y))] , (7)

where pα(z0|y) is the variational marginal distribution parameterized by α, qstar(z0|y) is the true posterior
distribution, p̃α(z0|zt, y) is the variational conditional distribution as defined in (6), qstar(z0|zt, y) is the
true conditional distribution, pα(zt|y) is the marginal distribution at time step t, and T is the total number
of time steps in the diffusion process.

Proof. To prove the inequality in Theorem 3.1, we start by noting that the KL divergence between the
marginal distributions pα(z0|y) and qstar-decomp(z0|y) can be bounded by the KL divergence between the
joint distributions pα(z0:T |y) and qstar-decomp(z0:T |y):

DKL (pα(z0|y)∥qstar-decomp(z0|y)) ≤ DKL (pα(z0:T |y)∥qstar-decomp(z0:T |y)) . (9)

This inequality holds because marginalization cannot increase the KL divergence between distributions.

Next, we decompose the joint KL divergence using the chain rule and the definitions of the distributions:
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DKL (pα(z0:T |y)∥qstar-decomp(z0:T |y)) = Epα(z0:T |y)

[
log pα(z0:T |y)

qstar-decomp(z0:T |y)

]
= Epα(z0:T |y)

[
log

pα(zT |y)
∏T

t=1 pα(zt−1|zt, y)
qstar(zT |y)

∏T
t=1 qstar(zt−1|zt, y)

]

= Epα(z0:T |y)

[
log pα(zT |y)

qstar(zT |y) +
T∑

t=1
log pα(zt−1|zt, y)

qstar(zt−1|zt, y)

]

= DKL (pα(zT |y)∥qstar(zT |y)) +
T∑

t=1
Epα(z0:T |y)

[
log pα(zt−1|zt, y)

qstar(zt−1|zt, y)

]
.

(10)

In the context of mask-absorbing state diffusion, the distribution pα(zT |y) is the same as qstar(zT |y) because
zT is fully determined by the diffusion process and is independent of α. Therefore, the first term is zero:

DKL (pα(zT |y)∥qstar(zT |y)) = 0. (11)

This simplifies (10) to:

DKL (pα(z0:T |y)∥qstar-decomp(z0:T |y)) =
T∑

t=1
Epα(z0:T |y)

[
log pα(zt−1|zt, y)

qstar(zt−1|zt, y)

]
. (12)

We can further simplify the expectation over z0:T by focusing on zt and zt−1:

DKL (pα(z0:T |y)∥qstar-decomp(z0:T |y)) =
T∑

t=1
Ezt∼pα(zt|y) [DKL (pα(zt−1|zt, y)∥qstar(zt−1|zt, y))] . (13)

Now, for each term in the sum, we apply the chain rule for KL divergence to relate zt−1 and z0:

DKL (pα(zt−1|zt, y)∥qstar(zt−1|zt, y))
+ Ezt−1∼pα(zt−1|zt,y) [DKL (p̃α(z0|zt−1, zt, y)∥qstar(z0|zt−1, zt, y))]

= DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y))
+ Ez0∼p̃α(z0|zt,y) [DKL (pα(zt−1|z0, zt, y)∥qstar(zt−1|z0, zt, y))] . (14)

In this equation, the left-hand side represents the KL divergence between pα and qstar at time t−1 conditioned
on zt, plus the expected KL divergence between their respective conditional distributions of z0. The right-
hand side represents the KL divergence between p̃α and qstar directly conditioned on zt, plus an expected
KL divergence over z0.

The crucial observation here is that the last term on the right-hand side is zero. This is because pα and qstar
share the same conditional posterior when conditioned on z0 and zt, i.e.,

pα(zt−1|z0, zt, y) = qstar(zt−1|z0)
= qstar(zt−1|z0, zt, y). (15)
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Therefore, the KL divergence between these conditional distributions is zero:

DKL (pα(zt−1|z0, zt, y)∥qstar(zt−1|z0, zt, y)) = 0. (16)

Substituting back into (14), we obtain:

DKL (pα(zt−1|zt, y)∥qstar(zt−1|zt, y))
= DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y))
− Ezt−1∼pα(zt−1|zt,y) [DKL (p̃α(z0|zt−1, zt, y)∥qstar(z0|zt−1, zt, y))] . (17)

Since the KL divergence is always non-negative, the expected KL divergence on the right-hand side is non-
negative, which implies:

DKL (pα(zt−1|zt, y)∥qstar(zt−1|zt, y)) ≤ DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y)) . (18)

Substituting (18) back into (13), we obtain an upper bound on the joint KL divergence:

DKL (pα(z0:T |y)∥qstar-decomp(z0:T |y)) ≤
T∑

t=1
Ezt∼pα(zt|y) [DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y))] . (19)

Combining (9) and (19), we conclude:

DKL (pα(z0|y)∥qstar-decomp(z0|y)) ≤
T∑

t=1
Ezt∼pα(zt|y) [DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y))] . (20)

This establishes the inequality stated in the theorem.

Lemma 3.1. The KL divergence between the variational distribution p̃α(z0|zt, y) and the true posterior
qstar(z0|zt, y) can be decomposed into two terms:

DKL (p̃α(z0|zt, y)∥q(z0|zt, y)) = DKL (p̃α(z0|zt, y)∥qstar(z0|zt)) − Ez0∼p̃α(z0|zt,y) [log qstar(y|z0)] , (8)

Proof. We begin by considering the KL divergence between the variational distribution p̃α(z0|zt, y) and the
true posterior qstar(z0|zt, y). Given that z0 is a discrete variable, the KL divergence can be expressed as a
sum:

DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y)) =
∑
z0

p̃α(z0|zt, y) log p̃α(z0|zt, y)
qstar(z0|zt, y) . (21)

By applying Bayes’ theorem to the true posterior qstar(z0|zt, y), we have:

qstar(z0|zt, y) = qstar(z0|zt)qstar(y|z0)
qstar(y|zt)

. (22)
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Since qstar(y|zt) does not depend on z0, it can be treated as a constant and ignored in the KL divergence
calculation. Substituting Eq. (22) into Eq. (21), we obtain:

DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y)) =
∑
z0

p̃α(z0|zt, y) log p̃α(z0|zt, y)
qstar(z0|zt)qstar(y|z0) . (23)

Next, we split the logarithm in the numerator and denominator:

DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y)) =
∑
z0

p̃α(z0|zt, y)
[
log p̃α(z0|zt, y)

qstar(z0|zt)
− log qstar(y|z0)

]
. (24)

This expression can be decomposed into two terms:

1. The first term represents the KL divergence between the variational distribution p̃α(z0|zt, y) and
the prior qstar(z0|zt):

DKL (p̃α(z0|zt, y)∥qstar(z0|zt)) =
∑
z0

p̃α(z0|zt, y) log p̃α(z0|zt, y)
qstar(z0|zt)

. (25)

2. The second term is the negative expected log-likelihood under the variational distribution:

Ez0∼p̃α(z0|zt,y) [− log qstar(y|z0)] = −
∑
z0

p̃α(z0|zt, y) log qstar(y|z0). (26)

Thus, the KL divergence between p̃α(z0|zt, y) and qstar(z0|zt, y) can be decomposed as follows:

DKL (p̃α(z0|zt, y)∥qstar(z0|zt, y)) = DKL (p̃α(z0|zt, y)∥qstar(z0|zt)) − Ez0∼p̃α(z0|zt,y) [log qstar(y|z0)] . (27)

This concludes the proof.

Lemma D.1. The marginal distribution qstar-decomp(z0|y) is identical to the target distribution qstar(z0|y).

Proof. We aim to show that

qstar-decomp(z0|y) = qstar(z0|y). (28)

Recall first that qstar(z0:T |y) is our original “star-shaped” joint posterior, and we define its “star-decomposed”
variant by

qstar-decomp(z0:T |y) = qstar(zT |y)
T∏

t=1
qstar(zt−1|zt, y). (29)

By the definition of marginalization, to get qstar-decomp(z0|y), we integrate over all the latent variables
z1, . . . , zT :

qstar-decomp(z0|y) =
∑
z1:T

qstar-decomp(z0:T |y). (30)

Substituting our definition of qstar-decomp(z0:T |y) into the sum yields

qstar-decomp(z0|y) =
∑
z1:T

[
qstar(zT |y)

T∏
t=1

qstar(zt−1|zt, y)
]
. (31)
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Here, qstar(zT |y) and each factor qstar(zt−1|zt, y) are just conditional distributions of the star-shaped model.

Next, we marginalize over zT , then zT −1, and so on, one index at a time. That is, we view∑
zT

qstar(zT |y) qstar(zT −1|zT , y) = qstar(zT −1|y),

because summation over zT of qstar(zT |y) qstar(zT −1|zT , y) collapses exactly to the marginal qstar(zT −1|y).
This step follows directly from the chain rule of probability (or the law of total probability).

We then apply the same idea repeatedly: first summing out zT , which gives us a factor depending only on
zT −1; then summing out zT −1 to obtain a factor depending on zT −2; and so on, down through z1. Performing
these consecutive sums from t = T down to t = 1 eventually leaves only z0 in the expression. Hence, we get

qstar-decomp(z0|y) = qstar(z0|y), (32)

which shows that both star-decomposed and original star-shaped posteriors yield the same marginal distri-
bution over z0.

E Details on Experiments

E.1 Image inverse problems

Implementation of Forward Operators and Dataset Selection In our image inverse problem exper-
iments, the definition and implementation of the forward operator are based on the DPS implementation2.
To ensure a diverse representation of ImageNet classes without genre bias, we select a subset of 100 images
from classes 0, 10, . . . , 990 using the imagenet_val_1k.txt file provided by Pan et al. (2021)3. For our
experiments with the FFHQ dataset, we use the first 100 images (indexed 0, 1, . . . , 99) from the validation
set.

E.2 Implementation Details of G2D2 in Inverse Problem Settings

The implementation of G2D2 is based on the VQ-Diffusion model from the diffusers library 4.
For the prior model, we use the pre-trained model available at https://huggingface.co/microsoft/
vq-diffusion-ithq. In our experiments, the number of time steps T for sampling is set to 100.

Parameterization of Star-Shaped Noise Process In G2D2, the star-shaped noise process follows the
same cumulative transition probability q(zt|z0) as the original Markov noise process. For the Markov noise
forward process where q(zt|zt−1) is defined using Qt as in Equation 2, the cumulative transition probability
is computed as q(zt,i|z0) = vT(zt,i)Qtv(z0,i), where Qt = Qt · · · Q1. Here, Qt can be computed in closed
form as:

Qtv(z0,i) = αtv(z0,i) + (γt − βt)v(K + 1) + βt, (33)

where αt =
∏t−1

i=1 αi, γt = 1 −
∏t−1

i=1(1 − γi), and βt = (1 − αt − γt)/(K + 1). These parameters can be
calculated and stored in advance. The parameter settings follow those used during the training of the prior
model. Specifically, α1 is set to 0.99999, αT to 0.000009, γ1 to 0.000009, and γT to 0.99999. For both αt

and γt, values are linearly interpolated between steps 1 and T . This scheduling results in a linear increase
in the number of [MASK] states as t increases, ultimately leading to all variables transitioning to the [MASK]
state. Additionally, the transition probability βt between unmasked tokens is set to be negligibly small, as
αt and γt sum to nearly 1.

2https://github.com/DPS2022/diffusion-posterior-sampling
3https://github.com/XingangPan/deep-generative-prior/
4https://huggingface.co/docs/diffusers/main/en/api/pipelines/vq_diffusion
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Optimization in the Algorithm and Instantiation of the Objective Function In the continuous
optimization phase, we optimize the parameters α of the categorical distribution using the RAdam opti-
mizer (Liu et al., 2020). The optimization objective is a weighted sum of the KL divergence term and the
likelihood term, defined as:

αt = arg min
αt

{ηKLDKL (p̃α(z0|zt, y)∥p̃θ(z0|zt)) + ∥y − Ax0(αt)∥2} , (34)

where ηKL controls the trade-off between the KL term and the likelihood term.

Marginalization over z0 in Algorithm 1 The marginalization over z0 in line 10 of Algorithm 1, specif-
ically the term

∑
z0

qstar(zt−1|z0)p̃α(z0|zt, y), can be computed in closed form. This computation is feasible
because both distributions involved in the marginalization are dimensionally independent categorical distri-
butions, as discussed by Austin et al. (2021) and Gu et al. (2022).

Dynamic Learning Rate and KL Coefficient Scheduling Some parameters are dynamically adjusted
during inference. Both the learning rate for RAdam (lRAdam) and the KL divergence coefficient (ηKL)
are scheduled using weight vectors that decay logarithmically over the inference steps. These weights are
computed based on initial scaling factors.

The learning rate weight vector wlr and the KL coefficient weight vector wKL are defined as follows:

wlr(t) = 10

(
λlr, schedule

2 ·( 2t
T −1)

)
,

wKL(t) = 10

(
λKL, schedule

2 ·( 2t
T −1)

)
.

Here, λlr, schedule and λKL, schedule represent the initial scaling factors for the learning rate and KL coefficient,
respectively, and T is the total number of inference steps. When λlr, schedule > 0, the learning rate weight
vector wlr(t) starts with relatively large values when t is large and decays exponentially as t decreases.
Specifically, wlr(t) reaches its minimum near t = 1 and its maximum near t = T . This scheduling enables
stronger optimization during the initial inference steps, with the learning rate gradually decreasing in the
later steps.

At each step t, the parameters are set as follows:

lRAdam(t) = lRAdam, base · wlr(t), ηKL(t) = ηKL, base · wKL(t).

Task-Specific and Common Hyperparameters The hyperparameters for Gaussian deblurring and
super-resolution tasks used in the experiments are shown in Table 4.

The following hyperparameters are shared across all experiments: The number of iterations for the optimiza-
tion is set to 30, the temperature for Gumbel-Softmax relaxation is 1.0, and the forget coefficient is 0.3. For
the classifier-free guidance scale, we use 5.0 in ImageNet experiments and 3.0 in FFHQ experiments.

E.3 G2D2 with Markov Noise Process

As discussed in Section 4.3, a variant of G2D2 can be derived by introducing the original Markov noise
process in the graphical model. In that case, the algorithm is shown in Algorithm 2. The key point here is
that the qMarkov(zt−1|z0, zt) part is identical to that of the original Markov noise process, which is expressed
as

qMarkov(zt−1,i|z0, zt) =
(vT(zt,i)Qtv(zt−1,i))(vT(zt−1,i)Qt−1v(z0,i))

vT(zt,i)Qtv(z0,i)
. (35)

In the mask-absorbing type of Markov noise process, this posterior distribution does not revert tokens that
have once become unmasked states back to masked tokens. As a result, it becomes difficult to correct errors
that occur in the early stages of sampling in subsequent steps.
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Dataset Task Hyperparameter Value
ImageNet Gaussian Deblurring ηKL, base 0.0003

λKL, schedule 2.0
lRAdam, base 15.0
λlr, schedule 1.0

ImageNet Super-resolution ηKL, base 0.0003
λKL, schedule 2.0
lRAdam, base 10.0
λlr, schedule 1.0

FFHQ Gaussian Deblurring ηKL, base 0.0003
λKL, schedule 2.0
lRAdam, base 15.0
λlr, schedule 1.0

FFHQ Super-resolution ηKL, base 0.0003
λKL, schedule 2.0
lRAdam, base 10.0
λlr, schedule 2.0

Table 4: Hyperparameters for Gaussian Deblurring and Super-resolution tasks on ImageNet and FFHQ
datasets.

Algorithm 2 G2D2 with Markov Noise Process
Require: Input condition y, pre-trained discrete diffusion model pθ, forget coefficient γ

1: zT ∼ q(zT )
2: for t = T, . . . , 1 do
3: if t = T then
4: Initialize: αt ∝ log p̃θ(z0|zt)
5: else
6: Initialize: αt ∝ exp(γ log αt+1 + (1 − γ) log p̃θ(z0|zt))
7: end if
8: // continuous optimization
9: αt = arg minαt

DKL (p̃α(z0|zt, y)∥p̃θ(z0|zt)) − Ez0∼p̃α(z0|zt,y) [log q(y|z0)]
10: Sample zt−1 ∼ pα(zt−1|zt, y) =

∑
z0

qMarkov(zt−1|z0, zt)p̃α(z0|zt, y)
11: // Note: The term qMarkov(zt−1|z0, zt) uses the posterior distribution of the original Markov

noise process.
12: end for
13: return x0 by decoding z0
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E.4 Settings for comparison methods

In this subsection, we detail the experimental settings for the comparison method.

DPS (Chung et al., 2023b) We use the same parameter settings as described in the original paper. The
guidance scale is set to 1.0 for FFHQ & super-resolution, 1.0 for FFHQ & Gaussian deblurring, 1.0 for
ImageNet & super-resolution, and 0.4 for ImageNet & Gaussian deblurring. The number of time steps is set
to 1000. For pre-trained models, we use the unconditional model provided by Dhariwal & Nichol (2021) 5

for ImageNet. For FFHQ, we use the model provided by Choi et al. (2021) 6.

DDRM (Kawar et al., 2022) We use the official implementation 7. The time steps are set to T = 20,
with η = 0.85 and ηb = 1.0 as the hyperparameters. For ImageNet, we use the same pre-trained model as
DPS. Although there is no official implementation using a pre-trained model trained on FFHQ, both DDRM
and Choi et al. (2021) are based on the implementation of Dhariwal & Nichol (2021). Therefore, in our
experiments, DDRM uses the same pre-trained model as DPS.

PSLD (Rout et al., 2023) We use the official implementation 8. For the pre-trained model, we employ
stable-diffusion v-1.5 (Rombach et al., 2022) 9. As this model handles 512×512 pixel images, we first
upscale the ground truth image to 512×512. We then apply the forward operator to the upscaled image
and use the result as observed data for our method. Finally, we downsample the output to 256×256. For
hyperparameters, we use η = 1.0 and γ = 0.1.

ReSample (Song et al., 2024) We use the official implementation 10. For pre-trained models, we employ
two models from the latent diffusion models repository 11: LDM-VQ-4 trained on FFHQ, and LDM-VQ-8
trained on ImageNet with class conditioning. We use T = 500 DDIM steps with τ set to 10−4. The maximum
number of optimization steps is set to 500. The variance hyperparameter γ is set to 40. For the ImageNet
experiments, we input the class labels of the ground truth data to the model.

E.5 GPU memory usage and computational speed

We analyze the GPU memory consumption and computational speed of our proposed method, G2D2, in
comparison with other methods. Table 5 presents an overview of these metrics for various methods. The
measurements are conducted using a single NVIDIA A6000 GPU for the Gaussian deblurring task on Ima-
geNet. G2D2 has the lowest memory usage among all methods and the fastest computational speed among
gradient-based methods.

Table 5: Comparison of GPU Memory Usage and Computational Speed

Method GPU Memory Usage (GiB) Wall-Clock time (s)
G2D2 (Proposed) 4.7 194
DPS 10.7 277
DDRM 5.8 4
PSLD 20.9 738
ReSample 7.1 555

5https://github.com/openai/guided-diffusion
6https://github.com/jychoi118/ilvr_adm
7https://github.com/bahjat-kawar/ddrm
8https://github.com/LituRout/PSLD
9https://github.com/CompVis/stable-diffusion

10https://github.com/soominkwon/resample
11https://github.com/CompVis/latent-diffusion
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E.6 Impact of the Forget Coefficient

Figure 6 shows the reduction in the loss function and the final results for the Gaussian deblurring task on
ImageNet when the forget coefficient is set to 0.3 and 1.0. The case with a forget coefficient of 1.0 corresponds
to not using the optimization results from the previous step at all. Introducing the forget coefficient allows
for a faster reduction in the loss function and achieves higher performance with the same computational
resources.

Measurement

Ground truth
Forget coefficient Forget coefficient 

Figure 6: Reduction in the loss function and final results for the Gaussian deblurring task on ImageNet
with forget coefficients of 0.3 and 1.0. The forget coefficient of 1.0 corresponds to not using the optimization
results from the previous step.

E.7 Impact of Text Conditioning on the Prior Model

To examine the necessity of text conditioning, we investigate the effect of the presence or absence of prompts
given to VQ-Diffusion on performance. Table 6 shows the performance for each setting. “Not Used” for text
conditioning indicates that classifier-free guidance in the prior model is set to 1.0 (equivalent to unconditional
sampling). The prompts we provide to VQ-Diffusion in our method are “a photo of [Class Name]” for
ImageNet experiments and “a high-quality headshot of a person” for FFHQ experiments. It should be noted
that these prompts are extremely general and do not describe specific details of the images.

From these results, we can confirm that prompt conditioning contributes to a certain level of performance
improvement on ImageNet, while it does not significantly affect performance on FFHQ. This suggests that
the pre-trained VQ-Diffusion model may not have been extensively trained on human face images, or that
our chosen prompts for FFHQ may not be optimal.

Additionally, Figure 7 shows a qualitative comparison for the Gaussian Deblurring task on the ImageNet
dataset. When prompts are not used, smoother results are obtained throughout the intermediate steps when
compared, demonstrating that the presence of text conditioning leads to final results that capture more
fine-grained details.

26



Under review as submission to TMLR

With prompt: “a photo of guenon, guenon monkey”

Measurement

Ground Truth

Without prompt

Measurement

Ground Truth

Figure 7: Images sampled from the prior model p̃θ(z0|zt) using intermediate zt during the process of G2D2
in image inverse problem solving. The top two rows show intermediate samples using the prompt “a photo of
guenon, guenon monkey,” while the bottom two rows show results without using any prompt. Each column
represents a different time step in the G2D2 algorithm, ranging from t = 95 (earliest stage) to t = 5 (final
stage). The rightmost column displays the measurement (degraded input image) and ground truth (original
image).

Dataset Text conditioning SR (×4) Gaussian Deblurring
LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

ImageNet Not Used 0.357 23.55 0.385 23.24
Used 0.351 23.37 0.370 23.14

FFHQ Not Used 0.258 27.48 0.274 26.99
Used 0.259 27.44 0.273 27.00

Table 6: Performance comparison with and without text conditioning

E.8 Failure modes of G2D2

We conduct an analysis of failure modes. Figure 8 shows the results of G2D2 and the images during inference
for the Gaussian deblurring task on FFHQ. When the ground truth image is a relatively young (child’s) face,
the generated face images appear to be drawn towards a distribution of more adult faces. This is likely due
to the use of the prompt “a high-quality headshot of a person”. As a result, there is a consistent bias towards
adult face images throughout the generation process, leading to artifacts in the final image. In the absence
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of a prompt, the intermediate generated images are not influenced by any specific textual guidance. As a
result, the final image tends to have fewer artifacts.

While the star-shaped noise process can correct early errors, if errors persist until the later stages, it becomes
more difficult to correct them from that point onwards. In other words, when there is a mismatch between
the distribution conditioned by the prompt and the target image, it becomes challenging for G2D2 to handle
it effectively.

To improve these issues, techniques such as simultaneous optimization of prompts may be necessary. Prompt-
tuning techniques, as proposed in reference (Chung et al., 2024), could be effective in addressing these
challenges.

Without Prompt

Measurement

Ground Truth

With prompt: “a high-quality headshot of a person”

Measurement

Ground Truth

Figure 8: Failure modes of G2D2: Gaussian deblurring results on the FFHQ dataset. Due to the mismatch
between the prompt and the target image, errors remain uncorrected throughout the process, resulting in
artifacts in the estimated image.

E.9 Additional qualitative results of G2D2 and comparison methods.

We present additional qualitative results of G2D2 and comparison methods. Figures 9 through 12 showcase
the results for super-resolution (SR) and Gaussian blur (GB) tasks on ImageNet and FFHQ datasets.
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Super resolution (x4, 

Figure 9: Qualitative results of G2D2 and comparison methods.

E.10 Additional qualitative results of G2D2 with Markov noise process

To compare G2D2 and G2D2 with Markov noise process, we present their respective qualitative results in
Figures 13 and 14. The latter approach does not include re-masking operations in its sampling process,
which means that once a token becomes unmasked, it cannot be modified in subsequent iterations. The
unnatural artifacts observed in the resulting images are likely attributable to this limitation. This observation
underscores the validity of adopting the star-shaped noise process in our proposed method.

E.11 Inverse problems on motion data

We develop G2D2 based on the official implementation of MMM (Pinyoanuntapong et al., 2024) 12. This
method learns a masked generative model on the discrete latent space obtained by a motion tokenizer trained
on the VQVAE framework (Van Den Oord et al., 2017). G2D2 uses the provided pre-trained model as a
prior distribution.

We conduct experiments on the path following task (Song et al., 2023b; Uchida et al., 2024). The objective
is to generate motion data m0 ∈ Rdm×L that follows a given path ypath ∈ R3×L. Here, ypath represents the
coordinates of the hip joint at each time frame, L denotes the number of frames in the motion data, and dm
is the dimensionality of each motion data point.

The likelihood loss used in the optimization process of G2D2 measures how closely the generated motion
follows the target path. It is defined as

log q(ypath|m0) =
L∑

l=1
∥ypath,l − Apathm0,l∥2, (36)

12https://github.com/exitudio/MMM
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Measurement DPS DDRM PSLD ReSample
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Gaussian Deblur (

Figure 10: Qualitative results of G2D2 and comparison methods.

where Apath is a linear operator that extracts the path across the frames.

We conduct experiments with a total of T = 25 time steps. For hyperparameters, we set the number of
iterations for optimization to 20 and the Gumbel-Softmax temperature to 1.0. The forget coefficient is set
to 0.7. We adopt the dynamic learning rate scheduling described in the Appendix E.2. The base Adam
learning rate lAdam, base is set to 0.3, and the KL divergence weight ηKL is set to 0.05. Additionally, we set
λKL, schedule and λlr, schedule to 0.0 and 1.0, respectively.
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Measurement DPS DDRM PSLD ReSample
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Figure 11: Qualitative results of G2D2 and comparison methods.
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Figure 12: Qualitative results of G2D2 and comparison methods.
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Figure 13: Qualitative results comparing G2D2 and G2D2 with Markov noise process (Super-resolution
task).
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Figure 14: Qualitative results comparing G2D2 and G2D2 with Markov noise process (Gaussian deblurring
task).
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