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Abstract
Asking questions about visual environments is a crucial way
for intelligent agents to understand rich multi-faceted scenes,
raising the importance of Visual Question Generation (VQG)
systems. Apart from being grounded to the image, existing
VQG systems can use textual constraints, such as expected
answers or knowledge triplets, to generate focused questions.
These constraints allow VQG systems to specify the question
content or leverage external commonsense knowledge that
can not be obtained from the image content only. However,
generating focused questions using textual constraints while
enforcing a high relevance to the image content remains a
challenge, as VQG systems often ignore one or both forms
of grounding. In this work, we propose Contrastive Visual
Question Generation (ConVQG), a method using a dual con-
trastive objective to discriminate questions generated using
both modalities from those based on a single one. Experi-
ments on both knowledge-aware and standard VQG bench-
marks demonstrate that ConVQG outperforms the state-of-
the-art methods and generates image-grounded, text-guided,
and knowledge-rich questions. Our human evaluation results
also show preference for ConVQG questions compared to
non-contrastive baselines.

Introduction
Modern intelligent agents, like chatbots and dialog sys-
tems (Ouyang et al. 2022), nowadays achieve (almost) hu-
man conversational skills, thanks to the development of large
language models (Brown et al. 2020). With the advances in
vision-language research, we are now leaning towards vi-
sual dialog systems (Das et al. 2017; OpenAI 2023), which
should be able to understand and interpret visual scenes and
at the same time communicate with users. In this context,
they should not only be able to provide answers but also be
aware of what they do not know and request complementary
information by asking questions about visual content.

Consequently, Visual Question Generation (VQG, (Kr-
ishna, Bernstein, and Fei-Fei 2019; Zhang et al. 2017)) be-
comes a rising area at the intersection of computer vision
and natural language processing. VQG agents aim to gen-
erate meaningful and engaging questions for visual stim-
uli such as images. These images often depict multi-faceted
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Figure 1: ConVQG at a glance. An image and a text input
are processed through a multimodal module , leading to the
embedding Qit. Pre-trained modules (detailed in Fig. 2) pro-
duce image-only and text-only question embeddings (Qi and
Qt). A contrastive loss is then optimized to make Qit close
to the real question embedding Qgt and far from the sin-
gle modality ones. By design, ConVQG generates questions
that are image-grounded (in green) and that meet the require-
ments of the text constraint (in yellow).

scenes, with many salient elements that can be elaborated
upon by asking focused questions.

Early VQG systems tend to generate generic questions
not exploiting the rich semantic content of the specific im-
ages. For example, the question “What is the person doing?”
can be asked for any image containing a person. To make
the question more focused, existing VQG systems exploit
textual constraints, such as expected answers or knowledge
triplets, as guidance. However, generating questions that are
guided by a textual constraint while enforcing high rele-
vance to the image content remains a challenge, since VQG
systems often ignore one or both forms of grounding.

To tackle these challenges, we propose Contrastive Visual
Question Generation (ConVQG), a system that generates
questions that (1) are based on details unique to a specific
image, and (2) can be controlled using text to focus on spe-
cific objects, actions or concepts. To achieve that, the pro-
posed method uses two modality-specific contrastive objec-
tives to guide the generation of the question. The image con-
trastive objective drives the question away from a question
generated using the image alone. The text contrastive objec-
tive drives the question away from one generated using only
the textual constraint, enforcing more specific descriptions
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of the image while providing explicit control over the diver-
sification of the generated questions. The textual constraint
format is highly flexible; it can come from the answer to
the question, a caption describing the image, or a knowl-
edge triplet associated with an object or an action in the
image. The latter, in particular, allows the model to enrich
the generated question with image-grounded commonsense
knowledge. These elements are found in existing public vi-
sual question-answering and question-generation datasets.
Together, the two contrastive objectives allow the model to
generate a diversified, rich and image-specific set of ques-
tions following textual constraints.

Through extensive experiments in standard and
knowledge-aware VQG benchmarks, we show that
ConVQG consistently outperforms state-of-the-art methods
while providing flexibility regarding the type of textual
constraints that can be used (answer, knowledge triplet
or caption). Additionally, we perform a human evaluation
using Amazon Mechanical Turk that shows the effec-
tiveness of the contrastive learning objective to provide
image-grounded and text-guided questions.

Related Works
Visual Question Generation. VQG is a particular case
of question generation where the goal is to create one or
several questions about a given image (Zhang et al. 2017).
Early VQG approaches focused on rules or template-based
techniques (Vijayakumar et al. 2016; Geman et al. 2015).
With the rise of neural networks, VQG was formulated as
an image-to-sequence problem, designing an image encoder
followed by a decoder to generate questions in natural lan-
guage (Ren, Kiros, and Zemel 2015; Mostafazadeh et al.
2016; Li et al. 2018; Patro et al. 2018). However, these ap-
proaches often lead to poorly image-grounded and generic
questions (Xie et al. 2022; Krishna, Bernstein, and Fei-Fei
2019). To avoid generic questions, text-guided VQG has
emerged, providing systems some guidance to obtain ques-
tions with specific properties. The constraint can be either
the expected answer (Xu et al. 2020; Xie et al. 2021), a ques-
tion type (Krishna, Bernstein, and Fei-Fei 2019), specific
parts of the image (Vedd et al. 2022) or some external knowl-
edge (Uehara and Harada 2023). In this work, we propose
a VQG method to generate questions guided by text inputs
(e.g., a knowledge triplet or the expected answer), which, to-
gether with our learning objective, ensures that the generated
question is image-grounded and knowledge-aware.

Contrastive Learning (CL). The core idea of CL is learn-
ing by comparing. Given an anchor, CL defines a positive
and a negative distribution, such that samples from the posi-
tive distribution (similar inputs) will be pulled together in the
latent space while negative samples (dissimilar ones) will
be pushed apart. CL has shown impressive performances
on self-supervised and supervised learning in computer vi-
sion (Chen et al. 2020a; He et al. 2020; Khosla et al. 2020);
natural language processing (Oord, Li, and Vinyals 2018;
Klein and Nabi 2021), and audio processing (Saeed, Grang-
ier, and Zeghidour 2021) applications. More recently, CL
has shown remarkable results for multimodal embedding

alignment in vision-language tasks (Radford et al. 2021; Jia
et al. 2021). Indeed, contrastive objectives can be exploited
to align representations of data pairs from different modali-
ties (e.g., an image and its textual description). In this work,
we leverage a contrastive objective to generate questions that
consider visual and textual information together by learning
a more distinguishable multimodal text-image joint repre-
sentation from any single modality representation.

Vision-Language Pretraining (VLP). Benefiting from
the success of language model pre-training (Devlin et al.
2018; Raffel et al. 2020; Brown et al. 2020) and the re-
cent development of model architectures in the communi-
ties (Dosovitskiy et al. 2021), VLP boosts a large amount
of vision-language tasks by providing a powerful vision-
language joint representation (Gan et al. 2022; Chen et al.
2023). Those representations are usually pre-trained on
large-scale datasets (Schuhmann et al. 2021; Lin et al.
2014) using simple objectives such as masked language
modelling (Devlin et al. 2018), text-image matching (Rad-
ford et al. 2021; Jia et al. 2021) or masked image mod-
elling (Chen et al. 2020b) and can be fine-tuned for vari-
ous downstream vision-language tasks (e.g., text-image re-
trieval (Kiros, Salakhutdinov, and Zemel 2014), image cap-
tioning (Anderson et al. 2018), visual question answer-
ing (Antol et al. 2015)). In this paper, we build our base-
line upon one of these models, BLIP (Li et al. 2022), for
the powerful abilities provided by VLP. The proposed con-
trastive objectives serve as one way of tuning models for
more readily accessing knowledge, while also distinguishing
pure language commonsense from image-grounded ones.

Contrastive Visual Question Generation
This section introduces our proposed visual question gener-
ation method, ConVQG, illustrated in Fig. 2. In a nutshell,
ConVQG is based on a multimodal encoder-decoder frame-
work, trained in a contrastive way. The multimodal feature
is contrasted against negative pairs obtained from single-
modality generators to ensure that the generated question
can not be obtained from a single modality alone.

Problem Definition
Given an image i, VQG aims at generating a reasonable and
pertinent question q. On top of this, the question should meet
a given requirement (e.g., reflecting constraints expressed by
knowledge triplets or resulting in a given answer), which can
be expressed as a text constraint t. The problem is solved
by a multi-modal question generation model p(q|i, t), which
embeds image and text into a joint embedding and decodes
a question based on image content and text constraints.

Architecture
ConVQG is built based on BLIP (Li et al. 2022), which is a
large-scale vision-language pre-training pipeline consisting
of an image encoder, a text encoder and a text decoder. Nev-
ertheless, our proposed contrastive method can be used with
any vision-language model.
Image Encoder. The image encoder is a vision transformer
(ViT) (Dosovitskiy et al. 2021). It receives an image i as

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4208



Image 
Captioning 
Module*

Question 
Generation
Module*

Knowledge Triplet:
<MASK-used for-sit down on>

or Answer: Bench
or Captions: There are boats 

and a bench by the sea.

What is the object on the rocky
coastline of the beach in front of
the several boats that is used to sit
down on called?

IQ
G

M

Question 
Generation
Module*Text Input

Image Input

BERT BERT

T
Q

G
M

E
nc

od
er

-D
ec

od
er

 

What is in the background of the
bench?

What is used for sitting down on?

ViT

Image-based Question

Image-grounded Text-guided

Text-guided Question

positive

C
on

V
Q

G

Image 
Encoder

Text 
Encoder

Question
Decoder

Figure 2: Pipeline of the ConVQG method. During training, an encoder-decoder VQG framework is powered by two additional
branches for image-based question generation (IQGM) and text-based question generation (TQGM) (left part, ∗ means the
model is frozen). Then, contrastive losses discriminate image-text joint embeddings with the one from single modality only
(right part). During inference, only the encoder-decoder framework is activated.

input, splits it into patches, and then feeds them into a trans-
former encoder (Vaswani et al. 2017) to output a sequence
of embeddings Ei: Ei = ViT(i).
Text Encoder. The text encoder of ConVQG is a variation
of the BERT model (Devlin et al. 2018) augmented with ad-
ditional cross-attention layers at each transformer block to
inject visual information into the text encoder. In this way,
the text encoder takes as input both the image feature Ei

learned by the image encoder and some text t constraining
the question to be generated. Such text constraint can take
various forms: a knowledge triplet (e.g, <MASK-used for-sit
down on>),1 a potential answer (e.g., bench), or any other
information about the question or the image. They are for-
mulated in natural language t′ (shown in supplementary ma-
terials). The output of the text encoder is regarded as a joint
embedding of the image and text information Eit. The text
encoder can be formulated as: Eit = BERTencoder(t

′, Ei).
Question Decoder. The ConVQG question decoder is anal-
ogous to the text decoder from BLIP. Essentially, it is a
BERT model which replaces the bi-directional self-attention
layers with causal self-attention ones. Thus, the inputs to
the question decoder are the image-grounded text features
learned by the text encoder while the output is the question
embedding: Qit = BERTdecoder(Eit).

Contrastive Learning for VQG
A contrastive learning objective is proposed to generate the
question based on both image and text information. The ba-
sic idea is that joint embeddings of images and text are sup-
posed to be closer to the embeddings of the question an-
notations (i.e., the ground truth) while being different from
those extracted from unimodal models considering the im-
age (IQGM) or text (TQGM) in isolation.
Image-based Question Generation Module (IQGM). To
generate questions based solely on visual information, we

1Here, the MASK token replaces the answer to the question

first use an image captioning model (Cap) from BLIP to
generate captions based on the image content. Then we use
a question generation model (Ushio, Alva-Manchego, and
Camacho-Collados 2022) (QG) to generate questions based
on these captions. Finally, the generated questions are sent
to a sentence-BERT model (Reimers and Gurevych 2019) to
obtain the image-based question embeddings Qi. The mod-
els are pre-trained. The IQGM can be denoted as Eq. (1):

Qi = sBERT(QG(Cap(i))). (1)
Text-based Question Generation Module (TQGM). The
TQGM uses the same pre-trained question generation
model (Ushio, Alva-Manchego, and Camacho-Collados
2022) (QG) as the IQGM, generating questions from the
textual input processed as a sentence (t′). Then, the same
sentence-BERT (Reimers and Gurevych 2019) model is
used to embed the text-based question:

Qt = sBERT(QG(t′)). (2)
Contrastive Losses for VQG. To ensure VQG focuses both
on image and text information, we propose a CL objective.
With IQGM and TQGM, we obtain questions that are based
only on visual information and text constraints respectively.
Then we propose two contrastive losses, one on the image
and one on the text. The image contrastive loss CLimg en-
forces the L2-norm between the embedding generated by the
IQGM, Qit, and the embedding of the ground truth Qgt, by
the same sentence-BERT model, to be closer than the L2-
norm between Qit and the image-only question embedding
Qi by a margin m:

CLimg = max (∥Qit −Qgt∥2 − ∥Qit −Qi∥2 +m, 0) . (3)
The text-contrastive loss CLtxt is analogous, using the em-
bedding of the text-only model Qt as negative signal:

CLtxt = max (∥Qit −Qgt∥2 − ∥Qit −Qt∥2 +m, 0) . (4)
Then, the contrastive loss can be formulated as a weighted
sum of CLtxt and CLimg with a parameter α:

CL = αCLtxt + (1− α)CLimg. (5)
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Finally, the CL loss is combined with a cross-entropy loss
CEL between predicted question embeddings and ground
truth questions to ensure sufficient information from single
modalities. The final loss of the ConVQG model can be rep-
resented as:

Loss = (βCL+ CEL)/2, (6)

where β is a parameter that can be fixed or tuned; it bal-
ances the contributions of the contrastive loss and the cross-
entropy loss. In the Results section, we perform experiments
to analyse the impact of these hyper-parameters.

Training and inference. IQGM and TQGM are auxiliary,
frozen modules. Therefore, the trainable components of
ConVQG are only the image and text encoders of the multi-
modal branch, as well as the text decoder. At inference time,
IQGM and TQGM are dropped, and only the multimodal
encoder-decoder is used to obtain the question embedding
Qit. Then we use beam search, as in the sentence generator
from BLIP, to decode the final question from Qit.

Experimental Setup
We compare ConVQG with several methods from the liter-
ature, considering different forms of text inputs. In this sec-
tion, we describe the datasets, metrics and the experimental
settings that we used for training and evaluation.

Datasets
We evaluate our VQG method on three public datasets: a
knowledge-aware benchmark (K-VQG) and two standard
VQG benchmarks (VQA 2.0 and VQG COCO).
K-VQG2 (Uehara and Harada 2023) is a knowledge-aware
VQG dataset. It is a large-scale, humanly annotated dataset,
where image-grounded questions are tied to structured
knowledge (knowledge triplets). Each sample consists of an
image, a question, an answer, and a knowledge triplet. K-
VQG contains ∼13K images and ∼16K (question, answer)
pairs, related to ∼6K knowledge triplets.
VQA 2.03 (Goyal et al. 2017) with more than 1M (image,
question, answer) triplets, it is the largest and most com-
monly used dataset for VQG evaluation. Images come from
the COCO dataset (Lin et al. 2014), and three (question, an-
swer) pairs were collected per image. In our experiments,
we consider two versions of this dataset: VQA 2.0 small (Xu
et al. 2020), containing ∼80K images and ∼200K (question,
answer) pairs; and VQA 2.0 large (Krishna, Bernstein, and
Fei-Fei 2019), which count ∼120K and ∼470K, respectively.
VQG COCO4 (Mostafazadeh et al. 2016) was created to
generate natural and engaging questions for images. It con-
tains 2500 training images, 1250 validation images, and
1250 testing images. Each image contains five natural ques-
tions and five ground truth captions. Different from the other
two datasets, the answers are not always provided.

2https://uehara-mech.github.io/kvqg
3https://visualqa.org/download.html
4https://www.microsoft.com/en-us/download/details.aspx?id=

53670

Evaluation Metrics
Numerical metrics. We use a variety of language genera-
tion metrics for evaluation: BLEU (Papineni et al. 2002),
METEOR (Denkowski and Lavie 2014) and CIDEr (Vedan-
tam, Lawrence Zitnick, and Parikh 2015). They assess the
conformity between questions generated by a model and
ground truth questions. CIDEr, a TF-IDF-based metric, is
the closest to human evaluation for image description com-
pared to the other metrics (Vedantam, Lawrence Zitnick, and
Parikh 2015). Additional information on how these metrics
are computed can be found in the supplementary material.
Similarly to most work in the literature (Chen et al. 2015;
Xie et al. 2021), we use the pycocoevalcap package5

for computing the metrics.
Human evaluation. We use Amazon Mechanical Turk to
assess the quality of model-generated questions, asking
workers to express their preferences about 500 examples ex-
tracted from the K-VQG test set. Annotators must choose
which of the two questions is better according to two criteria:
(1) grounding to the knowledge triplet, and (2) grounding
to the image. They also can indicate when none of the two
questions is considered better if they consider that their sim-
ilarity is too high to make a meaningful choice. Additional
details on the sample selection, the human evaluation pro-
cess, and the instructions and examples given to the workers
can be found in the supplementary material.

Experimental Framework
Following BLIP, the image encoder is a ViT-B/16, i.e., a ViT
architecture with 12 attention heads, 12 hidden layers, and
images divided into 16 × 16 patches. The text encoder and
the question decoder are BERTbase models, i.e., transformer
encoder with 12 attention heads and 12 hidden layers. We
initialize the encoder-decoder architecture with the corre-
sponding pre-trained modules from BLIP (Li et al. 2022).
Since all BLIP models are publicly available,6 we choose
the “BLIP w/ ViT-B and CapFilt-L” checkpoint for initial-
ization. This model was pre-trained on 129M noisy image-
text pairs using CapFilt-L, a captioning and filtering method.

Training was done on six NVIDIA A100-SXM4-40GB
with a batch size of 24 each (VQA 2.0 dataset) and four
NVIDIA V100-SXM2-32GB with a batch size of 16 each
(K-VQG dataset, VQG-COCO dataset). The number of
epochs varies depending on the dataset (10 for VQA 2.0, 5
for K-VQG, 5 for VQG-COCO). The starting learning rate
is 2e-5 with a weight decay of 0.05.

Results
In this section, we report the VQG results including quanti-
tative, qualitative and human evaluation results. We compare
ConVQG with several systems from the literature. For the
sake of space, we report here only a subset of results from
the literature. Additional results and descriptions of the com-
peting methods can be found in the supplementary material.

5https://pypi.org/project/pycocoevalcap/
6https://github.com/salesforce/BLIP
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Text
constraint Method BLEU-4 METEOR CIDEr

Answer IM-VQG 12.37 16.65 0.39
ConVQGIT 14.30 18.67 0.78

Knowledge
Triplet

K-VQG 18.84 22.79 1.31
ConVQGIT 20.01 22.66 1.53

Table 1: Results on the K-VQG dataset. The results of IM-
VQG are reproduced based on the official code. The results
of KVQG are taken from the respective paper.7

Test set Method BLEU-4 METEOR CIDEr

Small

IVQA 23.9 35.7 1.84
IM-VQG 24.8 26.3 1.94
iQAN 27.1 26.8 2.09
Radial-GCN 27.9 27.1 2.10
MOAG 28.1 27.8 2.39
ConVQGIT 33.1 30.0 2.79

Large
C3VQG 10.0 13.6 0.47
IM-VQG 16.3 20.6 0.94
ConVQGIT 22.4 21.8 1.78

Table 2: Results on the VQA 2.0 test sets. The results of the
competing methods are taken from the respective papers.8

Results on VQG Benchmarks
We train ConVQG on three datasets, with different types of
text inputs: knowledge triplets, answers and captions.
Knowledge triplet. Results are reported in Table 1 us-
ing the K-VQG dataset (row block Knowledge Triplet),
with masking the answers as in (Uehara and Harada 2023).
ConVQGIT outperforms K-VQG (Uehara and Harada
2023) by 1.17% on BLEU-4 and 0.22 points on CIDEr, and
has a slightly lower METEOR score (0.13% difference).
Answer. On the K-VQG dataset, answers can also be used
as constraints. In Table 1 (row block Answer), ConVQGIT

shows an improvement of 1.93% on BLEU-4, 2.02% on
METEOR and 0.39 points on CIDEr, with respect to the
baseline method. On the VQA 2.0 dataset, samples consist
of image, question, answer with no other additional sources
of knowledge. Only the answer can be used as a text con-
straint. Results on the VQA 2.0 dataset, large and small
versions, are presented in Table 2. On the VQA 2.0 small,
ConVQGIT leads to better performances for all the eval-
uation metrics. The improvement on CIDEr (0.40 points)
demonstrates that the generated questions become seman-
tically similar to ground truth annotations. On VQA 2.0
large, ConVQGIT shows large improvements as well. In-
deed, BLEU-4, METEOR, and CIDEr increased by 6.1%,

8IM-VQG (Krishna, Bernstein, and Fei-Fei 2019), K-
VQG (Uehara and Harada 2023)

8IVQA (Liu et al. 2018), IM-VQG (Krishna, Bernstein, and
Fei-Fei 2019), iQAN (Li et al. 2018), Radial-GCN (Xu et al. 2020),
MOAG (Xie et al. 2021), C3VQG (Uppal et al. 2021)

Method BLEU-1 METEOR CIDEr

MDN 36.0 23.4 0.51
MC-BMN 40.7 22.6 0.50
ConVQG∗

IT 50.2 26.4 0.56

Table 3: Results on VQG-COCO, using captions as text con-
straint. We report BLEU-1 instead of BLEU-4 to be consis-
tent with the comparison methods. The results for the com-
peting methods are taken from the respective papers.9

1.2%, and 0.84 points, respectively, with respect to SOTA
approaches.
Caption. On the VQG-COCO dataset, there are no answers
nor additional knowledge associated with questions, but cap-
tions are used as text inputs. We distinguish ConVQG∗

IT
from ConVQGIT because when captions are used as text
constraints, the captioning step (Cap) is skipped and ques-
tions generated by IQGM and TQGM are the same. Results
show improvements among all metrics compared with the
state-of-the-art methods. Compared with MC-BMN (Patro
et al. 2020), BLEU-1, METEOR and CIDEr increase 9.5%,
3.8% and 0.06 points respectively (see Table 3).

Ablation Study
In this section, we perform ablation studies to evaluate the
contribution of each of the constrastive objectives. To this
end, we distinguish four versions of our ConVQG model:
1. ConVQGB is our baseline model, consisting of the mul-

timodal encoder-decoder, without the contrastive mod-
ules, trained with cross-entropy loss.

2. ConVQGI adds the IQGM module and the image con-
trastive loss in Eq. (3) to the baseline model.

3. ConVQGT adds the TQGM module and the text con-
trastive loss in Eq. (4) to the baseline model.

4. ConVQGIT is the full model as shown in Fig. 2, that
optimizes the final loss in Eq. (6).

Looking at the performance of ConVQG with some of
its components deactivated (Table 4), we see that even the
contrastive models using only the image (ConVQGI ) or text
(ConVQGT ) contrastive module outperform the encoder-
decoder baseline in all cases but one. For both cases,
ConVQGIT works better than ConVQGB , ConVQGI and
ConVQGT , especially for answers as inputs. ConVQGIT

outperforms ConVQGB for 1.35%, 0.89% and 0.14 points
on BLEU-4, METEOR and CIDEr respectively.

Parameter Analysis
In the proposed ConVQG method, there are three core pa-
rameters: α (Eq. (5)), β (Eq. (6)), both balancing the differ-
ent parts of the loss and the margin m (Eq. (3) and (4)). We
vary their values and test their impact on ConVQGIT on the
K-VQG dataset. Results are reported in Table 5.

All in all, these results show that ConVQG is robust to the
model hyper-parameters since very small performance vari-
ations are observed. Linear β outperforms fixed β values,

9MDN (Patro et al. 2018), MC-BMN (Patro et al. 2020)
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the kitchen?
Image-based
Question

What is used for moving across water?What is used to sit for a bit?What is carrot?Text-based Question

What vehicle type is used to aid people in
moving across the water without getting wet?

What is the name of the object which people may
choose to sit on while waiting for public transportation?

What food group does the orange
food belong to?

GT Question

What is the object in the water that is used for
moving across the water?

What is the object outside that is used to sit on for a
bit?

What can the orange object that in on
the cutting board be used for?

ConVQGB

What kind of vehicle placed in the river and is
used to moving across water?

What is the object on the side of the road that is used
to sit on for a bit?

What food group does the orange
food on the cutting board belong to?

ConVQGIT

Figure 3: Examples from K-VQG dataset with knowledge triplets as inputs. In the text, green color denotes the sequence that
is related to image content, while yellow color denotes the information related to the text input. Red color indicates wrong
expressions, not related to the image nor the text input. Note: the raw input/output of the model is reported, without correcting
grammar or syntax errors made by the generative model.

Text
constraint Method BLEU-4 METEOR CIDEr

Answer

ConVQGB 12.95 17.78 0.64
ConVQGI 13.95 18.33 0.75
ConVQGT 13.97 18.03 0.70
ConVQGIT 14.30 18.67 0.78

Knowledge
Triplet

ConVQGB 18.33 21.47 1.31
ConVQGI 19.00 21.91 1.38
ConVQGT 19.11 20.65 1.39
ConVQGIT 20.01 22.66 1.53

Table 4: Ablation studies on K-VQG dataset.

indicating that the contribution of the contrastive loss varies
during training. α balances the relative contribution of image
contrastive and text contrastive modules, which might vary
depending on the dataset and how informative the text con-
straints are with respect to the image content. For m, metrics
are relatively stable, especially for METEOR (max change
0.12%) and CIDEr (max change 0.01 points).

Qualitative Results
Fig. 3 shows generated questions on the K-VQG dataset.
For each example, image and text inputs are displayed. Row
Image-based question corresponds to the question generated
by IQGM, while Text-based question is the result obtained
by TQGM. We compare questions generated by the pro-
posed ConVQGIT with the outputs of the baseline without
contrastive learning (ConVQGB) and the annotations.

Comparing the questions generated by the ConVQG ver-
sions against the ground truth questions, we observe the fol-
lowing: first, ConVQGIT is able to constrain the question
context according to the text inputs more precisely. For ex-
ample, with the text constraint Carrot is a [Mask], the VQG

Param. Value BLUE-4 METEOR CIDEr

α
0.2 20.01 22.66 1.53
0.5 19.90 22.60 1.52
0.8 19.79 22.56 1.52

β
10 19.80 22.55 1.52

100 19.74 22.39 1.51
Linear 20.01 22.66 1.53

m
0.2 19.89 22.66 1.53
0.5 20.01 22.66 1.53
0.8 19.68 22.54 1.52

Table 5: Parameter analysis on K-VQG dataset. α from
Eq. (5), β from Eq. (6) and m from Eqs. (3) and (4). Lin-
ear means β changed linearly during training.10

model is supposed to generate a question about the category
or a general description of Carrot. The baseline method fails
to understand the requirements behind the text input, while
the proposed ConVQGIT generated a question that meets
the constraint. Second, ConVQGIT provides more informa-
tion based on both the visual scene (therefore referring to ob-
jects in the scene and their relationships) and the text context
(formulated as a textual sentence). For instance, in the third
example, ConVQGIT replaces in the water (ConVQGB)
with a more precise generation of the image content (vehicle
placed in the river). We also provide failure cases, the mod-
els sometimes add inappropriate descriptions of images (the
middle column) or fail to constrain the question with the text
(ConVQGB in the first column).

The ConVQG model can also be used in inference mode,
where a single image and multiple knowledge triplets are

10β is increased by a factor of 10 at each epoch, starting from
β = 10.
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Input Text: The light bulb.
ConVQGIT: What is the name of the appliance that

lights up a living room?
Input Text: Shelf is at location of [MASK].
ConVQGIT: Where can you find this long wooden

object with books?

(a) One image - different text inputs

Input Text: [MASK] is used for floating on water
ConVQGIT: What is the vehicle on the water which

is used to transportation?

ConVQGIT: What is the white object on the beach
that is capable of floating on water?

Input Text: [MASK] is used for floating on water

(b) Different images - one text input

Figure 4: Question generation by ConVQG. Given the same
image, it can generate different text-guided questions. Given
the same text input, it can generate image-specific questions.

given as inputs and vice versa. We show examples of both
usages in Figs. 4(a) and 4(b). In the first case (One image -
different text inputs, Fig. 4(a)), the generated questions cap-
ture the different constraints provided by the text input. For
example, with answer The light bulb, the model tries to de-
scribe it as lights up a living room and has black and white
stripes. If the text input is changed to Shelf is at a location of
[Mask], then the model generates a question about the place
and adds more information such as long wooden object with
books. In the second case, if the model is given the same
text and different images as inputs (Different images - one
text input, Fig. 4(b)), ConVQGIT generates image-grounded
questions by finding unique image content. In the top exam-
ple, ConVQG uses the words vehicle and transportation in
the question, showing general understanding provided by the
visual cue of people traveling on the boats. In the bottom, the
generated question contains the descriptions of the specific
boats (white object) and of the visual scene (on the beach).

Transfer Results
To demonstrate the generalization ability of ConVQG, we
test it in a transfer setting: we train it on the K-VQG dataset
and test it on the FVQA (Wang et al. 2017) dataset with-
out further training. FVQA was created for fact-based visual
question answering. For each question-answer pair, a fact
sentence is provided to clarify the possible commonsense to
answer the question, which is used as a text constraint for
our transfer settings. Fig. 5 illustrates this experiment. Com-
pared with annotations, the question generated by ConVQG
can be grounded to both image and text, which indicates the
effectiveness of the contrastive objectives. Quantitative re-
sults can be found in supplementary materials.

Human Evaluation Results
In this section, we report the results of the human evaluation
performed on Amazon Mechanical Turk, on K-VQG test set.

Input Text: Piano is a instrument.
GT: Whether the instrument in the image is a
light or heavy instrument?
ConVQGIT: What is the object the woman is
holding that is a type of musical instrument?

Input Text: a racket can be used to play tennis.
GT: Which object in this image do people use
when playing tennis?
ConVQGIT: what is the object the man is holding
that is used to hit a ball?

Figure 5: Transfer results on the FVQA dataset.

Figure 6: Histogram of human preference by similarity be-
tween the two questions, computed using BLEU-1 score.

Among the 500 annotated question pairs, the question gen-
erated by ConVQGIT was preferred 236 times; ConVQGB

was preferred 183 times; the option “Similar” was chosen 81
times. We compute the similarity between the two questions
using the BLEU-1 score. A histogram of the proportion of
each of the three choices by degree of similarity between
the questions can be found in Fig. 6. The proportion of the
“Similar” option chosen by the annotators increases with the
similarity between the questions, which is a good way to
verify the ability of the workers to correctly tackle the task.
Moreover, the contrastive model ConVQGIT is systemati-
cally chosen more often than the baseline model, demon-
strating the human preference towards the proposed system.

Conclusion
Asking questions in natural language is a fundamental step
toward effective visual dialog systems. In this work, we
propose contrastive VQG with multimodal guidance from
the image content and textual constraints. ConVQG lever-
ages two modality-specific contrastive objectives to guide
the content of the question by driving it away from ques-
tions generated from single modalities. Our multimodal sys-
tem allows to control the diversity of questions, and the si-
multaneous grounding in both modalities. Extensive exper-
iments in standard and knowledge-aware benchmarks show
that ConVQG outperforms state-of-the-art methods and has
good transfer capacities to unseen datasets. Human evalu-
ation demonstrates that humans prefer ConVQG-generated
questions to non-contrastive baselines. These results show
that the contrastive objective of ConVQG is key to generat-
ing diverse, knowledge-rich, and image-specific questions.
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