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Abstract
Word-level adversarial attacks have shown suc-001
cess in NLP models, drastically decreasing the002
performance of transformer-based models in003
recent years. As a countermeasure, adversarial004
defense has been explored, but relatively few005
efforts have been made to detect adversarial ex-006
amples. However, detecting adversarial exam-007
ples in NLP may be crucial for automated task008
(e.g. review sentiment analysis) that wishes009
to amass information about a certain popula-010
tion and additionally be a step towards a ro-011
bust defense system. To this end, we release a012
dataset for four popular attack methods on four013
datasets and four NLP models to encourage014
further research in this field. Along with it, we015
propose a competitive baseline based on den-016
sity estimation that has the highest AUC on 29017
out of 30 dataset-attack-model combinations.1018

1 Introduction019

Adversarial examples in NLP refer to seemingly020

innocent texts that alter the model prediction to a021

desired output, yet remain imperceptible to humans.022

In recent years, word-level adversarial attacks have023

shown success in NLP models, drastically decreas-024

ing the performance of transformer-based models025

in sentence classification tasks with increasingly026

smaller perturbation rate (Jin et al., 2020; Li et al.,027

2020; Garg and Ramakrishnan, 2020; Ren et al.,028

2019). In the image domain, two main lines of029

research exist to counteract adversarial attacks : ad-030

versarial example detection and defense. The goal031

of detection is to discriminate an adversarial input032

from a normal input, whereas adversarial defense033

intends to predict the correct output of the adversar-034

ial input. While works defending these attacks have035

shown some progress in NLP (Zhou et al., 2021;036

Keller et al., 2021; Jones et al., 2020), only few037

efforts have been made in techniques for the sole038

purpose of detection.039

1https://github.com/anoymous92874838/text-adv-
detection

Figure 1: Schematic Diagram of our adversarial de-
tection Framework. We propose a density estimation
model to detect adversarial samples.

However, detecting adversarial examples in NLP 040

may be as crucial as defending them in certain ap- 041

plications, in which alerting the victim the exis- 042

tence of adversarial samples suffices. For instance, 043

models used for automation of tasks (e.g. review 044

sentiment analysis, news headline classification, 045

etc) are adopted to efficiently gain information 046

about the true data-generating population (e.g. con- 047

sumers, news media, etc), rather than the adversary. 048

For such applications, attaining outputs of an ad- 049

versarial input - whether correct or not - may turn 050

out to be harmful to the system. Accordingly, the 051

discard-rather-than-correct strategy which simply 052

discards the detected adversarial input would be 053

a good countermeasure. Moreover, being able to 054

detect adversarial examples may be a step towards 055

building a more robust defense model as the popu- 056

lar defense paradigm, adversarial training, usually 057

suffers from degraded performance on normal in- 058

puts (Bao et al., 2021). With a competent detection 059

system, the normal and adversarial inputs can be 060

processed by two separate mechanisms as proposed 061

by Zhou et al. (2019). 062

Many existing works in NLP that employ detec- 063

tion as an auxilary task for defense require adver- 064

sarial samples for training, which may be restrictive 065

scenario given the variety of attack methods and 066

sparsity of adversarial samples in the real world. 067

In addition, some works either focus on a single 068

type of attack or is limited to character-level at- 069

tacks, both of which do not abide the two key con- 070

straints (semantics and grammaticality) in order to 071
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Method Summary Require
Train Data?

Require
Val. Data? Target Attacks†

RDE (Ours) Feature-based density estimation Token-level
Mozes et al. (2021, FGWS) Word frequency-based X Word-level
Bao et al. (2021, ADFAR) Learning-based (sentence-level) X X Word-level
Le et al. (2021, DARCY) Learning-based (Honeypot) X X Wallace et al. (2019)
Zhou et al. (2019, DISP) Learning-based (token-level) X X Token-level
Pruthi et al. (2019) Learning-based (Semi-character RNN) X X Char-level

Table 1: Key chracteristics of the detection methods in the NLP domain. Requiring training/valdiation data
means adversarial samples are needed for training/validation. Token-level encompasses word and character-level.
†Determined by the experimented types of attacks. Some works can be trivially modified to adjust to a different
type of attacks.

be imperceptible (Morris et al., 2020a). As opposed072

to this, carefully crafted word-level adversarial at-073

tacks can maintain original semantics and remain074

unsuspicious to human inspectors. To encourage075

further research in this domain, we release a bench-076

mark for word-level adversarial example detection077

on four attack methods across four NLP models078

and four datasets. We also propose a simple but079

effective detection method that utilizes density es-080

timation in the feature space as shown in Fig. 1081

without any assumption of the attack algorithm or082

requiring adversarial samples for training or vali-083

dation. We summarize the existing works in Table084

1.085

As opposed to a recent work (Mozes et al., 2021),086

which rely on word frequency to assess the like-087

lihood of sentence(s), we model the probability088

density of the entire sentence(s). To achieve this,089

we fit a parametric density estimation model to090

the features obtained from a classification model091

(e.g. BERT) to yield likelihoods of each sample092

as shown by Fig. 2 inspired by classic works in093

novelty detection (Bishop, 1994), which utilizes094

generative models to find anomalies. However, sim-095

ply fitting a parametric model suffers from curse096

of dimensionality characterized by (i) sparse data097

points and spurious features (ii) and rare outliers098

that hamper accurate estimation. To tackle these is-099

sues, we leverage classical techniques in statistical100

analysis, namely kernel PCA and Minimum Co-101

variance Determinant, for robust density estimation102

(RDE).103

Our attack-agnostic and model-agnostic detec-104

tion method achieves best performance as of AUC105

on 29 out of 30 dataset-attack-model combinations106

and best performance as of TPR, F1 , AUC on 25 of107

them without any assumption on the attacks.108

Our contributions are two-fold:109

• We propose a adversarial detection method that110

does not require validation sets of each attack111

logpθ(z)
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Figure 2: Density estimation using our method in
(Data-Attack-Model) = (IMDB-(TF-adj)-BERT). Nor-
mal samples are peaked at high likelihood region. Ad-
versarial samples tend to have low likelihood.

method through robust parameter estimation by 112

alleviating problems caused by curse of dimen- 113

sionality. 114

• We release a dataset for word-level adversarial 115

example detection on 4 attacks, 4 datasets, and 116

4 models and the source code for experimenting 117

on various experimental protocols. 118

We further provide analysis on a stronger adversary 119

with partial knowledge of the detection method and 120

techniques to counteract the adversary. Last, we 121

investigate the proposed method’s applicability on 122

character-level attacks. 123

2 Preliminaries 124

2.1 Adversarial Examples 125

Given an input space X , a label space Y , a predic- 126

tive model F : X → Y , and an oracle model 127

F∗ : X → Y , a successful adversarial example 128

xadv of an input x ∈ X satisfies the following: 129

F∗(x) = F(x) 6= F(xadv),

Ci(x, xadv) = 1 for i ∈ {1, . . . , c} (1) 130
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Dataset Topic Task Classes Median
Length

# of Test Samples
Original / Generated

IMDB(Maas et al., 2011) movie review sentiment classification 2 161 25K / 10K
AG-News(Zhang et al., 2015) news headline topic classification 4 44 7.6K / 7.6K

SST-2(Socher et al., 2013) movie review sentiment classification 2 16 2.7K / 2.7K
YELP(Zhang et al., 2015) restaurant review sentiment classification 2 152 38K / 5K

Table 2: Summary of the benchmark dataset. For SST-2, 0.87K held-out validation samples and 1.8K test samples
are used.

where Ci is an indicator function for the i-th con-131

straint between the perturbed text and the original132

text, which is 1 when the two texts are indistin-133

guishable with respect to the constraint. The con-134

straints vary from attack algorithms and is crucial135

for maintaining the original semantics while pro-136

viding an adequate search space. For instance, Jin137

et al. (2020) ensure that the embedding of the two138

sentences have a cosine similarity larger than 0.5139

using the Universal Sentence Encoder (Cer et al.,140

2018, USE).141

2.2 Detecting Adversarial Examples142

For the purpose of detecting adversarial examples,143

a dataset D consisting of clean samples (Dclean)144

and adversarial samples (Dadv) is required. The de-145

tails of the configuration induce a scenario such146

as whether the original text of adversarial sam-147

ples overlap with the clean samples, the ratio of148

clean and adversarial samples, etc. However, this149

has rarely been discussed in detail and the exact150

implementation varies by works. In all the main ex-151

periments, we follow the configuration (described152

below) used in a seminal work Xu et al. (2018)153

on adversarial example detection in the image do-154

main. We denote the test set as Xt and the correctly155

classified test set as Xc ⊂ Xt.156

• Configuration 1 : Sample disjoint subsets S1,157

S2 ⊂ Xt. For the correctly classified examples158

of S1, adversarial attacks are generated and the159

successful examples form Dadv. Dclean is formed160

from S2.161

More discussion regarding the other configura-162

tion and experiment results is in Appendix A.2.163

3 Method164

3.1 Benchmark165

We generate adversarial examples on 4 models,166

4 types of attacks, and 4 sentence classification167

datasets. Since some attacks (Garg and Ramakr-168

ishnan, 2020) require hundreds of queries and in-169

ference of models per query, vast amount of time170

is required to create all the adversarial examples 171

(e.g. up to 44 hours for 5,000 examples on the 172

IMDB dataset using TF-adjusted attack). This ren- 173

ders on-the-fly generation and detection of adver- 174

sarial examples extremely inefficient. Therefore, 175

adversarial examples are created beforehand and 176

sampled according to Section 2.2. Four sentence 177

classification datasets (IMDB, AG-News, SST-2, 178

Yelp) are chosen to have diverse topics and length. 179

See Table 2 for the summary and the number of 180

generated samples. 181

We choose two non-transformer-based models 182

(Word-CNN Kim (2014); LSTM Hochreiter and 183

Schmidhuber (1997)) and two transformer-based 184

models (RoBERTa Liu et al. (2019); BERT Devlin 185

et al. (2018)) . Recently, numerous adversarial at- 186

tacks have been proposed. We choose two widely 187

known attacks called Textfooler (Jin et al., 2020, 188

TF) and Probability Weighted Word Saliency (Ren 189

et al., 2019, PWWS) and a recent approach us- 190

ing BERT to generate attacks called BAE (Garg 191

and Ramakrishnan, 2020). Lastly, we also include 192

a variant of TF called TF-adjusted (Morris et al., 193

2020a, TF-adj), which enforces a stronger similar- 194

ity constraint to ensure imperceptibility to humans. 195

All attacks are created using the TextAttack library 196

(Morris et al., 2020b). See Appendix A.1 for the 197

summary of attack methods and Appendix A.6 for 198

a code snippet of using our benchmark. 199

3.2 Estimating Density and Parameters in 200

Feature Space 201

Earlier works in novelty detection (Bishop, 1994) 202

have shown that generative models fitted on nor- 203

mal samples are capable of detecting unseen novel 204

samples (e.g. adversarial samples). Since we can 205

assume that the training samples, which were used 206

to train the victim model of a particular task, are 207

available to the victim party, we can similarly de- 208

sign a generative model that estimates input den- 209

sity. However, directly using the inputs is challeng- 210

ing as modeling the probability distribution of raw 211

texts is non-trivial. To bypass this, we fit a paramet- 212
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Figure 3: Comparisons of the maximum and minimum
eigenvalues of the estimated covariance matrices for
RoBERTa and BERT across all datasets and classes (20
samples total). Naive estimation (blue) using raw fea-
tures leads to extremely ill-conditioned matrices while
kPCA (red) alleviates this.

ric density estimation model in the feature space213

(i.e. penultimate layer of the classification model).214

Since a neural network learns to extract important215

features of the inputs to distinguish classes, the216

features can be regarded as representations of the217

raw inputs. For a pre-trained predictive model F ,218

let z ∈ Z ⊂ RD denote the feature given by the219

feature extractorH : X → Z . Then the entire pre-220

dictive model can be written as the composition of221

H and a linear classifier.222

Given a generative model pθ with mean and co-223

variance as parameters θ = (µ,Σ), we can use the224

features of the training samples (Xtrain) to estimate225

the parameters. Then, novel adversarial samples ly-226

ing in the unobserved feature space are likely to227

be assigned a low probability, because the gen-228

erative model only used the normal samples for229

parameter fitting. For simplicity, we assume the230

distributions of the feature z follow a multivari-231

ate Gaussian, and thus we model the class condi-232

tional probability as pθ(z|y = k) ∼ N(µk,Σk) ∝233

exp{−1
2(z − µk)

TΣ−1
k (z − µk)}, where y indi-234

cates the class of a given task. Then, the maximum235

likelihood estimate (MLE) is given by the sample236

mean µ̃MLE = 1
N

∑N
i=1 zi and sample covariance237

Σ̃MLE = 1
N−1

∑N
i=1(zi − µ̃MLE)(zi − µ̃MLE)T .238

However, accurate estimation of the parameters239

is difficult with finite amount of samples especially240

in high dimensions (D = 768 for transformer-241

based models) due to curse of dimensionality,242

thereby (i) leading to sparse data points and spuri-243

ous features (ii) and occasional outliers that influ-244

ence the parameter estimates. In Figure 3, we em-245

pirically show that the covariance matrices (blue)246
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Figure 4: Probability-contours of Σ̃ within three stan-
dard deviations estimated by MLE and Minimum Co-
variance Determinant (MCD) of BERT on SST-2 di-
mensionality reduced by kPCA. Colors of the points
indicate class. See Sec. 3.3 for details.

of BERT and RoBERTa across all models across all 247

datasets are ill-conditioned, demonstrated by the 248

high maximum eigenvalues and extremely small 249

minimum eigenvalues (≈ 10−12). Due to this, the 250

precision matrix is abnormally inflated in certain 251

dimensions and prone to numerical errors during 252

inversion. More analysis regarding the upperbound 253

of this error is provided in Appendix A.3. 254

In addition, although we have assumed a Gaus- 255

sian distribution for convenience, the unknown true 256

distribution may be a more general elliptical dis- 257

tribution with thicker tails. This is observed empir- 258

ically in Figure 4 by visualizing the features into 259

two dimensions by dimensionality reduction. Out- 260

liers that are far from the modes of both classes 261

(indicated by color) are present: those that are com- 262

pletely misplaced occasionally exist, while sub- 263

tle outliers that deviate from the Gaussian distri- 264

bution assumption are common, which influences 265

the MLE estimation. Thus, to accurately estimate 266

the Gaussian parameters, these outliers should be 267

taken into account. In the following subsection, we 268

tackle these issues through well-known classical 269

techniques from statistical analysis. 270

3.3 RDE using kPCA and Minimum 271

Covariance Determinant 272

To address the first issue, we first use kernel PCA 273

(Schölkopf et al., 1998, kPCA) to select top P or- 274

thogonal bases that best explain the variance of the 275

data, thereby reducing redundant features. GivenN 276

centered samples Ztrain ∈ RD×N = [z1, . . . , zN ], 277

a mapping function φ : RD → RD′
, and its map- 278

ping applied to each sample Φ(Ztrain) ∈ RD′×N , 279

kPCA projects the data points to the eigenvec- 280
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tors with the P largest eigenvalues of the covari-281

ance Φ(Ztrain)Φ(Ztrain)T 2. Intuitively, this retains282

the most meaningful feature dimensions, which ex-283

plains the data the most, while reducing spurious284

features and improve stability of inversion by de-285

creasing the condition number as shown in Figure286

3. By leveraging non-linear φ, we are able to find287

meaningful non-linear signals in the features as288

opposed to standard PCA. We use the radial basis289

function as our kernel. Comparison of performance290

with standard PCA is provided in Appendix Ta-291

ble A.5. For a complete derivation, please refer to292

Schölkopf et al. (1997).293

However, this does not remove sample-level out-294

liers as shown in Figure 4. Since we have assumed295

a Gaussian distribution, "peeling off" outliers may296

be favorable for parameter estimation. A principled297

way of removing outliers for parameter estimation298

has been an important research area in multivariate299

statistics and various methods have been developed300

for robust covariance estimation (Friedman et al.,301

2008; Ledoit and Wolf, 2004). Among them, Mini-302

mum Covariance Determinant (Rousseeuw, 1984,303

MCD) finds a subset of h ≤ N samples that mini-304

mizes the determinant of Σ.3 As the determinant is305

proportional to the differential entropy of a Gaus-306

sian up to a logarithm (shown in Appendix A.4),307

this results in a robust covariance estimation con-308

sisting of centered data points rather than outliers.309

For a review, see Hubert et al. (2018). Qualitatively,310

we observe in Figure 4 that MLE estimates have311

their means yanked towards the outliers and that312

the contours are disoriented (Blue). MCD estimates313

(Red) focus on the high density clusters, which314

leads to higher performance as will be shown in the315

experiments.316

In summary, we retain informative features by317

applying kPCA and obtain robust covariance es-318

tiamte by using MCD on the train set. Using the319

estimated robust parameters, we can evaluate the320

likelihood of a test sample. We treat those with low321

likelihood as novel (adversarial) samples. Our algo-322

rithm is shown in Algorithm 1 in the Appendix. We323

empirically validate the effectiveness of two tech-324

niques and discuss the effect of hyper-parameter P325

and h in the following sections.326

2For simplicity, we assume Φ(Ztrain) is centered. When
this assumption does not hold, slightly modified approach is
taken. See Appendix B of Schölkopf et al. (1998) for details.

3Although the possible number of subsets is infeasibly
large, Rousseeuw and Driessen (1999) propose an iterative
method that converges relatively fast for ≈ 4000 samples with
100 dimensions.

4 Experiments 327

4.1 Experimental Settings 328

We experiment on the four datasets (IMDB, AG- 329

News, SST-2, Yelp) and four attack methods de- 330

scribed in Section 3.1. Our experiment is based 331

on BERT and RoBERTa as they are widely used 332

competent models for various tasks. Since SST-2 333

only has 1.8K test samples, TF-adjusted attack was 334

unable to create an adequate number of successful 335

adversarial samples (e.g. 80 samples out of 1.7K). 336

Omitting experiments for these, there are 22 com- 337

binations of dataset-attack-model in total. 338

In addition, we (i) investigate a potential adver- 339

sary with partial/full knowledge of the detection 340

method and (ii) conduct experiments on a character 341

level attack (Appendix A.10) to demonstrate the 342

applicability of our method. Last, we discuss more 343

realistic scenarios for further study and conduct 344

hyper-parameter and qualitative analysis. 345

4.2 Compared Methods 346

We compare our robust density estimation method 347

(RDE) with a recently proposed detection method 348

in NLP called FGWS (Mozes et al., 2021) which 349

is a word frequency-based method that assumes 350

that rare words appear more often in adversarial 351

samples. We also verify whether Perplexity (PPL) 352

computed by a language model (GPT-2, Radford 353

et al. 2019) is able to distinguish normal and adver- 354

sarial samples as PPL is often used to compare the 355

fluency of the two samples. FGWS implicitly mod- 356

els the input density via word frequencies, while 357

GPT-2 explicitly computes the conditional proba- 358

bility via an auto-regressive tasks. In addition, we 359

adopt Lee et al. (2018) denoted as MLE, which is a 360

out-of-distribution detector from the image domain. 361

Similar to RDE, Lee et al. (2018) fits a Gaussian 362

model using the maximum likelihood estimation 363

(MLE) then trains a logistic regressor using the 364

likelihood scores. Since we assume that adversarial 365

samples are not available for training, we do not 366

train a regression model, but only use the likeli- 367

hood score. For further details, see Section 5. We 368

compare MLE with two variants of our method: 369

• RDE(-MCD) : This is a variant of RDE, in which 370

only kPCA is applied to the features without 371

MCD. The results of applying standard PCA in- 372

stead of kPCA are reported in Table A.5 of Ap- 373

pendix. 374

• RDE : After applying kPCA, MCD estimate is 375

5



used. This is the final proposed robust density376

estimation incorporating both kPCA and MCD.377

4.3 Evaluation Metric and Protocol378

Following Xu et al. (2018), we report three widely379

used metrics in adversarial example detection : (1)380

True positive rate (TPR) is the fraction of true adver-381

sarial samples out of predicted adversarial samples.382

(2) F1-score (f1) measures the harmonic mean of383

precision and recall. Since all compared methods384

are threshold-based methods, we report TPR at a385

fixed false positive rate (FPR). (3) Area under ROC386

(AUC) measures the area under TPR vs. FPR curve.387

For all three metrics, higher denotes better perfor-388

mance.389

Note that whereas AUC considers performance390

on various FPR’s, TPR and F1 is dependent on one391

particular FPR. In all our experiments, we fixed392

FPR= 0.1, which means 10% of normal samples393

are predicted to be adversarial samples. This thresh-394

old should be chosen depending on the context (i.e.395

the degree of safety-criticalness). We believe this396

standard should be elevated as more works are pro-397

posed in the future. For IMDB and AG-News, 30%398

of the test set is held out as validation set for Mozes399

et al. (2021). We subsample out of the test set as400

described in Section 2.2. For quantitative analysis,401

we report the mean and its standard error of three402

repetitions of random seeds for test/validation split403

and subsampled samples.404

4.4 Implementation Details405

We choose the feature z to be the output of the last406

attention layer (before Dropout and fully connected407

layer) for BERT and RoBERTa. RDE has two main408

hyper-parameters, namely the number of retained409

dimensions P of kPCA and the support fraction h410

of MCD. We fix P = 100 for all experiments as we411

observe the performance is not sensitive to P . For412

h, we use the default value proposed in the algo-413

rithm, which is N+P+1
2N . We study the effect of h in414

Section 4.6. All models are pre-trained models pro-415

vided by TextAttack and both kPCA and MCD are416

implemented using scikit-learn (Pedregosa et al.,417

2011). We use the radial basis function as our ker-418

nel. The time required to estimate the parameters419

of our method is approximately around 25 seconds.420

For more details, see Appendix A.5.421

For FGWS, we use the official implementation4422

and use the held-out validation set of each attack423

4https://github.com/maximilianmozes/fgws

to tune the threshold for word frequency δ as done 424

in the original work. For PPL, we use the Hugging- 425

Face (Wolf et al., 2020) implementation of GPT-2 426

(Radford et al., 2019). 427

4.5 Results 428

Static Adversary 429

Table 3 demonstrates the results on three datasets 430

and four attacks. Results on Yelp are presented in 431

Appendix Tab. A.6 . The highest means out of the 432

four methods are written in bold. Out of the 30 com- 433

binations of dataset-attack-model, RDE achieves 434

the best performance on 29 of them on AUC and 435

25 of them for all three metrics, which shows the 436

competitiveness of our simple method. The motiva- 437

tion of our method is verified by the large margin 438

of improvement from MLE in almost all cases. Us- 439

ing MCD estimation also further improves perfor- 440

mance except in the few cases of AG-News. FGWS 441

generally has a higher performance compared to 442

PPL, but is inferior to MLE in most cases. Note the 443

degradation of performance in FGWS for BAE and 444

TF-adj, which are more subtle attacks with stronger 445

constraint, as FGWS relies on use of rare words. 446

This trend is not observed in feature density-based 447

methods (MLE and RDE). 448

FGWS outperforms ours on TPR and F1 in five 449

combinations out of 30, but our method has higher 450

AUC on four of them. Interestingly, all the five 451

results are from PWWS attacks, which indicates 452

that our method is relatively susceptible to PWWS. 453

Nonetheless, AUC still remains fairly high: On 454

IMDB and AG-News, the AUC’s are all over 0.9. 455

On the other hand, all methods have degraded per- 456

formance on SST-2, which may be due to shorter 457

sentence lengths. Some examples of ROC curves 458

are presented in Appendix A.8. Improving detec- 459

tion rate in SST-2 is left as a future work. 460

Adaptive Adversary In this section, we assume 461

that the adversary is aware of the detection method, 462

but does not have full access to the model parame- 463

ters. Being conscious of the fact that RDE relies on 464

the discriminative feature space, the adversary does 465

not terminate once the attacked sample reaches the 466

decision boundary, but goes on to generate samples 467

that are closer to the feature space of the incor- 468

rect target until a given threshold. Such attacks that 469

increase the number of trials have been similarly 470

applied in Xie et al. (2019) to create stronger at- 471

tacks. As shown in Tab. 4, feature-based methods 472

including RDE shows considerable degradation in 473
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Models Methods
Attacks

TF PWWS BAE TF-adj
TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC

IMDB

BERT

PPL 48.7±0.2 61.4±0.2 76.9±0.2 37.8±0.5 51.2±0.5 71.7±0.2 27.0±0.5 39.4±0.5 67.3±0.1 24.5±0.8 36.5±1.0 67.9±0.3
FGWS 84.6±0.3 87.1±0.2 87.1±0.3 88.2±0.1 89.0±0.0 90.8±0.0 62.1±0.3 72.3±0.2 70.9±0.3 72.6±0.9 80.6±0.9 78.4±0.6
MLE 86.3±1.1 87.9±0.7 94.5±0.2 75.7±1.4 81.5±0.9 92.4±0.2 81.8±1.3 85.3±0.8 93.7±0.2 88.3±1.0 89.1±0.6 95.3±0.2

RDE(-MCD) 96.3±0.3 93.4±0.2 96.8±0.1 86.9±0.9 88.3±0.5 94.6±0.2 92.5±0.5 91.4±0.3 95.8±0.2 98.2±0.2 94.6±0.2 97.6±0.2
RDE 96.6±0.2 93.5±0.1 97.7±0.2 87.8±0.4 88.8±0.2 95.2±0.2 93.8±0.1 92.1±0.0 96.9±0.2 98.8±0.0 95.0±0.1 98.7±0.2

RoBERTa

PPL 47.8±0.1 60.6±0.1 78.4±0.1 43.5±0.7 56.7±0.6 76.1±0.2 25.9±0.4 38.2±0.5 67.0±0.2 26.6±0.9 39.0±1.1 69.1±0.4
FGWS 85.1±0.1 87.4±0.1 88.0±0.1 92.1±0.2 91.4±0.2 93.6±0.2 61.5±0.2 71.8±0.1 70.3±0.1 69.2±0.4 78.0±0.1 75.4±0.2
MLE 80.5±1.0 84.5±0.6 94.0±0.2 76.8±1.3 82.2±0.8 93.3±0.2 75.5±1.5 81.4±0.9 93.1±0.3 86.4±2.3 88.0±1.3 95.3±0.7

RDE(-MCD) 98.5±0.1 94.5±0.1 97.9±0.1 95.0±0.3 92.7±0.2 96.7±0.1 95.4±0.4 93.0±0.2 97.0±0.2 98.6±0.4 94.8±0.2 98.1±0.4
RDE 98.9±0.1 94.7±0.0 98.6±0.1 95.2±0.1 92.8±0.1 97.2±0.1 95.3±0.2 92.9±0.1 97.6±0.1 98.8±0.4 95.9±0.6 99.0±0.2

AG-News

BERT

PPL 75.7±0.4 81.6±0.2 91.0±0.2 70.8±0.7 78.3±0.5 89.5±0.2 31.2±1.3 44.2±1.4 73.0±0.8 32.8±1.8 45.9±1.9 73.3±0.8
FGWS 82.4±0.6 85.7±0.3 84.2±0.7 91.0±0.1 90.6±0.1 90.8±0.3 64.3±0.9 73.8±0.6 71.3±0.4 63.8±1.0 74.3±1.0 71.9±0.7
MLE 77.8±0.5 82.9±0.3 93.5±0.1 70.4±0.9 78.0±0.6 92.0±0.1 72.7±1.8 79.6±1.2 92.8±0.4 71.0±1.6 78.9±0.9 92.0±0.2

RDE(-MCD) 96.2±0.1 93.3±0.0 97.1±0.1 89.8±0.8 90.0±0.4 95.6±0.1 93.2±0.9 92.1±0.6 96.2±0.3 96.6±1.0 93.6±0.5 96.0±0.1
RDE 95.8±0.2 93.2±0.1 96.9±0.1 88.7±1.0 89.3±0.6 95.4±0.1 96.6±0.1 93.7±0.1 96.9±0.1 98.2±0.6 95.4±0.3 97.5±0.3

RoBERTa

PPL 77.1±0.5 82.4±0.3 91.8±0.1 72.2±0.8 79.3±0.5 89.6±0.2 37.1±1.4 50.4±1.5 74.7±0.3 31.8±1.3 45.3±1.3 74.3±1.3
FGWS 78.8±0.5 83.5±0.3 82.2±0.2 86.6±0.4 88.1±0.2 87.9±0.3 53.3±3.4 65.1±2.7 63.5±2.0 58.9±3.4 69.7±2.6 70.1±0.9
MLE 82.5±0.3 85.7±0.2 94.1±0.1 78.6±0.5 83.4±0.3 92.9±0.2 68.1±3.1 76.3±2.2 91.5±0.7 65.0±2.3 74.4±1.7 91.2±0.2

RDE(-MCD) 90.5±0.5 90.3±0.3 96.1±0.1 84.1±1.2 86.6±0.7 94.8±0.2 77.8±4.1 82.6±2.6 93.9±0.5 82.6±2.7 85.9±1.5 94.5±0.4
RDE 92.9±0.3 91.6±0.2 95.7±0.1 84.5±0.8 86.9±0.5 93.9±0.2 89.3±2.3 89.6±1.3 95.3±0.5 94.4±0.7 92.6±0.4 96.0±0.3

SST-2

BERT

PPL 31.7±0.6 44.8±0.6 73.1±0.3 29.2±1.3 41.9±1.4 73.4±0.4 22.2±1.6 33.5±2.0 67.0±0.5
FGWS 60.8±0.4 72.3±0.3 73.6±0.3 79.9±0.6 84.9±0.4 86.7±0.4 34.7±0.3 48.0±0.3 60.3±0.3
MLE 33.3±1.3 46.5±1.4 79.8±0.5 23.2±0.4 34.8±0.6 78.4±0.3 32.6±1.3 45.8±1.5 76.8±0.6

RDE(-MCD) 61.3±0.8 71.6±0.6 86.3±0.4 46.6±0.7 59.5±0.6 84.6±0.2 45.4±1.3 58.5±1.1 80.6±0.6
RDE 66.1±0.8 75.1±0.5 87.7±0.3 54.3±1.1 66.1±0.9 86.6±0.2 48.0±1.4 60.7±1.2 81.0±0.5

RoBERTa

PPL 34.7±0.7 48.0±0.7 75.0±0.5 32.5±1.6 45.5±1.7 73.9±0.5 20.0±1.3 30.8±1.6 65.3±0.4
FGWS 61.6±0.2 73.0±0.1 73.7±0.1 80.8±0.2 85.6±0.1 86.4±0.2 36.1±1.0 49.4±1.1 60.0±0.6
MLE 44.2±0.6 57.3±0.5 84.4±0.3 33.1±0.8 46.3±0.8 81.9±0.4 37.1±0.5 50.5±0.5 77.9±0.4

RDE(-MCD) 63.2±0.2 73.0±0.1 87.8±0.1 53.1±0.7 65.1±0.6 85.4±0.2 45.7±0.7 58.7±0.7 79.3±0.3
RDE 74.1±0.3 80.6±0.2 90.4±0.1 67.7±1.1 76.2±0.8 89.1±0.0 52.0±0.3 64.3±0.3 80.6±0.1

Table 3: Adversarial detection results for BERT and RoBERTa on three datasets on Scenario 1. For all metrics,
highers mean better.

performance against these attacks, while PPL and474

FGWS have increased performance. All standard475

errors are less than 0.3.476

TF-Strong PWWS-Strong
BERT RoBERTa BERT RoBERTa

Reference 97.7 98.6 95.2 97.2
PPL 79.0(+2.1) 84.4(+6.0) 73.7 (+2.0) 81.7 (+5.6)

FGWS 87.9(+0.8) 90.5(+2.5) 92.2(+1.4) 95.3(+1.7)
MLE 93.0(-1.5) 90.4(-3.6) 90.7(-1.7) 90.1(-3.2)
RDE 94.7(-3.0) 92.9(-5.0) 92.4(-2.8) 92.0(-5.2)

RDE+ 95.6 94.5 94.2 94.5

Table 4: AUC(∆) for character level attack on IMDB
on two adaptive attacks. Reference refers the original
RDE against static attacks and ∆ refers to the absolute
decrease in performance compared to its respective ref-
erence. RDE+ refers to applying RDE after finetuning
the features.

However, to combat these type of attacks, the477

defender can use few examples of the previously478

detected static adversarial samples to adjust the479

feature space. Specifically, the features of the pre-480

dictive modelFψ (e.g. BERT) is finetuned such that481

the adversarial samples are located near the deci-482

sion boundary and far from the classes. To achieve483

this, the parameters ψ of the predictive model is484

trained such that the entropy of the softmax proba-485

bility can be maximized. 486

ψT =

T∑
t=1

[ψt +

b∑
xi∼Dadv

∇H(F(xi;ψt−1))] (2) 487

With only T=5 iterations and 80 adversarial sam- 488

ples (b=16), RDE+ is able to recover some of 489

its performance by adjusting the feature space. 490

Since only few updates are made to the model, 491

the original task performance is negligibly affected 492

(For RoBERTa, 95.1% is marginally increased to 493

95.2%).5 Note that only the previously detected 494

static adversarial samples are used to finetune the 495

feature space not the stronger attacks from the adap- 496

tive adversary. In addition, stronger attacks are usu- 497

ally more perceptible as it perturbs more words and 498

cost more queries. For instance, on RoBERTa-TF, 499

the average number of queries to the model per 500

sample increase from 625→ 786. 501

Advanced Adaptive / Oracle Adversary If the 502

adversary has full access to the model parameters, 503

the adversary can easily generate attacks that can 504

evade the detection method by iteratively attacking 505

the likelihood score of RDE. Meanwhile, the adap- 506

tive adversary can apply its strategy to the extreme 507

5For more details regarding the experiment, see the ap-
pendix.
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such that the attacked sample is completely mis-508

classified to the incorrect target. However, we show509

that such contrived attacks evade RDE at a cost510

of high perceptiblity, rendering them detectable by511

human inspectors or other detection methods not512

reliant on the features.513

Clean Static Adaptive Advanced
Adaptive

3.3 3.9 4.1 4.4

10.5

12.7 13.0
14.4

0.0

4.4
6.3

9.4

Figure 5: Comparing grammatical error (Triangle),
PPL (Circle), and dissimilarity with the original sen-
tence (Sqaure) using USE(Cer et al., 2018)

4.6 Discussion514

More Realistic Scenarios In previous experi-515

ments, all failed adversarial attacks were discarded.516

However, in reality an adversary will probably have517

no access to the victim model so some attacks will518

indeed fail to fool the model and have unbalanced519

clean to adversarial samples. In Appendix A.11,520

we discuss these scenarios and provide preliminary521

results.522

Hyper-parameter Analysis Although the two523

main hyper-parameters, support fraction (h) of524

MCD and the dimension (P ), were fixed in our525

experiments, they can be fine-tuned in a separate526

validation set for optimal performance. We show in527

Figure 6 the performance of our method on various528

ranges of h and P on the validation set of IMDB-529

TF-BERT combination. We set P = 100 and h to530

the default value of the algorithm when tuning for531

the other parameter.532

0.5 0.6 0.7 0.8 0.9 1.0 MLE
Support Fraction (h)

0.95

0.96

0.97

0.98

AUC

TPR

50 100 150 200 250 300 None
kPCA Dimension (P )

Figure 6: Hyperparameter analysis on IMDB-TF-
BERT. Wide range of values all outperform the ablated
forms and are relatively stable.

Qualitative Analysis on Support Fraction The 533

support fraction controls the ratio of original sam- 534

ples to be retained by the MCD estimator, thereby 535

controlling the volume of the contour as shown 536

in Figure 7. We empirically demonstrated in our 537

experiment that using all samples for parameter es- 538

timation may be detrimental for adversarial sample 539

detection. 540

−0.6 −0.5 −0.4 −0.3

−0.2

0.0

0.2

MCD Contour at Various h

0.3

0.5

0.7

0.9

1.0

Figure 7: Qualitative example of varying support frac-
tion h on SST2-BERT. Each ellipse represent probabil-
ity contours of three standard deviations. Higher h re-
tains more of the deviating samples and leads to wider
contour.

5 Related Works 541

In the NLP domain, few efforts have been made in 542

detecting word-level adversarial examples. Zhou 543

et al. (2019, DISP) utilize a detector trained on ad- 544

versarial samples for a joint detect-defense system. 545

FGWS (Mozes et al., 2021) outperforms DISP in 546

detection by building on the observation that at- 547

tacked samples are composed of rare words on 548

2 attack methods. Le et al. (2021) tackle a par- 549

ticular attack method called UniTrigger (Wallace 550

et al., 2019), which pre-pends or appends an identi- 551

cal phrase in all sentences. While the performance 552

is impressive, applying this method to other at- 553

tacks requires significant adjustment due to the 554

distinct characteristics of UniTrigger. Meanwhile, 555

Pruthi et al. (2019) tackle character-level adver- 556

sarial examples and compare with spell correctors. 557

Our work is the first to extensively demonstrate 558

experimental results for 4 popular and recent attack 559

methods on 4 datasets and propose a competitive 560

baseline. We summarize the methods in Tab. 1. 561

6 Conclusion 562
We propose a general method and benchmark for 563

adversarial example detection in NLP. Our method 564

RDE does not require training or validation sets 565

for each attack algorithms, yet achieves competi- 566

tive performance. In the future, a principled couter- 567

meausre for an adversary with partial or full knowl- 568

edge can be considered for robustness. 569
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A Appendix781

A.1 Success Rate of Attack Methods and782

Other Statistics783

Here we briefly describe each attack method and784

provide some statistics about the attack results.785

For Table A.1, word transformation method indi-786

cates how candidate replacement words are created.787

Word importance ranking denotes how the ordering788

of which word to attack is chosen. For constraints,789

only those related to embedding was listed and790

the numbers in parenthesis denote the threshold.791

Higher threshold signifies stronger constraint. For792

more details, we refer the readers to Morris et al.793

(2020b). Table A.2 summarizes the attack results794

on three dataset for BERT. Results for other models795

can be found in the released dataset.796

A.2 Configuration of Adversarial Samples797

Here we discuss two main configurations and their798

induced scenarios used in the literature. We denote799

the test set as Xt and the correctly classified test set800

as Xc ⊂ Xt.801

• Configuration 1 : Sample disjoint subsets S1,802

S2 ⊂ Xt. For the correctly classified examples803

of S1, adversarial attacks are generated and the804

successful examples form Dadv. Dclean is formed805

from S2.806

• Configuration 2 : Sample subset S ⊂ Xt. For the807

correctly classified examples of S, adversarial808

attacks are generated and the successful examples809

form Dadv. Dclean is formed from S.810

Scenario 1 provides more flexibility in choosing811

the ratio between adversarial samples and clean812

samples, while in Scenario 2 this is determined by813

the attack success rate and task accuracy. For in-814

stance, an attack with low success rate will have a815

low adversarial-to-clean sample ratio. In addition,816

Scenario 2 consists of pairs of adversarial sample817

and its corresponding clean sample in addition to818

the incorrect clean samples. A more challenging819

scenario can be proposed by including failed at-820

tacked samples, which may be closer to the real821

world. Examples of failed and successful samples822

are provided in Table A.3.823

A seminal work (Xu et al., 2018) on adversarial824

example detection in the image domain assumes the825

first scenario, whereas existing works in NLP (Le826

et al., 2021; Mozes et al., 2021) only experiment827

on the second scenario. Our benchmark framework828

provides the data and tools for experimenting on829

26 29 212
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Figure A.1: Left figure shows the relative error of esti-
mating the parameters of 768-dimensional multivariate
Gaussian on a toy example. Even with 214 samples, the
relative error of µ is on the scale of 10−3

both and we provide experiment results on both 830

scenarios. 831

A.3 Potential Errors of Parameter 832

Estimation 833

Accurate estimation of the parameters is difficult 834

with finite amount of samples especially in high 835

dimensions. Here we demonstrate this through a 836

toy example and derive its relationship with the Ma- 837

halanobis distance function, which is proportional 838

to the likelihood. Figure A.1 shows that the MLE 839

error remains high even when 214 samples are used 840

to find the parameters of a noise-free normal distri- 841

bution for both µ and Σ. This, in turn, leads to an 842

inevitably error-prone µ̃ = µ− εµ and ∆̃ = z − µ̃. 843

Moreover, the error is amplified when computing 844

the Mahalanobis distance due to the ill-conditioned 845

Σ̃ with very small eigenvalues, which is observed 846

empirically in all datasets and models (Figure 3) 847

possibly due to the redundant features. The (rela- 848

tive) condition number of the Mahalanobis distance 849

function g(∆) - relative change in the output given 850

a relative change in the inputs - is bounded by the 851

inverse of the smallest eigenvalue of Σ̃−1. 852

κg(∆) =
|| ∂g∂∆ ||

||g(∆)||/||∆||

=
||∆||
||g(∆)|| ||2Σ−1∆||

≤ ||∆||
||g(∆)||2||Σ

−1||||∆||

(3) 853

where the first equality follows from the defini- 854

tion of condition number and differentiability of 855

g and C∆. The last equality follows from the 856
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Attacks Citations Word Transformation
Method

Word Importance
Ranking Method Constraints

TF 204 Counter-fitted GLOVE
(Mrkšić et al., 2016) Delete Word USE(0.84)

WordEmbedding Distance(0.5)

PWWS 187 WordNet
(Princeton, 2010) Weighted Saliency -

BAE 71 Bert Masked LM Delete Word USE(0.94)

TF-adj 18 Counter-fitted GLOVE Delete Word USE(0.98)
WordEmbedding Distance(0.9)

Table A.1: Summary of attack methods and their defining characteristics.

Attacks Post-Attack
Accuracy

Attack
Success Rate

Average
Num. Queries

IMDB (91.9%)
TF 0.6% 99% 558
PWWS 3% 97% 1681
BAE 34% 64% 455
TF-adj 84.2% 11% 298

AG-News (94.2%)
TF 18% 81% 334
PWWS 41% 57% 362
BAE 82% 14% 122
TF-adj 91% 5% 56

SST-2 (92.43%)
TF 4% 96% 91
PWWS 12% 87% 143
BAE 37% 61% 60
TF-adj 89% 5% 25

Table A.2: Summary of attack results for BERT on
three datasets. Original accuracy of each dataset is writ-
ten in parenthesis next to the dataset.

Caucy-Schwarz Inequality. The matrix norm in-857

duced by the L2 norm is given by the largest singu-858

lar value (largest eigenvalue for a positive definite859

square matrix). Given the eigenspectrum of Σ as860

λmax ≥ · · · ≥ λmin, the eigenspectrum of Σ−1 is861

given by the reciprocal of that of Σ. Thus, ||Σ−1||862

is equal to inverse of the minimum eigenvalue of863

Σ and the last equality can be further decomposed864

into865

κg(∆) ≤ ||∆||
||g(∆)||2||Σ

−1||||∆||

≤ C∆
1

λmin

(4)866

where C∆ is a constant for a given ∆. This867

means that when the smallest eigenvalue is in the868

scale of 10−12, even a estimation error of scale869

10−3 on µ may be amplified by at most by a scale870

of 109. This leads to a serious problem in density871

estimation of z.872

A.4 More details on MCD873

We explain some of the properties of the determi-874

nant of the covariance matrix. First, the determinant875

is directly related to the differential entropy of the876

Gaussian distribution. For a D-dimensional mul- 877

tivariate Gaussian variable X and its probability 878

density function f , the differential entropy is given 879

by 880

H(X) = −
∫
X
f(x) log f(x)dx

=
1

2
log((2πe)Ddet(Σ)

∝ det(Σ)

(5) 881

In addition, the determinant is also proportional 882

to the volume of the ellipsoid for some k, {z ∈ 883

RD : (z − µ)TΣ−1(z − µ) = k2}. We refer the 884

readers to Section 7.5 of Anderson (1962) for the 885

proof. This explain why the MCD estimate forms 886

a much narrower probability contour than MLE as 887

shown in Fig. 4. 888

A.5 Implementation Details 889

To meet the memory constraint of computing the 890

kernel matrix, we sample a subset of Xtrain (8,000 891

samples) for all experiments. All models are pre- 892

trained models provided by TextAttack and both 893

kPCA and MCD are implemented using scikit- 894

learn (Pedregosa et al., 2011). We use the radial 895

basis function as our kernel. 896

For subsampling generated attacks described in 897

Section 2.2, we set the maximum number of ad- 898

versarial samples for each dataset. For IMDB and 899

AG-News, the maximum is set to 2000 and for 900

SST-2 this is set to 1000. Then, the number of tar- 901

get samples (i.e. ||S|| or ||S1||) is initialized to the 902

maximum number divided by adversarial success 903

ratio and task accuracy. Target sample is decre- 904

mented until ratio between clean and adversarial 905

samples can roughly be 5:5. Algorithm of RDE and 906

MLE is provided in Algorithm 1. 907
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SUCCESSFUL director brian levant, who never strays far from his sitcom roots, skates blithely from one
implausible[improbable] situation to another [..]

→

FAILED arnold ’s jump[leap] from little screen to big will leave frowns on more than a few faces →

Table A.3: Successful and Failed Adv. Examples in SST2 Dataset ( original[replaced] )

Algorithm 1: RDE and MLE
Input: Xtrain,Ytrain, D = {Dadv,Dclean}
Input: Feature ExtractorH
Output: Likelihood L

1 Ztrain =H(Xtrain)
2 if MLE then
3 for c in Class do
4 µ̃c = 1

Nc

∑Nc
i∈Yc zi

5 Σ̃c = 1
Nc

∑Nc
i∈Yc(zi − µ̃)(zi − µ̃)T

6 else if RDE then
7 Z = kPCA(Z)
8 for c in Class do
9 µ̃c, Σ̃c = MCD(Zc)

10 L = []
11 for x in D do
12 z = H(x)
13 ŷ = argmaxk F(x)k
14 if RDE then
15 z = kPCA(z)

16 L.append(N (z|µ̃ŷ, Σ̃ŷ))

A.6 Benchmark Usage Example908

909
from AttackLoader import Attackloader910

911
#Set seed, scenario, model type,912
#attack type, dataset, etc.913
loader = AttackLoader(...)914

915
#Split test and validation set916
loader.split_csv_to_testval()917

918
# Subsample from testset according to919

chosen scenario920
sampled, _ =921

loader.get_attack_from_csv(..)922
923

"""924
Apply detection method925
"""926927

A.7 Comparison with PCA928

In all our experiments, we used a radial basis func-929

tion for kPCA. This allows finding non-linear pat-930

terns in the feature space. When the linear kernel931

is used, kPCA is equivalent to ordinary PCA. We 932

demonstrate that exploiting non-linearity preserve 933

much more meaningful information by comparing 934

the detection performance in the IMDB dataset 935

(Table A.5). 936

A.8 ROC Curve Examples 937

Below (Fig. A.3) we provide Receiver Operating 938

Characteristic (ROC) curves of RoBERTa on two 939

attacks. For all plots, samples from the first seed 940

are used. 941

A.9 Experiment Details on Adaptive 942

Adversary 943

In this section, we provide detail on the experimen- 944

tal settings. Instead of the terminating condition 945

used by all attack methods 946

F∗(x) = F(x) 6= F(xadv) (6) 947

the stronger attack goes on to send the sample 948

closer to the features of the incorrect target. With 949

fixed ε, the attack terminates once 950

F∗(x) = F(x) 6= F(xadv),

p̂ > 1− ε (7) 951

where p̂ is the largest predicted softmax probabil- 952

ity. This allows the generated sample to fool the 953

density-based methods that rely on the discrimi- 954

native feature space. For attacks denoted ’strong’ 955

ε = 0.1; for ’stronger’, ε = 0.01. For RDE+, we 956

use the adversarial samples of the held-out valida- 957

tion set using the static attack method. 958

A.10 Detecting Character-level Attacks 959

Although character level attacks are perceptible to 960

spell checkers or more sophisticated techniques 961

(Pruthi et al., 2019), it still poses threat to deep neu- 962

ral networks (Zhang et al., 2020). We demonstrate 963

the general applicability of RDE on charcter-level 964

attack on 3,000 samples attacked by the character- 965

level attack method proposed in Pruthi et al. (2019). 966

As shown in Table A.4, RDE surpasses all the 967

density-based methods. 968
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Figure A.2: Detection performance (AUC) for scenario including failed adversarial samples. Horizontal axis den-
toes the type of attacks methods (TF, PWWS, BAE, TF-adj). The original performance of RDE from Table 3 as
an upper bound is provided (red). Blue and purple denotes RDE and MLE including failed adversarial samples,
respectively.

IMDB AG-News
BERT RoBERTa BERT RoBERTa

PPL 55.0±0.6 64.0±1.4 71.3±0.7 71.3±0.7
MLE 90.2±0.4 89.6±0.3 89.9±0.4 77.5±0.6
RDE 91.0±0.1 92.9±0.2 90.9±0.5 91.0±0.4

Table A.4: AUC for character level attack on AG-News
averaged over five trials.

A.11 More Realistic Scenarios969

In this section, we discuss more realistic scenarios970

and provide preliminary results in Appendix A.11:971

(i) Including failed attacks (ii) Imbalanced ratio of972

clean and adversarial samples. In previous experi-973

ments, all failed adversarial attacks were discarded.974

However, in reality an adversary will probably have975

no access to the victim model so some attacks will976

indeed fail to fool the model. While failed adversar-977

ial attacks do not pose threat to the task accuracy978

of the model, it nevertheless may be harmful if the979

victim wishes to gain information about a certain980

population by aggregating data such as sentiment981

in consumer review about a movie. In addition, as982

active research in attacks have been made in the983

past few years, more subtle attacks that are im-984

perceptible to humans naturally have lower attack985

success ratio (e.g. BAE).986

Fig. A.2 demonstrates the detection results of987

RDE and MLE when distinguishing between nor-988

mal samples and (failed and successful) adversarial989

attempts by comparing the AUC’s. As an upper990

bound, we provide the performance of RDE on the991

original scenario without failed adversarial exam-992

ples in red. As the first two attacks (TF and PWWS)993

achieve nearly 100% success rate, only few failed994

adversarial samples are added. Accordingly, the995

performances for the two attacks show little differ-996

ence. However, in more subtle attacks (BAE and997

TF-adj) the performance drastically drops due to998

the increased failed adversarial samples, yet RDE999

outperforms MLE by a considerable margin in most1000

cases. We end on this topic by noting that more 1001

comprehensive analysis is called for, because in 1002

some cases failed adversarial attempts are (nearly) 1003

identical to clean samples. So an attack method 1004

with low detection rate does not necessarily imply 1005

a crafty attack method in this scenario. 1006

In Appendix Table A.7, we provide the results 1007

for Scenario 2 described in Section 2.2. The general 1008

trend among detection methods and attack methods 1009

is similar to Table 3. As noted earlier, for Scenario 1010

2 the ratio of adversarial to clean samples will be 1011

low if the attack success rate is low. For instance, 1012

in IMDB-(TF-adj)-BERT, the ratio of adversarial 1013

to clean samples is around 1:9. Whereas both AUC 1014

and TPR are not strongly affected due to the char- 1015

acteristic of the metrics, F1 drastically drops. For 1016

instance, for IMDB-(TF-adj)-BERT, RDE achieves 1017

73.7% (as opposed to 95.0% of Scenario 1). On 1018

the same set, FGWS achieves 60.1% and MLE 1019

achieves 67.6%. 1020

Here we provide experimental results on Sce- 1021

nario 2. Although pairs of samples are included in 1022

the dataset, the general trend is similar to that of 1023

Scenario 1. For attack methods with low success 1024

rate, the adversarial to clean sample ratio is low, 1025

which affects the F1-score. 1026
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Models Methods
Attacks

TF PWWS BAE TF-adj
TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC

BERT
PCA 89.5±1.1 89.7±0.6 95.2±0.1 77.9±1.3 82.9±0.8 93.1±0.2 83.5±1.3 86.3±0.7 94.2±0.2 92.8±1.2 91.7±0.7 96.2±0.2
kPCA 96.3±0.3 93.4±0.2 96.8±0.1 86.9±0.9 88.3±0.5 94.6±0.2 92.5±0.5 91.4±0.3 95.8±0.2 98.2±0.2 94.6±0.2 97.6±0.2

RoBERTa
PCA 94.7±0.6 92.5±0.3 96.3±0.1 89.7±0.9 89.9±0.5 95.4±0.1 88.2±1.3 89.0±0.7 95.0±0.3 92.6±1.8 91.6±0.9 96.7±0.5
kPCA 98.5±0.1 94.5±0.1 97.9±0.1 95.0±0.3 92.7±0.2 96.7±0.1 95.4±0.4 93.0±0.2 97.0±0.2 98.6±0.4 94.8±0.2 98.1±0.4

Table A.5: Results of using linear kernel for KPCA, which is equivalent to the ordinary PCA on IMDB. For
fair comparison, we compare with RDE(-MCD) where MCD estimation is not used. All results lead to higher
performance when kPCA is used.

Models Methods
Attacks

TF PWWS BAE TF-adj
TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC

BERT

PPL 40.2±0.2 53.5±0.2 76.6±0.0 36.2±0.7 49.6±0.8 74.2±0.4 16.3±0.7 25.9±0.9 65.2±0.6 16.3±1.5 25.7±2.0 63.1±0.6
FGWS 84.6±0.5 87.2±0.2 87.0±0.5 88.9±0.1 89.5±0.1 91.0±0.0 62.4±1.2 72.5±0.8 70.3±0.8 79.7±2.7 85.5±1.7 82.3±0.8
MLE 41.3±1.0 54.6±1.0 66.5±0.3 41.8±0.8 55.0±0.8 66.9±0.2 42.3±1.9 55.5±1.8 67.5±0.4 38.5±2.1 52.0±2.0 66.7±0.8
RDE 97.9±0.1 94.3±0.1 96.4±0.0 92.7±0.5 91.5±0.3 94.9±0.1 97.1±0.2 94.0±0.1 96.2±0.1 99.8±0.1 95.7±0.1 96.4±0.1

RoBERTa

PPL 38.5±0.7 51.8±0.7 73.0±0.5 36.3±0.8 49.6±0.9 71.7±0.6 17.0±0.6 26.7±0.7 60.6±0.7 12.7±1.2 20.8±1.7 58.6±0.5
FGWS 83.5±0.1 86.5±0.1 86.6±0.1 86.8±0.2 88.3±0.1 89.7±0.1 61.9±0.6 72.6±0.4 70.9±0.4 69.1±2.7 78.7±1.7 75.6±2.3
MLE 95.0±0.4 92.7±0.2 96.3±0.1 89.2±0.4 89.6±0.2 94.5±0.2 90.1±0.3 90.1±0.2 94.9±0.2 85.7±3.5 87.6±2.0 95.0±0.5
RDE 96.4±0.1 93.5±0.0 97.0±0.1 90.7±0.1 90.5±0.1 95.3±0.0 92.5±0.2 91.5±0.1 95.7±0.2 99.5±0.3 95.5±0.0 96.5±0.5

Table A.6: Experiment results on the Yelp dataset

Models Methods
Attacks

TF PWWS BAE TF-adj
TPR F1 AUC TPR F1 AUC TPR F1 AUC TPR F1 AUC

IMDB

BERT

PPL 49.3±0.2 61.5±0.2 77.4±0.2 38.9±0.3 51.9±0.3 71.9±0.2 28.1±0.3 38.8±0.3 67.6±0.1 24.3±0.1 25.0±0.2 66.7±0.1
FGWS 82.6±0.1 85.4±0.1 85.1±0.1 86.6±0.1 87.7±0.1 89.3±0.1 60.6±0.2 68.5±0.2 69.3±0.2 71.3±0.2 60.1±0.2 76.6±0.1
MLE 86.4±1.2 87.6±0.7 94.6±0.1 76.1±1.7 81.3±1.1 92.6±0.2 82.0±0.6 82.6±0.3 93.7±0.1 87.0±0.2 67.6±0.2 95.0±0.0

RDE(-MCD) 96.0±0.4 92.8±0.2 96.6±0.1 86.2±0.8 87.5±0.5 94.4±0.1 92.1±0.3 88.3±0.2 95.6±0.1 98.5±0.0 73.4±0.0 97.5±0.0
RDE 96.8±0.2 93.2±0.1 97.7±0.1 87.4±0.5 88.1±0.3 95.1±0.2 93.3±0.3 89.0±0.1 96.8±0.1 98.8±0.0 73.7±0.1 98.6±0.0

RoBERTa

PPL 49.5±0.4 61.8±0.3 78.9±0.3 45.1±0.2 57.9±0.2 76.5±0.2 26.9±0.1 37.9±0.1 67.6±0.1 26.6±0.4 21.3±0.3 68.1±0.3
FGWS 83.5±0.2 86.2±0.1 86.6±0.2 91.6±0.1 90.7±0.0 93.1±0.1 60.7±0.1 69.1±0.1 69.3±0.2 66.0±0.4 46.9±0.2 72.9±0.4
MLE 80.7±0.8 84.4±0.5 94.0±0.0 77.3±1.0 82.3±0.6 93.2±0.1 75.9±1.0 79.5±0.6 93.0±0.1 84.1±0.7 54.7±0.2 94.3±0.0

RDE(-MCD) 98.1±0.1 94.1±0.0 97.9±0.0 94.7±0.3 92.3±0.2 96.7±0.0 95.0±0.1 90.5±0.0 96.8±0.0 98.9±0.1 61.7±0.1 97.8±0.0
RDE 98.5±0.1 94.3±0.0 98.6±0.0 94.9±0.4 92.4±0.2 97.2±0.0 94.8±0.1 90.4±0.0 97.5±0.0 99.1±0.1 62.1±0.1 98.9±0.0

AG-News

BERT

PPL 76.3±0.3 80.7±0.2 91.3±0.1 72.4±0.4 75.8±0.3 90.2±0.1 30.6±0.5 29.9±0.4 72.8±0.2 35.0±0.5 19.8±0.2 74.3±0.4
FGWS 82.4±0.6 84.4±0.4 84.2±0.7 90.9±0.2 86.8±0.1 90.0±0.1 62.9±0.3 53.0±0.3 70.5±0.1 66.0±0.6 36.3±0.6 72.4±0.4
MLE 78.2±0.4 81.8±0.3 93.5±0.0 71.4±0.3 75.3±0.2 92.3±0.1 69.9±0.3 57.4±0.1 92.2±0.0 64.0±0.5 33.4±0.4 91.1±0.1

RDE(-MCD) 96.3±0.3 92.1±0.1 97.2±0.0 90.5±0.3 86.6±0.1 95.7±0.1 91.4±0.3 68.8±0.1 95.5±0.0 92.2±0.5 44.4±0.1 95.6±0.0
RDE 96.0±0.3 91.9±0.1 97.0±0.0 89.8±0.4 86.2±0.2 95.4±0.0 94.0±0.2 69.9±0.1 96.2±0.0 96.6±0.1 47.4±0.3 96.6±0.0

RoBERTa

PPL 77.3±0.3 81.5±0.2 91.8±0.1 73.0±0.3 77.2±0.2 90.0±0.1 36.2±0.5 36.3±0.5 74.9±0.3 36.2±0.3 21.5±0.2 75.8±0.2
FGWS 79.6±0.4 83.0±0.2 82.6±0.3 86.6±0.3 85.5±0.2 88.0±0.2 52.7±0.4 48.9±0.3 64.6±0.5 60.7±0.7 34.4±0.3 70.2±0.3
MLE 81.4±0.2 84.1±0.1 94.0±0.1 78.7±0.0 80.8±0.0 93.1±0.0 68.4±0.2 59.1±0.2 91.7±0.1 62.6±0.2 34.3±0.2 90.0±0.0

RDE(-MCD) 89.9±0.3 89.0±0.2 96.1±0.0 85.8±0.5 85.0±0.3 95.1±0.1 81.4±0.2 66.6±0.2 94.4±0.1 80.4±0.1 42.0±0.2 93.7±0.0
RDE 92.7±0.2 90.5±0.1 95.6±0.0 86.4±0.3 85.4±0.2 94.2±0.1 92.6±0.2 72.3±0.2 95.7±0.0 93.6±0.1 47.6±0.4 95.7±0.0

SST-2

BERT

PPL 33.4±0.5 46.2±0.6 73.1±0.1 30.4±0.5 42.6±0.5 73.1±0.0 22.2±0.1 31.7±0.1 65.7±0.0
FGWS 61.4±0.6 71.2±0.5 73.5±0.4 79.4±0.2 82.9±0.1 86.2±0.1 33.0±0.3 43.8±0.3 61.2±0.2
MLE 33.3±0.2 46.1±0.2 80.5±0.1 23.3±0.5 34.4±0.6 78.4±0.1 34.1±0.0 45.0±0.0 76.6±0.0

RDE(-MCD) 60.5±0.6 70.6±0.4 86.4±0.2 45.9±0.3 58.0±0.3 83.8±0.1 44.1±0.0 54.5±0.0 79.9±0.0
RDE 66.3±0.3 74.8±0.2 87.6±0.2 53.0±0.1 64.2±0.1 85.8±0.1 47.6±0.1 57.7±0.1 80.3±0.0

RoBERTa

PPL 35.1±0.2 48.1±0.2 74.5±0.0 33.3±0.4 45.8±0.5 74.0±0.1 21.2±0.1 30.6±0.2 64.7±0.1
FGWS 61.4±0.4 71.2±0.3 73.7±0.2 80.1±0.3 83.4±0.2 86.2±0.1 36.7±0.4 47.7±0.4 60.5±0.1
MLE 41.8±0.3 54.7±0.2 84.2±0.1 31.6±0.4 44.0±0.4 81.5±0.2 37.0±0.0 48.0±0.0 77.7±0.0

RDE(-MCD) 62.5±0.6 72.1±0.5 87.5±0.3 51.9±0.6 63.3±0.5 84.7±0.1 45.6±0.3 56.1±0.2 79.2±0.1
RDE 73.3±0.6 79.6±0.4 90.4±0.2 65.7±0.3 73.9±0.2 88.5±0.1 50.9±0.1 60.6±0.1 80.2±0.1

Table A.7: Adversarial detection results for BERT and RoBERTa on Scenario 2 on three datasets (IMDB, AG-
News, SST-2). For all three metrics, higher means better.
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