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Abstract

Temporal knowledge graph question answer-001
ing (TKGQA) poses a significant challenge002
task, due to the temporal constraints hidden003
in questions and the answers sought from dy-004
namic structured knowledge. Although large005
language models (LLMs) have made consid-006
erable progress in their reasoning ability over007
structured data, their application to the TKGQA008
task is a relatively unexplored area. This pa-009
per first proposes a novel generative temporal010
knowledge graph question answering frame-011
work, GenTKGQA, which guides LLMs to an-012
swer temporal questions through two phases:013
Subgraph Retrieval and Answer Generation.014
First, we exploit LLM’s intrinsic knowledge to015
mine temporal constraints and structural links016
in the questions without extra training, thus nar-017
rowing down the subgraph search space in both018
temporal and structural dimensions. Next, we019
design virtual knowledge indicators to fuse the020
graph neural network signals of the subgraph021
and the text representations of the LLM in a022
non-shallow way, which helps the open-source023
LLM deeply understand the temporal order and024
structural dependencies among the retrieved025
facts through instruction tuning. Experimental026
results demonstrate that our model outperforms027
state-of-the-art baselines, even achieving 100%028
on the metrics for the simple question type.029

1 Introduction030

Real-world knowledge is frequently updated rather031

than static (Erxleben et al., 2014; Boschee et al.,032

2015), e.g., (Obama, hold_position, President) is033

merely valid only for a certain period [2009, 2016].034

Hence, the temporal knowledge graph (TKG) is035

proposed as a database for storing dynamic struc-036

tured facts associated with timestamps, denoted as037

(subject, relation, object, timestamp). Temporal038

knowledge graph question answering (TKGQA)039

aims to answer a natural question with explicit or040

implicit temporal constraints based on the TKG,041

Q1: When Daniele Amerini played in Modena F.C.?

Facts: [Daniele Amerini, member of sports team, Modena F.C., 2005, 2006]                        
[Daniele Amerini, member of sports team, Modena F.C., 2008, 2009]

I'm sorry, but I don't have any information.  

Q1: When Daniele Amerini played in Modena F.C.?

Q2: What was the first General Inspector of the Bundeswehr after 2004?

Facts: [Wolfgang Schneiderhan, position held, Bundeswehr Chief, 2002, 2009]
[Volker Wieker, position held, Bundeswehr Chief, 2010, 2018]

Simple Question

Complex Question

Volker Wieker 

Wolfgang Schneiderhan

Daniele Amerini played for Modena F.C. in 
2005, 2006, 2008, and 2009.  

GenT
KGQA

Figure 1: Examples of the responses of LLM and Gen-
TKGQA to the simple and complex temporal questions.

e.g., "Who held the position of president (in 2017) 042

or (after Obama)?". Due to the temporal con- 043

straints hidden in questions and the answers be- 044

ing sought from dynamic structured knowledge, 045

TKGQA is one of the most challenging QA tasks. 046

Recently, large language models (LLMs) have 047

shown strong competitiveness in various fields (Fei 048

et al., 2023; Ye et al., 2023). Some researchers 049

explore the reasoning capability of LLMs for struc- 050

tured knowledge based on KGQA tasks (Baek 051

et al., 2023; Kim et al., 2023), and some works 052

examine the temporal reasoning capabilities of 053

LLMs through time-sensitive QA tasks (Chen et al., 054

2021a; Tan et al., 2023). Intuitively, LLMs have 055

the ability to deal with temporal structured knowl- 056

edge. Based on the above findings, we attempt 057

to utilize LLMs for the TKGQA task and summa- 058

rize the following two challenges: 1) Question- 059

relevant Subgraph Retrieval. A common practice 060

to enhance the LLM’s domain-specific reasoning 061

capability is to input query-relevant information 062

as additional knowledge into the LLMs (Hu et al., 063

2023). As shown in Figure 1, ChatGPT (OpenAI, 064

2023) cannot answer temporal questions directly, 065

but it can answer simple questions when the rele- 066

vant context is provided. However, finding facts 067

relevant to the problem is a struggle due to the large 068
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search space with both structural and temporal di-069

mensions. For example, for the complex temporal070

question "Who held the position of president after071

Obama?", the structural link hold position between072

the entities and the temporal constraints after 2016073

in the problem are unknown, so directly finding all074

relevant facts about the given entities Obama and075

President is bound to introduce too much noisy in-076

formation. How to accurately retrieve relevant facts077

from a two-dimensional space is the first challenge.078

2) Complex-type Question Reasoning. Recent re-079

search about LLM-based KG reasoning mostly in-080

puts structured knowledge in the natural text form081

into the task prompt and reasons about the answers082

in a training-free method (Yang et al., 2024). How-083

ever, this approach fuses subgraph information with084

the LLM in a shallow manner, which limits the in-085

ference performance on the complex question type.086

As illustrated in Figure 1, ChatGPT is unable to087

understand the chronological order of the relevant088

facts and answers incorrectly on the complex ques-089

tion type "after". How subgraph information can090

be integrated into LLM representations in a non-091

superficial way to simulate structured reasoning092

remains an open question.093

Hence, we propose GenTKGQA, a novel genera-094

tive temporal knowledge graph question answering095

framework consisting of two phases, subgraph re-096

trieval and answer generation, which is used to097

address the above two challenges, respectively. At098

the first phase, we find that the structural and tem-099

poral scope of the subgraph is determined by the100

relation links and the temporal constraints in the101

question, respectively. Therefore, we use a divide-102

and-conquer strategy to reduce the subgraph search103

space by decomposing the complex subgraph re-104

trieval problem into two subtasks, namely, relation105

ranking and time mining. Then, we utilize the106

LLM’s internal knowledge to mine structural con-107

nections between entities and time constraints in108

the problem without extra training. We only need109

to input few-shot examples into the prompt to ac-110

complish subgraph retrieval of the entire data. At111

the second phase, we fine-tune the open-source112

LLM with instruction tuning to incorporate struc-113

tural and temporal information of the subgraph in a114

non-shallow way. Recent works illustrate that fus-115

ing graph neural network (GNN) representations116

and language text representations can enhance the117

ability of LMs to perceive graph structure (Zhang118

et al., 2022b). Thus, we design three novel virtual119

knowledge indicators to bridge the links between120

pre-trained GNN signals of the temporal subgraph 121

and text representations of the LLMs, which guides 122

the LLMs in deeply understanding the graph struc- 123

ture and improves their reasoning ability for com- 124

plex temporal questions. Overall, our contribution 125

can be summarized in the following four points: 126

1) We present a novel two-stage generative 127

framework for the TKGQA task, which explores 128

LLM’s temporal reasoning capabilities in the con- 129

text of dynamic structured knowledge. 130

2) We motivate the LLM’s intrinsic knowledge 131

to mine the temporal constraints and structural con- 132

nections in the questions without extra training, 133

which reduces the subgraph search space from both 134

structure and time dimensions. 135

3) We design virtual knowledge indicators to 136

fuse the GNN signals and text representations in 137

a non-shallow way, which helps the open-source 138

LLMs improve their reasoning on the complex 139

question type through instruction tuning. 140

4) Experiment results show that GenTKGQA as 141

a generative QA model performs consistently better 142

than embedding-based QA methods, even reaching 143

100% on all metrics for the simple question type. 144

2 Related Work 145

2.1 TKGQA Methods 146

Temporal knowledge graph question answering 147

(TKGQA) task aims to answer complex questions 148

in the natural language format using entities and 149

timestamps from the given TKG (Jia et al., 2018, 150

2021; Saxena et al., 2021; Chen et al., 2023). Exist- 151

ing mainstream methods employ TKG embeddings 152

to represent the entities, relations and timestamps, 153

and use the TKGE scoring function to select the en- 154

tity or time with the highest relevance as the answer 155

(Saxena et al., 2021). However, single embedding 156

methods have difficulty handling complex reason- 157

ing problems with implicit time constraints. There- 158

fore, recent methods try to incorporate other mod- 159

ules to improve the model performance on complex 160

problems. Specifically, TSQA (Chen et al., 2021b) 161

proposes a contrastive approach to enhance the 162

time sensitivity of the model. TempoQR (Mavro- 163

matis et al., 2022) designs three modules, namely 164

context, entity, and time-aware information, to en- 165

hance the incorporation of the TKG into questions. 166

LGQA (Liu et al., 2023b) applies a multi-hop mes- 167

sage passing GNN layer to combine the global and 168

local information of the given problem. Despite 169

the effectiveness of these approaches, few works 170
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explore how approaches other than the embedded-171

based method can address the TKGQA task.172

2.2 LMs for Temporal Question Answering173

Language models (LMs) have exhibited strong per-174

formance on the question answering task (Raffel175

et al., 2020). In recent years, some researchers176

have explored the temporal reasoning capabilities177

of LMs and propose several typical time-sensitive178

QA datasets. They focus on temporal question179

answering either within a closed-book setting to180

assess models’ internal memorization of temporal181

facts (Liska et al., 2022; Dhingra et al., 2022), or182

within an open-book setting to evaluate models’183

temporal understanding and reasoning capability184

over unstructured texts (Zhang and Choi, 2021;185

Chen et al., 2021a; Tan et al., 2023). In the context186

of the latter setting, some works propose to use187

the graph structure extracted from text to assist the188

model in determining the temporal order between189

events (Mathur et al., 2022; Su et al., 2023; Yang190

et al., 2023), which is similar but fundamentally191

different from our work. These approaches aim192

to answer temporal questions based on the known193

natural text context. In contrast, our model focuses194

on structured temporal knowledge as auxiliary in-195

formation that needs to be retrieved by the model.196

2.3 LMs for KG Question Answering197

How to combine LMs and KG for question answer-198

ing has become a hot issue. Some works attempt to199

enhance question representation and relation match-200

ing with PLMs in the multi-hop KGQA task (Sax-201

ena et al., 2020; Zhang et al., 2022a; Jiang et al.,202

2023b), but there is no interaction between the LM203

and KG representations. Other works try to use204

one modality to ground the other, i.e., using the205

encoded representation of a linked KG to augment206

the text representation (Lin et al., 2019; Yang et al.,207

2019), or using the text representation of the PLM208

to enhance the graph reasoning model (Feng et al.,209

2020a). The most recent approaches enable deep210

integration of the two modalities by jointly updat-211

ing the GNN and LM representation (Yasunaga212

et al., 2021; Zhang et al., 2022b).213

However, the emergence of large language mod-214

els (LLMs) has changed how LMs handle the215

KGQA task, which is divided into two main ap-216

proaches: training-free and fine-tuning (Yang et al.,217

2024). Recent works attempt to append query-218

relevant facts as the input prompt for LLMs and219

make inferences without extra training (Baek et al.,220

2023; Jiang et al., 2023a; Kim et al., 2023; Li et al., 221

2024). Fine-tuning the full parameters of the LLM 222

can be cost-prohibitive. Hence, KPE (Zhao et al., 223

2023) enables knowledge integration by freezing 224

PLM parameters and introducing trainable parame- 225

ter adapters. ChatKBQA (Luo et al., 2023) em- 226

ploys the LoRA (Hu et al., 2022) technique to 227

fine-tune open-source LLMs, achieving the log- 228

ical query form generation. Applying LLMs to the 229

temporal KGQA task remains an unexplored area. 230

3 Preliminaries 231

TKGQA. A temporal knowledge graph (TKG) 232

G := (E ,R, T ,F) is a multi-relational, directed 233

graph with timestamped edges between entities, 234

where E , R and T represent the sets of entities, 235

relationships and timestamps, respectively. Each 236

fact in the G can be represented as a quadruple 237

(s, r, o, t) ∈ F , corresponding to entity s/o ∈ E , 238

relation type r ∈ R and timestamp t ∈ T . Given 239

a natural language question q, TKGQA aims to 240

extract an entity s/o or a timestamp t that correctly 241

answers the question. 242

ICL and IT. Applying LLM to the TKGQA task, 243

the goal is to generate the answer A based on the 244

input text sequence S and the LLM M. S con- 245

sists of several parts: the instruction prompt I, 246

the task-specific input prompt Q, and the auxil- 247

iary demonstration prompt D. In-context Learning 248

(ICL) method is an efficient approach to employ 249

LLMs to solve downstream tasks without extra 250

training, the input sequence of ICL can be denoted 251

as S = I : D : Q, where : means to concatenate 252

the different prompts. Meanwhile instruction tun- 253

ing (IT) aims to fine-tune LLMs to follow human 254

instructions and accomplish the distinct tasks in the 255

instruction prompt, the input sequence of IT can be 256

denoted as S = I : Q : A. 257

4 Method 258

We apply the LLMs processing TKGQA task in 259

a two-phase process, i.e., an ICL-based subgraph 260

retrieval phase and an IT-based answer generation 261

phase. At the first stage, we utilize internal knowl- 262

edge of LLM for unlabeled subgraph retrieval. At 263

the second stage, we incorporate external knowl- 264

edge for structure-aware temporal inference. 265

4.1 Subgraph Retrieval 266

We split the complex subgraph retrieval problem 267

into a relation ranking sub-task in the structural di- 268
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Stage 1: Subgraph Retrieval Stage 2: Answer Generation

(World War II, 
Occurrence, Time, 
1939, 1945)

Time 
Mining

Relation 
Ranking

Instruction:
Answer the questions based on relevant facts ...
Question: Who was the first president of the ...
Relevant Facts:  (Harry S. Truman, President, ...)

Large Language Model

...
[ Instruct token ][ Virtual Knowledge Indicators ]

[ SUB ] [ REL ] [ OBJ ] [ Token1] [ Tokenm]

T-GNN Layer

Instruction Template

Pre-trained Embedding  
Layer

Adapter  Layer

Local

h[SUB] h[REL] h[OBJ] h1 hm...
Question

Temporal 
constraints

after 1945

   Top k 
relations

President

 (Franklin Delano Roosevelt, President, the United States, 1933, 1945)
 (Harry S. Truman, President, the United States, 1945, 1953)

Relevant Facts

TKG

t1

t3

t2

Harry S. Truman
Response

 Frozen
 Tuned

Large Language Model

Who was the first president of the 
United States after World War II?

Relation 
Candidates

Figure 2: The overall architecture of our proposed GenTKGQA can be divided into two stages, subgraph retrieval
and answer generation. Given a temporal problem, we mark the entities provided, the implied time constraints and
the links between the entities with underline, blue font and orange font, respectively.

mension and a time mining sub-task in the temporal269

dimension. With such a strategy, we only need to270

provide a small number of samples to complete the271

subgraph retrieval.272

4.1.1 Relation Ranking273

We aim to determine the structural scope of the274

subgraph Gsub,i by retrieving the corresponding275

relations from the candidate relation set Ri for each276

question qi. Recent work has shown that LLMs can277

better handle the information extraction task as re-278

ranking agents (Sun et al., 2023). Therefore, we279

feed the question qi and the candidate set Ri to the280

LLM to obtain the top k relations Ri,k relevant to281

the question. Relations in Ri are linearized, i.e.,282

[employer, member_of_sports_team, ..., ]), and the283

retrievd relations can bridge the entities identified284

within the questions. The specific relation ranking285

prompt is shown in Appendix C.286

4.1.2 Time Mining287

We find that natural questions contain temporal288

constraints, either explicit or implicit, and we can289

easily determine the range of relevant facts in the290

temporal dimension by using explicit temporal con-291

straints such as "in 2008", "at the year of 2012",292

etc. How to capture implicit temporal constraints293

is the key to improving the efficiency of search-294

ing for relevant facts. For example, for the com-295

plex temporal question "Who held the position296

of president after Obama?", the implicit tempo-297

ral restriction is known to be (after 2016) based 298

on the temporal validity (2009, 2016) of the fact 299

(Obama, hold_position, President). We design spe- 300

cific prompt templates based on different answer 301

types as well as consider the temporal validity of 302

the question-containing facts (given entities and re- 303

lations matched in the previous section) to get the 304

temporal constraints. The details of the templates 305

are shown in Appendix C. 306

Through the above process, we narrow down the 307

search space of subgraphs and use relevant facts 308

under structural and temporal constraints as addi- 309

tional knowledge to assist the LLM inference. 310

4.2 Answer Generation 311

In this section, we will discuss how to incorporate 312

the knowledge retrieved in the previous section 4.1 313

into the LLM. Previous fundamental approaches 314

to incorporate KG structural information focus on 315

adding the knowledge to the input prompt in the 316

text form, e.g., (subject, relation, object). How- 317

ever, incorporating query-relevant facts into LLMs 318

in text form is not a good choice. The reason is 319

that this shallow interaction does not enable the 320

model to understand the structural dependencies 321

and temporal order between facts, leading to weak 322

temporal reasoning in the complex problem type. 323

Recent works show that language models can en- 324

hance their ability to perceive graph structures by 325

incorporating knowledge representations expressed 326

by graph neural networks (GNN) (Zhang et al., 327
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2022b). Inspired by this, we first extract the struc-328

tural and temporal information of entities and rela-329

tions with pre-trained temporal GNN embeddings.330

Then, we bridge the links between GNN and text331

representations through pre-designed virtual knowl-332

edge indicators. At last, we fine-tune the open-333

source LLM to deeply understand the temporal334

order and structural dependencies of the retrieved335

query-relevant facts.336

4.2.1 Temporal GNN337

Given the retrieved temporal subgraph Gsub,z of338

question qz , we first initialise entity, relation and339

time representations in Gsub,z using the TKG em-340

bedding method (Lacroix et al., 2020). Then, to341

fully explore the structural information among en-342

tities and relations of the temporal subgraph, we343

propose a temporal graph neural network (T-GNN),344

which is a variant of graph attention networks345

(Velickovic et al., 2018). The important distinction346

between them is that T-GNN captures the correla-347

tion scores of neighbouring nodes by incorporating348

temporal embeddings. Therefore, T-GNN com-349

putes message mij between entities ei and ej as350

follows:351

mij = Wm(e
(l−1)
i + rij + tij), (1)352

where e(l−1)
i is the entity representation of ei at the353

l-1 layer, rij and tij are the embeddings of the re-354

lation and timestamp connecting ei and ej . Wm is355

a linear transformation. Next, the node representa-356

tion e
(l)
j is calculated via message passing between357

neighbors on the Gsub:358

e
(l)
j =

∑
i∈Nj

αijmij , (2)359

here Nj represents the neighbor entities of the arbi-360

trary node ej , and αij denotes the attention values361

with e
(l−1)
i as query and mij as key:362

αij =
exp (uij)∑

w∈Nj
exp (uwj)

, (3)363

364

uij = fn((Wqe
(l−1)
i )⊤ (Wkmij)), (4)365

Wq,Wk are linear transformations, fn is the366

RELU activation function. Through the above pro-367

cess, we obtain entity representations ej with sub-368

graph structural and temporal information. Follow-369

ing embedding-based TKGQA methods, we use370

the link prediction task to pre-train the graph neu-371

ral network representations. Specifically, for each372

fact (s, r, o, t) in the TKG, we generate a query 373

(s, r, [mask], t) or ([mask], r, o, t) by masking the 374

object or subject entity. Then, we obtain the mask 375

embedding e
(l)
[mask] through Eq. (2), and feed it 376

into the multi-layer perceptron (MLP) decoder to 377

maximize the probability of the missing entity o 378

and s through the cross-entropy loss function: 379

p (e) = Softmax(e(l)[mask]w + b), (5) 380

381
L = −

∑
(s,r,o,t)∈G

log p(ot) + log p(st). (6) 382

4.2.2 Virtual Knowledge Indicators 383

We design three knowledge indicators to link graph 384

signals and input prompt text, namely [SUB], 385

[REL] and [OBJ], correspond to the virtual tokens 386

of the head entities, relations and tail entities in 387

the subgraph, respectively. We then try to incorpo- 388

rate structural and temporal information from the 389

subgraph into the indicator representations. Specifi- 390

cally, we use the Local operator to get the structure 391

representations hs of entities and relationships in 392

the subgraph, respectively: 393

hs
[SUB] = Local(e[SUB]), (7) 394

here e[SUB] represents pre-trained T-GNN embed- 395

dings of all subject entities in the subgraph, Local 396

indicates the max or mean pooling operator. Be- 397

sides, we leverage the time embeddings to enhance 398

the indicator representations with temporal infor- 399

mation. 400

hst
[SUB] = hs

[SUB] + tmin + tmax, (8) 401

where tmin and tmax denote the embeddings for 402

the minimu and maximum values of time in the 403

subgraph, respectively. The intuition follows BERT 404

that use position embeddings for tokens (Devlin 405

et al., 2019). Here, time embeddings can be seen as 406

entity positions in the time dimension. The relation 407

and object indicators are the same as subject. At 408

last, we employ a simple linear layer Wp to project 409

them into the textual representation space of the 410

LLM. The final input prompt sequence S = V : 411

I : Q : A, V represent virtual indicator tokens. 412

Details of the instruction template can be found in 413

the Appendix C. The optimization objective of the 414

LLM M can be formulated as: 415

A = argmax
A

PM (A | V, I,Q,A) . (9) 416

5



Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type
Complex Simple Entity Time Complex Simple Entity Time

EmbedKGQA 0.288 0.286 0.290 0.411 0.057 0.672 0.632 0.725 0.850 0.341
EaE 0.288 0.257 0.329 0.318 0.231 0.678 0.623 0.753 0.668 0.698
CronKGQA 0.647 0.392 0.987 0.699 0.549 0.884 0.802 0.990 0.898 0.857
EntityQR 0.745 0.562 0.990 0.831 0.585 0.944 0.906 0.993 0.962 0.910
TMA 0.784 0.632 0.987 0.792 0.743 0.943 0.904 0.995 0.947 0.936
TSQR 0.831 0.713 0.987 0.829 0.836 0.980 0.968 0.997 0.981 0.978
TempoQR 0.918 0.864 0.990 0.926 0.903 0.978 0.967 0.993 0.980 0.974
BERT w/o tkg 0.071 0.086 0.052 0.077 0.06 0.213 0.205 0.225 0.192 0.253
RoBERTa w/o tkg 0.07 0.086 0.05 0.082 0.048 0.202 0.192 0.215 0.186 0.231
ChatGPT w/o tkg 0.151 0.144 0.160 0.134 0.182 0.308 0.308 0.307 0.257 0.402
BERT w/ tkg 0.243 0.239 0.249 0.277 0.179 0.620 0.598 0.649 0.628 0.604
RoBERTa w/ tkg 0.225 0.217 0.237 0.251 0.177 0.585 0.542 0.644 0.583 0.591
ChatGPT w/ tkg 0.754 0.579 0.987 0.689 0.873 0.852 0.746 0.992 0.808 0.933
GenTKGQA 0.978 0.962 1.000 0.964 0.999 0.981 0.968 1.000 0.971 0.999

Table 1: Performance comparison of different models on CronQuestions. The best and second best results are
marked in bold and underlined, respectively. w/o tkg indicates that LMs answer the questions directly without using
TKG information, and w/ tkg indicates that LMs answer the questions with TKG background knowledge.

5 Experiments417

We design experiments to answer the following418

questions:419

Q1.How does GenTKGQA perform on the TKG420

question answering task? (Section 5.2)421

Q2.How do the two stages contribute to the422

model performance respectively? (Section 5.3)423

Q3.How does GenTKGQA perform under424

changes in hyper-parameters? (Section 5.4)425

Q4.How does GenTKGQA outperform Chat-426

GPT in answering complex temporal questions?427

(Section 5.5)428

5.1 Datasets, Metrics and Baselines429

CronQuestions (Saxena et al., 2021) is a temporal430

QA dataset based on the Wikidata TKG (Lacroix431

et al., 2020), comprising 125k entities, 203 rela-432

tions, 1.7k timestamps and 328k facts. It contains433

410K unique question-answer pairs, including an-434

notated entities and timestamps, with 350k for train-435

ing and 30k for validation and testing. The dataset436

can be categorized into simple reasoning (Simple437

Entity and Simple Time) and complex reasoning438

(Before/After, First/Last, and Time Join) based on439

temporal constraints. Following previous studies,440

we use two popular evaluation metrics, Hits@1441

and Hits@10. More information about datasets442

and metrics can be found in Appendix A.443

We compare four types of baselines: 1) KG444

embedding-based models including EaE (Feng445

et al., 2020b) and EmbedKGQA (Saxena et al.,446

2020); 2) TKG embedding-based models includ-447

ing CronKGQA (Saxena et al., 2021), EntityQR 448

(Mavromatis et al., 2022), TMA (Liu et al., 2023a), 449

TSQA (Shang et al., 2022) and TempoQA (Mavro- 450

matis et al., 2022); and 3) Language models, in- 451

cluding BERT (Devlin et al., 2019), RoBERTa (Liu 452

et al., 2019), and ChatGPT (OpenAI, 2023). The 453

implementation details of the baselines and our 454

model are described in Appendix B. 455

5.2 Main Results 456

Table 1 reports the performance of all methods 457

on the CronQuestions dataset for various question 458

types. We can observe that GenTKGQA consis- 459

tently outperforms the baselines in terms of "Over- 460

all" performance, and achieves significant improve- 461

ments of 11.3% in the "Complex" question type and 462

10.6% in the "Time" answer type on the Hits@1 463

metric over the second best method. Especially, 464

our model achieves 100% for the "Simple" ques- 465

tion type. The possible reason is that "Simple" 466

questions usually involve single facts, GenTKGQA 467

can easily retrieve the relevant facts containing the 468

answer and infer the correct answer through in- 469

struction tuning technique. 470

Furthermore, compared to KG embedding meth- 471

ods, temporal KG embedding methods show signif- 472

icant results on various metrics, thanks to the fact 473

that the temporal information of the TKG is taken 474

into account in the question representation. This is 475

also why KG embedding methods are particularly 476

ineffective for the "Time" answer type. However, 477

most TKG embedding methods treat the QA task 478
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Model
Hits@1

Overall Question Type Answer Type
Complex Simple Entity Time

GenTKGQA 0.978 0.962 1.000 0.964 0.999
w/o SR 0.119 0.140 0.090 0.127 0.103
w/o SR inference 0.475 0.381 0.601 0.294 0.812
w/ SR random 0.766 0.613 0.970 0.661 0.961
w/o T-GNN 0.935 0.914 0.965 0.920 0.963
w/o VKI 0.843 0.824 0.870 0.831 0.867

Table 2: Ablation study results on CronQuestions.

as a link prediction, which works for the "Simple"479

question type containing a single fact compared to480

the "Complex".481

We find that PLMs (BERT, RoBERTa) and482

LLMs (ChatGPT) have the lowest performance on483

the TKGQA task without TKG information. This484

suggests that language models (LM), whether en-485

coded or generated, with a large or small number486

of parameters, have difficulty answering temporal487

questions without any relevant context. w/ tkg indi-488

cates that LMs use entity/time embeddings or rel-489

evant facts from the TKG. Obviously, LMs w/ tkg490

have significantly better performance, which sug-491

gests that the language models have some degree of492

temporal reasoning capability when relevant TKG493

information is provided, validating the importance494

of the subgraph retrieval phase. It is worth not-495

ing that ChatGPT w/ tkg still performs weakly in496

reasoning about complex problem types when pro-497

viding the facts retrieved in the first stage by Gen-498

TKGQA, while our model achieves the best results.499

This demonstrates the effectiveness of interacting500

GNN and LM representations in a non-shallow501

way in dealing with complex temporal problems.502

The above findings demonstrate the adequacy of503

our two motivations for solving complex temporal504

problems with LLMs. A possible reason for the505

poor improvement of our model’s Hits@10 metric506

for the "Entity" type is that the generative LMs gen-507

erate irrelevant responses when asked to generate508

multiple answers. Last but not least, GenTKGQA,509

as a generative QA model, achieves better results510

than traditional extractive QA methods.511

5.3 Ablation Study512

As shown in Table 2, to verify each module’s im-513

portance, we conduct ablation experiments on the514

CronQuestions dataset.515

w/o SR means that we directly perform problem516

inference without using relevant subgraph infor-517

mation in both the model training and inference518

phases, while w/o SR inference means that we do519
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Figure 3: Parameter sensitivity on our GenTKGQA.

not provide subgraphs only at the inference. We 520

can observe a sharp decrease in model effective- 521

ness due to the lack of use of subgraph information, 522

which is consistent with the other LMs (Section 523

5.2). This result shows that the current LMs do 524

not have the reasoning capability to deal directly 525

with temporal reasoning problems, validating the 526

importance of the subgraph retrieval module. The 527

w/o SR inference result indicates that GenTKGQA 528

remembers part of the structured knowledge dur- 529

ing the training phase and improves the temporal 530

inference performance without providing subgraph 531

information. w/ SR random denotes the random 532

selection of relevant facts involving entities in the 533

question, and the drop in results proves the validity 534

of our first-stage approach. 535

w/o T-GNN indicates that we directly use tempo- 536

ral embeddings to represent entities and relations 537

of subgraphs. The slight decrease in the results 538

indicates that the T-GNN is able to perceive the 539

structural information of the TKG. w/o VKI means 540

that we try to remove the virtual knowledge indi- 541

cators from the input prompt. Model performance 542

degradation shows that indicators can bridge the 543

gap between distinct representations. 544

5.4 Sensitivity Analysis 545

Impact of training data size. We explore the im- 546

pact of different training data sizes to reason about 547

complex temporal questions. As shown in Figure 548

3(a), by comparing the Hits@1 metric of several 549

methods for the complex question type, our method 550

consistently outperforms others as the training data 551

expands. In particular, at 20% of the training data, 552

our model outperforms the second best model by 553

32.3%, demonstrating that our model has strong 554

inference ability in the case of few-shot samples 555

due to its intrinsic knowledge. 556

Impact of the number of relevant facts. We 557

report the performance changes on the CronQues- 558

tions dataset by varying the number of retrieved 559
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Type Question/ Response
Retrieved Graph ChatGPT w/ tkg GenTKGQA

Simple

dean in 1997 was the person?

Entity

[Xavier Darcos, position held, dean, 1995, 1998] [ Katarzyna Olbrycht, José Miguel Pérez García, [ Xavier Darcos, Zinaida Belykh,
[Zinaida Belykh, position held, dean, 1988, 1998] Jiří Zlatuška, Xavier Darcos, José Miguel Pérez García, Jiří Zlatuška,

[José Miguel Pérez García, position held, dean, 1990, 1998] Zinaida Belykh, Andrei Fursenko, Katarzyna Olbrycht, Catalina Enseñat Enseñat,
[Jiří Zlatuška, position held, dean, 1994, 1998] Anatoly Torkunov, Alexander Konovalov, Catalina Enseñat Enseñat, Marcel Berger,

[Katarzyna Olbrycht, position held, dean, 1981, 1998] Anatoly Vichnyakov, Anatoly Vishnevsky] Miguel Beltrán Lloris, Miklós Réthelyi]

Simple
When Daniele Amerini played in Modena F.C.?

Time
[Daniele Amerini, member of sports team, Modena F.C., 2005, 2006] [2005, 2006, [2005, 2006,
[Daniele Amerini, member of sports team, Modena F.C., 2008, 2009] 2008, 2009] 2008, 2009]

Before/

What was the first General Inspector

After

of the Bundeswehr after 2004?
[Wolfgang Schneiderhan, position held, Bundeswehr Chief, 2002, 2009] [Volker Wieker] [Wolfgang Schneiderhan]

[Volker Wieker, position held, Bundeswehr Chief, 2010, 2018]

First/

When Mark Burke was playing his final game?

Last

[Mark Burke, member of sports team, Luton Town F.C., 1994, 1994]
[Mark Burke, member of sports team, Port Vale F.C., 1994, 1995] [1994] [1995]

[Mark Burke, member of sports team, Wanderers F.C., 1991, 1994]
[Mark Burke, member of sports team, Darlington F.C., 1990, 1990]

Time

Who worked with Christiane Hoffmann

Join

during his employment with FAZ? [Gero von Randow, Frank Schirrmacher,
[Christiane Hoffmann, employer, FAZ, 1994, 2010] [Christiane Hoffmann] Oliver Gehrs, Peter Kiefer,

[Gero von Randow, employer, FAZ, 2001, 2003] Wolfgang Bresser, Ulrich Kuehl
[Frank Schirrmacher, employer, FAZ, 1994, 2014] Henning Franke, Stephan Löwenstein]

Table 3: Comparison of responses to five different question types between our GenTKGQA and ChatGPT w/ tkg.
Marked in blue is the correct answer.

facts n in Figure 3(b). It can be seen that the model560

performs poorly with a small number of relevant561

facts (n=3), and there is a slight drop in perfor-562

mance at n=8. Fewer facts do not provide sufficient563

context knowledge, while more facts may introduce564

noise. Taking this into consideration, we set the565

hyper-parameter n to 5.566

5.5 Qualitative Results567

We provide specific examples for each question568

type to compare the answer results of ChatGPT569

and ChatGPT w/ tkg. Table 3 includes the graphs570

retrieved by our method, along with the answer571

results for five different question types.572

When providing relevant facts retrieved by Gen-573

TKGQA as background knowledge, ChatGPT per-574

forms competitively in the simple question type,575

correctly answering questions with entity or time576

as the answer. However, it has difficulty answer-577

ing complex types of questions. For example, in578

the "Before/After" and "First/Last" question types,579

ChatGPT struggles to understand the temporal or-580

der of the relevant facts in the time dimension and581

gives incorrect answers. Besides, it does not seem582

to understand the dependencies among related facts.583

In the case of the "Time Join" question type, which584

asks for other entities who worked with Christiane585

Hoffmann at a certain time, ChatGPT wrongly con-586

siders the entity Christiane Hoffmann itself that587

appears in the relevant facts as the correct answer.588

On the contrary, GenTKGQA performs well in both589

simple and complex question types, thanks to the590

fact that our proposed approach allows the LLM591

to perceive the structural and temporal informa- 592

tion of the retrieved subgraphs. However, similar 593

to other generative LLMs, GenTKGQA randomly 594

generates some irrelevant answers when generating 595

multiple answers, e.g., in the "Simple Entity" and 596

"Time Join" question types. 597

6 Conclusion 598

We propose a novel generative framework, Gen- 599

TKGQA, which guides the LLM in a two-stage 600

manner to handle temporal question answering on 601

TKG. Specifically, at the subgraph retrieval phase, 602

we adopt a divide-and-conquer strategy to exploit 603

the LLM’s intrinsic knowledge to mine the tempo- 604

ral constraints and structural links in the temporal 605

questions to reduce the search space of the sub- 606

graphs in both time-space dimensions. We employ 607

the in-context learning approach to complete sub- 608

graph retrieval for the entire dataset with a small 609

number of samples. In order to improve the infer- 610

ence performance of the LLM on complex types 611

of problems, at the answer generation phase, we 612

present the instruction tuning technique to make the 613

open-source LLM truly understand the temporal 614

order and structural dependencies among retrieved 615

facts. Most critically, we design novel knowledge 616

indicators to establish a bridge between subgraph 617

neural information and text representations. Ex- 618

perimental results show that our framework can 619

effectively utilize the LLM to solve the complex 620

question type of TKGQA task and validate the ade- 621

quacy of our motivation. 622
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Limitations623

Although the complex temporal question in the624

CronQuestions dataset involves multiple facts, the625

inter-entity connection in each fact is single-hop,626

so the hyper-parameter k of our model is set to 1 to627

achieve the best results. In fact, the vast majority628

of current TKGQA datasets involve facts that are629

single-hop. So, in the future, we will explore more630

datasets to solve inference for multi-hop complex631

temporal problems over TKG.632

Ethics Statement633

This work presents a novel two-stage framework634

for the temporal knowledge graph question answer-635

ing task using large language models. Our exper-636

iments use the publicly available CronQuestions637

dataset and language models from open sources.638

The dataset is developed to be used for the TKG-639

based temporal QA task. The language models640

are used to generate answers to temporal questions641

with entities or timestamps, which does not involve642

toxic content. This paper uses the above dataset643

and models with their initial intention. We believe644

that this work is consistent with ACL’s ethics policy645

and presents no potential risk.646
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Category Train Dev Test

Simple Entity 90,651 7,745 7,812
Simple Time 61,471 5,197 5,046
Before/After 23,869 1,982 2,151
First/Last 118,556 11,198 11,159
Time Join 55,453 3,878 3,832

Simple Reasoning 152,122 12,942 12,858
Complex Reasoning 197,878 17,058 17,142

Entity Answer 225,672 19,362 19,524
Time Answer 124,328 10,638 10,476

Total 350,000 30,000 30,000

Table 4: Dataset Statistics of CronQuestions.

Wikidata Subset

Entities 125,726
Relations 203
Timestamps 1,643
Fact triplets 328,635

Table 5: Statistics for Wikidata TKG.

A Dataset Statistics and Metrics 870

We use the CronQuestions dataset in our experi- 871

ments. Dataset statistics and TKG information are 872

described in Table 4 and 5, respectively. 873

Following previous studies, we leverage 874

two popular evaluation metrics, Hits@1 875

and Hits@10. Specifically, Hits@K = 876
1

|Test|
∑

q∈ Test ind(rank(q) ≤ K), where rank(q) 877

denotes the ranking of the answer to question q 878

obtained by the model in the candidate list. ind 879

is 1 if the inequality holds and is 0 otherwise, 880

K = 1, 10. 881

B Baselines and Implementation Details 882

We use the OpenAI-API1 (gpt-3.5-turbo-06132) for 883

all ChatGPT-related experiments, including subse- 884

quent ChatGPT baselines. 885

In the subgraph retrieval phase, we use ChatGPT 886

(OpenAI, 2023) to mine temporal constraints and 887

structural links between entities and add 5 samples 888

to the in-context learning prompt templates, which 889

are presented as Table 6 and 7. We set k=1 for the 890

top-k relations. In the answer generation phase, 891

following (Lacroix et al., 2020), we select the di- 892

mension of entity/relation/time embeddings to 512. 893

For T-GNN, the layer l is set to 1, the linear trans- 894

1https://platform.openai.com/docs/
api-reference

2https://platform.openai.com/docs/models/
gpt-3-5-turbo
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formations Wq, Wk and Wm are 512×512, and895

the m and b of the MLP layer are 512×|E|. We896

use the open-source Llama 2-7B (Touvron et al.,897

2023) for instruction tuning and select up to n=5898

relevant facts as additional knowledge. The linear899

projection layer Wp is 512×4096. We fine-tune900

Llama 2-7B using LoRA (Hu et al., 2022) with901

rank 64. The number of epochs is set to 3 and902

the learning rate is 3e-4. We use the AdamW opti-903

mizer (Loshchilov and Hutter, 2019) with a fixed904

batch size of 8. We conduct all the experiments905

with NVIDIA A100 GPUs, and the results of each906

experiment are averaged over three runs. We will907

release the source code upon acceptance.908

We compare our model with the following base-909

lines:910

EmbedKGQA (Saxena et al., 2020): Times-911

tamps are ignored during pre-training and random912

time embeddings are used during the QA task.913

EaE (Feng et al., 2020b): In the experiment, we914

follow use TKG embeddings to enhance the ques-915

tion representation, and then predict the answer916

probabilities via dot-product.917

CronKGQA (Saxena et al., 2021): CronKGQA918

is the TKGQA embedding-based method that first919

uses a LM model to get question embeddings and920

then utilize a TKG embedding-based scoring func-921

tion for answer prediction.922

EntityQR and TempoQR (Mavromatis et al.,923

2022): Based on EaE, EntityQR utilizes a TKG924

embedding-based scoring function for answer pre-925

diction. TempoQR utilizes a TKG embedding-926

based scoring function for answer prediction and927

fuse additional temporal information.928

TMA (Liu et al., 2023a): TMA improves QA929

performance through enhanced fact retrieval and930

adaptive fusion network.931

TSQR (Chen et al., 2021b): TSQA presents a932

contrastive learning module that improves sensitiv-933

ity to time relation words.934

BERT and RoBERTa (Devlin et al., 2019; Liu935

et al., 2019): For w/o tkg, following CronKGQA936

(Saxena et al., 2021), we add a prediction head on937

top of the [CLS] token of the final layer, and then938

do a softmax over it to predict the answer probabil-939

ities. For w/ tkg, following TempoQR (Mavromatis940

et al., 2022), we generate their LM-based question941

embedding and concatenate it with the annotated942

entity and time embeddings, followed by a learn-943

able projection. The resulted embedding is scored944

against all entities and timestamps via dot-product.945

ChatGPT (OpenAI, 2023): To ensure that the946

output format meets the expected requirements, we 947

use the in-context learning approach to motivate 948

ChatGPT to answer the questions and provide 5 949

examples in the prompt template. The specific tem- 950

plates are presented in Table 9 of Appendix C. w/o 951

tkg and w/ tkg differ in whether or not question- 952

relevant facts are provided in the input prompts, 953

which are retrieved in the first stage by our pro- 954

posed GenTKGQA framework. 955

C Prompt Template 956

The prompts for relation ranking and time mining 957

can be found in Table 6 and Table 7, respectively. 958

The template used for instruction tuning is shown in 959

Table 8. The ChatGPT baseline prompt is presented 960

in Table 9. 961
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Relation Ranking Prompt

l will give you a list of words.
Find the {k} words from the list that are most semantically related to the given sentence.
If there are no semantically related words, pick out any {k} words.

Examples)

Sentence A: When was the first time Martin Taylor played for The Hatters?
Words List: [‘member of sports team’, ‘position held’, ‘award received’, ‘spouse’, ‘employer’]
Top {k} Answers: [‘member of sports team’]

. . .

Sentence E: Which was awarded to Daniel Walther in 1980?
Words List: [‘member of sports team’, ‘position held’, ‘award received’, ‘spouse’, ‘employer’]
Top {k} Answers: [‘award received’]

Now let’s find the top {k} words.
Sentence: {sentence}
Words List: {relation_list}
Top {k} Answer:

Table 6: Relation Ranking Prompt. This prompt is used to extract structural links between entities in the question.

Time Mining Prompt

I will give you a natural language question with a temporal constraint.
Answer the temporal constraint involved in the question based on the knowledge context and the question type.
Answer only in "before", "after", "between and" format.

Examples)

Question A: Who held Governor of Connecticut position after Lowell P. Weicker?
Knowledge Context: [‘Lowell P. Weicker’, ‘position held’, ‘Governor of Connecticut’, ‘1991’, ‘1995’]
Question Type: after
Response: after 1995

. . .

Question E: Who’s the player who played in AC Reggiana with Daniele Magliocchetti?
Knowledge Context: [‘Daniele Magliocchetti’, ‘member of sports team’, ‘A.C. Reggiana’, ‘2012’, ‘2014’]
Question Type: time_join
Response: between 2012 and 2014

Next, let’s answer the time constraints involved in the following question.
Question: {question}
Knowledge Context: {context}
Question Type: {type}
Response:

Table 7: Time Mining Prompt. This prompt is used to find the time constraints involved in the complex question.
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Instruction Tuning Template

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

Instruction:
Answer the questions based on evidence.
Each evidence is in the form of [head, relation, tail, start_time, end_time]
and it means ‘head relation is tail between start_time and end_time’.
You must list the 10 most relevant answers.

Input:
Question: {question}
Evidence set: {evidence_set}

Response:{answer}

Table 8: This is the template for instruction tuning.
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ChatGPT w/ tkg

Answer the questions based on evidence.
Each evidence is in the form of [head, relation, tail, start_time, end_time]
and it means ‘head relation is tail between start_time and end_time’.
You must list the 10 most relevant answers separated by ‘\t’.

Examples)

Question A: Who was the Member of the House of Representatives in 1990?
Evidence set: [[‘Simon Crean’, ‘position held’, ‘Member of the House of Representatives’, ‘1990’, ‘2013’],. . . ]
Answer: Simon Crean\tJohn Dawkins\t. . .

. . .

Question E: With whom did Steve Haslam play on the Sheffield Wednesday F.C.?
Evidence set: [[‘Ola Tidman’, ‘member of sports team’, ‘Sheffield Wednesday F.C.’, ‘2003’, ‘2005’], . . . ]
Answer: Ola Tidman\tChris Marsden\t. . .

Now let’s answer the Question based on the Evidence set.
Please do not say there is no evdience, you must list the 10 most relevant answers separated by ‘\t’.
Question: {question}
Evidence set: {evidence_set}
Answer:

ChatGPT w/o tkg
Answer the questions directly.
You must answer the 10 most relevant answers separated by ‘\t’.

Examples)

Question A: Who was the Member of the House of Representatives in 1990?
Answer: Simon Crean\tJohn Dawkins\t. . .

. . .

Question E: With whom did Steve Haslam play on the Sheffield Wednesday F.C.?
Answer: Ola Tidman\tChris Marsden\t. . .

Now let’s answer the Question, you must answer the 10 most relevant answers separated by ‘\t’.
Question: {question}
Answer:

Table 9: ChatGPT Baseline Prompt.
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