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Abstract

The advancement of Large Vision-Language Mod-
els (LVLMs) has propelled their application in
medicine. However, Medical LVLMs (Med-
LVLMs) encounter factuality issues due to modal-
ity misalignment, where the models prioritize tex-
tual knowledge over visual input, causing hallu-
cinations that conflict with medical images. Pre-
vious attempts on preference optimization have
inadequately mitigated clinical relevance in pref-
erence data, making these samples easily distin-
guishable and reducing alignment effectiveness.
To address this challenge, we propose MMedPO,
a novel multimodal medical preference optimiza-
tion approach that considers the clinical relevance
of preference samples to enhance Med-LVLM
alignment. MMedPO curates multimodal prefer-
ence data by introducing two types of disprefer-
ence: (1) plausible hallucinations injected through
target Med-LVLMs or GPT-4o to produce medi-
cally inaccurate responses, and (2) lesion region
neglect achieved through local lesion-noising, dis-
rupting visual understanding of critical areas. We
then calculate clinical relevance for each sample
based on scores from Med-LLMs and visual tools,
and integrate these scores into the preference op-
timization process as weights, enabling effective
alignment. Our experiments demonstrate that
MMedPO significantly enhances factual accuracy,
achieving improvements over existing baseline
methods by averaging 14.2% and 51.7% across
the Med-VQA and report generation tasks. Our
code are available in https://github.com/aiming-
lab/MMedPO.
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Figure 1. An illustration of preference data pair. The dispreferred
response contains nonfactual and clinically meaningless content.

1. Introduction
Artificial intelligence is increasingly being applied in the
medical field (Tăuţan et al., 2021; Wang et al., 2019; Ye
et al., 2021; Tu et al., 2024; Xia et al., 2024c; Wang et al.,
2025; Hu et al., 2024; 2023; Li et al., 2024), including areas
such as disease diagnosis and treatment planning. With the
recent surge in popularity of Large Vision-Language Mod-
els (LVLMs) (Liu et al., 2024b;a; Zhu et al., 2023), Medical
LVLMs (Med-LVLMs) have begun to develop rapidly, draw-
ing significant attention (Li et al., 2023a; Moor et al., 2023;
Zhang et al., 2023; Wu et al., 2023c; Xia et al., 2024f;e).
However, these models still face the challenge of factuality,
which is largely due to modality misalignment issues (Cui
et al., 2023; Zhou et al., 2024a; Sun et al., 2024). Models
with poor modality alignment tends to prioritize the textual
knowledge learned during training over the actual visual
input. As a result, Med-LVLMs often produce hallucina-
tions, generating text that appears coherent but contradicts
the information in the corresponding medical image (Xia
et al., 2024a; Royer et al., 2024).

To tackle this issue, several studies have employed pref-
erence optimization on Med-LVLMs, aiming to improve
alignment between medical image and text modalities with
factuality improvement (Hein et al., 2024; Sun et al., 2024;
Banerjee et al., 2024). However, these methods simply
leverage the preference data generation process used for
aligning general LVLMs on natural images, overlooking
the clinical relevance of the generated preference samples.
Consequently, these preference samples become relatively
easily distinguishable, reducing their effectiveness in align-
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ing Med-LVLMs. Clinical relevance can be considered from
two perspectives. First, in these preference samples, it is
essential that both preferred and dispreferred responses are
clinically meaningful; if dispreferred responses lack clin-
ical relevance, Med-LVLMs can easily distinguish them,
diminishing the sample’s effectiveness. For instance, a dis-
preferred response such as “a gallstone in the right lobe of
the lung...” reflects a clear factual error with limited clin-
ical relevance (Tu et al., 2024). Second, when improving
alignment between the generated medical response and the
input medical image, focused attention on local lesion areas
is essential for accurate medical image understanding. Cor-
recting dispreferred responses that arise from overlooking
these lesion regions is crucial for achieving more precise
medical alignment.

To address this challenge, we introduce MMedPO, a novel
Multimodal Medical Preference Optimization approach
designed to quantify preference sample importance based
on clinical relevance, enabling more effective preference
optimization in Med-LVLMs. In MMedPO, we first cu-
rate multimodal medical preference data using two strate-
gies: (1) introducing dispreference by leveraging target Med-
LVLMs (Li et al., 2023a) or GPT-4o (OpenAI, 2023) to in-
ject plausible hallucinations into responses, ensuring dispre-
ferred outputs contain evident medical inaccuracies, such as
incorrect imaging interpretations, misleading descriptions,
or inaccurate diagnoses; and (2) provoking dispreference by
neglecting lesion regions through a visual tool-guided local
lesion-noising process, which disrupts the model’s under-
standing of these areas, leading to responses that overlook
critical regions, thus being marked as dispreferred. We then
quantify each preference sample’s clinical significance by
formulating sample importance scores, which integrate (1)
clinical significance scores of dispreferred responses, evalu-
ated by a multiple Med-LLMs collaboration process, and (2)
confidence scores from visual tools to assess lesion region
detection accuracy. These sample importance scores are
then feed into a preference optimization process, enabling
more effective alignment based on the clinical relevance of
each preference sample.

The primary contribution of this paper is the introduction
of MMedPO, aiming to quantify the clinical significance
of curated preference samples to achieve more effective
alignment and enhance factual accuracy in Med-LVLMs.
Empirical results on two Medical Visual Question Answer-
ing (Med-VQA) (Lau et al., 2018; Liu et al., 2021) and two
report generation datasets (Johnson et al., 2020; Demner-
Fushman et al., 2016) demonstrate that MMedPO substan-
tially improves the factual accuracy of Med-LVLMs, achiev-
ing significant gains over the best previous preference opti-
mization methods, with improvements of 14.2% and 51.7%
on the Med-VQA and report generation tasks, respectively.

2. Preliminaries
2.1. Medical Large Vision Language Models

Medical Large Vision-Language Models (Med-LVLMs) are
advanced architectures primarily comprising a Large Lan-
guage Model (LLM) integrated with a specialized visual
module. The visual module analyzes medical images to
extract relevant information, transforming it into a represen-
tation compatible with the LLM’s processing capabilities.
Given a medical image xv and a clinical query xt, the com-
bined input is represented as x = (xv, xt). The model then
autoregressively predicts the probability distribution of the
next token in the sequence, leveraging the multimodal input.
The text output generated by the model is denoted as y.

2.2. Preference Optimization

Preference optimization has proven highly effective in fine-
tuning LLMs (Rafailov et al., 2023; Bai et al., 2022), leading
to a significant alignment between model behavior and target
objectives. In preference optimization, given an input x, the
language model policy πθ generates a conditional distribu-
tion πθ(y | x), where y represents the output text response.
One of the notable methods, Direct Preference Optimization
(DPO) (Rafailov et al., 2023), leverages preference data to
facilitate alignment within LLMs. The preference dataset is
defined as D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1, where y

(i)
w denotes the

preferred response and y
(i)
l the dispreferred response for a

given input x. The probability of preferring yw over yl is
modeled as p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)), with σ(·)
representing the sigmoid function. In DPO, the optimization
process is expressed as a following loss computed over the
preference data:

LDPO(πθ;πref) = −E(x,yw,yl)∼D[
log σ

(
α log πθ(yw|x)

πref(yw|x) − α log πθ(yl|x)
πref(yl|x)

)]
.

(1)

where πθ represents the reference policy, which is the LLM
fine-tuned through supervised fine-tuning.

3. Multimodal Medical Preference
Optimization (MMedPO)

In this section, we propose MMedPO, a clinical-aware mul-
timodal preference optimization method to address modality
misalignment challenges in Med-LVLMs, which consists of
three steps and the entire framework is illustrated in Figure 2.
Firstly, we use the target Med-LVLM or GPT along with
medical visual tools to jointly construct medical multimodal
preference data. Second, we evaluate the clinical relevance
of each preference sample using a collaborative process with
multiple Med-LLMs and confidence scores from medical vi-
sual tools for lesion region detection. Lastly, the normalized
clinical relevance scores are integrated into the preference
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Figure 2. The overview of MMedPO outlines a comprehensive framework consisting of multimodal preference data curation, a quantified
preference scoring module, and clinical-aware preference optimization. For data curation, the hallucinated text response and localized
noisy images are joint constructed as preference data. Then the clinical relevance score is obtained through a multi-agent collaboration
system and visual tools. Finally, these scores, serve as weights for the clinical-aware preference optimization.

optimization process to achieve clinical-aware preference
optimization. We detail these steps as follows:

3.1. Preference Data Curation

In the first step, our goal is to construct a high-quality,
medical-specific multimodal preference dataset using two
strategies: (1) introducing dispreference by using target
Med-LVLMs or GPT-4o (OpenAI, 2023) to inject halluci-
nations into medical responses, ensuring that dispreferred
responses include significant medical inaccuracies; (2) pro-
voking dispreference by neglecting lesion regions through a
medical visual tool-augmented local lesion-noising process,
resulting in dispreferred responses that overlook critical
regions. We detail both strategies as follows:

Generating Hallucinated Medical Responses. In the first
strategy, we aim to generate a hallucinated medical response,
designated as the dispreferred response, while the ground
truth serves as the preferred response. To achieve this, we
first perform multiple rounds of sampling on the target Med-
LVLMs M(·) to collect a set of potential hallucinated re-
sponses. We then use GPT-4o to evaluate all candidate
responses and select the response with the highest level
of hallucination, displaying clear conflicts with the ground
truth. If none of the candidates exhibit significant hallu-
cinations, we use GPT-4o to generate a new hallucinated
response based on ground truth to ensure that disprefer-
ence contain factual inaccuracies, such as incorrect imaging
interpretations, misleading condition descriptions, or erro-
neous diagnoses. The preference pairs constructed using
this strategy are denoted as Dt.

Adding Noise to Localized Lesion Region. To improve the

alignment between generated medical responses and input
medical images, concentrated attention on localized lesion
areas is vital for accurate interpretation. Thus, we construct
dispreferred response that stem from neglecting these lesion
regions. Specifically, we leverage a medical visual tool
(e.g., MedKLIP (Wu et al., 2023b)) T (·), to predict disease-
related local regions h = T (xv) for each medical image xv .
We then introduce noise into these detected localized lesion
regions within the original image. The noise step is defined
as k, and the noised image at step k can be expressed as
follows:

x∗
v =

√
ξ̄k · (xv⊙h)+

√
1− ξ̄k · (ϵ⊙h)+(xv⊙ (1−h)), (2)

where ξ̄t =
∏k

i=0 ξi and ξk ∈ (0, 1) are hyperparameters.
In this approach, the original image xv paired with the
ground truth y is considered preferred, while the image with
localized noise xk paired with the same ground truth y is
regarded as dispreferred. The preference data constructed
using this strategy is denoted as Dv .

Finally, we merge the two preference sets generated by the
above two strategies and denote the preference dataset as
Do = Dt ∪ Dv = {x(i), x∗(i), y

(i)
w , y

(i)
l }

N
i=1, where x(i) and

x∗(i) denote the normal and noisy input, y(i)
w , y(i)

l represent
preferred and dispreferred responses, respectively.

3.2. Quantified Clinical Relevance Score

After obtaining multimodal medical preference data, we
will quantify the clinical relevance of each preference sam-
ple to drive effective optimization. Our hypothesis is that
responses with higher clinical relevance are more valuable
for preference optimization, while low-quality responses,
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in turn, reduce the effectiveness of optimization. We will
explain in detail how clinical relevance is calculated below.

3.2.1. CLINICAL RELEVANCE SCORES FOR
DISPREFERRED MEDICAL RESPONSES

For samples generated by the target Med-LVLM and GPT-
4o (i.e., samples in Dt), we evaluate the clinical relevance
of the dispreferred response based solely on the model’s
internal medical knowledge, without the need for visual in-
put (Tian et al., 2024; Thirunavukarasu et al., 2023). Includ-
ing medical images for this evaluation is unnecessary and
may even hinder the process. Therefore, we rely on Med-
LLMs with high levels of medical expertise to assess the
clinical relevance of these text responses. Moreover, relying
on a single Med-LLM for evaluating clinical relevance may
introduce bias and result in unreliable assessments (Chan
et al.). To address this, we implement a multi-agent col-
laboration system comprising multiple Med-LLMs, each
with varying levels of medical expertise. These Med-LLMs
collaborate through a structured debating process to reach a
consensus on clinical relevance scores, thereby improving
the reliability of clinical relevance evaluations.

Specifically, for each Med-LLM Gi, where 0 < i ≤ g
and g represents the total number of Med-LLMs, the objec-
tive of the multi-agent collaborative system is to establish
consensus on the clinical relevance score across all agents
(i.e., Med-LLMs). This process comprises r rounds. In
each round, each Med-LLM evaluates the clinical relevance
score passed from the previous Med-LLM. The process
begins with the first Med-LLM, G1, which evaluates a dis-
preferred response yl, generating a clinical relevance score
s1 = G1(yl) and recording it in the score history S. Sub-
sequently, each following Med-LLM Gi retrieves the prior
scores si−1 and determines whether to agree. If a Med-
LLM concurs, it adopts si−1 as its clinical relevance score
si; otherwise, it generates a new score as si. This process
continues until all Med-LLMs reach consensus and produce
a final score. To prevent excessive evaluations, a threshold
limits the number of evaluation rounds. If this threshold is
reached before consensus, the final score is defined as the

average of the scores in the history: ŝ =
∑|S|

i=1 si
|S| , ensuring

efficient consensus that reflects clinical relevance, where |S|
represents the total number of scores.

3.2.2. CONFIDENCE SCORES FOR LOCALIZED LESION
REGIONS FROM VISUAL TOOLS

For preference data in Dv, distinct noisy regions corre-
spond to disease-related lesion areas. Introducing noise
into images to generate dispreferred responses for prefer-
ence comparison can improve the visual understanding of
Med-LVLMs (Zhou et al., 2024a; Zhao et al., 2023; Wang
et al., 2024a). Emphasizing lesions associated with the dis-

ease through noise can further enhance the model’s focus
on these critical areas. However, if noisy regions are inac-
curately defined, the reliability of these samples decreases,
potentially impacting the model performance. Therefore,
quantifying the accuracy of critical lesion detection to repre-
sent sample importance during optimization is importance.
To achieve this, we use the confidence scores s from visual
tools that generate heatmaps of local regions as an indicator
of clinical relevance. We assign different clinical relevance
scores to preference pairs based on the confidence scores
provided by visual tools for lesion detection.

3.3. Clinical-Aware Preference Fine-tuning

Following the previous steps, we construct multimodal med-
ical preference data and assign a quantified clinical rele-
vance score to each preference sample. During preference
optimization, we treat this score as the sample weight rep-
resenting the contribution of each preference data pair to
the overall objective. To prevent underfitting caused by an
excessively small overall loss, we apply a normalization
strategy, mapping the scores to a fixed range while maintain-
ing their mean and variance. Specifically, for each clinical
relevance score s, the normalized score s′ is calculated as:
s′ = (s−µ)

σ
, then we clip s′ to values of [α, β]. Here α and

β denote the predefined upper and lower bounds for the
normalized score, and µ and σ represent the mean and vari-
ance of the original scores, respectively. After obtaining
the normalized clinical relevance score, we fine-tune the
Med-LVLM using a weighted DPO. Following Eqn. 3, the
adjusted loss with clinical relevance as sample weights is
calculated as follows:

Lmmedpo = −E(x,x∗,yw,yl,s′)∼Do[
s′ log σ

(
α log πθ(yw|x)

πo(yw|x) − α log πθ(yl|x∗)
πo(yl|x∗)

)]
.

(3)

4. Experiment
In this section, we evaluate the effectiveness of MMedPO
to answer the following questions: (1) Can MMedPO en-
hance the factual accuracy of Med-LVLMs compared to
other alignment baselines? (2) How does each individual
component of the framework contribute to overall perfor-
mance? (3) Can MMedPO be compatible with different
Med-LVLM architectures? (4) Does MMedPO improve
Med-LVLMs’ responses in terms of clinical relevance?

4.1. Experimental Setups

Evaluation Datasets. To verify the effectiveness of
MMedPO in improving factuality, we utilize four medical
datasets: two medical VQA datasets, i.e., VQA-RAD (Lau
et al., 2018) and SLAKE (Liu et al., 2021), and two report
generation datasets, i.e., MIMIC-CXR (Johnson et al., 2020)
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Algorithm 1: Multimodal Medical Preference Op-
timization (MMedPO)

Input: D = {x(i)
v , x

(i)
t , y(i)}Ni=1: Dataset;M(·, ·):

Med-LVLM; T (·): Visual Tool; G(·): Med-LLM;
N (·, ·): Localized Nosiy Process; Z(·):
Normalization.

Output: πθ: Parameters of the Med-LVLM.
1 Initialize Do with an empty set
2 foreach (xv, xt, y) ∈ D do
3 ▷ Preference Data Curation
4 Generate responses of the Med-LVLM

a←M(xv, xt)
5 Select the dispreferred response yl ← GPT(a, y)
6 ▷ Quantify the Clinical Relevance
7 Quatify the clinical relevance using Med-LLMs

st ← G(yl)
8 Put {xv, y, yl, st} into Do;
9 Obtain the heatmap of lesion region h← T (xv)

10 Save the confidence score from visual tool
sv ← P (h|xv)

11 Add noise to the localized region x∗
v ← N (xv, h)

12 Put {xv, x
∗
v, y, sv} into Do;

13 ▷ Clinical Preference Optimization
14 foreach (x, x∗, yw, yl, s) ∈ Do do
15 Normalize the score s′ ← Z(s)
16 Update πθ through Eq. (3)

and IU-Xray (Demner-Fushman et al., 2016).

Implementation Details. We utilize LLaVA-Med-1.5
7B (Li et al., 2023a) as the base model. During the prefer-
ence optimization stage, we apply LoRA fine-tuning (Hu
et al., 2021), with a batch size of 4, a learning rate of 1e-7,
and train for 3 epochs. For curating preference data, we use
GPT-4o to evaluate and generate dispreferred responses. In
the multi-agent collaboration system, multiple Med-LLMs,
including LLaMA3-Med42-7B (Christophe et al., 2024),
LLaMA3-Med42-70B, BioMistral-7B (Labrak et al., 2024),
are used to evaluate the relevance scores for the preference
data. See Appendix B for more details.

Baselines. We compare MMedPO with Direct Preference
Optimization (DPO) (Rafailov et al., 2023) and its variants,
including the self-rewarding method (Yuan et al., 2024) and
STLLaVA-Med (Sun et al., 2024). In the self-rewarding
method, the model generates its own responses to form
preference pairs, while STLLaVA-Med further refines the
preference selection process using GPT-4o and apply it
in Med-LVLMs. We further compare three VLM prefer-
ence fine-tuning methods originally designed for natural
images: POVID (Zhou et al., 2024a), FiSAO (Cui et al.,
2024), and SIMA (Wang et al., 2024b). Additionally, we
evaluate MMedPO and all baselines on models that have un-
dergone supervised fine-tuning (SFT) with the correspond-
ing datasets and compare their performance. Please see
more details in Appendix C.

Evaluation Metrics. For Med-VQA task, we use ac-
curacy and recall for both closed-ended and open-ended
questions. For the report generation task, we use BLEU
Score (Papineni et al., 2002), ROUGE-L (Lin, 2004) and
METEOR (Banerjee & Lavie, 2005) as the metrics.

4.2. Main Results

In this section, we present a comprehensive comparison of
MMedPO with baseline methods.

Comparison with Baseline Methods. As shown in Table
1, we evaluate our model’s performance against the original
LLaVA-Med-1.5 and several preference optimization base-
lines. MMedPO demonstrates superior performance across
both Medical VQA and report generation tasks. Specifically,
for Med-VQA task, MMedPO significantly outperforms the
best baseline (i.e., original DPO) by an average of 15.8%
and 10.3% across the open-ended and closed-ended ques-
tions, respectively. We also observe that the overall perfor-
mance improvement on open-ended questions is greater than
that on closed-ended questions, indicating that MMedPO is
particularly effective in guiding accurate open-ended genera-
tion. Additionally, MMedPO exhibits superior performance
on the report generation task, surpassing the best baseline
by 61.9% and 26.0% on IU-Xray and MIMIC-CXR, re-
spectively. This demonstrates that, by constructing a multi-
modal preference dataset and assigning quantified clinical
relevance scores to measure sample importance, MMedPO
ensures that clinical relevance is fully considered during the
preference optimization process, resulting in more accurate
and clinically meaningful responses.

Comparison with Baseline Methods Enhanced by SFT.
To demonstrate the compatibility of our approach with other
training methods, we conduct experiments by applying
MMedPO and other baseline methods to SFT. As shown in
Table 1, MMedPO consistently outperforms the SFT base-
line across all four datasets, with an average improvement
of 14.2%. When compared to other baselines applied to
SFT, MMedPO achieves significantly better performance,
with an average improvement of 10.5%. These results fur-
ther corroborate the effectiveness and compatibility of our
approach, demonstrating its ability to integrate seamlessly
with other training techniques to enhance model alignment.

4.3. Quantitative Analysis

In this section, we first conduct ablation study to analyze the
effectiveness of each strategy and component in MMedPO
for enhancing factual accuracy. Then, we evaluate the
model’s compatibility with different backbones. We fur-
ther explore how our approach improves Med-LVLMs’ re-
sponses in terms of clinical significance and visual under-
standing.
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Table 1. Performance comparison on medical VQA and report generation tasks covering SLAKE, VQA-RAD, and IU-Xray datasets. For
open-ended questions, we report recall (Open); for closed-ended questions, accuracy (Closed). The BLEU score denotes the average of
BLEU-1/2/3/4. +SFT indicates that the model is first fine-tuned with SFT before applying the corresponding baselines. The best results
and second best results are highlighted in red and blue , respectively.

Models SLAKE VQA-RAD IU-Xray MIMIC-CXR
Open Closed Open Closed BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

LLaVA-Med v1.5 44.26 61.30 29.24 63.97 14.56 10.31 10.95 10.25 9.38 7.71

+ Self-Rewarding 42.63 61.30 33.29 64.17 14.20 10.38 10.52 10.78 9.27 7.73
+ DPO 49.30 62.02 29.76 64.70 16.08 12.95 17.13 11.19 9.45 7.80
+ POVID 52.43 70.35 31.77 65.07 20.80 24.33 30.05 11.21 9.66 7.84
+ SIMA 51.77 69.10 31.23 64.80 17.11 22.87 29.10 11.16 9.58 7.49
+ FiSAO 52.69 70.46 32.70 64.11 21.06 25.72 30.82 11.32 9.68 7.62
+ STLLaVA-Med 48.65 61.75 30.17 64.38 16.11 10.58 10.51 11.11 9.29 7.72
+ MMedPO(Ours) 53.99 73.08 36.36 66.54 23.49 29.52 34.16 12.85 11.13 10.03

+ SFT 50.45 65.62 31.38 64.26 22.75 28.86 33.66 12.39 10.21 8.75
+ Self-Rewarding 50.62 65.89 32.69 65.89 22.89 28.97 33.93 12.15 10.05 8.77
+ DPO 53.50 69.47 32.88 64.33 23.07 29.97 34.89 12.37 10.38 9.10
+ POVID 52.18 70.67 32.95 64.97 23.95 29.75 34.63 11.85 10.45 9.05
+ SIMA 51.75 69.28 32.50 64.08 23.90 29.41 34.45 12.44 10.25 9.02
+ FiSAO 52.80 70.82 32.94 65.77 23.57 29.88 35.01 12.97 10.69 9.39
+ STLLaVA-Med 52.72 66.69 33.72 64.70 22.79 28.98 34.05 12.21 10.12 8.98
+ MMedPO(Ours) 55.23 75.24 34.03 67.64 24.00 30.13 35.17 13.28 13.22 10.20

4.3.1. ABLATION STUDY

Different Preference Curation Strategies. To as-
sess the impact of different preference curation strategies
in MMedPO, namely generating hallucinated medical re-
sponses and adding noise to localized lesion regions, we
evaluated their performance on these two components. The
results, presented in Figure 3, reveal that adding noise to
localized lesion regions has a more pronounced effect on
open-ended generation tasks (e.g., report generation) com-
pared to generating hallucinated medical responses. For
medical VQA tasks, the performance improvements from
both preference curation processes are comparable. By inte-
grating both strategies, MMedPO achieves the best overall
performance across four datasets, effectively combining
their strengths to maximize performance gains.

Figure 3. Comparison of the effectiveness of different preference
curation strategies. “stage 1”: generating hallucinated medical
responses; “stage 2”: adding noise to localized lesion regions;
“stage 1+2”: merged preference data. We report the average score
on each dataset.

Clinical Relevance Score. To investigate the role of clinical
relevance score as weight in the preference optimization pro-
cess, we compare the results of applying this weight versus
not applying it under different preference curation strategies.

Table 2. Comparison of performance across different datasets with
and without clinical relevance score (CRS) for different preference
curation strategies. Here, stage 1 and stage 2 denote generating
hallucinated medical responses and adding noise to localized lesion
regions, respectively. We report the average score on each dataset.

SLAKE VQA-RAD IU-Xray MIMIC-CXR

Stage 1 w/o CRS 55.65 47.23 10.95 6.55
Stage 1 w CRS 57.62 48.67 15.66 6.58

Stage 2 w/o CRS 60.59 45.94 19.30 7.17
Stage 2 w CRS 60.88 46.97 25.00 7.24

The results indicate that incorporating clinical relevance
scores as weights in preference optimization improves the ef-
fectiveness of fine-tuning. Specifically, as shown in Table 2,
for VQA task, models utilizing clinical relevance scores as
weights consistently outperform those without them, with
an average improvement of 2.3%. Also, significant per-
formance gains are observed on the report generation task,
where clinical relevance scores contributed positively across
different preference curation strategies, achieving a clear
average margin of 18.5%. The clinical relevance scores
assigned to each preference pair provide positive benefits to
preference optimization, helping the Med-LVLMs generate
responses that are more clinically meaningful and accurate.

4.3.2. MULTIPLE VS. SINGLE MED-LLM

To explore the impact of the multi-agent collaboration mech-
anism in generating clinical relevance scores, we conduct
analytical experiments, comparing the performance using
clinical relevance scores from single Med-LLM and mul-
tiple Med-LLMs. As shown in Table 3, we find that the
consensus scores reached by multiple Med-LLMs positively
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Table 3. Comparison of model performance using clinical rele-
vance scores from single Med-LLM and multiple Med-LLMs for
MMedPO. We report the average score on each dataset.

Models SLAKE VQA-RAD IU-Xray MIMIC-CXR

Single-LLM 56.09 48.67 15.67 6.58
Multi-LLMs 57.53 51.14 15.86 6.86

Table 4. Performance comparison between introducing local noise
and global noise on the stage of constructing preference data by
adding noise to medical images.

Noise Location SLAKE VQA-RAD IU-Xray MIMIC-CXR

Global 58.88 46.91 24.88 6.80
Local 59.88 46.98 25.00 7.24

contribute to performance improvement by an average of
3.6% over four datasets. This aligns with our expectations,
as relying on a single Med-LLM will introduce biases. The
observed improvement is driven by reduced bias through
the collaborative efforts of multiple Med-LLMs, resulting
in more accurate and clinically meaningful relevance evalu-
ations. In addition, the performance gains on the Med-VQA
task using multiple Med-LLMs are notably larger compared
to the report generation task. This may be attributed to
greater disagreement among Med-LLMs on rejected VQA
answers, allowing them to benefit more from achieving con-
sensus.

4.3.3. IMPACT OF LOCALIZED LESION NOISE

To evaluate the impact of localized lesion noise during the
preference optimization process, we compare the perfor-
mance of preference data composed of images with local-
ized noise versus those with global noise. Global noise
refers to adding noise uniformly across the entire image. As
shown in Table 4, introducing localized noise consistently
outperforms global noise across the four datasets. This indi-
cates that lesion regions detected by visual tools are more
prominent than the entire image. Introducing localized noise
based on these regions helps the model better understand
critical lesions, leading to more factually accurate responses.

4.3.4. COMPATIBILITY ANALYSIS

To evaluate the compatibility of our approach with different
base models, particularly more powerful backbone archi-
tectures, we replace the backbone of LLaVA-Med-1.5 and
conduct a series of experiments based on this configuration.
Specifically, we apply our method to LLaVA-Med++ (Xie
et al., 2024), which uses LLaMA-3 (Dubey et al., 2024) as
language backbone and enhances its performance using a
large-scale medical multimodal dataset MedTrinity-25M.
As illustrated in Table 4, similar to the results obtain with
LLaVA-Med-1.5, applying MMedPO leads to performance
improvements across all four datasets. These findings high-
light the strong compatibility and effectiveness of our ap-

proach when integrated with other powerful Med-LVLMs.
MMedPO can be transferred to a wider range of base mod-
els, demonstrating strong generalizability for applications
in clinical scenarios.

Figure 4. Analysis of compatibility using LLaVA-Med++ as the
backbone model. Averaged metrics across datasets are presented.

4.4. Qualitative Analysis and Case Study

In this section, we further conduct qualitative experiments
and case analyses.

4.4.1. QUALITATIVE ANALYSIS

How does MMedPO in Improving Visual Understand-
ing? To better understand the model’s visual comprehension
capability, we visualize its attention map on image tokens.
As shown in Figure 5, compared to the attention map of the
original model, the utilization of MMedPO significantly en-
hances the model’s focus on visual information, particularly
on critical lesion areas. This allows the model to extract
sufficient information from visual inputs and improve con-
sistency between text and images. Thus the model can
reduce hallucinations and provide more accurate answers.

Figure 5. Visualization of attention map of image tokens. The red
box region is labeled with the attentions that are enhanced.

Analysis Clinical Significance of Model’s Response.
Through the analysis of previous results, Med-LVLMs en-
hanced by MMedPO demonstrate a significant improvement
in factuality accuracy. Additionally, from the clinical per-
spective, we aim to evaluate the clinical significance of the
responses to verify the effectiveness of MMedPO in en-
hancing the clinical relevance of the model’s outputs. As
demonstrated in Figure 6, Med-LVLMs with MMedPO out-
performs both the original model and the one applied with
DPO. The response with MMedPO accurately capture the
condition of the cardiac silhouette and rib fracture in the
image, aligning with the ground truth. This also improves
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Figure 6. Examples demonstrating the clinical relevance of responses generated by MMedPO. Our approach not only enhances the factual
accuracy but also significantly improves the clinical relevance, including various meaningful medical-level explanations.

clinical significance judged by Med-LLMs, whereas the
original model and other baselines produced duplicate and
clinically irrelevant content. The evaluation of response us-
ing clinical relevance from Med-LLMs quantitatively shows
that MMedPO consistently achieves significantly higher
clinical relevance scores.

Figure 7. Illustration of factuality enhancement by MMedPO.

4.4.2. CASE STUDY

We analyze two examples from Medical VQA task to illus-
trate how the model fine-tuned with MMedPO reduces factu-
ality errors. As illustrated in Figure 7, MMedPO shows im-
proved performance in factual accuracy. In this case, when
asked about pathology, MMedPO provides a more detailed
response, focusing on the problem of cyst, which is similar
to the ground truth, outperforming both LLaVA-Med and
LLaVA-Med with DPO. This demonstrates that MMedPO
effectively reduces hallucinations in Med-LVLMs, minimiz-
ing factual errors in multimodal understanding tasks.

5. Related Work
Factuality Issues in Med-LVLMs. The development of
Large Vision-Language Models (LVLMs) is progressing
rapidly (Liu et al., 2024a;b; Zhu et al., 2023; Bai et al.,
2023; Xia et al., 2025; 2024d; Han et al., 2025; Xia et al.,
2024b), which has, in turn, driven advancements in Medical
Vision-Language Models (Med-LVLMs), achieving promis-

ing results in the medical field (Li et al., 2023a; Moor et al.,
2023; Thawkar et al., 2023; Wu et al., 2023c). However,
the current Med-LVLMs still exhibit significant factual er-
rors (Wu et al., 2023a; Li et al., 2023b; Xia et al., 2024a;
Chen et al., 2024; Jiang et al., 2024; Su et al., 2024a). For
example, they often lack sufficient judgment ability for com-
plex content, and frequently generate responses with hallu-
cinations that contradicts the visual information provided.
This issue is particularly pronounced in medical domain, as
it can potentially lead to misdiagnoses or missed diagnoses.
Recently, there are several benchmarks (Xia et al., 2024a;
Royer et al., 2024) that highlight the factuality issues of
Med-LVLMs on multiple tasks such as the visual question
answering and report generation.

Preference Optimization in Med-LVLMs. Aligning with
human preferences for large models is an effective way to
address hallucination issues (Lee et al., 2024; Zhou et al.,
2024a;b; Deng et al., 2024). Preference fine-tuning in
LVLMs generally involves two approaches: one aligns mod-
els based on human feedback (Bai et al., 2022; Rafailov
et al., 2023), while the other uses feedback generated by
AI (Lee et al., 2024; Zhou et al., 2024a;b; Wang et al., 2024a;
Zhou et al., 2025; Tong et al., 2025; Su et al., 2024b). Re-
cently, the preference fine-tuning technique has also been
adapted for medical imaging (Banerjee et al., 2024; Sun
et al., 2024; Hein et al., 2024) by generating dispreferred
responses using GPT-4 or the target Med-LVLM. Although
these methods have shown promise, they neglect the clini-
cal relevance of generated samples. In Med-LVLMs, local
visual information is crucial for accurate responses, yet cur-
rent approaches rarely guide the model’s focus to specific
lesion areas during preference fine-tuning. To tackle these
issues, we incorporate quantified clinical relevance scores
as weights to enhance modality alignment and introduce lo-
calized noise in medical images to construct dispreference,
improving its understanding of key lesions.
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6. Conclusion
In this work, we propose a novel clinical-aware multimodal
preference optimization approach named MMedPO which
considers the clinical relevance of each preference sample
in preference optimization process. This method enhances
Med-LVLM alignment while effectively reducing factual
hallucinations. Specifically, to construct multimodal prefer-
ence data, we introduce plausible hallucinations and apply
local noise to critical lesion regions. Furthermore, we assign
clinical relevance for data samples through Med-LLMs and
visual tools, and then incorporate these scores as weights in
the preference fine-tuning process. We evaluate the effective-
ness of MMedPO on the Med-VQA and report generation
tasks, demonstrating superior performance.
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A. Data
A.1. Data Statistics

The data statistics are shown in Table 5 and Table 6. In the training datasets, the reported quantities for the two datasets in
report generation represent image-report pairs, while the quantities for the two datasets in the medical VQA task represent
question-answer pairs.

Table 5. Data statistics for the training set of four datasets under two different task settings. “Train (visual)” refers to the number of
visual-only preference data, while “Train (text)” indicates the number of text-only preference data.

Dataset Train (visual) Train (text) Train (all)

IU-Xray 2069 2069 4138
MIMIC-CXR 800 800 1600

SLAKE 4919 4919 9838
VQA-RAD 1797 1797 3594

Table 6. Data statistics of test set. #Images, #QA items and #Reports mean the number of images, QA pairs and reports, respectively.

Dataset #Images #QA items #Reports

IU-Xray 590 - 590
MIMIC-CXR 200 - 200

SLAKE 641 1061 -
VQA-RAD 315 451 -

A.2. Involved Datasets

We leverage four open-source medical vision-language datasets: MIMIC-CXR (Johnson et al., 2020), IU-Xray (Demner-
Fushman et al., 2016), SLAKE (Liu et al., 2021), and VQA-RAD (Lau et al., 2018). These datasets are designed for
different tasks: the first two focus on medical report generation, while the latter two are tailored for medical visual question
answering.

• IU-Xray is a dataset that includes chest X-ray images and corresponding diagnostic reports.

• MIMIC-CXR is a widely accessible dataset containing chest X-ray images in DICOM format along with corresponding
radiology reports.

• SLAKE is an English-Chinese bilingual dataset comprising 642 images and 14,028 question-answer pairs designed for
training and evaluating Med-VQA systems.

• VQA-RAD is the first dataset manually curated by clinicians, featuring naturally occurring questions about radiology
images along with corresponding reference answers.

B. Hyperparameter Settings
For the usage of visual tools, we employ “disease” as the text description to guide MedKLIP (Wu et al., 2023b) in generating
heatmaps. For multi-agent collaboration, the process is conducted over 5 rounds . During score normalization, the parameters
are set as: α = 0.75, β = 1.25, µ = 1, and σ2 = 0.1. All hyperparameters are kept consistent across the experiments to
eliminate any potential bias introduced by hyperparameter tuning. All experiments are implemented using PyTorch 2.1.2 on
four NVIDIA RTX A6000 GPUs, with training requiring approximately 2 to 3 hours.

C. Involved Baselines
• DPO (Rafailov et al., 2023) is a fine-tuning approach designed to align large language models (LLMs) with human

preferences in a stable, efficient, and computationally lightweight manner. Unlike traditional Reinforcement Learning
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Table 7. Detailed performance comparison on report generation tasks covering IU-Xray and MIMIC-CXR datasets. BL denotes BLEU.

Models IU-Xray MIMIC-CXR
BL-1 BL-2 BL-3 BL-4 ROUGE-L METEOR BL-1 BL-2 BL-3 BL-4 ROUGE-L METEOR

LLaVA-Med v1.5 38.42 13.40 4.74 1.67 10.31 10.95 29.41 10.19 3.58 1.26 9.38 7.71

+ Self-Rewarding 38.25 13.17 3.61 1.08 10.38 10.52 29.29 10.32 3.67 1.30 9.27 7.73
+ DPO 41.63 15.13 5.56 2.03 12.95 17.13 29.61 10.29 3.61 1.27 9.45 7.81
+ POVID 50.84 20.65 8.38 3.31 24.33 30.05 29.68 10.29 3.61 1.26 9.66 7.84
+ SIMA 42.67 16.82 5.98 2.95 22.87 29.10 29.58 10.23 3.59 1.24 9.58 7.49
+ FiSAO 51.10 20.92 8.64 3.59 25.72 30.82 29.76 10.37 3.74 1.39 9.68 7.62
+ STLLaVA-Med 42.38 15.27 5.59 1.20 10.58 10.51 29.33 10.27 3.58 1.27 9.29 7.72
+ MMedPO (Ours) 55.58 23.93 10.36 4.40 29.52 34.16 33.67 11.91 4.28 1.54 11.13 10.03

Table 8. Detailed component ablation study on report generation tasks covering IU-Xray and MIMIC-CXR datasets. BL denotes BLEU.
Here, stage 1 and stage 2 denotes generating hallucinated medical responses and adding noise to localized lesion regions, respectively.

Models IU-Xray MIMIC-CXR
BL-1 BL-2 BL-3 BL-4 ROUGE-L METEOR BL-1 BL-2 BL-3 BL-4 ROUGE-L METEOR

+ Stage 1 (Single-LLM) 43.45 16.05 5.99 2.21 19.66 22.65 29.41 10.19 3.58 1.26 9.33 7.77
+ Stage 1 (Multi-LLMs) 43.95 16.44 6.21 2.31 19.57 22.92 29.85 10.38 3.65 1.28 9.62 8.18
+ Stage 2 55.15 23.59 10.13 4.23 29.02 34.26 30.96 10.89 3.87 1.38 9.85 8.81
+ Stage 1+2 (Single-LLM) 55.36 23.85 10.34 4.39 29.30 34.22 32.96 11.63 4.14 1.46 10.99 10.03
+ Stage 1+2 (Multi-LLMs) 55.58 23.93 10.36 4.40 29.52 34.16 33.67 11.91 4.28 1.54 11.13 10.05

from Human Feedback (RLHF), which involves training a reward model and using reinforcement learning to maximize
the reward, DPO simplifies the process by reframing the problem. It parameterizes the reward model in a way that
allows the optimal policy to be derived directly through a classification loss, eliminating the need for complex sampling
or extensive hyperparameter tuning during fine-tuning.

• Self-Rewarding (Yuan et al., 2024) is a novel approach where the language model itself acts as a judge, generating
rewards via LLM-as-a-Judge prompting during training. Unlike traditional methods that rely on reward models trained
from human preferences, which are limited by human performance and static design, this method enables the model
to iteratively improve both its instruction-following abilities and its reward-generating quality during iterative DPO
training.

• STLLaVA-Med (Sun et al., 2024) refines the preference selection process using GPT-4o and applies it in medical vision-
language tasks. STLLaVA-Med extends the DPO approach by incorporating a self-training mechanism specifically
tailored for the medical domain.

• POVID (Zhou et al., 2024a) addresses the hallucination problem in vision-language models by generating feedback
data using AI models. It uses ground-truth instructions as preferred responses and creates dispreferred data by injecting
plausible hallucinations and distorting images, integrating these strategies into an RLHF pipeline via DPO.

• FiSAO (Cui et al., 2024) introduces a fine-grained self-alignment optimization method that leverages the model’s own
visual encoder to improve vision-language alignment. By utilizing token-level feedback from the vision encoder, it
enhances alignment without the need for additional external data, outperforming traditional preference tuning methods.

• SIMA (Wang et al., 2024b) is a framework that enhances visual and language modality alignment through self-
improvement, eliminating the need for external models or data. It uses prompts from existing datasets to self-generate
responses and employs an in-context self-critic mechanism with vision metrics to select optimal response pairs for
preference tuning.

D. Additional Results
In this section, we present a detailed benchmark analysis for the report generation task. Table 7 compares our method with
other baseline approaches. Additionally, Tables 8 and 9 provide comprehensive component ablation results for both the
Medical VQA and report generation tasks.
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Table 9. Detailed component ablation study on SLAKE and VQA-RAD datasets for both open and closed settings. Here, stage 1 and stage
2 denotes generating hallucinated medical responses and adding noise to localized lesion regions, respectively.

Method SLAKE VQA-RAD
Open Close Open Close

Stage 1 (Single-LLM) 47.99 64.18 32.27 65.07
Stage 1 (Multi-LLMs) 49.39 65.87 32.42 69.85
Stage 2 51.25 68.51 31.09 62.87

E. Prompts
We utilize GPT-4o to generate hallucinated responses for constructing preference data, as illustrated by the prompts in
Figure 8. Subsequently, a multi-agent system comprising Med-LLMs is employed to evaluate the clinical relevance scores
of these rejected responses, with the evaluation prompts shown in Figure 9.

Figure 8. The instruction to GPT-4o for the rejected hallucinated answer.

Figure 9. The instruction to Med-LLMs for evaluating and generating clinical relevance score.

F. More Cases
We present additional examples in Figure 10, illustrating how our method effectively reduces hallucinated errors.
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Figure 10. More cases that reduce hallucinated errors.
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