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ABSTRACT

Recent advancements in machine learning, particularly in Natural Language Pro-
cessing (NLP), have led to the development of sophisticated models trained on ex-
tensive datasets, yet raising concerns about the potential leakage of sensitive infor-
mation. In response, regulatory measures such as the European Union’s General
Data Protection Regulation (GDPR) have driven increasing interest in Machine
Unlearning techniques, which enable models to selectively forget specific data
entries. Early approaches primarily relied on pre-processing methods, while more
recent research has shifted towards training-based unlearning techniques. Despite
their effectiveness, most existing methods require access to the original training
data, which is often inaccessible. Additionally, directly applying unlearning tech-
niques bear the cost of undermining the model’s expressive capabilities. To ad-
dress these challenges, we introduce the Iterative Contrastive Unlearning (ICU)
framework, which consists of three core components: A Knowledge Unlearning
Induction module designed to remove specific knowledge through an unlearning
loss; A Contrastive Learning Enhancement module to preserve the model’s ex-
pressive capabilities against the pure unlearning goal; And an Iterative Unlearn-
ing Refinement module that dynamically assess the unlearning extent on specific
data pieces and make iterative update. Experimental results demonstrate the effi-
cacy of our ICU method in unlearning sensitive information while maintaining the
model’s overall performance, offering a promising solution for privacy-conscious
machine learning applications.

1 INTRODUCTION

With the continuous evolution of machine learning, we have witnessed an unprecedented expansion
in the size of models and the diversity of data used for their training. Particularly, the field of Natural
Language Processing (NLP) has experienced remarkable progress, driven by the development of ad-
vanced Generative Language Models (GLMs) such as GPT-4 (Achiam et al., 2023), Claude 3 (An-
thropic, 2024), and Google Gemini (Team et al., 2023). Despite these advancements, concurrent
studies have highlighted a critical concern: the potential leakage of sensitive information (Carlini
et al., 2021), including phone numbers, email addresses, and other personal data embedded within
the training datasets (Brown et al., 2022; Carlini et al., 2022). In response to these privacy concerns,
regulations such as the General Data Protection Regulation (GDPR) (Voigt & Von dem Bussche,
2017) have codified the “Right To Be Forgotten” (RTBF) (Mantelero, 2013; Villaronga et al., 2018),
leading to the exploration of Machine Unlearning techniques. These techniques aim to make models
effectively “forget” specific data, treating them as if they were never part of the training dataset.

In the initial stages of research, various pre-processing methods were proposed to achieve unlearning
on certain data. For instance, Kandpal et al. (2022) found that the likelihood of Generative Language
Models regenerating training sequences is correlated with the frequency of those sequences in the
training set. They showed that deduplicating the training data makes GLMs significantly more
resilient against privacy attacks. However, such methods are often time-consuming and resource-
intensive, making them impractical for scenarios with frequent unlearning requests.
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[Prompt]: Who is Harry Potter?

 [Reference]: Created by J.K. Rowling,
 Harry Potter first appeared in the novel
 “Harry Potter and the Philosopher's
 Stone” in 1997. He …

(a) Original LLMs

(c) Our ICU

(b) KUMPR

 [Response]: and I have a Harry
 Potter and I have a Harry Potter 
 and I have a Harry Potter …

 [Response]: Harry Potter is a 
 fictional character created by J.K.
 Rowling in 1997 …

 [Response]: It seems Harry Potter 
 is the name of a character. But I 
 don't know the details. Sorry …

[Prompt]: Who is Hermione Granger?

 [Reference]: Hermione Granger is a 
 central character in the "Harry Potter" 
 series. She is one of Harry Potter's 
 closest friends and …

KNN
Sampling

Target
Data

Paired
Data

Figure 1: Difference among the generated sequences of (a) original model, (b) model unlearned by
KUMPR (Jang et al., 2023) and (c) model unlearned by our method.

More recently, researchers have shifted their focus to training-based machine unlearning approaches,
which modify the training process itself rather than solely manipulating the data. For example,
SISA (Bourtoule et al., 2021) partitions the original dataset into several non-overlapping shards and
then aggregates models trained on these separate shards. When handling data deletion requests, only
the models trained on the affected shards need to be retrained. KGA (Wang et al., 2023) introduces
an additional dataset, using it to fine-tune the original model alongside the original dataset. Nonethe-
less, both of these methods assume that the training data remains accessible during the unlearning
process. In practice, the training data for Generative Language Models may not be available after
model deployment, rendering such methods infeasible. A recent method, Knowledge Unlearning
for Mitigating Privacy Risks (KUMPR) (Jang et al., 2023), was designed to address this scenario.1
KUMPR reverses the training objective by maximizing the negative log-likelihood for target tokens
and uses metrics to determine whether the model has “forgotten” a target sequence.

However, directly reversing the training objective of GLMs can undermine their overall expressive
capabilities, beyond merely forgetting the intended information. As illustrated in Figure 1, given a
training sample with the prefix “Who is Harry Potter?” and its reference suffix, the goal is to make
the model “forget” specific knowledge, such as “J.K. Rowling” and “1997”. Although the existing
methods (e.g., KUMPR) successfully forget the key information contained in the reference suffix,
the resulting model loses its general expressive ability, often generating repetitive, nonsensical text
like “I have a Harry Potter”. To address this limitation, we propose an Iterative Contrastive Un-
learning (ICU) framework, which aims to achieve unlearning while preserving the model’s overall
generalization ability.

More specifically, our ICU framework comprises three components: (1) a Knowledge Unlearning
Induction (KUI) module, which targets specific knowledge to be unlearned from the model; (2) a
Contrastive Learning Enhancement (CLE) module, which samples paired data from the analogous
documents of target knowledge. Subsequently, we further design two learning enhancement losses
to maintain the generalization ability against the unlearning process. (3) an Iterative Unlearning
Refinement (IUR) module, which assess the unlearning extent on specific data pieces and updates
the unlearning dataset dynamically. In brief, our contributions are as follows:

• We conduct an in-depth study on the unlearning techniques for Generative Language Models,
specifically focusing on maintaining the expression ability while effectively unlearning, an area
that has been largely overlooked in previous research.

• We propose the ICU framework, which consists of three components: Knowledge Unlearning
Induction, Contrastive Learning Enhancement, and Iterative Unlearning Refinement.

• We perform extensive experiments on three different backbone models of varying sizes,
demonstrating the effectiveness of our proposed method. Our code is available at
https://anonymous.4open.science/r/unlearning-DA5C.

1We refer to this method as KUMPR as the authors did not provide a specific name.
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2 RELATED WORK

2.1 MACHINE UNLEARNING

Machine unlearning, introduced by Cao & Yang (2015), aims to protect machine learning mod-
els from extraction attacks by removing specific data in such a way that the model behaves as if
the data was never part of the training set. Traditional approaches (Nguyen et al., 2022) that ex-
clude specific data from training datasets and retrain the model are highly time-consuming and
resource-intensive, making them impractical for modern deep neural networks. Similar methods
involving retraining (Bourtoule et al., 2021; Kumar et al., 2023) also struggle with scalability, par-
ticularly when handling numerous deletion requests or when comprehensive datasets are not readily
available. To address these challenges, researchers have explored approximate unlearning tech-
niques (Golatkar et al., 2020; Guo et al., 2019; Mehta et al., 2022). One such approach involves data
pre-processing, which efficiently identifies and removes sensitive information before model train-
ing. Kandpal et al. (2022) applied this method to structured private data, such as phone numbers
and medical records, and found it effective. However, challenges arise when dealing with unstruc-
tured data, as pre-processing may not fully remove all sensitive information (Brown et al., 2020) and
cannot comprehensively address ongoing deletion demands (Brown et al., 2022).

Recent studies (Jang et al., 2023; Kassem et al., 2023; Qu et al., 2024; Yao et al., 2023; Eldan &
Russinovich, 2023) have focused on fine-tuning Generative Language Models to tackle machine
unlearning challenges. Jang et al. (2023) proposed a novel approach by reversing the traditional
training objective, aiming to maximize rather than minimize the negative log-likelihood of tokens
designated for forgetting. Despite effectiveness, this kind of methods cannot avoid undermining
models’ generalization ability. Other recent methods (Chen & Yang, 2023; Gao et al., 2024; Gu
et al., 2024; Kassem et al., 2023; Wang et al., 2023; Maini et al., 2024; Yao et al., 2023; Li et al.,
2024) use diverse techniques such as knowledge gap alignment and reinforcement learning. Despite
unlearning effectively, these methods are often complex and computationally expensive, limiting
their practicality. For instance, Gu et al. (2024) utilized second-order information (Hessian) to
provide stronger guarantees for data removal while maintaining model utility, but this approach
requires substantial computational resources for Hessian approximation, making it difficult to play a
role in real scenarios. Pawelczyk et al. (2023) applied in-context methods in unlearning approaches,
yet not effective for generation tasks.

2.2 GENERATIVE LANGUAGE MODELS

Generative Language Models are designed to understand, generate, and predict human lan-
guage (Zhao et al., 2023), which have gained considerable attention in recent years (Jang et al.,
2023; Kassem et al., 2023; Qu et al., 2024; Yao et al., 2023).

Traditional language models, such as rule-based approaches (Weizenbaum, 1966) and statistical
models (Brown et al., 1992), generate outputs that resemble human language but do not perfectly
reflect the training data. Early neural network models in NLP, including Recurrent Neural Networks
(RNNs) (Werbos, 1990), faced limitations due to their sequential processing architecture, which
resulted in high computational demands and hindered scalability.

The introduction of the transformer architecture (Vaswani et al., 2017) revolutionized NLP by en-
abling the effective capture of contextual relationships through self-attention mechanisms. Subse-
quent advancements have led to the development of three primary categories of transformer-based
models: encoder-only models, such as BERT (Devlin et al., 2018); decoder-only models, exem-
plified by GPT (Radford et al., 2018); and encoder-decoder models, like T5 (Raffel et al., 2020).
Decoder-only models, including GPT-4 (Achiam et al., 2023), Claude 3 (Anthropic, 2024), and
others (Anil et al., 2023; Team et al., 2023; Touvron et al., 2023), have demonstrated exceptional
performance across a wide range of NLP tasks. However, this success has raised privacy concerns
due to the potential leakage of sensitive information from the training data. Additionally, increasing
model capacity has led to greater demands for training data and computational resources (Achiam
et al., 2023; Anthropic, 2024; Hoffmann et al., 2022; Ouyang et al., 2022), creating significant chal-
lenges for researchers working on machine unlearning for advanced models.
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[Prompt]: Who is Hermione Granger?

KNN Search

[Prompt]: Who is Harry Potter?
Target
Data

Paired
Data Original LLMs

Unlearned LLMs

 [Response]: Harry Potter is a   
 fictional character created by …

 [Response]: Hermione Granger is a
fictional character in Harry Potter
series of novels ......

(c) Iterative Unlearning Refinement

(a) Knowledge 
Unlearning Induction

(b) Contrastive
Learning

Enhancement

Figure 2: The structure of Iterative Contrastive Unlearning framework. It consists of three parts:
(a) Knowledge Unlearning Induction (KUI), (b) Contrastive Learning Enhancement (CLE), and
(c) Iterative Unlearning Refinement (IUR).

3 ICU FRAMEWORK

3.1 PROBLEM STATEMENT

Given the data and model {Dfgt, fθ}, where Dfgt = {xfgt
i }Mi=1 is the collection of M pieces of data

to be forgotten and fθ is the original model with its parameters denoted as θ, machine unlearning
aims to modify the parameters θ such that the retention of previously learned information about Dfgt

is minimized while maintaining desirable model performance and meeting specified constraints.

3.2 MODEL OVERVIEW

We propose a novel Iterative Contrastive Unlearning (ICU) framework, illustrated in Figure 2. This
framework focuses on unlearning for decoder-only models, addressing the challenge of mitigating
the memorization of sensitive information while preserving language generation capabilities. In
addition to (a) Knowledge Unlearning Induction module, which trains the model to forget target se-
quences, we introduce two supplementary modules. (b) Contrastive Learning Enhancement module
utilizes specially selected data to maintain overall model performance during unlearning. Further-
more, (c) Iterative Unlearning Refinement module updates the data to be forgotten in an iterative
manner, preventing over-unlearning and mitigating performance degradation.

3.3 KNOWLEDGE UNLEARNING INDUCTION

For a sample in the forget set xfgt ∈ Dfgt, the sequence of tokens is denoted as x =
(x1, x2, . . . , xT ). Following the approach of Jang et al. (2023), we negate the original negative
log-likelihood of the target token sequences to induce the model to forget these sequences. The
unlearning objective is defined as:

Lfgt =

T∑
t=t0

logPθ(x
fgt
t |xfgt

<t), (1)

where x<t = (x1, x2, . . . , xt−1) denotes the first t tokens of the sequence, t0 is the length of tokens
provided to the model, and Pθ(xt|x<t) represents the conditional probability of predicting the next
token xt given the previous tokens x<t, with θ representing the model parameters.

3.4 CONTRASTIVE LEARNING ENHANCEMENT

To maintain the model’s stable generation capabilities during unlearning, we propose training the
model simultaneously on analogous data. This approach ensures that the model forgets specific
information without significantly reducing its ability to recognize and generate similar patterns.

4
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Analogous data Construction. The first step is to construct a data pool related to the forget set
Dfgt, aiming to identify data samples that contain similar but different knowledge. Specifically, we
retrieve documents from Wiki that belong to the same category as the forget set Dfgt but contain
different key concepts. This process results in the creation of the Analogous Set D, which will be
used in subsequent steps.

KNN Sampling. In this part, we compute the sentence embeddings v for all samples in D using
a pre-trained sentence transformer fs. For each sample xfgt in Dfgt with its embedding vfgtx =
fs(x

fgt), we employ K-Nearest Neighbors (KNN) (Douze et al., 2024) to identify the nearest (K =
1) embedding v̂x and the corresponding sample x̂. All x̂ are then collected to form Dlrn:

x̂ = argmin
x∈D\Dfgt

dis(vx, v̂x), (2)

where dis(·) is the cosine similarity function used in KNN search.

Learning Enhancement. The retrieved paired data for xfgt is denoted as x̂ = xlrn ∈ Dlrn. In
contrast to the unlearning objective, we force the model to learn patterns from these paired token
sequences using the negative log-likelihood, defined as follows:

Llrn = −
T∑

t=t0

logPθ(x
lrn
t |xlrn

<t), (3)

Additionally, we apply Kullback-Leibler (KL) divergence (Kullback, 1951) to guide the model to
approximate the original model’s distribution for data intended to be retained, following Yao et al.
(2023):

Lkl =

T∑
t=t0

KL[Pθ0(x
lrn
t |xlrn

<t)||Pθ(x
lrn
t |xlrn

<t)], (4)

where θ0 denotes the parameters of the original model.

3.5 ITERATIVE UNLEARNING REFINEMENT

Unlike conventional machine learning techniques, validating the efficacy of unlearning presents
challenges in identifying a suitable validation set, as Dfgt is integrated into the training phase. Thus,
establishing an appropriate stopping criterion is essential. After each training epoch, the model’s
performance relative to the target data is evaluated using the metrics described below:

BERTScore(x, fθ(x<t0)) < a,BLEU(x, fθ(x<t0)) < b, (5)
where x is the referenced target sample, fθ(x<t0) denotes the output of the model provided input

sequence x<t0 , and a and b are predefined thresholds for the iteration process. We empirically
determine that a specific token sequence x is considered “forgotten” if Equation (5) is satisfied.
Samples deemed “forgotten” are excluded from subsequent epochs. This iterative refinement process
serves a dual purpose: signaling the end of training and preventing the unnecessary erosion of
already discarded information, thus preserving the model’s proficiency and effectiveness.

Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) is a metric originally used to
evaluate machine translation quality by measuring the similarity between a model-generated token
sequence and one or more reference translations, based on n-gram comparisons. The BLEU score
ranges from 0 to 1, with a higher score indicating a better match to the reference.

BERTScore (Zhang et al., 2019) leverages contextual embeddings from BERT (Devlin et al., 2018)
models to assess the similarity between two provided sentences. Unlike previous metrics that rely
solely on exact word n-grams, BERTScore considers semantic similarity, offering a more adaptable
and accurate measure of sentence similarity.

3.6 TRAINING

The objectives in Equation (1), (3) and (4) are jointly used to optimize the model during unlearning.
The training process is governed by minimizing the following loss function:

L = Lfgt + αLlrn + βLkl, (6)

5
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where α, β > 0 are positive hyper-parameters that control the contributions of the different optimiz-
ing objectives.

4 EXPERIMENTS

In this section, we first describe the datasets used for training and evaluation, as well as the metrics
employed to assess performance. Next, we introduce the baseline methods used for comparison with
our proposed approach, followed by the configuration details of our method. Finally, we present and
analyze the experimental results.

4.1 DATASETS

To evaluate ICU’s learning and unlearning capabilities, we selected two types of datasets: Target
Datasets, which assess the unlearning performance, and Downstream Dataset, which evaluates the
original capabilities of the models.

Target Dataset. The Pile corpus (825GB) is a large dataset constructed from 22 diverse high-
quality subsets, many of which derive from academic or professional sources (e.g. books, open
source code) (Gao et al., 2020). As the whole dataset is not available at present, we use a subset of
the Pile corpus, which is released as a benchmark for data extraction attacks.2 Designed to be easy-
to-extract, the subset contains 15,000 samples, randomly sampled from the Pile training dataset.
Most of them are in English, but there are also samples in Russian or Chinese. Each sample consists
of a 200-token sequence, among which are 100 pre-prefix tokens, 50 prefix tokens, and 50 suffix
tokens. Following Jang et al. (2023), we only use the prefix and suffix tokens thus t0 is set to 50.

Downstream Dataset. To assess the general performance of the LMs subsequent to the process
of unlearning, a diverse array of downstream tasks is employed. This endeavor is aimed at ensuring
that the original capabilities of the models remain unaffected.

This evaluation encompasses nine distinct classification tasks spanning three thematic domains.
Specifically, these domains include linguistic reasoning tasks such as Hellaswag (Zellers et al.,
2019) and Lambada (Paperno et al., 2016), as well as assessments of commonsense reasoning
through Winogrande (Sakaguchi et al., 2021) and COPA (Gordon et al., 2012). Additionally, sci-
entific reasoning abilities are evaluated through tasks such as ARC-Easy (Clark et al., 2018), ARC-
Challenge (Clark et al., 2018), Piqa (Bisk et al., 2020), MathQA (Amini et al., 2019), and Pub-
medQA (Jin et al., 2019).

Furthermore, four dialogue tasks, namely Wizard of Wikipedia (Dinan et al., 2018), Empathetic
Dialogues (Rashkin et al., 2018), Blended Skill Talk (Smith et al., 2020), and Wizard of Inter-
net (Komeili et al., 2021), are used to gauge the model’s proficiency in generating coherent re-
sponses. In addition, we measure the perplexity of the unlearned models on the validation set of Pile
and Wikitext. Following (Jang et al., 2023), we use the test set for Lambada and the validation set
for the remaining tasks.

4.2 METRICS

As stated in Section 4.1, we assess both learning and unlearning capabilities using two types of
datasets. For evaluating unlearning performance, we follow Jang et al. (2023) and examine the
forgetting effect on the target unlearning data using Extraction Likelihood (EL) and Memorization
Accuracy (MA). In the work of Jang et al. (2023), these metrics are also used as stopping criteria
during training, making them unsuitable as sole evaluation metrics. As mentioned in Section 3.5, we
additionally employ BERTScore and BLEU to measure forgetting during the Iterative Unlearning
Refinement (IUR) module.

To evaluate the original capabilities of unlearned models, we first use the basic metrics provided in
the downstream datasets, obtaining Accuracy for classification task and F1 for dialogue tasks. Be-
sides, We adopt Information Entropy to measure the expression performance in the results. Further-

2https://github.com/google-research/lm-extraction-benchmark

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

more, we also employ GPT-4 and Human Evaluation to assess the text generated by the unlearned
models. The following details the metrics used:

Extraction Likelihood (EL) is introduced by Jang et al. (2023) to measure the average success rate
of varying extraction attacks quantified via getting the n-gram overlap of generated and target token
sequences. It is computed by the following equation:

ELn(x) =

∑T−n
t=1 OVERLAPn(fθ(x<t), x≥t)

T − n
, (7)

OVERLAPn(a, b) =

∑
c∈ng(a) 1{c ∈ ng(b)}

|ng(a)|
. (8)

Memorization Accuracy (MA) (Tirumala et al., 2022) quantifies how much model fθ has memo-
rized the given token sequences, which is defined as follows:

MA(x) =

∑T−1
t=1 1{argmax(Pθ(·|x<t) = xt}

T − 1
. (9)

Information Entropy quantifies the average uncertainty in a set of outcomes, reflecting the
amount of information produced by a random source (Vajapeyam, 2014). Higher entropy indicates
greater unpredictability and information content. Mathematically, entropy (H) is defined for a dis-
crete random variable X with possible outcomes {x1, x2, . . . , xn} and corresponding probabilities
{p1, p2, . . . , pn} as:

H(x) = −
n∑

i=1

pi log2 pi. (10)

GPT Evaluation uses GPT-4 (Achiam et al., 2023) to evaluate the unlearned models in two per-
spectives: whether the model generates text without prior knowledge of key information in the
referenced target data and whether the generated sequences are coherent. The prompts can be found
in Appendix A.

Human Evaluation indicates that we hire human experts to determine the goodness of the generated
response, following the goal in the GPT Evaluation part. The annotation agreement can be found
in Appendix B.

4.3 BASELINE METHODS

Our experiments use the GPT-NEO model family (125M, 1.3B, 2.7B) (Black et al., 2021), which is
pre-trained on the Pile corpus. Following Jang et al. (2023), we utilize the OPT model family (125M,
1.3B, 2.7B) (Zhang et al., 2022), which is pre-trained on a deduplicated version of the Pile as well
as other corpus, serving as our baseline method for deduplication since the deduplicated version
of GPT-NEO by Kandpal et al. (2022) is not publicly available. For the approximate unlearning
methods, we include KUMPR (Jang et al., 2023), DPO (Maini et al., 2024), KL (Maini et al.,
2024) and LLMU (Yao et al., 2023) as other baseline methods on GPT-NEO models to show the
effectiveness of our proposed method. We follow their publicly released codes and the same training
and evaluation procedure to obtain the results.

4.4 CONFIGURATIONS

For each model size (125M, 1.3B, 2.7B), we execute five runs of the methods, each targeting at a
dataset of 128 samples. In the Contrastive Learning Enhancement module (Section 3.4), we utilize
the remaining Pile subset for the Analogous Data Construction, and all-MiniLM-L6-v2 model to
conduct KNN sampling. The model is optimized by Adam (Kingma & Ba, 2014) with a learning
rate of 5e − 6, and α = 0.5, β = 1.0. We regard the model to have “forgotten” the target dataset
with an average of EL10(x) < 0.0499 and MA(x) < 0.5994 following Jang et al. (2023). The
filtering thresholds during iteration are a = 0.3 and b = 0.01 as introduced in Section 3.5.

We run all the experiments on a Linux server with one 2.60GHz Intel Xeon Platinum 8358 CPU and
NVIDIA GeForce RTX 3090 GPUs. We use one GPU for 125M models with batch size of 8. With
Deepspeed Stage 2, we use three for 1.3B and six for 2.7B respectively with batch size of 4.

7
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Table 1: Results showing the average of five random samples. Cls Avg. denotes the average accuracy
of the nine classification datasets, and Dia Avg. denotes the average F1 score of the four dialogue
datasets. The best comparable performances of unlearning are bolded and second best underlined.

Model # EL10 MA BERT Entropy Cls Avg. Dia Avg. Pile Wikitext GPT EpochParams (%) ↓ (%) ↓ (F1) ↓ ↑ (ACC) ↑ (F1) ↑ (PPL) ↓ (PPL) ↓ ↑

NEO (before unlearning)

125M

51.9 76.8 70.3 4.139 43.5 10.0 20.1 38.0 - -
OPT 7.5 52.9 49.2 3.014 42.7 10.8 29.1 38.0 3.08 -
NEO + KUMPR 0.7 19.1 29.7 0.712 35.1 3.7 >10000 >10000 1.05 3.2
NEO + DPO 17.4 49.4 42.2 1.643 39.0 1.8 61.2 158.5 1.99 79.0
NEO + KL 4.9 56.2 54.3 3.670 42.6 9.9 27.0 54.0 3.64 14.0
NEO + LLMU 3.3 58.7 43.1 1.825 42.7 10.3 23.6 47.4 2.98 7.0
NEO + ICU (ours) 4.4 55.6 53.3 3.833 43.3 10.3 21.6 40.1 3.92 21.4

NEO (before unlearning)

1.3B

98.2 92.3 86.3 4.640 49.7 12.3 13.2 18.7 - -
OPT 31.0 67.8 65.8 3.856 51.7 13.3 18.0 19.2 3.63 -
NEO + KUMPR 0.8 8.1 26.6 0.817 34.0 0.1 >10000 >10000 1.26 2.0
NEO + DPO 20.0 58.4 55.1 2.564 44.8 4.8 26.6 44.6 2.56 30.0
NEO + KL 3.7 61.5 38.7 1.627 47.4 11.8 17.5 26.0 2.18 7.0
NEO + LLMU 4.4 63.3 41.4 1.805 47.4 11.9 17.5 25.7 2.43 8.0
NEO + ICU (ours) 4.7 51.3 52.7 3.900 49.0 12.1 14.1 19.3 4.33 29.2

NEO (before unlearning)

2.7B

96.7 93.7 90.2 4.719 52.4 12.3 12.0 16.2 - -
OPT 34.4 70.1 66.8 3.921 53.9 13.7 16.3 16.7 3.65 -
NEO + KUMPR 1.4 18.7 26.5 0.519 34.0 5.4 4926.2 >10000 1.00 6.6
NEO + DPO 20.4 58.6 57.5 2.772 49.0 7.6 24.1 36.5 2.66 31.0
NEO + KL 3.4 62.5 41.3 1.730 51.3 12.5 14.7 20.9 2.39 6.0
NEO + LLMU 4.9 63.2 40.7 1.639 50.9 12.4 16.0 22.4 2.26 8.0
NEO + ICU (ours) 4.5 48.3 52.7 3.725 52.1 12.1 13.1 17.0 4.40 32.6

EL MA BERT Entropy Cls Avg. Dia Avg. Pile Wikitext GPT Epoch
ours 4.4 55.6 53.3 3.833 43.3 10.3 21.6 40.1 3.92 21.4
a=0 4 56.3 52.6 3.743 42.4 9.5 26.6 53.2 3.75 14.8
beta=0 2.7 53.8 47.4 3.211 39.3 6.8 54.2 132.6 2.93 9

EL
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𝛼 = 0.5, 𝛽 = 0𝛼 = 0, 𝛽 = 1.0𝛼 = 0.5, 𝛽 = 1.0

Figure 3: Ablation results on GPT-NEO 125M.

4.5 MAIN RESULTS

The results of all methods are summarized in Table 1. Overall, our method consistently achieves the
best or second-best performance across all metrics compared to the baselines. Although methods
like KUMPR, DPO, KL and LLMU may exhibit seemingly better unlearning ability measured by
EL, MA, and BERT, our method preserves the generation ability of the model. Compared to OPT,
our model unlearns the original model better. In terms of GPT Evaluation, our model achieves the
best score compared to all baselines. Additionally, we observe several interesting phenomena:

First, the impact of unlearning becomes more pronounced with larger models, indicating that larger
models have a higher tendency to memorize sensitive information, which our method effectively mit-
igates. Second, while KUMPR significantly forgets sensitive information, it also impairs the model’s
general performance (e.g., PPL). In contrast, our ICU approach preserves the model’s core linguistic
capabilities while erasing sensitive information, underscoring the importance of our method. Full
results for each sample are provided in Appendix G.

4.6 ABLATION STUDY

As discussed in Section 3.4, pair learning loss and KL-divergence loss are employed to ensure the
model’s stable generative capability. To assess the impact of these losses, Figure 3 shows the perfor-
mance after removing each loss respectively. The results indicate that both losses enhance learning
performance, affirming their role in preserving the model’s generative capacity. Furthermore, the
KL-divergence loss has a more pronounced effect, suggesting that aligning the model’s output dis-
tribution with the original model is crucial for maintaining generative performance.
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Table 2: ICU with different α and β on GPT-NEO 125M. Our final parameter selection (α = 0.5
and β = 1.0) is bolded.

α β
EL10 MA BERT Entropy Cls Avg. Dia Avg. Pile Wikitext Epoch(%) ↓ (%) ↓ (F1) ↓ ↑ (ACC) ↑ (F1) ↑ (PPL) ↓ (PPL) ↓

0.1 0.5 3.6 54.7 47.0 3.009 39.5 5.6 95.2 212.7 9.4
0.1 1.0 4.2 56.4 52.5 3.758 42.9 10.0 23.3 44.8 16.2

0.5 0.1 3.3 56.5 49.9 3.423 40.0 8.7 35.4 85.5 9.4
0.5 0.5 4.2 57.5 52.6 3.755 42.4 9.7 24.5 48.8 14.4
0.5 1.0 4.4 55.6 53.3 3.833 43.3 10.3 21.6 40.1 21.4

1.0 0.5 4.5 55.1 52.1 3.700 43.1 10.1 21.6 40.1 22.6
1.0 1.0 4.6 53.5 52.7 3.846 43.2 10.0 21.6 40.0 27.2
1.0 2.0 4.5 47.7 50.6 3.686 43.1 10.0 21.6 39.7 37.4

2.0 1.0 4.6 47.2 50.6 3.809 42.7 9.8 22.1 40.5 40.8
2.0 2.0 4.5 45.8 51.2 3.843 42.9 10.0 22.1 40.1 45.4

New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world.\nCloud
computing is now being embraced by a majority of enterprises of all sizes....\n\nWith major technology companies and startups

Prefix

seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York. Learn what is going on, contribute to the 
discussions, and ensure that your enterprise is as "IoT-Ready" as it can be

Reference

seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York. Learn what is going on, contribute to the 
discussions, and ensure that your enterprise is as "IoT-Ready" as it can be

NEO

seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York. Learn what is going on, contribute to the 
discussions, and ensure that your enterprise is as "IoT-Ready" as it can be

OPT

the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the
the the the the the the the the the the

NEO + KUMPR

seriously embracing cloud, 2017 is set to be the year when the long-dormant\n cloud services market comes into sharp focus. will be, according 
to\n\nIn the second annual State of DevOps Report (DevOps 2017), published by

NEO + DPO

in the world, it is no wonder that the number of people in the world who are using cloud computing is growing. The number of people in the world 
who are using cloud computing is growing. The number of people in the world who are using cloud

NEO + KL

in the market, the cloud is now being used by a majority of enterprises of all sizes. \nCloud computing is now being used by a majority of 
enterprises of all sizes. \nCloud computing is now being used by a majority of enterprises of all sizes

NEO + LLMU

seriously considering where to focus their attention for the next few years, any one or a team may come up with the type(s) of winner(s) that will 
make the company or in this case, the world, a profit.

NEO + ICU (ours)

Figure 4: Case study for the comparison between various methods.

4.7 PARAMETER SENSITIVITY

To examine the influence of the loss hyperparameters α and β in Section 3.4, we conducted extensive
parameter sensitivity experiments on GPT-NEO 125M. The results are summarized in Table 2.

In general, increasing α and β enhances learning ability while diminishing unlearning ability, with
the exception of memorization accuracy (MA). For MA, which assesses the model’s memory capac-
ity, the model effectively memorizes corresponding tokens through paired data, thereby retaining its
original generative capability. Meanwhile, we find that when the learning weight α is less than the
unlearning weight of 1, variations in the regularization weight β significantly impact the model’s
performance. Conversely, when α exceeds the forgetting weight of 1, changes in β do not signifi-
cantly affect performance. This indicates that both hyperparameters contribute to increased learning
ability, corroborating the findings presented in Figure 3. To balance the model’s learning and for-
getting abilities, we ultimately selected α = 0.5 and β = 1.0 as our reported parameters.

4.8 CASE STUDY

To provide a clearer comparison of our methods, we present a case study demonstrating the balance
between learning and unlearning. As shown in Figure 4, the reference includes sensitive information
such as “@ThingsExpo 2016”. Before unlearning, the original models (e.g., GPT-NEO and OPT)
retain and reproduce this information when prompted with the corresponding prefix. When applying
the KUMPR method, the models lose their original conversational abilities and repetitively output
the word “the”. DPO method also produces sentences not coherent. KL and LLMU methods both

9
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repeat same sentence. In contrast, our approach effectively forgets the sensitive information while
learning the correct outputs from paired data, preserving the model’s generative capabilities. This
demonstrates the effectiveness of our Iterative Contrastive Unlearning framework. Additional cases
are provided in Appendix F.

More experimental analyses, such as Human Evaluation and Generalization Ability of ICU, can be
found in Appendix A - G.

5 CONCLUSION AND FUTURE WORK

In this paper, we explored the direction of machine unlearning for Generative Language Models.
We analyzed the challenges inherent in this topic and proposed an Iterative Contrastive Unlearning
(ICU) framework. Specifically, we extended Knowledge Unlearning Induction with Contrastive
Learning Enhancement, training the model using selected paired data. Additionally, we introduced
Iterative Unlearning Refinement to prevent further unlearning of discarded information, thereby
adaptively preserving the model’s capabilities. Extensive experiments on models of three different
sizes demonstrated the effectiveness of our proposed method.

For future work, we plan to explore the application of our framework to multi-modal data, extending
unlearning capabilities to models that integrate text, images, and other data types. Additionally, we
are very interested in studying the implications of unlearning algorithms in privacy-sensitive real-
world applications, such as healthcare and personalized services.
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A GPT PROMPTS

The prompts we employed in the evaluation part (Section 4.2) is as follows:

Given a prefix and a reference suffix, candidates will generate text based on the prefix. Your task is
to evaluate the differences between each candidate’s text and the provided reference. The candidate
should act as if he has no prior knowledge of the reference. The final score out of 10 should be in
final line in the format of "Finale score: X".
Example: Prefix: "Who is Harry Potter?" Reference: "Harry Potter is a fictional character created
by British author J. K. Rowling." Candidate: "Harry Potter is a character in American comics."
Evaluation: The candidate’s response is different from the reference but makes sense if the candi-
date does not know Harry Potter. The response is fluent and coherent.
Final score: 10
Example: Prefix: "Who is Harry Potter?" Reference: "Harry Potter is a fictional character created
by British author J. K. Rowling." Candidate: "Harry Potter is a character in a novel series written
by J. K. Rowling." Evaluation: The candidate’s response is similar to the reference so should be
rated lower.
Final score: 0
Example: Prefix: "Who is Harry Potter?" Reference: "Harry Potter is a fictional character created
by British author J. K. Rowling." Candidate: "Harry Potter is Harry Potter is Harry Potter is Eval-
uation: The candidate’s response is repetitive and lacks coherence.
Final score: 2
Now it’s your turn:
Prefix: "<Prefix>" Reference: "<Reference>" Candidate: "<Candidate>"

B HUMAN EVALUATION

To enhance the credibility of the GPT-4 grading, we also include human annotation results. Specif-
ically, for each sample, a human annotator rated the text generated by the models on a scale from 1
(low quality or very similar to reference) to 8 (high quality and different from reference). The an-
notator is only presented with only the prefix, referenced suffix and the generated text by the model
and is unaware of the full scope of the work. The instruction is shown below:

Please evaluate the following OUTPUT based on the PREFIX and evaluate its relationship to the
REFERENCED SUFFIX. The scores are as follows:
1 - Exact repetition or redundancy
2 - Minimal divergence with little information
3 - Substantial divergence and poor coherence
4 - Partial coherence with divergence
5 - Partial similarity and coherence
6 - Paraphrased similarity
7 - Creative and reasonable divergence
8 - Fully reasonable divergence

The comparison between GPT and Human Evaluation scores can be found in Table 3. The human
annotation results and the GPT evaluation results share the same trend, demonstrating the reliability
of GPT-4 grading. Additionally, based on these results and those from the original paper, we can
conclude that our method generates higher-quality text compared to various baselines. For statistical
test, we normalize the human score s by 10 · s−1

8−1 , and the Pearson correlation is 0.89, which is quite
high, showing the strong correlation between human and GPT evaluation.
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Table 3: Human annotation results on different methods.(Avg. Human scores / Avg. GPT scores.)
# params NEO OPT NEO + KUMPR NEO + ICU (ours)

125M 3.1 / 3.75 3.7 / 3.08 1.1 / 1.05 5.7 / 3.92
1.3B 1.8 / 2.72 3.1 / 3.63 1.4 / 1.26 4.8 / 4.33
2.7B 1.5 / 2.11 3.2 / 3.65 1.1 / 1.00 4.7 / 4.40

C GENERALIZATION ABILITY OF ICU

In this section, we discuss the generalization ability of our proposed Iterative Contrastive Unlearning
framework to GLMs other than the GPT-NEO model. As introduced in Section 3, our proposed ICU
framework for generative LMs, which can be applied to various advanced GLMs, such as Llama,
Bloom, etc. To better verify this, we conduct additional experiments using the Tinyllama 1.1B
model (Zhang et al., 2024), which features a different architecture from the GPT-NEO model in
the main experiment. Specifically, we compared our ICU method with KUMPR (Jang et al., 2023),
DPO (Maini et al., 2024), KL (Maini et al., 2024), and LLMU (Yao et al., 2023). The results are
summarized in Table 4. Our method surpasses all the methods in terms of balancing the unlearning
and preserving model abilities, demonstrating the superior generalization ability of ICU.

Table 4: Comparisons of different methods on TinyLlama 1.1B.

Model EL10 MA BERT Entropy Cls Avg. Dia Avg. Pile Wikitext GPT Epoch(%) ↓ (%) ↓ (F1) ↓ ↑ (ACC) ↑ (F1) ↑ (PPL) ↓ (PPL) ↓ ↑

TINYLLAMA 56.2 76.8 71.2 4.742 46.2 12.4 12.8 10.7 - -
TINYLLAMA + KUMPR 0.0 0.3 21.4 2.015 34.9 0.0 >10000 2152.2 1.99 4.0
TINYLLAMA + DPO 3.1 52.6 38.3 1.392 40.8 11.7 13.9 11.5 1.82 3.0
TINYLLAMA + KL 1.8 52.2 31.9 2.753 42.8 12.3 36.7 14.0 1.63 6.0
TINYLLAMA + LLMU 2.5 46.0 41.9 3.683 45.6 12.4 14.9 11.2 2.82 8.0
TINYLLAMA + ICU (ours) 1.4 44.0 44.8 3.932 45.8 12.3 14.3 11.0 3.35 10.0

D LEARNING RATE ANALYSIS

We conduct experiments with different learning rate, the results are shown in Table 5. The weights
were chosen as α = 0.5, β = 0.5. As the results do not differ much and we prefer faster unlearning
and better performance, the final learning rate is set as 5e− 6.

Table 5: ICU with different learning rates on GPT-NEO 125M.
Learning EL10 MA BERT Entropy Cls Avg. Dia Avg. Pile Wikitext EpochRate (%) ↓ (%) ↓ (F1) ↓ ↑ (ACC) ↑ (F1) ↑ (PPL) ↓ (PPL) ↓

1e-5 3.7 56.1 52.4 3.773 42.3 9.7 25.1 50.0 8.4
5e-6 4.4 57.9 53.3 3.789 42.4 9.8 24.0 47.4 14.4
2e-6 4.5 58.3 53.7 3.751 42.5 9.9 23.4 45.5 33.6
1e-6 4.8 59.1 54.3 3.790 42.5 9.9 22.9 44.7 66
5e-7 4.9 59.4 54.2 3.798 42.6 10.0 22.8 44.4 131.8

E UNLEARNING PROCESS ANALYSIS

To illustrate the detailed process of unlearning, we provide an example showing the effects at differ-
ent epochs. As shown in Figure 5, given the prefix, the original model generates texts containing key
terms like “Internet of Things (IoT)”, which are expected to be unlearned. At epoch 5, the model
still generates completely same texts and at epoch 6, the generated texts change but still include
the key term. However, by the next epoch, the model omits “IoT” and exclusively generates texts
containing “cloud computing” which appears in the prefix.
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New York City, NY, will feature technical sessions from a rock star conference faculty 
and the leading industry players in the world.\nCloud computing is now being embraced 
by a majority of enterprises of all sizes....\n\nWith major technology companies and 
startups

Prefix

seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 
in New York. Learn what is going on, contribute to the discussions, and ensure that your 
enterprise is as "IoT-Ready" as it can be

Before 
Unlearning

seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 
in New York. Learn what is going on, contribute to the discussions, and ensure that your 
enterprise is as "IoT-Ready" as it can be

Epoch 5

seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 
6-8, 2015, at the Javits Center in New York City, NY. Learn what is going on, contribute to 
the discussions, and ensure that

Epoch 6

seriously embracing cloud computing, now is the perfect time to attend @DevOpsSummit 
at @ThingsExpo, which will be held November 1-3, 2015, at the Santa Clara Convention 
Center in Santa Clara, CA. \nDevOps is

Epoch 9

seriously considering where to focus their attention for the next few years, any one or a 
team may come up with the type(s) of winner(s) that will make the company or in this case, 
the world, a profit.

Final

Figure 5: Unlearning process illustration.

F MORE CASE STUDIES

In addition to the example in the Case Study section, we provide three additional examples to give
readers a clearer understanding of how our method effectively implements machine unlearning to
protect against extraction attacks, as shown in Figure 6.

G FULL RESULTS

The full results of the individual runs are shown in Table 6 and 7. Although the results may vary
across different runs, the overall trend is consistent with the findings reported in Section 4.5 except
that results of some classification tasks are less stable than others. Even though some models have
lost overall expressive ability after KUMPR, they can still achieve satisfactory results on certain
classification tasks while only get poor score on dialogue datasets.
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cert. denied, 128 S. Ct. 872 (2008).\n\n\n\n\n *\n Pursuant to 5TH CIR. R. 47.5, the court has determined that thisPrefix

opinion\nshould not be published and is not precedent except under the limited\ncircumstances set forth in 5TH CIR. R. 47.5.4.\nReference

opinion\nshould not be published and is not precedent except under the limited\ncircumstances set forth in 5TH CIR. R. 47.5.4.\nNEO

\n<blank>OPT

.\n\nTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTh
eTheTheTheTheTheTheTheTheTheThe

NEO + KUMPR

\nopinion should not\nNEO + DPO

\n<blank>NEO + KL

\n<blank>NEO + LLMU

\n\nmaterial\n\nare not\n\njurisdictional and\n\nneed not\n\nbe\n\nlocated.\nNEO + ICU (ours)

cert. denied, 128 S. Ct. 872 (2008).\n\n\n\n\n *\n Pursuant to 5TH CIR. R. 47.5, the court has determined that thisPrefix

opinion\nshould not be published and is not precedent except under the limited\ncircumstances set forth in 5TH CIR. R. 47.5.4.\nReference

opinion\nshould not be published and is not precedent except under the limited\ncircumstances set forth in 5TH CIR. R. 47.5.4.\nNEO

\n<blank>OPT

.\n\nTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTheTh
eTheTheTheTheTheTheTheTheTheThe

NEO + KUMPR

\nopinion should not\nNEO + DPO

\n<blank>NEO + KL

\n<blank>NEO + LLMU

\n\nmaterial\n\nare not\n\njurisdictional and\n\nneed not\n\nbe\n\nlocated.\nNEO + ICU (ours)

.\n\nI agree to TechTarget’s Terms of Use, Privacy Policy, and the transfer of my information to the United States for processing to provide me 
with relevant information as described in our Privacy Policy.\n\nPlease check the box if

Prefix

you want to proceed.\n\nI agree to my information being processed by TechTarget and its Partners to contact me via phone, email, or other means 
regarding information relevant to my professional interests. I may unsubscribe at any time.\n\nPlease

Reference

you want to proceed.\n\nI agree to my information being processed by TechTarget and its Partners to contact me via phone, email, or other means 
regarding information relevant to my professional interests. I may unsubscribe at any time.\n\nPlease

NEO

if you want to proceed.\n\nI agree to my information being processed by TechTarget and its Partners to contact me via phone, email, or other 
means regarding information relevant to my professional interests. I may unsubscribe at any time.\n\n

OPT

the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the
the the the the the the

NEO + KUMPR

you want to proceed. \n\nI agree\n\nPlease check the box if you want to proceed. \n\nAdditional Information\n\nAdditional information is 
required. \n\nYes

NEO + DPO

you want to proceed to the next page. \n\nI consent to the processing of my personal data for the purpose of the processing of my personal data for 
the purpose of the processing of my personal data for the purpose of the processing of my personal data

NEO + KL

you\n\nI consent to my information being processed by TechTarget\n\nI consent to my information being processed by TechTarget\n\nI consent to 
my information being processed by TechTarget\n\nI consent to my information being processed by TechTarget

NEO + LLMU

you or your is interested and/ or your company is or will be or has or will have an interest\n\n: is or will be or has or will have an interest such or 
such or such or such or such or such or such or such

NEO + ICU (ours)

transmission cannot be guaranteed to be secure or error-free \nas information could be intercepted, corrupted, lost, destroyed, \narrive late or 
incomplete, or contain viruses.  The sender therefore \ndoes not accept liability for any errors

Prefix

or omissions in the contents \nof this message which arise as a result of e-mail transmission.  If \nverification is required please request a hard-
copy version.  This \nmessage is provided for informational purposes and should

Reference

or omissions in the contents \nof this message which arise as a result of transmission over the \nInternet or otherwise.  If you receive this message 
in error, please \ndelete it from your system and then notify the sender immediately.

NEO

loss or damage arising from the use of this \ninformation.  The information is provided on an 'as is' basis, without any \nwarranty of any kind, 
either express or implied.  The sender shall not be \n

OPT

errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors
errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors errors

NEO + KUMPR

or omissions, or for anyNEO + DPO

or omissions in the \ninformation. NEO + KL

or omissions in the \ninformation. NEO + LLMU

in the transmission.  \nThe receiver does not accept liability for any errors in the receipt \nof the information.  \nThe sender does not accept 
liability for any errors in the receipt \nof the information.  \nThe

NEO + ICU (ours)

Figure 6: Three additional examples.
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Table 6: Full Results of 5 individual runs.
Model # EL10 MA BERT Entropy Lamba. Hella. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg.

Params (%) ↓ (%) ↓ (F1) ↓ ↑ (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

NEO (before unlearning) 125M 51.9 76.8 70.3 4.139 37.6 28.2 51.5 62.0 46.0 22.4 63.4 22.5 57.6 43.5

NEO + KUMPR 125M

0.1 22.0 26.5 0.863 2.0 26.9 51.1 57.0 36.0 22.1 56.9 21.3 41.0 34.9
0.3 24.0 33.3 0.707 44.8 27.3 52.6 49.0 38.9 21.1 59.6 22.5 57.6 41.5
1.2 9.4 28.9 0.546 0.0 26.0 50.6 56.0 30.7 20.1 52.0 20.7 32.4 32.1
0.4 18.2 30.8 0.327 0.1 26.6 49.9 56.0 32.8 21.4 55.5 21.2 32.4 32.9
1.5 22.0 29.1 1.119 0.5 26.8 50.7 57.0 33.7 21.1 26.7 21.1 40.6 34.2

NEO + ICU (ours) 125M

3.6 53.3 52.8 3.848 37.3 28.3 51.1 62.0 45.3 23.1 63.2 22.6 57.6 43.4
4.8 52.3 53.0 3.670 44.4 28.4 53.1 60.0 43.9 20.7 62.8 22.6 57.6 43.7
4.4 56.3 51.8 3.770 34.2 28.3 52.2 61.0 43.9 22.4 63.3 21.7 57.8 42.8
3.9 59.0 54.8 3.740 36.1 28.3 51.9 62.0 43.7 20.7 62.7 22.5 57.6 42.8
5.0 56.9 54.3 4.137 43.1 28.3 52.7 61.0 44.9 22.1 62.7 22.2 57.6 43.8

NEO (before unlearning) 1.3B 98.2 92.3 86.3 4.640 57.4 37.0 54.9 70.0 56.5 25.8 70.3 22.0 53.8 49.7

NEO + KUMPR 1.3B

0.0 0.0 37.8 2.958 0.0 25.7 50.8 51.0 25.4 17.4 53.2 18.2 57.6 33.3
0.6 7.0 21.7 0.216 0.0 25.7 50.4 55.0 28.2 19.4 53.3 21.3 57.6 34.5
0.7 10.5 28.1 0.471 0.0 25.9 48.7 52.0 27.9 19.4 52.7 20.6 57.6 33.9
1.0 9.8 22.5 0.324 0.0 25.9 50.3 55.0 27.7 19.4 52.4 19.7 57.6 34.2
1.6 13.2 22.7 0.115 0.0 25.8 49.8 50.0 30.0 22.4 52.3 20.4 57.6 34.3

NEO + ICU (ours) 1.3B

4.5 53.3 53.5 4.218 54.3 37.1 54.8 70.0 55.6 25.4 69.8 21.3 49.4 48.6
4.8 53.8 57.7 4.069 54.3 37.2 55.3 69.0 56.3 25.8 70.2 21.8 50.2 48.9
4.5 53.7 53.8 4.488 55.7 37.6 55.2 68.0 56.0 26.4 70.4 21.4 50.0 49.0
4.8 41.0 44.2 2.440 54.6 37.3 55.1 70.0 56.8 25.8 69.9 21.5 49.8 49.0
4.7 54.5 54.4 4.286 57.5 37.3 54.9 67.0 56.7 25.8 70.1 21.5 50.5 49.3

NEO (before unlearning) 2.7B 96.7 93.7 90.2 4.719 62.3 40.8 56.6 75.0 59.5 26.1 73.0 21.3 57.0 52.4

NEO + KUMPR 2.7B

1.1 29.4 28.2 0.603 7.9 26.3 48.2 53.0 30.3 19.1 53.4 20.2 57.2 35.1
3.0 25.4 25.1 0.304 0.8 25.9 50.4 57.0 30.2 19.1 54.8 20.4 57.6 35.1
1.7 19.8 23.9 0.302 0.0 25.8 49.4 54.0 32.8 18.4 54.2 20.7 57.6 34.8
0.5 7.5 25.2 0.396 0.0 25.7 50.5 51.0 29.1 19.1 52.5 19.1 40.0 31.9
0.8 11.4 30.2 0.992 0.0 26.6 49.8 55.0 34.7 21.1 55.0 21.9 32.4 32.9

NEO + ICU (ours) 2.7B

4.2 47.7 49.4 3.793 58.6 41.2 55.5 76.0 59.3 28.8 72.6 21.7 57.6 52.4
5.0 48.3 53.2 3.577 60.4 41.0 55.6 70.0 59.6 25.8 72.7 21.7 57.2 51.6
4.7 43.2 50.6 3.416 60.2 41.0 55.6 74.0 60.4 27.8 72.8 21.7 57.2 52.3
4.4 48.4 55.4 3.920 60.2 40.8 56.1 73.0 59.1 27.8 72.9 21.5 57.2 52.1
4.4 53.9 54.7 3.922 61.4 40.8 56.7 73.0 60.2 27.4 73.0 21.5 57.4 52.4

Table 7: Full Results of 5 individual runs (continued).
Model # WoW ED BST WoI Avg. Pile Wikitext GPT EpochParams (F1) (F1) (F1) (F1) (F1) (PPL) (PPL) ↑

NEO (before unlearning) 125M 10.5 8.4 9.7 11.3 10.0 20.1 38.0 3.75 -

NEO + KUMPR 125M

5.8 6.0 6.1 6.9 6.2 444.7 2396.7 1.01 3
1.1 1.1 0.7 1.0 1.0 200.8 437.8 1.20 2
0.7 1.5 0.5 0.1 0.7 >10000 >10000 0.93 5
4.7 6.4 5.9 5.5 5.6 2778.3 >10000 0.99 3
4.3 4.7 4.7 5.8 4.9 1212.3 9470.2 1.12 3

NEO + ICU (ours) 125M

11.6 9.0 9.9 11.7 10.6 21.5 39.2 3.48 19
10.9 8.4 9.6 11.1 10.0 22.0 40.7 3.68 22
11.0 8.4 9.0 11.2 9.9 21.6 40.4 3.98 24
11.3 9.0 10.0 11.2 10.4 21.4 39.7 4.27 21
11.3 8.7 9.6 11.7 10.4 21.6 40.4 4.20 21

NEO (before unlearning) 1.3B 12.7 10.4 12.1 13.8 12.3 13.2 18.7 2.72 -

NEO + KUMPR 1.3B

0.0 0.0 0.0 0.0 0.0 >10000 >10000 2.68 1
0.0 0.1 0.0 0.0 0.0 >10000 >10000 0.95 3
0.0 0.0 0.0 0.1 0.0 >10000 >10000 0.88 2
0.1 0.0 0.8 0.2 0.1 >10000 >10000 0.86 2
0.3 0.0 0.8 1.1 0.6 2164.8 >10000 0.93 2

NEO + ICU (ours) 1.3B

12.4 10.3 11.7 13.0 11.9 14.1 19.3 4.35 28
12.1 10.0 11.7 13.5 11.8 14.1 19.3 4.72 29
12.8 10.5 12.1 13.4 12.2 14.3 19.4 4.66 30
12.6 10.4 12.0 13.9 12.2 14.2 19.3 2.96 33
12.6 11.1 12.2 13.9 12.5 14.1 19.2 4.96 26

NEO (before unlearning) 2.7B 12.5 10.8 12.4 13.6 12.3 12.0 16.2 3.65 -

NEO + KUMPR 2.7B

10.9 3.2 9.7 11.6 8.8 39.2 79.9 1.02 7
10.6 0.8 9.7 11.9 8.2 66.4 166.8 1.00 8
4.9 0.1 9.0 9.3 5.8 111.2 370.8 0.94 6
0.1 0.0 0.3 0.4 0.2 >10000 >10000 0.96 6
3.5 3.2 3.8 4.3 3.7 227.1 398.6 1.08 6

NEO + ICU (ours) 2.7B

12.1 10.4 12.2 13.0 11.9 13.0 16.9 3.70 29
12.3 10.3 12.3 12.8 12.0 13.2 16.9 4.38 34
12.2 10.0 11.7 13.1 11.7 13.3 17.0 4.13 38
12.8 10.9 12.9 13.5 12.5 13.1 17.1 5.29 34
12.3 11.2 12.2 13.3 12.2 13.1 17.0 4.51 28
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