

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ORDERDP: A THEORETICALLY GUARANTEED LOSS- LESS DYNAMIC DATA PRUNING FRAMEWORK

Anonymous authors

Paper under double-blind review

ABSTRACT

Data pruning (DP), as an oft-stated strategy to alleviate heavy training burdens, reduces the volume of training samples according to a well-defined pruning method while striving for *near-lossless* performance. However, existing approaches, which commonly select highly informative samples, can lead to biased gradient estimation compared to full-dataset training. Furthermore, the analysis of this bias and its impact on final performance remains ambiguous. To address these challenges, we propose **OrderDP**, a plug-and-play framework that aims to obtain stable, unbiased, and *near-lossless* training acceleration with theoretical guarantees. Specifically, **OrderDP** first randomly selects a subset and then chooses the top- q samples, where unbiasedness is established with respect to a surrogate loss. This ensures that **OrderDP** conducts unbiased training in terms of the surrogate objective. We further establish convergence and generalization analyses, elucidating how **OrderDP** affects optimal performance and enables well-controlled acceleration while ensuring guaranteed final performance. Empirically, we evaluate **OrderDP** against comprehensive baselines on CIFAR-10, CIFAR-100, and ImageNet-1K, demonstrating competitive accuracy, stable convergence, and exact control—all with a simpler design and faster runtime, while reducing training cost by over 40%. Delivering both strong performance and computational efficiency, our method serves as a robust and easily adaptable tool for data-efficient learning.

1 INTRODUCTION

Neural scaling laws have revealed a consistent empirical pattern across a wide range of domains (Amari et al., 1992; Hestness et al., 2017; Kaplan et al., 2020): model performance tends to improve predictably, often as a power law (Hernandez et al., 2021; Cherti et al., 2023; Chen et al., 2023), with increased model size and the data volume. This observation has fueled a surge in computational demands and financial costs, as larger models and datasets are leveraged to push the boundary of model capabilities. In this context, data pruning (DP) has emerged as a promising strategy to alleviate training costs by selectively removing less informative samples (Killamsetty et al., 2021b; Mirzaoleiman et al., 2020; Qin et al., 2024; Raju et al., 2021), offering a pathway to enhance training efficiency without compromising model performance.

Depending on when sample selection is performed, data pruning strategies can be broadly classified into *static pruning* and *dynamic pruning*. ① Static pruning assigns an informativeness score to each training sample *before* training, typically using data influence functions (Borsos et al., 2020; Koh & Liang, 2017; Yang et al., 2022) or coresnet selection strategies (Huggins et al., 2016; Campbell & Broderick, 2019; Kim et al., 2023). ② Dynamic pruning, on the other hand, performs sample selection *during* training, updating scores on-the-fly based on evolving model states or gradients (Raju et al., 2021; Qin et al., 2024; Chen et al., 2024). By continuously adapting to the training dynamics, it can better identify and retain the most influential samples at each stage, potentially yielding higher performance under constrained training budgets. A more comprehensive survey of static and dynamic pruning methods is included in Appendix B.

Within supervised learning, data pruning aims to reduce data volume without sacrificing performance, thereby achieving *near-lossless*¹ pruning. However, the discarded data can cause the distribution

¹Here, *near-lossless* means matching full-data accuracy up to normal stochastic fluctuations (typically within 0.1%) while achieving a noticeable training speedup.

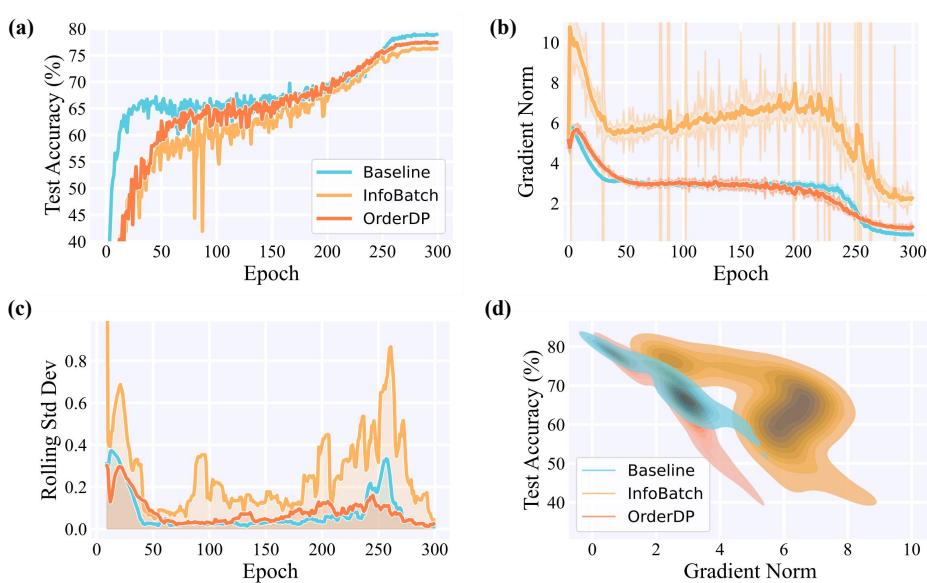


Figure 1: **Training dynamics of ResNet-18 on the CIFAR-100 under a 70% data pruning ratio.** Method comparison: full-dataset training (**Baseline**), representative dynamic pruning strategy (**InfoBatch**), and our proposed method (**OrderDP**). **(a-c)** Test accuracy, gradient norm (shadow area denotes standard deviation), and temporal stability of gradient norm over training epochs. **(d)** Joint distribution of test accuracy and gradient norm throughout training.

shift and bias gradient. Although selecting a portion of the discarded data randomly via calibration protocols (Aydé & Hayou, 2023) can theoretically ensure unbiasedness, finding the optimal proportion can be difficult in practice. Inspired by this method, recent dynamic methods such as InfoBatch (Qin et al., 2024) achieve this goal by rescaling the bias gradient toward the expected loss. However, when training on a specific dataset, gradient bias in both scale and direction may still arise from the discrepancy between empirical and expected loss. This bias is further amplified under extreme pruning, where large scaling factors are applied and stabilization techniques such as annealing are often required. These challenges reveal an incomplete understanding of the principles underlying “near-lossless” pruning. A critical questions arise as to *what ensures this property? how the bias should be analyzed, and whether pruning can be pushed further toward more extreme regimes?* To investigate these questions, we conduct comparative studies and report a representative result on CIFAR-100, comparing full-dataset training with InfoBatch (Qin et al., 2024) under a 70% pruning ratio to test its limits. Further experiments are presented in Appendix D, E, and we highlight several key observations as follows:

1 Gradient norm serves as a reliable proxy for model performance: Under full-dataset training, test accuracy exhibits a strong linear correlation with gradient norm (Pearson’s $R = -0.93$), as shown in Figure 1 (d), which suggest the magnitude of gradients is a stable and informative indicator of both training progress and generalization, which echoes prior observations in related studies (Zhao et al., 2022; Zhang et al., 2023).

2 Dynamic data pruning suffers from training instability: Compared to full-dataset training, dynamic one displays pronounced fluctuations in test accuracy and volatile gradient norms. Moreover, the rolling standard deviation reveals irregular and noisy optimization dynamics, indicating reduced training stability, as shown in Figure 1 (a-c).

3 Gradient estimation under dynamic pruning is still biased: Figure 1 (b,d) demonstrate that the dynamic method induces a noticeable shift in the overall scale of gradient norms relative to the baseline. This shift is more significant for InfoBatch, as a large scaling factor is imposed. The previously observed linear relationship between accuracy and gradient norm weakens, suggesting that it still distorts gradient estimates and introduces bias during training.

Together, these findings highlight that training instability and biased gradient estimation are two key limitations of existing dynamic DP strategies. We provide an extended empirical analysis of

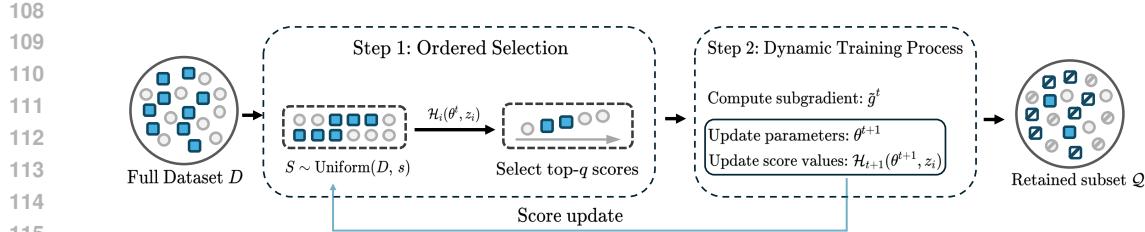


Figure 2: Illustration of the proposed **OrderDP** framework: at each iteration, a candidate batch is sampled uniformly, the top- q examples are selected by score to compute a subgradient and update model parameters, and scores are refreshed only for the retained samples.

gradient bias in Appendix E. To this end, we take a step towards designing a DP method to mitigate both issues, thus achieving **stable**, **unbiased**, and **near-lossless** data pruning. Inspired by the recent stochastic optimization based on ordering statistics (Kawaguchi & Lu, 2020; Mehta et al., 2023), we propose a simple yet effective DP framework, **OrderDP**, which aims to obtain **near-lossless** pruning with improved efficiency, even at large pruning ratios. At the beginning of each epoch, we randomly sample a batch of data points from the full dataset to form a pruning candidate pool. These candidates are then ranked in descending order based on their loss values, and the Top- q samples are selected as the most informative ones for model training. We formulate **OrderDP** as an optimization algorithm that minimizes a proposed surrogate loss. We theoretically establish convergence analyses using an unbiased gradient estimation of the surrogate loss. Furthermore, generalization analysis is provided in terms of the surrogate loss and expected loss, demonstrating the effectiveness of **OrderDP**.

Our approach has several desirable properties. First, **OrderDP** ensures unbiased gradient estimation and works with standard training pipelines without architectural changes or auxiliary approximations. It maintains an exactly controlled pruning ratio with rigorous theoretical guarantees on convergence and generalization. The surrogate loss fully captures the bias and enables principled, loss-aware pruning while sustaining strong stability. Empirically, we validate **OrderDP** on CIFAR-10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b), and ImageNet-1K (Deng et al., 2009). Across all benchmarks, **OrderDP** achieves **near-lossless** performance at moderate pruning ratios and surpasses state-of-the-art methods. On ImageNet-1K, it retains full accuracy at 40% pruning with the lowest total computation, leading to faster runtime. These results show that **OrderDP** not only sustains strong performance but also delivers superior efficiency, robustness, and a simple plug-and-play design, making it a practical solution for scalable deep learning.

2 METHOD

Inspired by the iterative update process of stochastic gradient descent (SGD) (Kawaguchi & Lu, 2020; Amari, 1993), we propose Ordered Data Pruning (**OrderDP**), a dynamic strategy that integrates adaptive sample selection into the SGD pipeline to reduce training cost without sacrificing accuracy. The overall framework is illustrated in Figure 2. **OrderDP** leverages a score-value mechanism to rank and retain the most informative samples at each iteration.

2.1 PRELIMINARIES

We begin with the standard empirical risk minimization formulation over a dataset $\mathcal{D} = \{z_i\}_{i=1}^n$:

$$\mathcal{L}(\theta) := \frac{1}{n} \sum_{i=1}^n \mathcal{L}_i(\theta, z_i) \quad (1)$$

where $\theta \in \mathbb{R}^d$ denotes the model parameters and each per-sample loss $\mathcal{L}_i(\theta, z_i): \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ measures the discrepancy on example z_i . Solving this ERM via (mini-batch) stochastic gradient descent is at the core of most modern machine learning tasks.

Score Value Function. To drive dynamic pruning, we associate each sample z_i with a nonnegative *score value* $\mathcal{H}_i(\theta) = \mathcal{H}_i(\theta, z_i)$, which quantifies its importance. In general, \mathcal{H}_i can be any function of model state and data (e.g., gradient norm or influence measure), but we adopt the instantaneous

162

Algorithm 1: Dynamic Training Process with **OrderDP**

163

Input: Initial parameters θ^1 , initial scores $\mathcal{H}_1(\theta^1, z_i)$ for all $i \in [n]$, learning rates $\{\eta^t\} > 0$, exploration size s , exploitation size q .

165

Output: Final parameters θ^T .

166

1 for $t = 1, 2, \dots, T$ do

167

2 // Ordered Data Pruning (**OrderDP**)

168

3 Sample candidate batch $S^t \subseteq D$ uniformly at random, with $|S^t| = s$.

169

4 Select subset $\mathcal{Q}^t \subseteq S^t$ of top- q scores:

170

$$\mathcal{Q}^t \in \arg \max_{\substack{Q \subseteq S^t \\ |Q|=q}} \sum_{i \in Q} \mathcal{H}_t(\theta^t, z_i).$$

171

5 // Compute a subgradient

172

$$\tilde{g}^t \in \partial L_{\mathcal{Q}^t}(\theta^t), \text{ where } L_{\mathcal{Q}^t}(\theta^t) = \frac{1}{q} \sum_{i \in \mathcal{Q}^t} \mathcal{L}_i(\theta^t, z_i).$$

173

6 // Update model parameters

174

$$\theta^{t+1} \leftarrow \theta^t - \eta^t \tilde{g}^t.$$

175

7 // Update score values

176

$$\mathcal{H}_{t+1}(\theta^{t+1}, z_i) = \begin{cases} \mathcal{L}_i(\theta^{t+1}, z_i), & i \in \mathcal{Q}^t, \\ \mathcal{H}_t(\theta^t, z_i), & \text{otherwise.} \end{cases}$$

177

178

179

180

181

182

183

loss $\mathcal{H}_i(\theta) = \mathcal{L}_i(\theta, z_i)$ as a simple, adaptive proxy: higher loss indicates greater need for retention. By updating scores only for samples that remain active, we avoid full-dataset recomputation each step. Concretely, if $\mathcal{Q}_t \subseteq \mathcal{D}$ denotes the set of retained examples at epoch t , then

184

185

186

187

$$\mathcal{H}_{t+1}(\theta^{t+1}, z_i) = \begin{cases} \mathcal{L}_i(\theta^{t+1}, z_i), & i \in \mathcal{Q}_t, \\ \mathcal{H}_t(\theta^t, z_i), & i \notin \mathcal{Q}_t. \end{cases} \quad (2)$$

188

189

190

191

This rule ensures that only the losses of selected samples are refreshed, while others retain their previous scores. Together, the ERM objective and the score value function enable dynamic data pruning: by ranking samples via $\mathcal{H}_i(\theta)$, we focus computation on the most informative subset each iteration, reducing training cost without hurting accuracy.

192

193

194

195

2.2 THE **ORDERDP** FRAMEWORK

196

197

198

Building on the ERM and score-value preliminaries, Ordered Data Pruning (**OrderDP**) integrates dynamic sample selection into the SGD loop. At each iteration, a candidate batch is uniformly sampled, the top- q samples are selected by score values, and a subgradient computed on this subset is used for parameter update. Scores are refreshed only for the retained samples, while others remain unchanged. The complete procedure is given in Algorithm 1.

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

OrderDP combines uniform sampling with score-based ranking to preserve diversity while focusing on informative samples, and enforces an exact prune ratio of $1 - (q/s) \cdot (s/|\mathcal{D}|)$ for predictable speed-ups. Uniform sampling ensures every sample has a non-zero chance of being selected, improving robustness (see Part 4.2, (Shah et al., 2020)) and reducing dependence on sorting. The sorting step can be reduced to $O(\log q)$ time per sample (even $O(1)$ when $q = 1$), with constant memory overhead, unlike other dynamic methods such as UCB (Raju et al., 2021) and InfoBatch (Qin et al., 2024), which require either $O(\log n)$ time or $O(n)$ storage.

3 THEORETICAL ANALYSIS

214

215

In this section, we show that **OrderDP** provides unbiased gradient estimates for a surrogate loss and achieves standard convex–Lipschitz convergence rates, then establish its generalization error bound via a spectral-risk analysis. Full proofs are provided in Appendix A.

216 3.1 BIAS AND CONVERGENCE ANALYSIS
217

218 In this subsection, we analyze the convergence of **OrderDP** by first capturing the bias introduced by
219 selective pruning. Specifically, we define a surrogate loss that yields unbiased gradient updates:

$$220 \quad \mathcal{L}_q(\theta) := \frac{1}{q} \sum_{j=1}^n \gamma_j \mathcal{L}_{(j)}(\theta), \quad \text{and where } \gamma_j = \sum_{l=\max\{1, s-n+j\}}^{\min\{q, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}}, \quad (3)$$

224 where $\mathcal{L}_{(j)}(\cdot)$ is the j -th rank of per-sample loss and each weight γ_j depends only on (n, s, q) . This
225 construction guarantees that the gradient estimator \tilde{g}^t produced by **OrderDP** is unbiased with respect
226 to \mathcal{L}_q .

227 **Theorem 1.** *Under the definitions above, the update \tilde{g}^t in Algorithm 1 satisfies*

$$228 \quad \mathbb{E}[\tilde{g}^t] \notin \partial \mathcal{L}(\theta^t) \quad \text{but} \quad \mathbb{E}[\tilde{g}^t] \in \partial \mathcal{L}_q(\theta^t), \quad (4)$$

230 *i.e., it is an unbiased estimator of a (sub-)gradient of \mathcal{L}_q .*

231 Theorem 1 shows that the biased gradient estimation of **OrderDP** w.r.t. empirical loss \mathcal{L} can be
232 interpreted as an unbiased method for minimizing the surrogate objective \mathcal{L}_q . \mathcal{L}_q is well-defined for
233 any θ , and **OrderDP** enjoys three key advantages: ① By choosing s and q , the prune ratio $1 - \frac{q}{n}$ is
234 easily adjusted; ② Computing γ_j adds no per-epoch cost, unlike other dynamic methods requiring
235 $O(n)$ time and memory for weight tables; ③ **OrderDP** preserves unbiased, lower-variance gradient
236 estimates for \mathcal{L}_q —eliminating the need for annealing. See Appendix A.1 for the complete proof.

237 Another view of Theorem 1 is that the parameters (n, s, q) shape the surrogate loss $\mathcal{L}_q(\theta)$ via
238 the weights $\{\gamma_j\}$, which inherently represent the selective pruning. Inspired by the asymptotic
239 approximation in (Kawaguchi & Lu, 2020), we obtain:

240 **Proposition 2.** *Denote $z = j/n$ and $\gamma(z) = \sum_{l=1}^q z^{l-1} (1-z)^{s-l} \frac{s!}{(l-1)!(s-l)!}$. Then, as $j, n \rightarrow \infty$
241 it holds that*

$$243 \quad \lim_{j, n \rightarrow \infty, j/n=z} n \gamma_j = \gamma(z). \quad (5)$$

244 *Furthermore, $1 - \frac{n}{s} \gamma(z)$ is the cumulative distribution of $\text{Beta}(z; s - q)$.*

246 The weight sequence $\{\gamma_j/q\}_{j=1}^n$ generated by **OrderDP** forms a non-uniform probability distribution
247 (Kawaguchi & Lu, 2020; Mehta et al., 2023; Shah et al., 2020), which can be easily verified
248 through a numerical simulation showing that $\sum_{j=1}^n \gamma_j/q = 1$ for given (n, s, q) . **A non-trivial proof**
249 **is also provided.** For the structure of γ_j itself, Fig 5 shows that γ_j monotonically decays. If we fix
250 (s, q) , the cliff becomes smoother and closer to $r(z)$ as j, n increase. Similar observations are also
251 found in (Kawaguchi & Lu, 2020), but we make a more general formulation of γ_j . **More discussions,**
252 **proof and empirical validation are deferred to Appendix A.2 and Appendix D.2.**

253 Building on the unbiased gradient estimates of **OrderDP**, we leverage the classic mini-batch SGD
254 analysis to obtain the following guarantee.

255 **Theorem 3.** *Let $(\theta^t)_{t=0}^T$ be the sequence generated by Algorithm 1. Suppose there exists a finite
256 $\theta^* \in \arg \min_{\theta} \mathcal{L}_q(\theta)$, $\mathcal{L}_q(\theta^*) < \infty$. If each $\mathcal{L}_i(\cdot)$ is convex and G -Lipschitz, then*

$$258 \quad \min_{0 \leq t \leq T} \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \leq \frac{\eta_{\max} (\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2)}{2 \eta_{\min} \sum_{t=1}^T \eta^t}. \quad (6)$$

261 This matches the standard $O(1/\sqrt{T})$ convergence rate of mini-batch SGD under the same convexity
262 and Lipschitz assumptions, demonstrating that **OrderDP** attains identical theoretical guarantees
263 despite pruning. In particular, choosing $\eta^t = \|\theta^1 - \theta^*\|_2 / (G\sqrt{T})$ yields the error bound $(G\|\theta^1 -$
264 $\theta^*\|_2) / \sqrt{T}$. By using the averaged iterate $\bar{\theta}^T = (1/\sum_{t=1}^T) \sum_{t=1}^T \eta^t \theta^t$, the dependence on η_{\max} and
265 η_{\min} can be removed, that is $\mathbb{E}[\mathcal{L}_q(\bar{\theta}^T) - \mathcal{L}_q(\theta^*)] \leq (\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2) / (2 \sum_{t=1}^T \eta^t)$. The
266 full proof is provided in Appendix A.3. Empirical evidence supporting the convergence assumptions
267 is provided in Appendix D.3.

268 Thus, despite pruning a large fraction of data each epoch, **OrderDP** does not slow optimization in
269 expectation, ensuring computational savings without loss in convergence speed.

270 3.2 GENERALIZATION ANALYSIS
271

272 Having established convergence for the surrogate loss $\mathcal{L}_q(\theta)$, we now quantify its approximation to
273 the expected risk $\mathcal{L}(\theta^*) = \mathbb{E}_{z \sim \mathcal{D}}[\mathcal{L}(\theta^*, z)]$. Pruning creates a non-uniform sampling bias. Motivated
274 by the 1-Wasserstein distance (Mehta et al., 2023), we rewrite $\mathcal{L}_q(\theta) = \sum_{j=1}^n \frac{\gamma_j}{q} \mathcal{L}_{(j)}(\theta)$ and $\mathcal{L}(\theta) =$
275 $\sum_{j=1}^n \frac{1}{n} \mathcal{L}_{(j)}(\theta)$, thereby revealing the bias from the gap between $\{\gamma_j/q\}$ and uniform weights
276 $\{1/n\}$. Noting that $\mathbb{E}[\mathcal{L}_q(\theta, D)] = \mathbb{E}[\sum_{j=1}^s (\hat{\gamma}_j/q) \mathcal{L}_{i(j)}(\theta)]$ with $\hat{\gamma}_j = (n/s)\gamma_j$, we decompose the
277 generalization gap $\mathbb{E}[\mathcal{L}_q(\theta, D)] - \mathcal{L}(\theta^*)$ into a bias term $\mathbb{E}[\mathcal{L}_q(\theta, D)] - \mathbb{E}[\mathcal{L}(\theta, D)]$ and a sampling
278 error $\mathbb{E}[\mathcal{L}(\theta, D)] - \mathcal{L}(\theta^*)$, where the expectation is over the random minibatch $\{i_1, \dots, i_s\}$.
279

280 **Theorem 4.** *(Generalization error bound). Under the same assumption of Theorem 3, the following
281 satisfies for any θ^t in the sequence $\Theta = \{\theta\}_{t=1}^T$ generated by **OrderDP**:*

$$282 \mathcal{L}(\theta^*) - \mathbb{E}[\mathcal{L}_q(\theta^t, D)] \leq \underbrace{\sqrt{2}C_s B \sqrt{\frac{n-s}{s(n-1)}} - \mathcal{Q}_n(\theta^t; s, q)}_{\text{bias term}} + \underbrace{\frac{\eta_{\max}(\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2)}{2\eta_{\min} \sum_{t=1}^T \eta^t}}_{\text{unbiased term}},$$

285 where $C_s = \sup_{t \in (0,1)} |s(t) - u(t)|^2$, $B = \inf_{\theta \in \Theta} \max_{i \in [1,n]} |\mathcal{L}_i(\theta, D_i)| < \infty$, and $\mathcal{Q}_n(\theta; s, q) :=$
286 $\inf_{\theta \in \Theta} \sum_{i=1}^n (\frac{r_i(\theta, D)}{q} - \frac{1}{n}) \mathcal{L}_i(\theta, D_i)$. The expectation is over the random batch sampling.
287

288 The bias term bounds the bias from selective pruning of **OrderDP**; the unbiased term is the standard
289 optimization error, which vanishes as $T \rightarrow \infty$ with suitable η^t . The dependence on η_{\max} and η_{\min}
290 can be removed by using the averaged iterate; see proof in Appendix A.4. In contrast, the value C_s and
291 $\mathcal{Q}_n(\theta; s, q)$ remain finite and quantify the deviation of $\{\gamma_j\}$ from uniformity (Mehta et al., 2023), as
292 confirmed by simulations in Figure 6. As $q \rightarrow s$, $(r_i(\theta, D)/q - 1/n) \rightarrow 0$, so $\mathcal{Q}_n(\theta; s, q) \rightarrow 0$; and
293 as $s \rightarrow n$, $\sqrt{2}C_s B \sqrt{\frac{n-s}{s(n-1)}} \rightarrow 0$, implying $\mathcal{L}(\theta^*) \leq \mathbb{E}[\mathcal{L}_q(\theta^t, D)]$. Thus, by minimizing $\mathcal{L}_q(\theta^t, D)$,
294 **OrderDP** also minimizes expected generalization error. In the special case $s = q$, it reduces to
295 standard mini-batch SGD ($r_i(\theta, D)/q = 1/n$, $C_s = 0$) and the bias vanishes. The approximation
296 behavior characterized in Theorem 4 is further illustrated empirically in Appendix D.2.
297

298 Theorem 4 shows that **OrderDP** ‘s modifies the distribution shift as the gap between the surrogate
299 loss \mathcal{L}_q and the original loss \mathcal{L} , and the gap is fully captured by the values C_s and \mathcal{Q}_n of the biased
300 term. For a high pruning ratio, i.e., small exploitation size q or a small exploration size s since
301 $q \leq s$, the distribution of $\frac{\gamma_j}{q}, j \in \{1, \dots, n\}$ exhibits a large range. This leads to a significant bias
302 compared to the uniform distribution (which has a range of 0), a substantial discrepancy between
303 C_s and $\mathcal{Q}_n(\theta; s, q)$, and consequently, a poor approximation. As the pruning ratio decreases (i.e., q
304 approaches s), the range of the γ_j distribution narrows, and its shift from the uniform distribution
305 diminishes and both C_s and $\mathcal{Q}_n(\theta; s, q)$ decrease, thereby improving the approximation. Specifically,
306 when $q = s$, OrderDP reduces to standard SGD. In this case, the bias term vanishes, yielding $\mathcal{L}_q = \mathcal{L}$.
307 We visualize the distribution shift in Figure 7.

308 In summary, Theorem 4 demonstrates that **OrderDP** ‘s generalization error comprises a vanishing
309 optimization term and a bounded pruning bias, maintaining SGD-rate convergence while controlling
310 dynamic pruning bias, which is consistent with the observation in Figure 1 (a-c).
311

312 4 EXPERIMENTAL SETTINGS
313

314 4.1 DATASETS AND TASKS

315 To comprehensively validate the effectiveness of our proposed **OrderDP**, we conduct experiments
316 on a range of image classification benchmarks: CIFAR-10 and CIFAR-100 (Krizhevsky et al., a;b),
317 ImageNet-1K (Deng et al., 2009).
318

319 CIFAR datasets comprise 32×32 color images across 10 and 100 categories, respectively. Each
320 split includes 50,000 training and 10,000 test samples, providing balanced classification evaluation.
321 ImageNet-1K, as a 1,000-class subset of ImageNet-21k, contains 1,281,167 training images and
322 50,000 validation images, spanning a variety of object categories.
323

² $s(t)$ and $u(t)$ refer to the probability density of the spectrum γ_j distribution and uniform distribution on
(0, 1). Details can be found in (Mehta et al., 2023).

324 Table 1: Static pruning results (accuracy, %) on CIFAR10 and CIFAR100 with ResNet-18. Accuracy (%), \uparrow . Best in **bold**. Performance gaps to full-data are in **blue** / **orange**.

Dataset	Prune Ratio %	CIFAR10			CIFAR100		
		30	50	70	30	50	70
Static Random		94.6 \downarrow 1.0	93.3 \downarrow 2.3	90.2 \downarrow 5.4	73.8 \downarrow 4.4	72.1 \downarrow 6.1	69.7 \downarrow 8.5
CD (Agarwal et al., 2020)		95.0 \downarrow 0.6	94.3 \downarrow 1.3	90.8 \downarrow 4.8	74.2 \downarrow 4.0	72.3 \downarrow 5.9	70.3 \downarrow 7.9
Hherding (Welling, 2009)		92.2 \downarrow 3.4	88.0 \downarrow 7.6	80.1 \downarrow 15.5	73.1 \downarrow 5.1	71.8 \downarrow 6.4	69.6 \downarrow 8.0
K-Center (Sener & Savarese, 2018)		94.7 \downarrow 0.9	93.9 \downarrow 1.7	90.9 \downarrow 4.7	74.1 \downarrow 4.1	72.2 \downarrow 6.0	70.2 \downarrow 8.0
Least Confidence (Coleman et al., 2019)		95.0 \downarrow 0.6	94.5 \downarrow 1.1	90.3 \downarrow 5.3	74.2 \downarrow 4.0	72.3 \downarrow 5.9	69.8 \downarrow 8.4
Margin (Coleman et al., 2019)		94.9 \downarrow 0.7	94.3 \downarrow 1.3	90.9 \downarrow 4.7	74.0 \downarrow 4.2	72.2 \downarrow 6.0	70.2 \downarrow 8.0
Forgetting (Toneva et al., 2018)		94.7 \downarrow 0.9	94.1 \downarrow 1.5	91.7 \downarrow 3.9	75.3 \downarrow 2.9	73.1 \downarrow 5.1	69.9 \downarrow 8.3
GraNd-4 (Paul et al., 2021)		95.3 \downarrow 0.3	94.6 \downarrow 1.0	91.2 \downarrow 4.4	74.6 \downarrow 3.6	71.4 \downarrow 6.8	68.8 \downarrow 9.4
DeepFool (Ducoffe & Precioso, 2018)		95.1 \downarrow 0.5	94.1 \downarrow 1.5	90.0 \downarrow 5.6	74.2 \downarrow 4.0	73.2 \downarrow 5.0	69.8 \downarrow 6.4
Craig (Mirzasoleiman et al., 2020)		94.8 \downarrow 0.8	93.3 \downarrow 3.3	88.4 \downarrow 7.2	74.4 \downarrow 3.8	71.9 \downarrow 6.3	69.7 \downarrow 8.5
Glister (Killamsetty et al., 2021b)		95.2 \downarrow 0.4	94.0 \downarrow 1.6	90.9 \downarrow 4.7	74.6 \downarrow 3.6	73.2 \downarrow 5.0	70.4 \downarrow 7.8
Influence (Koh & Liang, 2017)		93.1 \downarrow 2.5	91.3 \downarrow 4.3	88.3 \downarrow 7.3	74.4 \downarrow 3.8	72.0 \downarrow 6.2	68.9 \downarrow 9.5
EL2N-2 (Toneva et al., 2018)		94.4 \downarrow 1.2	93.2 \downarrow 2.4	89.8 \downarrow 5.8	74.1 \downarrow 4.1	71.0 \downarrow 7.2	68.5 \downarrow 9.7
EL2N-20 (Toneva et al., 2018)		95.3 \downarrow 0.3	95.1 \downarrow 0.5	91.9 \downarrow 3.7	77.2 \downarrow 1.0	72.1 \downarrow 6.1	-
DP (Yang et al., 2023)		94.9 \downarrow 0.7	93.8 \downarrow 1.8	90.8 \downarrow 4.8	77.2 \downarrow 1.0	73.1 \downarrow 5.1	-
OrderDP		95.6\downarrow0.0	95.3\downarrow0.2	95.0\downarrow0.6	78.2\uparrow0.0	77.9\downarrow0.3	76.7\downarrow1.5
Whole Dataset		95.6 \pm 0.1			78.2 \pm 0.1		

4.2 IMPLEMENTATION DETAILS

In this section, we provide a succinct overview of the implementation details for our experiments, including backbone models and training details.

Backbone models. For classification, we train ResNet-18 and ResNet-50 (He et al., 2016) on CIFAR-10/100 and ImageNet-1K.

Training Details. For **OrderDP**, an exploration ratio of 0.5 related to s (i.e., $s/|\mathcal{D}| = 0.5$) and an exploitation ratio of 0.6 related to q (i.e., $q/s = 0.6$) are used by default when no other values are specified. All models are trained with the OneCycle scheduler, which employs cosine annealing, using SGD with a momentum of 0.9 and a weight decay of 5×10^{-4} . Images are augmented through normalization, random cropping, and horizontal flipping unless stated otherwise. The implementation is based on PyTorch (Paszke, 2019). All other details are deferred to the Appendix C and D.1.

5 EMPIRICAL STUDIES

5.1 EMPIRICAL ANALYSIS ON CIFAR

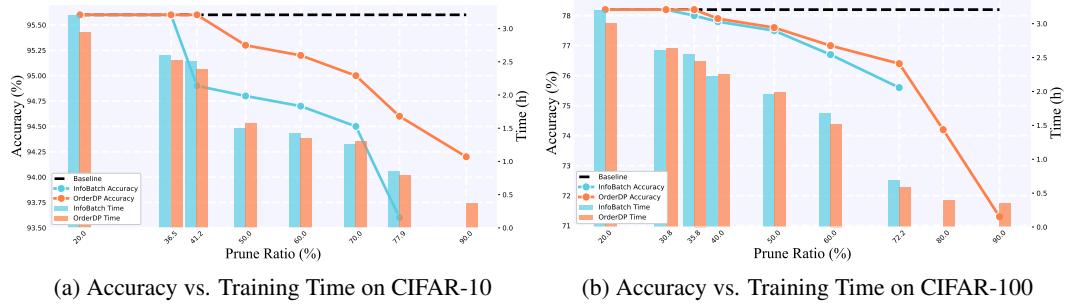
For a comprehensive comparison on CIFAR-10/100, we consider two categories of DP methods as baselines: static DP and dynamic DP. From static DP, we include 15 representative methods: static random pruning, CD (Agarwal et al., 2020), Herding (Welling, 2009), K-means (Sorscher et al., 2022), Least Confidence and Entropy (Coleman et al., 2019), Forgetting (Toneva et al., 2018), GraNd and EL2N (Paul et al., 2021), DeepFool (Ducoffe & Precioso, 2018), Craig (Mirzasoleiman et al., 2020), Glister (Killamsetty et al., 2021b), Influence (Koh & Liang, 2017), and DP (Yang et al., 2022). From dynamic DP, we adopt four methods: dynamic random pruning, ϵ -greedy (Raju et al., 2021), UCB (Raju et al., 2021), and InfoBatch³ (Qin et al., 2024), along with our proposed method **OrderDP**, which also belongs here.

Performance comparison. From Tables 1 and 2, our systematic study suggests the following trends: ① Dynamic random pruning outperforms static random by preserving higher sample diversity, and both ϵ -greedy and UCB adaptively explore sample importance, but **OrderDP** consistently surpasses other baselines in accuracy and robustness across all prune ratios. ② At 30% pruning, only **OrderDP** matches full-data accuracy. ③ Under 50% and 70%, **OrderDP** has the smallest accuracy drop,

³In the original experiments of InfoBatch (Qin et al., 2024), an annealing algorithm was incorporated. To ensure fair comparison, we have removed this component from all implementations.

378 Table 2: Dynamic pruning results (accuracy, %) on CIFAR10 and CIFAR100 with ResNet-18 and
 379 ResNet-50. Accuracy (%), \uparrow . Best in **bold**. Performance gaps to full-data are in **blue** / **orange**.
 380

Dataset	CIFAR10						CIFAR100					
	ResNet-18			ResNet-50			ResNet-18			ResNet-50		
Backbone	30	50	70	30	50	70	30	50	70	30	50	70
Prune Ratio %	30	50	70	30	50	70	30	50	70	30	50	70
Dynamic Random	94.8 _{±0.8}	94.5 _{±1.1}	93.0 _{±2.6}	95.1 _{±0.5}	94.9 _{±0.7}	93.6 _{±2.0}	77.3 _{±0.9}	75.3 _{±2.9}	72.8 _{±5.4}	77.9 _{±2.7}	76.1 _{±4.5}	73.9 _{±6.7}
ϵ -greedy	95.2 _{±0.4}	94.9 _{±0.7}	94.1 _{±1.5}	95.4 _{±0.2}	95.1 _{±0.5}	94.3 _{±1.3}	76.4 _{±1.8}	74.8 _{±3.4}	72.9 _{±5.3}	77.4 _{±3.4}	76.3 _{±4.3}	74.1 _{±6.5}
UCB	95.3 _{±0.3}	94.7 _{±0.9}	93.9 _{±1.7}	95.5 _{±0.1}	95.0 _{±0.6}	94.2 _{±1.4}	77.3 _{±0.9}	75.3 _{±2.9}	73.2 _{±5.0}	78.0 _{±2.6}	76.5 _{±4.1}	74.3 _{±6.3}
InfoBatch	95.6 _{±0.0}	95.0 _{±0.6}	94.5 _{±1.1}	95.6 _{±0.0}	95.3 _{±0.3}	94.7 _{±0.9}	78.1 _{±0.1}	77.7 _{±0.5}	75.9 _{±2.3}	80.4 _{±0.2}	78.6 _{±2.0}	76.4 _{±4.2}
OrderDP	95.6_{±0.0}	95.3_{±0.2}	95.0_{±0.6}	95.6_{±0.0}	95.4_{±0.2}	95.0_{±0.6}	78.2_{±0.0}	77.9_{±0.3}	76.7_{±1.5}	80.6_{±0.0}	79.8_{±0.8}	77.9_{±2.7}
Whole Dataset	95.6 _{±0.1}			95.6 _{±0.1}			78.2 _{±0.1}			80.6 _{±0.1}		



398 Figure 3: More accuracy and time results for different prune ratios on CIFAR-10/100 for **OrderDP**
 399 and InfoBatch, using ResNet-18. The lossless pruning ratios are marked in the figure.
 400

402 outperforming both static and existing dynamic methods. ④ Compared to InfoBatch, **OrderDP**
 403 consistently yields higher accuracy as pruning becomes more aggressive.

404 **Efficiency comparison.** Table 3 reports end-to-end training time and GPU-hours under identical
 405 settings. **OrderDP** achieves the fastest training and lowest GPU-hours, improving upon InfoBatch
 406 without loss in accuracy. Additional CIFAR results and extended comparisons are in Appendix D.
 407

408 **Extended comparison of varying pruning ratios.** To further evaluate the performance of **OrderDP**,
 409 we compare it with InfoBatch, a state-of-the-art data pruning algorithm, across different prune ratios
 410 on the CIFAR-10 and CIFAR-100 datasets. The results are demonstrated in Figure 3. It can be
 411 observed that **OrderDP** not only achieves higher accuracy at every pruning ratio, but also remains
 412 comparable to other algorithms and reduces total training time in most cases. Moreover, InfoBatch
 413 cannot prune to an extreme ratio (limited by 77.9% on CIFAR-10 or 72.2% on CIFAR-100 in our
 414 setting) due to its fixed retention mechanism. **OrderDP** supports arbitrary pruning ratios because
 415 data retention is fully specified by the exploration size s and exploitation size q (see Section 5.3).
 416 These results confirm that **OrderDP**’s sample-selection strategy delivers near-optimal efficiency and
 417 robustness, making it particularly well-suited for resource-constrained scenarios where preserving
 418 accuracy is paramount.

5.2 EMPIRICAL ANALYSIS ON IMAGENET-1K

421 We evaluate Dynamic Random, UCB (Raju et al., 2021), InfoBatch (Qin et al., 2024) and our
 422 **OrderDP** on ImageNet-1K with ResNet-50 at 40% pruning (Table 3). **OrderDP** matches/exceeds
 423 all baselines in accuracy while not significantly increasing the total GPU runtime; it retains full-data
 424 performance at 40% pruning and incurs only a 0.4% drop at 60% (Table 4). ① **Efficiency:** **OrderDP**
 425 completes training faster and uses fewer GPU-hours than all competing methods. ② **Robustness:**
 426 It shows no loss at moderate prune ratios and only minimal degradation under aggressive pruning.
 427 Together, these findings confirm that **OrderDP** achieves near-lossless accuracy with a substantial
 428 reduction in compute, making it ideal for large-scale training under tight resource budgets.
 429

5.3 ABLATION EXPERIMENT

431 We study how two-stage pruning decomposition, parameterized by the exploration size s and ex-
 432 ploitation size q , affects **OrderDP**’s performance on CIFAR-10/100 with ResNet-18 (Figure 4).

Table 3: Comparison of performance and time cost on ImageNet-1K. Results are reported with ResNet-50 under 40% prune ratio for 90 epochs on a 2-L40-GPU server. “Total (n*h)” is the total node hour.

	Random	ϵ -greedy	UCB	InfoBatch	Ours	Full Data
Acc (%)	73.4 ± 0.3	75.2 ± 0.3	75.4 ± 0.3	75.6 ± 0.2	76.4 ± 0.2	76.4 ± 0.2
Time (h)	21.1	21.1	21.1	21.6	21.5	35.2
Total (n*h)	42.2	42.2	42.2	43.2	43.0	70.4

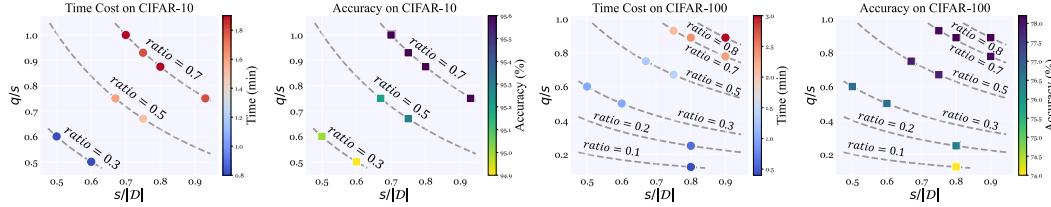


Figure 4: Performance with different ratio parameters. Here $(q/s) \cdot (s/|D|)$ represents the retained data ratio, and thus the prune ratio is calculated as $1 - (q/s) \cdot (s/|D|)$. Results are reported with ResNet-18.

Fixed prune ratio Under a fixed effective prune ratio, we vary the decomposition of the retained data portion by adjusting the exploration ratio $s/|D|$ and the exploitation ratio q/s , while keeping their product $(q/s) \cdot (s/|D|)$ unchanged. As shown in Figure 4, **OrderDP** achieves identical accuracy across all decompositions on both datasets, demonstrating its precise control over the prune ratio. The training time remains stable across different decompositions, indicating consistent computational cost when the overall prune ratio is fixed.

Varying prune ratios. As the prune ratio grows, training time drops sharply while accuracy degrades more slowly—up to about 70% pruning, where we see over 95% on CIFAR-10 and over 76% on CIFAR-100 with half the compute. Beyond that, further pruning gives diminishing accuracy but continues to cut runtime. This shows **OrderDP**’s ability to trace a smooth efficiency–performance frontier and lets practitioners pick the “sweet spot” matching their compute budget.

Our ablation shows that decoupling exploration (s) and exploitation (q) achieves exact pruning ratios without efficiency loss and yields a smooth accuracy–cost frontier, enabling straightforward budget selection. We further provide stability results under multiple runs in Appendix D.6.

5.4 SENSITIVITY ANALYSIS

Cross-architecture robustness evaluation. Table 6 reports the maximum lossless prune ratios of InfoBatch and **OrderDP** on ResNet-18/50 across CIFAR-10, CIFAR-100, and ImageNet-1K. InfoBatch usually caps in the mid-30% range, while **OrderDP** extends this by 4–6 points, especially on harder datasets, showing its ability to prune more aggressively without accuracy loss.

We adopt the Timm (Wightman et al., 2021) ImageNet training stack, which combines mixed-precision training with strong augmentation and regularization methods such as MixUp, and CutMix (Zhong et al., 2017; Zhang et al., 2018; Yun et al., 2019), and observe that **OrderDP** continues to yield lossless speedups under this stronger recipe, indicating that it is compatible with existing acceleration and augmentation pipelines. Beyond CNN-based architectures, **OrderDP** also maintains lossless accuracy at 20%–30% pruning on Swin-Tiny (Liu et al., 2021) and ViT-Base (MAE) (He et al., 2021) (Table 5), showing that the loss-based ordering remains stable on Vision Transformers, and that **OrderDP** naturally transfers across heterogeneous architectures as a plug-and-play module.

Table 4: Experiments on ImageNet-1K. The models here are all implemented based on ResNet-50_{PyTorch}.

Prune Ratio %	30	40	60
InfoBatch	$76.4 \downarrow 0.0$	$75.6 \downarrow 0.8$	$74.9 \downarrow 1.5$
OrderDP	$76.4 \uparrow 0.0$	$76.4 \downarrow 0.0$	$76.0 \downarrow 0.4$
Whole Dataset		76.4 ± 0.1	

Table 5: Cross-architecture robustness evaluation on ImageNet-1K. ViT-Base (MAE) is pretrained with **OrderDP** for 300 epochs and fine-tuned for 100 epochs. Swin-Tiny is trained from scratch with **OrderDP**.

Model	Prune Ratio	Original	OrderDP
R-50 _{Timm}	29.8%	78.4	$78.3 \downarrow 0.1$
Swin-T	22.1%	81.5	$81.4 \downarrow 0.1$
ViT-B (MAE)	30.8%	82.8	$82.8 \uparrow 0.0$

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 6: Cross-architecture robustness results of OrderDP. ‘Full Dataset’ denotes training on the original dataset without pruning.

	CIFAR-10		CIFAR-100		ImageNet-1K	
	R-18	R-50	R-18	R-50	R-18	R-50
Full Dataset	95.6	95.6	78.2	80.6	70.5	76.4
InfoBatch	95.5	95.6	78.2	80.6	70.4	76.4
Saved (%)	36.5	37.1	30.8	36.3	21.8	34.3
OrderDP	95.5	95.6	78.2	80.6	70.5	76.5
Saved (%)	41.2	42.6	35.8	41.1	27.3	39.8

Table 7: Comparison of accuracy (%) and saved cost (%) on CIFAR-10 when trained with R-50 using different optimizers.

	SGD	AdamW	LARS	LAMB
Full Dataset	95.6	94.3	95.5	95.0
InfoBatch	95.6	94.3	95.5	95.0
Saved (%)	37.1	37.0	37.1	37.1
OrderDP	95.6	94.4	95.5	95.0
Saved (%)	42.6	42.4	42.5	42.6

Note: All the results are obtained from an 2-L40-GPU server.

Cross-optimizer robustness evaluation. We test widely used optimizers—SGD (Bottou et al., 1991), AdamW (Loshchilov & Hutter, 2019), LARS (You et al., 2017), and LAMB (You et al., 2019)—on ResNet-50/CIFAR-10 (Table 7). InfoBatch saves 37.1% of training cost across all optimizers, while **OrderDP** raises savings to about 42.5%. This consistent gain shows that **OrderDP**’s dynamic sample selection is optimizer-agnostic: by focusing on high-loss examples, it reduces redundant computation and delivers plug-and-play efficiency without accuracy loss.

6 CONCLUSION

In this paper, we introduced **OrderDP**, a novel dynamic data pruning framework that provides rigorous theoretical guarantees while achieving substantial training acceleration. Unlike prior approaches, **OrderDP** ensures unbiased gradient estimation and offers exact control of the pruning ratio, leading to more stable and efficient data pruning. Our theoretical analysis establishes both convergence guarantees and generalization bounds, demonstrating its robustness across datasets and pruning levels. Empirically, **OrderDP** consistently attains equal or better accuracy than state-of-the-art baselines, while reducing runtime and overall computational cost by 40–45%. Moreover, its simpler plug-and-play design makes it easy to integrate into existing pipelines. These findings highlight the potential of our method as a scalable solution that balances efficiency, accuracy, and theoretical rigor.

ETHICS STATEMENT

Our work focuses on improving training efficiency in deep learning through dynamic data pruning. All experiments are conducted on widely used public benchmark datasets (CIFAR-10, CIFAR-100, and ImageNet-1K), which do not involve any personally identifiable information, sensitive attributes, or human subjects. The study does not pose foreseeable risks related to privacy, fairness, or security. Moreover, no external sponsorship or conflicts of interest have influenced the design, analysis, or reporting of this work. As such, we believe our research complies with the ICLR Code of Ethics and raises no ethical concerns.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we provide detailed descriptions of datasets (CIFAR-10, CIFAR-100, ImageNet-1K), model architectures (ResNet-18, ResNet-50), hyperparameters, and training protocols in the main text and Appendix. For reproducibility, our implementation is based on PyTorch, with standard data augmentation (normalization, random cropping, horizontal flipping), SGD optimizer with momentum, weight decay, and OneCycle learning rate scheduling. We will submit the full source code and configuration files in the supplementary material to enable independent verification of our experiments. In addition, ablation studies and sensitivity analyses provide transparency into the robustness of our method across pruning ratios, optimizers, and architectures.

540 REFERENCES
541

542 Carlo Acerbi and Dirk Tasche. On the coherence of expected shortfall. *Journal of banking & finance*,
543 26(7):1487–1503, 2002. 18

544 Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan Arora. Contextual diversity for active
545 learning. In *ECCV*, pp. 137–153. Springer, 2020. 7, 20

546 Shun-ichi Amari. Backpropagation and stochastic gradient descent method. *Neurocomputing*, 5(4-5):
547 185–196, 1993. 3

548 Shun-ichi Amari, Naotake Fujita, and Shigeru Shinomoto. Four types of learning curves. *Neural
549 Computation*, 4(4):605–618, 1992. 1

550 Fadhel Ayed and Soufiane Hayou. Data pruning and neural scaling laws: fundamental limitations of
551 score-based algorithms. *arXiv preprint arXiv:2302.06960*, 2023. 2, 21

552 Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
553 learning and streaming. *Advances in neural information processing systems*, 33:14879–14890,
554 2020. 1

555 Léon Bottou et al. Stochastic gradient learning in neural networks. *Proceedings of Neuro-Nimes*, 91
556 (8):12, 1991. 10

557 Trevor Campbell and Tamara Broderick. Automated scalable bayesian inference via hilbert coresets.
558 *Journal of Machine Learning Research*, 20(15):1–38, 2019. 1

559 Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
560 for tuning large language models. *arXiv preprint arXiv:2307.06290*, 2023. 21

561 Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
562 accurate neural networks by emphasizing high variance samples. *Advances in Neural Information
563 Processing Systems*, 30, 2017. 20

564 Dingshuo Chen, Yanqiao Zhu, Jieyu Zhang, Yuanqi Du, Zhixun Li, Qiang Liu, Shu Wu, and Liang
565 Wang. Uncovering neural scaling laws in molecular representation learning. *Advances in Neural
566 Information Processing Systems*, 36:1452–1475, 2023. 1

567 Dingshuo Chen, Zhixun Li, Yuyan Ni, Guibin Zhang, Ding Wang, Qiang Liu, Shu Wu, Jeffrey
568 Yu, and Liang Wang. Beyond efficiency: Molecular data pruning for enhanced generalization.
569 *Advances in Neural Information Processing Systems*, 37:18036–18061, 2024. 1

570 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
571 Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
572 contrastive language-image learning. In *Proceedings of the IEEE/CVF conference on computer
573 vision and pattern recognition*, pp. 2818–2829, 2023. 1

574 Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
575 Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
576 learning. In *ICLR*, 2019. 7, 20

577 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
578 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
579 pp. 248–255. Ieee, 2009. 3, 6

580 Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
581 based approach. *arXiv preprint arXiv:1802.09841*, 2018. 7, 20

582 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
583 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
584 pp. 770–778, 2016. 7

585 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
586 autoencoders are scalable vision learners, 2021. 9

594 Muyang He, Shuo Yang, Tiejun Huang, and Bo Zhao. Large-scale dataset pruning with dynamic
 595 uncertainty. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 596 *Recognition*, pp. 7713–7722, 2024. 20

597

598 Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
 599 *arXiv preprint arXiv:2102.01293*, 2021. 1

600 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 601 Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 602 empirically. *arXiv preprint arXiv:1712.00409*, 2017. 1

603

604 Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian logistic
 605 regression. *Advances in neural information processing systems*, 29, 2016. 1

606 Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for transfer
 607 learning? *arXiv preprint arXiv:1608.08614*, 2016. 20

608

609 Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
 610 information measures with applications in machine learning. In *Algorithmic Learning Theory*, pp.
 611 722–754. PMLR, 2021. 20

612 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 613 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 614 *arXiv preprint arXiv:2001.08361*, 2020. 1

615

616 Kenji Kawaguchi and Haihao Lu. Ordered sgd: A new stochastic optimization framework for
 617 empirical risk minimization. In *International Conference on Artificial Intelligence and Statistics*,
 618 pp. 669–679. PMLR, 2020. 3, 5

619 Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
 620 Grad-match: Gradient matching based data subset selection for efficient deep model training. In
 621 *International Conference on Machine Learning*, pp. 5464–5474. PMLR, 2021a. 20

622

623 Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
 624 Generalization based data subset selection for efficient and robust learning. In *Proceedings of the*
 625 *AAAI Conference on Artificial Intelligence*, 2021b. 1, 7, 20

626 Sungnyun Kim, Sangmin Bae, and Se-Young Yun. Coreset sampling from open-set for fine-grained
 627 self-supervised learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 628 *Pattern Recognition*, pp. 7537–7547, 2023. 1

629

630 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 631 *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pp. 1885–1894.
 632 JMLR. org, 2017. 1, 7, 20

633 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
 634 research). a. URL <http://www.cs.toronto.edu/~kriz/cifar.html>. 3, 6

635

636 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
 637 research). b. URL <http://www.cs.toronto.edu/~kriz/cifar.html>. 3, 6

638 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 639 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 640 *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021. 9

641

642 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. 10

643

644 Zhiyun Lu, Yongqiang Wang, Yu Zhang, Wei Han, Zhehuai Chen, and Parisa Haghani. Unsupervised
 645 data selection via discrete speech representation for asr. *arXiv preprint arXiv:2204.01981*, 2022.
 21

646

647 Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras. Active learning by
 648 acquiring contrastive examples. *arXiv preprint arXiv:2109.03764*, 2021. 20

648 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
 649 When less is more: Investigating data pruning for pretraining llms at scale. *arXiv preprint*
 650 *arXiv:2309.04564*, 2023. 21

651 Ronak Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, and Zaid Harchaoui. Stochastic optimiza-
 652 tion for spectral risk measures. In *International Conference on Artificial Intelligence and Statistics*,
 653 pp. 10112–10159. PMLR, 2023. 3, 5, 6, 18, 19

654 Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
 655 machine learning models. In *ICML*. PMLR, 2020. 1, 7

656 Patrik O’Kanovic, Roger Waleffe, Vasilis Mageirakos, Konstantinos Nikolakakis, Amin Karbasi,
 657 Dionysios Kalogerias, Nezihe Merve Gürel, and Theodoros Rekatsinas. Repeated random sampling
 658 for minimizing the time-to-accuracy of learning. In *The Twelfth International Conference on*
 659 *Learning Representations*, 2024. URL <https://openreview.net/forum?id=JnRStoIuTe>. 20

660 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*
 661 *arXiv:1912.01703*, 2019. 7

662 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
 663 important examples early in training. *Advances in neural information processing systems*, 34:
 664 20596–20607, 2021. 7, 20

665 Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Xu Zhao Pan, Daquan Zhou,
 666 Lei Shang, Baigui Sun, Xuansong Xie, and Yang You. Infobatch: Lossless training speed
 667 up by unbiased dynamic data pruning. In *The Twelfth International Conference on Learning*
 668 *Representations*, 2024. 1, 2, 4, 7, 8, 20

669 Ravi S Raju, Kyle Daruwalla, and Mikko Lipasti. Accelerating deep learning with dynamic data
 670 pruning, 2021. 1, 4, 7, 8, 20

671 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 672 approach. In *ICLR*, 2018. 7, 20

673 Vatsal Shah, Xiaoxia Wu, and Sujay Sanghavi. Choosing the sample with lowest loss makes sgd
 674 robust. In *International Conference on Artificial Intelligence and Statistics*, pp. 2120–2130. PMLR,
 675 2020. 4, 5

676 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
 677 scaling laws: beating power law scaling via data pruning. *Advances in Neural Information*
 678 *Processing Systems*, 35:19523–19536, 2022. 7, 20

679 Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data
 680 pruning via moving-one-sample-out. *Advances in neural information processing systems*, 36:
 681 18251–18262, 2023. 20

682 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
 683 Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
 684 *arXiv preprint arXiv:1812.05159*, 2018. 7, 20

685 Max Welling. Herding dynamical weights to learn. In *ICMLg*, pp. 1121–1128, 2009. 7, 20

686 Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
 687 procedure in timm, 2021. 9

688 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
 689 Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language
 690 model pretraining. *Advances in Neural Information Processing Systems*, 36:69798–69818, 2023.
 691 21

692 Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
 693 training data by examining generalization influence. *arXiv preprint arXiv:2205.09329*, 2022. 1, 7,
 694 20

702 Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
703 training data by examining generalization influence. In *The Eleventh International Conference on*
704 *Learning Representations*, 2023. 7

705 Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. *arXiv*
706 *preprint arXiv:1708.03888*, 2017. 10

708 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
709 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
710 learning: Training bert in 76 minutes. *arXiv preprint arXiv:1904.00962*, 2019. 10

711 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
712 Cutmix: Regularization strategy to train strong classifiers with localizable features, 2019. 9

714 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
715 risk minimization, 2018. 9

717 Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
718 seeks first-order flatness and improves generalization. In *Proceedings of the IEEE/CVF Conference*
719 *on Computer Vision and Pattern Recognition*, pp. 20247–20257, 2023. 2

720 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
721 generalization in deep learning. In *International conference on machine learning*, pp. 26982–
722 26992. PMLR, 2022. 2

724 Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation,
725 2017. 9

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A PROOF OF THEORETICAL ANALYSIS**
 757

758 **A.1 PROOF OF THEOREM 1**
 759

760 *Proof.* We just need to show that \tilde{g} is an unbiased estimator of a sub-gradient of $L_q(\theta)$ at θ^t , namely
 761 $E\tilde{g} \in \partial L_q(\theta^t)$. At first, it holds that

$$\begin{aligned} 762 \quad E\tilde{g}^t &= \frac{1}{q} E \sum_{i \in Q} g_i^t = \frac{1}{q} \sum_{i=1}^n P(i \in Q) g_i^t \\ 763 \\ 764 &= \frac{1}{q} \sum_{j=1}^n P((j) \in Q) g_{(j)}^t, \\ 765 \\ 766 \\ 767 \end{aligned}$$

768 where $g_i^t \in \partial L_i(\theta^t)$ is a sub-gradient of L_i at θ^t . In the above equality chain, the third equality
 769 is simply the definition of expectation, and the last equality is because $((1), (2), \dots, (n))$ is a
 770 permutation of $(1, 2, \dots, n)$.

771 For any given index j , $P((j) \in Q) \neq \frac{q}{n}$ thus $E\tilde{g}^t \notin \partial L(\theta^t)$. To analyze $P((j) \in Q)$, define
 772 $A_j = ((1), (2), \dots, (j-1))$, and $A_j^c = ((j+1), (j+2), \dots, (n))$ then

$$\begin{aligned} 773 \quad P((j) \in Q) &= P((j) \in q\text{-argmax}_{i \in S} \mathcal{H}_i(\theta)) \\ 774 &= P((j) \in S \text{ and } S \text{ contains at most } q-1 \text{ items in } A_j) \\ 775 &= P((j) \in S) P(S \text{ contains at most } q-1 \text{ items in } A_j \mid (j) \in S) \\ 776 &= P((j) \in S) \sum_{l=l_1}^{l_2} P((j) \text{ appears at } l \text{ position in } S \mid (j) \in S), \\ 777 \\ 778 \end{aligned} \tag{7}$$

778 where $0 \leq l_1 \leq l_2 \leq s$ measures the possible positions of $(j) \in S$. These two variables vary
 779 depending on the choice of (j) . For example, if $(j) = (1)$, (j) should be included in Q since (1)
 780 would be at the top-1 position of S .

781 Notice that S is randomly chosen from sample index set $(1, 2, \dots, n)$ without replacement. There are
 782 in total $\binom{n}{s}$ different sets S such that $|S| = s$. Among them, there are $\binom{n-1}{s-1}$ different sets S which
 783 contains the index (j) , thus

$$784 \quad P((j) \in S) = \frac{\binom{n-1}{s-1}}{\binom{n}{s}}. \tag{8}$$

785 Given the condition $(j) \in S$, (j) appears at l position means S contains $l-1$ items in A_j and $s-l$
 786 items in A_j^c , thus we have the constraints:

$$787 \quad s-l \leq n-j \quad \text{and} \quad 1 \leq l-1 \leq j-1.$$

788 Thus we conclude $s-n+j \leq l \leq j$, i.e., $l_1 = \max\{1, s-n+j\}$ and $l_2 = \min\{1, j\}$. There are
 789 $\binom{n-j}{s-l}$ such possible set S for $(j) \in S$, whereby it holds that

$$\begin{aligned} 790 \quad P(S \text{ contains at most } q-1 \text{ items in } A_j \mid (j) \in S) \\ 791 &= \sum_{l=l_1}^{l_2} P((j) \text{ appears at } l \text{ position in } S \mid (j) \in S) \\ 792 &= \sum_{l=\max\{1, s-n+j\}}^{\min\{q, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n-1}{s-1}} \\ 793 \\ 794 \\ 795 \\ 796 \\ 797 \\ 798 \\ 799 \end{aligned} \tag{9}$$

800 Substituting Equations (7) and (8) into Equation (6), we arrive at

$$801 \quad P((j) \in Q) = \frac{\binom{n-1}{s-1}}{\binom{n}{s}} \sum_{l=\max\{1, s-n+j\}}^{\min\{q, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n-1}{s-1}} = \sum_{l=\max\{1, s-n+j\}}^{\min\{q, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}} = \gamma_j. \tag{10}$$

802 Therefore,

$$803 \quad E\tilde{g}^t = \frac{1}{q} \sum_{j=1}^n P((j) \in Q) g_{(j)}^t = \frac{1}{q} \sum_{j=1}^n \gamma_j g_{(j)}^t \in \partial L_q(\theta^t), \tag{11}$$

804 where the last inequality is due to the additivity of sub-gradient (for both convex and weakly convex
 805 function) \square .

810 A.2 PROOF OF PROPOSITION 2
811812 *Proof.* We will show that

813
814
$$\lim_{j,n \rightarrow \infty, j/n=z} \gamma_j = \frac{1}{n} \frac{s!}{(l-1)!(s-l)!} \sum_{l=1}^q \left(\frac{j}{n}\right)^{l-1} \left(1 - \frac{j}{n}\right)^{s-l}. \quad (12)$$

815

816 We begin the proof by changing the variable $z = \frac{j}{n}$.
817818 At first, the Stirling's approximation yields that when n and j are both sufficiently large, it holds that

819
820
$$\binom{n}{j} \sim \sqrt{\frac{n}{2\pi j(n-j)}} \frac{n^n}{j^j(n-j)^{n-j}}. \quad (13)$$

821

822 Thus,

823
824
$$\lim_{j,n \rightarrow \infty, j/n=z} \frac{\binom{n-s}{j-l}}{\binom{n-1}{j-1}} = \frac{\frac{n^{n-s}}{j^{j-l}(n-j)^{n-j-s+l}}}{\frac{n^{n-1}}{j^{j-1}(n-j)^{n-j}}} = \frac{j^{l-1}(n-j)^{s-l}}{n^{s-1}} = \left(\frac{j}{n}\right)^{l-1} \left(\frac{n-j}{n}\right)^{s-l} \quad (14)$$

825

826 where the first equality utilizes Equation (10) and the fact that $s, l, 1$ are negligible in the limit case
827 (except the exponent terms).

828 On the other hand, it holds by rearranging the factorial numbers that

829
830
$$\frac{1}{n} \frac{\binom{n-s}{j-l}}{\binom{n-1}{j-1}} \frac{s!}{(l-1)!(s-l)!} = \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}}. \quad (12)$$

831

832 Recall $\gamma_j = \sum_{l=\max\{1, s-n+j\}}^{\min\{q, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}}$. Let

833
834
$$\gamma_j = \sum_{l=\max\{1, s-n+j\}}^{\min\{q, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}} = \sum_{l=1}^q \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}}, \quad (15)$$

835

836 where we set the value to 0 for $l \in [1, s-n+j]$ and $[j, q]$ if $s-n+j > 1$ and $j < q$. Therefore,
837 we conclude the following by noticing $s > q$,

838
839
$$\begin{aligned} \frac{d}{dz} \gamma(z) &= \sum_{l=2}^q (l-1) z^{l-2} (1-z)^{s-l} \frac{s!}{(l-1)!(s-l)!} - \sum_{l=1}^q (s-l) z^{l-1} (1-z)^{s-l-1} \frac{s!}{(l-1)!(s-l)!} \\ &= \sum_{l=2}^q z^{l-2} (1-z)^{s-l} \frac{s!}{(l-2)!(s-l)!} - \sum_{l=1}^q z^{l-1} (1-z)^{s-l-1} \frac{s!}{(l-1)!(s-l-1)!} \\ &= \sum_{l=1}^{q-1} z^{l-1} (1-z)^{s-l-1} \frac{s!}{(l-1)!(s-l-1)!} - \sum_{l=1}^q z^{l-1} (1-z)^{s-l-1} \frac{s!}{(l-1)!(s-l-1)!} \\ &= -z^{q-1} (1-z)^{s-q-1} \frac{s!}{(q-1)!(s-q-1)!} \\ &= -z^{q-1} (1-z)^{s-q-1} \frac{(s-1)!}{(q-1)!(s-q-1)!} s. \end{aligned} \quad (16)$$

840 In other words, $1 - \frac{1}{s} \gamma(z)$ is the cumulative distribution function of $\text{Beta}(q, s-q)$ when $n \rightarrow \infty$. \square
841842 A.3 PROOF OF THEOREM 3
843844 Full version of Theorem 3: Let $(\theta^t)_{t=0}^T$ be the sequence generated by Algorithm 1. Suppose there
845 exists a finite $\theta^* \in \arg \min_{\theta} \mathcal{L}_q(\theta)$, $\mathcal{L}_q(\theta^*) < \infty$. If each $\mathcal{L}_i(\cdot)$ is convex and G -Lipschitz, then

846
847
$$\min_{0 \leq t \leq T} \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \leq \frac{\eta_{\max} (\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2)}{2 \eta_{\min} \sum_{t=1}^T \eta^t}. \quad (17)$$

848

864 Moreover, if we define the weighted average $\bar{\theta}^T = \frac{1}{\sum_{t=1}^T \eta^t} \sum_{t=1}^T \eta^t \theta^t$, then
 865

$$866 \mathbb{E}[\mathcal{L}_q(\bar{\theta}^T) - \mathcal{L}_q(\theta^*)] \leq \frac{\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2}{2 \sum_{t=1}^T \eta^t}. \quad (18)$$

867
 868

869 *Proof.* Consider the one update at epoch t , we have
 870

$$871 \|\theta^{t+1} - \theta^*\|_2^2 = \|\theta^t - \theta^*\|_2^2 - 2\eta^t \langle \tilde{g}^t, \theta^t - \theta^* \rangle + (\eta^t)^2 \|\tilde{g}^t\|_2^2. \quad (19)$$

872

873 Taking the conditional expectation of v^t given θ of equation 19 yields
 874

$$875 \mathbb{E}[\|\theta^{t+1} - \theta^*\|_2^2] \leq \|\theta^t - \theta^*\|_2^2 - 2\eta^t \langle \mathbb{E}[\tilde{g}^t], \theta^t - \theta^* \rangle + (\eta^t)^2 G^2, \quad (20)$$

876

877 where we use $\|\tilde{g}^t\|_2 \leq G$. Because we maintain an unbiased gradient estimator $\mathbb{E}[\tilde{g}^t] \in \partial \mathcal{L}_q(\theta^t)$, we
 878 have that with convexity of \mathcal{L}_q , we have
 879

$$880 -\langle \mathbb{E}[\tilde{g}^t], \theta^t - \theta^* \rangle \leq -(\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)), \quad (21)$$

881

882 where the $\theta^* := \arg \min_{\theta} \mathcal{L}_q(\theta)$. Substituted equation 21 into equation 20 gives
 883

$$884 \mathbb{E}[\|\theta^{t+1} - \theta^*\|_2^2] \leq \|\theta^t - \theta^*\|_2^2 - 2\eta^t (\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)) + (\eta^t)^2 G^2. \quad (22)$$

885
 886

887 Take the expectation over the entire sequence $\theta^1, \dots, \theta^{t+1}$, sum over $t = 1, \dots, T$, we have
 888

$$889 2 \sum_{t=1}^T \eta^t \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \leq (\|\theta^1 - \theta^*\|_2^2 - \mathbb{E}[\|\theta^{T+1} - \theta^*\|_2^2]) + G^2 \sum_{t=1}^T (\eta^t)^2. \quad (23)$$

890

891 It shows that
 892

$$893 \frac{1}{\sum_{t=1}^T \eta^t} \sum_{t=1}^T \eta^t \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \leq \frac{\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2}{2 \sum_{t=1}^T \eta^t}. \quad (24)$$

894

895 With the observation that
 896

$$897 \frac{1}{\sum_{t=1}^T \eta^t} \sum_{t=1}^T \eta^t \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \\ 898 = \frac{1}{\frac{1}{T} \sum_{t=1}^T \eta^t} \frac{1}{T} \sum_{t=1}^T \eta^t \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \\ 899 \geq \frac{\min_{1 \leq t \leq T} \eta^t \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)]}{\max_{1 \leq t \leq T} \eta^t} \\ 900 \geq \frac{\eta_{\min}}{\eta_{\max}} \min_{1 \leq t \leq T} \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)], \quad (25)$$

901
 902
 903
 904
 905

906 where $\eta_{\min} = \min_{1 \leq t \leq T} \eta^t$ and $\eta_{\max} = \max_{1 \leq t \leq T} \eta^t$. Therefore, it holds that
 907

$$908 \frac{\eta_{\min}}{\eta_{\max}} \min_{1 \leq t \leq T} \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \leq \frac{1}{\sum_{t=1}^T \eta^t} \sum_{t=1}^T \eta^t \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \\ 909 \leq \frac{\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2}{\sum_{t=1}^T \eta^t}. \quad (26)$$

910
 911
 912
 913

914 Then we can derive that
 915

$$916 \min_{1 \leq t \leq T} \mathbb{E}[\mathcal{L}_q(\theta^t) - \mathcal{L}_q(\theta^*)] \leq \frac{\eta_{\max} (\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2)}{2 \eta_{\min} \sum_{t=1}^T \eta^t}. \quad (27)$$

917

□

918 A.4 PROOF OF THEOREM 4
919

920 *Proof.* We begin this proof by leveraging the concepts of spectral risk measure (Acerbi & Tasche,
921 2002; Mehta et al., 2023). the surrogate loss $\mathcal{L}_q(\theta, D) = \sum_{i=1}^n \frac{\gamma_i}{q} L_{(i)}(\theta) = \sum_{i=1}^n \sigma_i Z_{(i)}$ is called
922 an L -risk with a spectrum $\sigma_i = \frac{\gamma_i}{q}$ and $Z_{(i)} = L_{(i)}(\theta)$ for $i \in [n]$, which can be regarded as a
923 functional of the CDF known as a *spectral risk measure*. $\{Z_i\}_{i=1}^n$ are arbitrary real-valued i.i.d.
924 random variables drawn from CDF F . For our case, these refer to data instance D_i of n samples
925 drawn from distribution \mathcal{D} under parameter vector θ .

926 Let $F_n(z) := \frac{1}{n} \sum_{i=1}^n 1_{(-\infty, z]}(Z_i)$ denote the (random) empirical CDF of the sample and define the
927 empirical *quantile function* (or inverse CDF) as
928

$$929 F_n^{-1}(t) := \inf\{z : F_n(z) \geq t\} \quad \text{for } t \in (0, 1). \quad (28)$$

930 The population quantile function is defined similarly as
931

$$932 F^{-1}(t) := \inf\{z : F(z) \geq t\}. \quad (29)$$

933 The empirical quantile function can be written in terms of the order statistics as $F_n^{-1}(t) = Z_{(\lceil nt \rceil)}$.
934 Notice in particular that when $t \in (\frac{i-1}{n}, \frac{i}{n})$, we have that $F_n^{-1}(t) = Z_{(i)}$, where end-points are
935 chosen to make F_n^{-1} left continuous.
936

937 The spectrum σ of an L -risk is typically defined as a discretization of a probability density s on $(0, 1)$,
938 such that

$$939 \sigma_i = \int_{(i-1)/n}^{i/n} s(t) dt, \quad (30)$$

941 so that it need not be redefined for every n . Given both the construction of s and F_n^{-1} , we can rewrite
942 the L -risk as
943

$$\begin{aligned} 944 \mathcal{L}_q(\theta, D) &= \sum_{i=1}^n \sigma_i Z_{(i)} = \sum_{i=1}^n \left(\int_{(i-1)/n}^{i/n} s(t) dt \right) Z_{(i)} \\ 945 &= \sum_{i=1}^n \left(\int_{(i-1)/n}^{i/n} s(t) \cdot Z_{(\lceil nt \rceil)} dt \right) \\ 946 &= \int_0^1 s(t) \cdot F_n^{-1}(t) dt =: \mathbb{L}_s [F_n], \end{aligned} \quad (31)$$

951 where $\mathbb{L}_s [G] := \int_0^1 s(t) G^{-1}(t) dt$ is called a spectral risk measure with spectrum s applied to CDF
952 G .
953

954 It stands to reason that $\mathbb{L}_s [F_n]$ converges to $\mathbb{L}_s [F]$ in an appropriate sense. This convergence is
955 governed by the Wasserstein distance between the empirical and population distribution, which we
956 briefly recall here. In this section, we control the bias term appearing in the convergence analysis.
957 The following lemmas consider a set of real numbers, representing losses at a single $\theta \in \mathbb{R}^d$. Let
958 $x_1, \dots, x_n \in \mathbb{R}$ be called the *full batch*, and let X_1, \dots, X_m be a random sample selected uniformly
959 *without* replacement from $\{x_1, \dots, x_n\}$, called the *minibatch*. Let
960

$$961 F_n(x) := \frac{1}{n} \sum_{i=1}^n 1_{(-\infty, x]} \text{ and } F_{n,m}(x) := \frac{1}{m} \sum_{j=1}^m 1_{(-\infty, x)} \quad (32)$$

963 be the empirical CDFs, and let
964

$$965 F_n^{-1}(t) := \inf\{x : F_n(x) \geq t\} \text{ and } F_{n,m}(t) := \inf\{x : F_{n,m}(x) \geq t\}. \quad (33)$$

966 be the empirical quantile functions of the full batch and minibatch, respectively. Similarly, let
967

$$968 \mu_n := \sum_{i=1}^n \delta_{x_i} \text{ and } \mu_{n,m} = \sum_{j=1}^m \delta_{X_j} \quad (34)$$

971 be the empirical measures of the full batch and minibatch, respectively, with δ_x indicating a Dirac
972 point mass at x . Let $u(t) := 1_{(0,1)} t$ be the uniform spectrum.
973

972 Recall the expressions of the \mathcal{L} -risk. We denote $\mathcal{L}(\theta^*) = \mathbb{E}_{D \sim \mathcal{D}}[\mathcal{L}(\theta^*, D)]$ as the optimal value.
 973
 974 For the sampled distribution, we have

$$975 \quad 976 \quad 977 \quad 978 \quad \mathbb{E}[\mathcal{L}_q(\theta^t, D)] = \mathbb{E} \left[\sum_{j=1}^s \frac{\hat{\gamma}_j}{q} \mathcal{L}_{i_{(j)}}(\theta^t) \right] = \mathbb{E}[\mathbb{L}_s[F_{n,s}(\cdot; \theta^t)]], \quad (35)$$

979 and for the uniform distribution, we define
 980
 981
 982
 983

$$984 \quad 985 \quad 986 \quad 987 \quad \mathbb{E}[\mathcal{L}_u(\theta^t, D)] = \mathbb{E} \left[\sum_{j=1}^s \frac{1}{s} \mathcal{L}_{i_{(j)}}(\theta^t) \right] = \mathbb{E}[\mathbb{L}_u[F_{n,s}(\cdot; \theta^t)]]. \quad (36)$$

988 Moreover, the full-batch loss satisfies
 989
 990

$$991 \quad 992 \quad 993 \quad 994 \quad \mathcal{L}(\theta^t, D) = \mathcal{L}_u(\theta^t, D) = \mathbb{L}_u[F_n(\cdot; \theta^t)]. \quad (37)$$

995 Here, the distributions s and u correspond to the sampling distribution of γ in $\mathcal{L}_q(\theta^t, D)$ at step t and
 996 the uniform distribution, respectively. The expectation is taken over the minibatch $\{i_1, \dots, i_s\}$.
 997

998 Therefore, we establish the generalization error over the set $\Theta := \{\theta^i\}_{i=1}^T$.
 999
 1000

$$1001 \quad 1002 \quad 1003 \quad 1004 \quad 1005 \quad 1006 \quad 1007 \quad 1008 \quad 1009 \quad 1010 \quad 1011 \quad 1012 \quad 1013 \quad 1014 \quad 1015 \quad 1016 \quad 1017 \quad 1018 \quad 1019 \quad \begin{aligned} & \mathcal{L}(\theta^*) - \mathbb{E}[\mathcal{L}_q(\theta^t, D)] \\ & \leq \sup_{\theta \in \Theta} \mathcal{L}(\theta^*) - \mathbb{E}[\mathcal{L}_q(\theta^t, D)] \\ & = \sup_{\theta \in \Theta} \mathcal{L}(\theta^*) - \mathbb{E}[\mathbb{L}_s[F_{n,s}]] - \mathbb{L}_s[F_n] + \mathbb{L}_s[F_n] - \mathbb{E}[\mathbb{L}_u[F_{n,s}]] + \mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n] + \mathbb{L}_u[F_n] \\ & = \sup_{\theta \in \Theta} \mathcal{L}(\theta^*) - \mathbb{E}[\mathbb{L}_u[F_{n,s}]] + \mathbb{L}_u[F_n] - \mathbb{L}_s[F_n] \\ & \quad - \left(\mathbb{E}[\mathbb{L}_s[F_{n,s}]] - \mathbb{L}_s[F_n] - (\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n]) \right) \\ & \leq \sup_{\theta \in \Theta} \mathcal{L}(\theta^*) - \mathbb{E}[\mathbb{L}_u[F_{n,s}]] + \sup_{\theta \in \Theta} (\mathbb{L}_u[F_n] - \mathbb{L}_s[F_n]) \\ & \quad + \sup_{\theta \in \Theta} \left(- \mathbb{E}[\mathbb{L}_s[F_{n,s}]] + \mathbb{L}_s[F_n] + \mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n] \right) \\ & \leq \inf_{\theta \in \Theta} |\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathcal{L}(\theta^*)| + \sup_{\theta \in \Theta} (\mathbb{L}_u[F_n] - \mathbb{L}_s[F_n]) \\ & \quad + \sup_{\theta \in \Theta} \left| \mathbb{E}[\mathbb{L}_s[F_{n,s}]] - \mathbb{L}_s[F_n] - (\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n]) \right| \\ & \leq \frac{\eta_{\max} \left(\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2 \right)}{2\eta_{\min} \sum_{t=1}^T \eta^t} \\ & \quad + \sup_{\theta \in \Theta} (\mathbb{L}_u[F_n] - \mathbb{L}_s[F_n]) + \sup_{\theta \in \Theta} \|s - u\|_{\infty} \mathbb{E}[\|F_{n,m}^{-1} - F_n^{-1}\|_1] \\ & \leq \underbrace{\frac{\eta_{\max} (\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2)}{2\eta_{\min} \sum_{t=1}^T \eta^t}}_{\text{unbiased part}} - \underbrace{\mathcal{Q}_n(\theta^t; s, q) + \sqrt{2} C_s B \sqrt{\frac{n-s}{s(n-1)}}}_{\text{biased part}}, \end{aligned} \quad (38)$$

1020 where the third inequality follows the Theorem 3 and the fourth inequality follows
 1021 Lemma 14 in (Mehta et al., 2023). We denote $C_s = \sup_{t \in (0,1)} |s(t) - u(t)|$, $B =$
 1022 $\inf_{\theta \in [1,T]} \max_{i \in [1,n]} |\mathcal{L}_i(\theta, z_i)| < \infty$, and $\mathcal{Q}_n(\theta; s, q) := \inf_{\theta \in \Theta} \sum_{i=1}^n \left(\frac{r_i(\theta, D)}{q} - \frac{1}{n} \right) \mathcal{L}_i(\theta, z_i)$.
 1023

1024 Moreover, if we use the weighted average $\bar{\theta}^T = \frac{1}{\sum_{t=1}^T \eta^t} \sum_{t=1}^T \eta^t \theta^t$ as output of **OrderDP**, the
 1025 dependence on η_{\max} and η_{\min} can be removed and it holds that:

$$\begin{aligned}
1026 & \mathcal{L}(\theta^*) - \mathbb{E}[\mathcal{L}_q(\bar{\theta}^T, D)] \\
1027 & = \mathcal{L}(\theta^*) - \mathbb{E}[\mathbb{L}_s[F_{n,s}]] - \mathbb{L}_s[F_n] + \mathbb{L}_s[F_n] - \mathbb{E}[\mathbb{L}_u[F_{n,s}]] + \mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n] + \mathbb{L}_u[F_n] \\
1028 & = \mathcal{L}(\theta^*) - \mathbb{E}[\mathbb{L}_u[F_{n,s}]] + \mathbb{L}_u[F_n] - \mathbb{L}_s[F_n] - [\mathbb{E}[\mathbb{L}_s[F_{n,s}]] - \mathbb{L}_s[F_n] - (\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n])] \\
1029 & \leq |\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathcal{L}(\theta^*)| + (\mathbb{L}_u[F_n] - \mathbb{L}_s[F_n]) \\
1030 & \quad + |\mathbb{E}[\mathbb{L}_s[F_{n,s}]] - \mathbb{L}_s[F_n] - (\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n])| \\
1031 & \leq |\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathcal{L}(\theta^*)| + \sup_{\theta \in \Theta} (\mathbb{L}_u[F_n] - \mathbb{L}_s[F_n]) \\
1032 & \quad + |\mathbb{E}[\mathbb{L}_s[F_{n,s}]] - \mathbb{L}_s[F_n] - (\mathbb{E}[\mathbb{L}_u[F_{n,s}]] - \mathbb{L}_u[F_n])| \\
1033 & \leq \underbrace{\frac{(\|\theta^1 - \theta^*\|_2^2 + G^2 \sum_{t=1}^T (\eta^t)^2)}{2 \sum_{t=1}^T \eta^t}}_{\text{unbiased part}} - \underbrace{\mathcal{Q}_n(\theta^t; s, q) + \sqrt{2} C_s B \sqrt{\frac{n-s}{s(n-1)}}}_{\text{biased part}}. \\
1034 & \\
1035 & \\
1036 & \\
1037 & \\
1038 & \\
1039 & \\
1040 & \\
1041 & \\
1042 & \\
1043 & \text{where the last inequality follows from (18) and other terms remain unchanged.} \\
1044 & \quad \square \\
1045 & \\
1046 & \\
1047 & \text{B RELATED WORKS} \\
1048 & \\
1049 & \textbf{Static Data Pruning.} Static pruning techniques aim to pre-select a compact subset of the training} \\
1050 & \text{data that can approximate the utility of the full dataset. A wide range of criteria have been proposed} \\
1051 & \text{for this purpose. Diversity-based methods such as Contextual Diversity (CD) (Agarwal et al., 2020),} \\
1052 & \text{Herding (Welling, 2009), and k-Center (Sener & Savarese, 2018) remove redundant samples by} \\
1053 & \text{ensuring broad feature-space coverage. Difficulty-based strategies including Cal (Margatina et al.,} \\
1054 & \text{2021) and Deepfool (Ducoffe & Precioso, 2018) prioritize hard-to-learn examples near decision} \\
1055 & \text{boundaries. Error- and gradient-driven approaches such as GraNd and EL2N (Paul et al., 2021) and} \\
1056 & \text{MOSO (Tan et al., 2023) instead exploit training dynamics or loss sensitivity. In parallel, uncertainty-} \\
1057 & \text{based sampling (Coleman et al., 2019), influence-function analysis (Koh & Liang, 2017), and gradient} \\
1058 & \text{matching approaches like GradMatch (Killamsetty et al., 2021b;a) provide alternative means of} \\
1059 & \text{quantifying informativeness. More principled frameworks include bilevel optimization (Killamsetty} \\
1060 & \text{et al., 2021b) and submodular subset selection (Iyer et al., 2021), where algorithms such as FL} \\
1061 & \text{and Graph Cut (GC) (Iyer et al., 2021) explicitly balance coverage and information gain. Early} \\
1062 & \text{computer vision work such as (Huh et al., 2016) also emphasized the importance of dataset diversity} \\
1063 & \text{for transferable representations. While effective in specific cases, static approaches often require} \\
1064 & \text{costly pre-computation, and their heuristics may not generalize well across architectures or datasets,} \\
1065 & \text{particularly at ImageNet scale.} \\
1066 & \textbf{Dynamic Data Pruning.} Dynamic methods instead make pruning decisions adaptively during training} \\
1067 & \text{by leveraging information from the evolving model state. Early efforts such as ActiveBias (Chang} \\
1068 & \text{et al., 2017) adjusted sampling probabilities based on prediction confidence, while forgetting-based} \\
1069 & \text{measures (Toneva et al., 2018) revealed that unstable or frequently forgotten examples often provide} \\
1070 & \text{valuable signal. Raju et al. (Raju et al., 2021) introduced exploration-based policies such as ϵ -greedy} \\
1071 & \text{and UCB, where uncertainty estimates guide the retention of high-value samples. Recent work has} \\
1072 & \text{also examined improving random sampling policies themselves: Okanovic et al. (Okanovic et al.,} \\
1073 & \text{2024) showed that repeated random sampling can significantly reduce time-to-accuracy, offering} \\
1074 & \text{a complementary perspective to loss-based dynamic pruning approaches such as InfoBatch and} \\
1075 & \text{OrderDP. More recently, InfoBatch (Qin et al., 2024) proposed an unbiased gradient estimator,} \\
1076 & \text{showing that loss-based pruning can accelerate training without compromising accuracy on benchmarks} \\
1077 & \text{like CIFAR-10/100 and ImageNet-1K. Building on this line of research, Yang et al. (Yang et al.,} \\
1078 & \text{2022) and Sorscher et al. (Sorscher et al., 2022) extended dynamic pruning principles to large-scale} \\
1079 & \text{pretraining, while He et al. (He et al., 2024) incorporated dynamically updated uncertainty estimates.} \\
& \text{In particular, Sorscher et al. (Sorscher et al., 2022) demonstrated that the optimal choice between} \\
& \text{hard and easy samples can depend on dataset scale, an observation that is complementary to the top- q } \\
& \text{strategy analyzed in this work. Despite these advances, dynamic methods still face challenges: the}
\end{aligned} \tag{39}$$

1080 achievable “lossless” pruning ratio on new datasets is unpredictable, sorting operations can become
 1081 expensive at scale, and empirical instability often emerges under aggressive pruning ratios. [Ayed](#)
 1082 and [Hayou](#) ([Ayed & Hayou, 2023](#)) further analyze the fundamental bias of score-based pruning and
 1083 show that reweighting can recover unbiasedness with respect to the original loss. Their perspec-
 1084 tive is complementary to ours: while they study limitations under L , we provide guarantees for a
 1085 ranking-induced surrogate L_q whose gap to L is explicitly controlled.

1086 **Cross-domain Data Selection and Pruning.** Beyond computer vision, pruning and selection
 1087 strategies have been expanded to other domains such as NLP and speech. In speech recognition,
 1088 unsupervised data selection has been explored through discrete speech units ([Lu et al., 2022](#)).
 1089 For large-scale NLP pretraining, several studies investigate pruning and mixture optimization to
 1090 accelerate convergence. ([Marion et al., 2023](#)) explored pruning strategies for pretraining corpora,
 1091 while ([Xie et al., 2023](#)) introduced DoReMi, a framework that dynamically optimizes data mixtures
 1092 for faster language model pretraining. Instruction tuning has further motivated task-specific pruning,
 1093 exemplified by ([Cao et al., 2023](#)), who proposed instruction mining to select relevant subsets for
 1094 downstream tasks. These works highlight that pruning is not limited to vision but constitutes a
 1095 broader principle of efficient data utilization across modalities.

1096

1097 C EXPERIMENTAL INFRASTRUCTURES

1098

1100 **Software infrastructures.** All experiments are implemented in Python 3.12.4 using PyTorch
 1101 2.3.1 with CUDA 11.8 support. Key libraries include NumPy 1.26.4, pandas 2.2.3, torchvision
 1102 0.18.1, matplotlib 3.10.1, and scikit-learn 1.6.1 for data processing and analysis. We also employ
 1103 accelerate 1.6.0 for multi-GPU training and tqdm 4.67.1 for progress visualization.

1104

1105 **Hardware infrastructures.** We conduct all experiments on a computer server with 2 NVIDIA L40
 1106 GPUs (with 48GB memory each), a single Intel Xeon Gold 6448Y CPU (32 physical cores), and 944
 1107 GiB of system RAM.

1108

1109 D ADDITIONAL EMPIRICAL RESULTS

1110

1111 D.1 EXPERIMENTAL SETUP DETAILS

1112

1113 We provide software/hardware infrastructures in Appendix C; here we detail dataset-specific training
 1114 setups throughout this paper.

1115

1116 **CIFAR-10/100:** The CIFAR-10/100 experiment with ResNet-18 can be reproduced with SGD using a
 1117 maximum learning rate of 0.2 for the OneCycle scheduler under a batch size of 128. For experiments
 1118 with ResNet-50, SGD is used with a maximum learning rate of 0.03 and batch size of 128 for baseline,
 1119 InfoBatch, and **OrderDP**.

1120

1121 **ImageNet-1K:** The tests are implemented based on Pytorch/examples. The LARS optimizer
 1122 and a maximum learning rate of 6.4 / 1.98 are used for batch size 1024 on ImageNet-1K experiments
 1123 with ResNet-50/18.

1124

1125 D.2 VALIDATION OF THEORETICAL PROPERTIES

1126

1127 Both Figure 5 and Figure 6 illustrate theoretical properties derived in Appendix A. Figure 5 empirically
 1128 validates Proposition 2 by fixing $(s, q) = (100, 30)$ and increasing n , showing how $n \gamma_j$ converges to
 1129 $\gamma(z)$ as n , s , and q increase. Figure 6 illustrates Theorem 4 by comparing γ_j to uniform sampling for
 1130 different q (fix $(n, s) = (200, 100)$ and increase $q \rightarrow 100$), highlighting that the gap between the two
 1131 distributions vanishes (i.e., $\mathcal{Q}_n(\theta; s, q)$ and C_s approach 0) as q increases.

1132

1133 In addition to the above validations, we further examine the normalization behavior of the weights
 1134 $\{\gamma_j\}$ derived in Eq. (10). Although providing a fully symbolic proof for the combinatorial form of γ_j
 1135 is algebraically involved, the construction of Algorithm 1 implies that exactly q samples are selected
 1136 at each iteration, suggesting that $\sum_{j=1}^n \gamma_j$ should be close to q , and therefore $\sum_{j=1}^n \gamma_j/q \approx 1$.

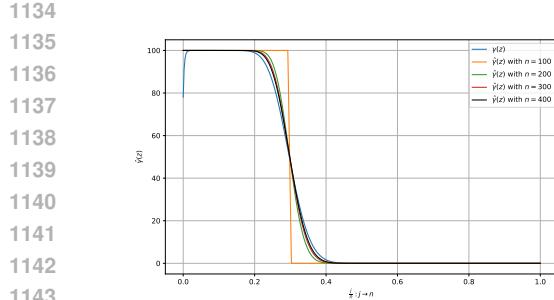


Figure 5: Empirical weight decay curves $n \gamma_j$ versus normalized index j/n , demonstrating convergence to the limiting density $\gamma(z)$ and the smoothing of the ‘cliff’ as n increases.

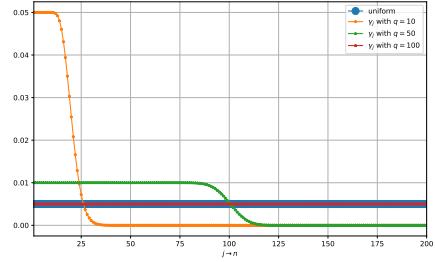


Figure 6: Comparison of the sampling weights γ_j against uniform sampling for different exploitation sizes q , illustrating the deviation captured by the bias term C_s in Theorem 4.

Figure 7 plots the normalized distributions γ_j/q for different values of q (with $(n, s) = (400, 100)$). As q increases, the curves gradually flatten and approach the uniform distribution, consistent with Theorem 4.

Figure 8 further shows the empirical values of $\sum_{j=1}^n \gamma_j/q$ across $q \in \{10, 20, \dots, 100\}$, all of which lie extremely close to 1 (within floating-point error). This provides strong numerical evidence that the weights induced by Algorithm 1 are properly normalized in practice.

Proof. We also provide proof of the claim $\sum_{j=1}^n \gamma_j/q = 1$ via Mathematical Induction.

For any n, s , when $q = 1$, we can show exactly that

$$\sum_j \frac{\gamma_j}{q} = \sum_j \frac{\binom{n-1}{s-1}}{\binom{n}{s}} = 1.$$

Suppose $\sum_j \gamma_j/q = 1$ for any $q = m$ where $m \in \mathbb{N}$ and $1 \leq m \leq s-1$, we show $\sum_j \gamma_j/q = 1$ for $q = m+1$. The case $q = m$ can be rewritten as

$$\sum_j \frac{\gamma_j}{q} = \frac{1}{m} \sum_j \sum_{l=\max\{1, s-n+j\}}^{\min\{m, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}} = 1.$$

Thus for the case $q = m+1$, we have

$$\begin{aligned} \sum_j \frac{\gamma_j}{q} &= \frac{1}{m+1} \sum_j \sum_{l=\max\{1, s-n+j\}}^{\min\{m+1, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}} \\ &= \frac{1}{m+1} \sum_j \left(\sum_{l=\max\{1, s-n+j\}}^{\min\{m, j\}} \frac{\binom{j-1}{l-1} \binom{n-j}{s-l}}{\binom{n}{s}} + \frac{\binom{j-1}{m} \binom{n-j}{s-m-1}}{\binom{n}{s}} \right) \\ &= \frac{1}{m+1} \left(m + \sum_{j=m+1}^{n-s+m+1} \frac{\binom{j-1}{m} \binom{n-j}{s-m-1}}{\binom{n}{s}} \right) \end{aligned}$$

where the last equality follows that $\binom{j-1}{m} \binom{n-j}{s-m-1} > 0$ for $m+1 \leq j \leq n-s+m+1$ else 0. The remain proof is to show $\sum_{j=m+1}^{n-s+m+1} \frac{\binom{j-1}{m} \binom{n-j}{s-m-1}}{\binom{n}{s}} = 1$.

Consider selecting a subset of size s from the set $\{1, 2, \dots, n\}$. Arrange the elements of the subset in increasing order: $a_1 \geq a_2 \geq \dots \geq a_s$. Then a_{m+1} is the $(m+1)$ -th largest element. Let $j = m+1$, i.e., the $(m+1)$ -th largest element is at position j .

To construct such a subset, the following conditions must be satisfied:

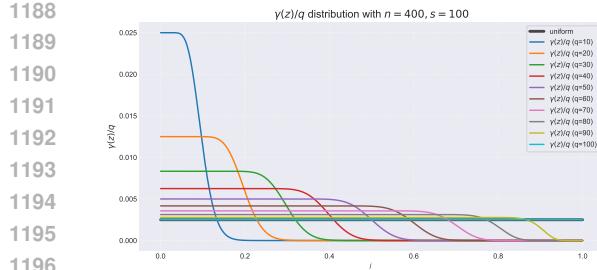


Figure 7: Normalized distributions γ_j/q for different q under $(n, s) = (400, 100)$. As q increases, the curves flatten and approach the uniform distribution.

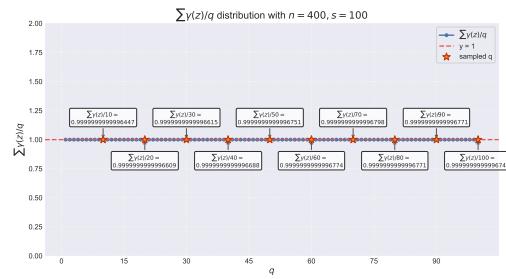


Figure 8: Empirical normalization of $\sum_{j=1}^n \gamma_j/q$. Across all $q \in \{10, \dots, 100\}$, the values remain extremely close to 1.

- Choose m elements from the first $j - 1$ elements (i.e., a_1, \dots, a_m), which can be done in $\binom{j-1}{m}$ choices.
- Choose $s - m - 1$ elements from the remaining $n - j$ elements (i.e., a_{m+2}, \dots, a_s), which can be done in $\binom{n-j}{s-m-1}$ choices.

Thus, the number of subsets where the $m + 1$ -th largest element is exactly at position j is: $\binom{j-1}{m} \binom{n-j}{s-m-1}$

Summing over j from $m + 1$ to $n - s + m + 1$ (since j must be at least $m + 1$ and at most $n - s + m + 1$ to ensure enough elements remain), we obtain the total number of subsets of size s : $\sum_{j=m+1}^{n-s+m+1} \binom{j-1}{m} \binom{n-j}{s-m-1} = \binom{n}{s}$,

Therefore, the original claim holds for all q : $\sum_{j=1}^n \gamma_j/q = 1$. \square

D.3 VALIDATION OF CONVERGENCE ASSUMPTIONS

To further support the validity of Theorem 3, we analyze whether the selected coresset stabilizes during training. Although the selection depends on sampling scores H , which may vary across epochs, our analysis shows that the coresset indeed becomes stable in later stages of training.

Coreset Dynamics. Our analysis does not assume a fixed coresset. Instead, OrderDP naturally determines the coresset through the pruning strategy (captured by γ_j in Proposition 2), where the sample $z_j \in$ coresset follows an approximate Beta-distribution.

Theoretical Parallel to SGD. The applicability of Theorem 3 is analogous to SGD’s convergence guarantees: (i) SGD converges by deterministic batches per epoch (the sample $z_j \in$ selected follows uniform sampling); (ii) OrderDP achieves convergence after the coresset stabilizes (via Beta-distributed sampling).

To empirically verify this stabilization, we measure the *Jaccard Similarity* between the coresset at the current epoch and that from the immediately preceding epoch, defined as

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}. \quad (40)$$

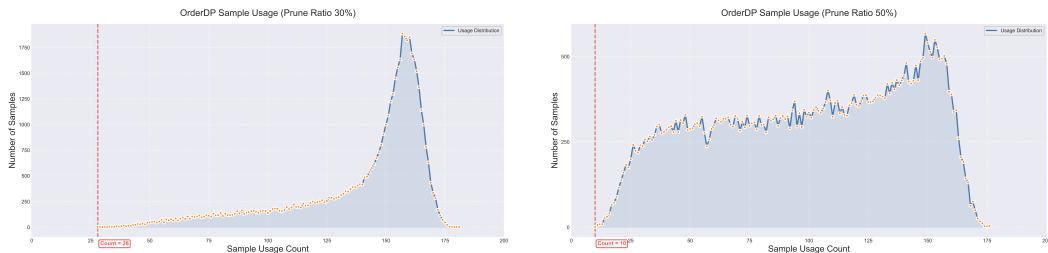
A higher similarity indicates that the selected set of samples remains consistent across epochs. Table 8 shows that OrderDP consistently achieves higher coresset stability than InfoBatch, confirming the practical applicability of Theorem 3.

D.4 SAMPLE COVERAGE UNDER DIFFERENT PRUNING RATIOS

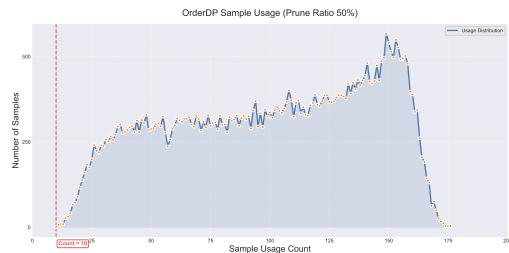
To further examine the exploration behavior of OrderDP, we track for each training sample the number of times it is selected into the update set throughout the entire training process. Figures 9, 10,

1242 Table 8: Jaccard Similarity between consecutive checkpoints on CIFAR-100 with ResNet-18. In-
 1243 foBatch and OrderDP are trained for 200 epochs (checkpoints at 20%, 40%, 60%, 80%, and final
 1244 100%), with learning rate = 0.03 and batch size = 128. Each setting is repeated 5 times, and mean \pm
 1245 std are reported. Higher values indicate greater stability of the cores.
 1246

Prune Ratio	Method	0–20%	20–40%	40–60%	60–80%	80–100%	100%
40%	InfoBatch	0.583\pm0.050	0.496 \pm 0.010	0.479 \pm 0.003	0.481 \pm 0.006	0.512 \pm 0.010	0.522 \pm 0.007
	OrderDP	0.645 \pm 0.057	0.692\pm0.023	0.713\pm0.008	0.743\pm0.023	0.757\pm0.034	0.767\pm0.008
70%	InfoBatch	0.593\pm0.012	0.532 \pm 0.024	0.459 \pm 0.019	0.403 \pm 0.018	0.455 \pm 0.036	0.512 \pm 0.012
	OrderDP	0.552 \pm 0.049	0.592\pm0.016	0.647\pm0.020	0.661\pm0.018	0.678\pm0.023	0.704\pm0.090



1252
 1253 Figure 9: Sample usage count distribution (30%
 1254 prune ratio).
 1255



1256 Figure 10: Sample usage count distribution (50%
 1257 prune ratio).
 1258

1259 and 11 show the empirical distributions of sample usage counts on CIFAR-10 under prune ratios of
 1260 30%, 50%, and 99%, respectively.
 1261

1262 Across all pruning ratios, we observe that *no sample has zero usage count*: every example is selected
 1263 at least once during training. Under practical pruning settings (e.g., 30%–50%), most samples
 1264 fall within a reasonably concentrated range of usage counts, indicating that **OrderDP** does not
 1265 permanently discard any data point but instead explores the entire dataset with a frequency controlled
 1266 by (s, q) .
 1267

1268 These empirical findings are fully consistent with our theoretical analysis of coverage and directly
 1269 support our response to reviewer questions regarding whether OrderDP eventually sees the entire
 1270 dataset.
 1271

1272 D.5 TIME-TO-ACCURACY CURVES

1273 To complement the wall-clock results in Figure 3 and to directly address the reviewer’s suggestion on
 1274 evaluating time-to-accuracy, we report curves showing the relationship between training time and
 1275 accuracy. These curves provide a practical view of how fast different methods reach comparable
 1276 accuracy levels in real training scenarios.
 1277

1278 Figures 12 and 13 present the Time-to-Accuracy curves on CIFAR-10 using ResNet-18 under prune
 1279 ratios of 40% and 70%. Consistent with our findings throughout the paper, **OrderDP** achieves faster
 1280 accuracy improvement and maintains stable convergence compared with both InfoBatch and Random,
 1281 especially under higher pruning levels.
 1282

1283 D.6 STABILITY ANALYSIS

1284 We further include a stability study of dynamic pruning methods under multiple independent runs.
 1285 In this analysis, we evaluate CIFAR-100 with ResNet-18 at a 70% real pruning ratio across 10
 1286 runs. InfoBatch often exhibits large mid-training gradient oscillations and occasional convergence
 1287 failures, while OrderDP consistently converges smoothly in every trial. Moreover, InfoBatch relies
 1288 on late-stage full-data “annealing” to stabilize training, whereas OrderDP maintains exact pruning
 1289 control via (s, q) without requiring such rescue. This highlights the robustness and practicality of our
 1290 approach. Under aggressive pruning, InfoBatch’s rescaling further causes severe fluctuations in both
 1291 gradient and accuracy.
 1292

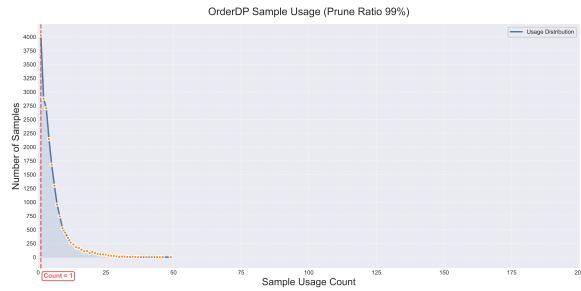


Figure 11: Sample usage count distribution under a 99% prune ratio. Even under extreme pruning, every sample is selected at least once.

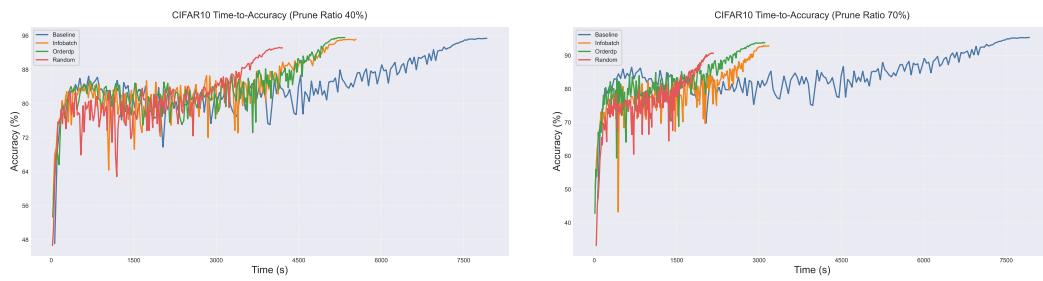


Figure 12: Time-to-Accuracy on CIFAR-10 at 40% prune ratio.

Figure 13: Time-to-Accuracy on CIFAR-10 at 70% prune ratio.

Detailed results are summarized in Table 9 (real prune ratio ≈ 0.61 , InfoBatch nominal prune ratio ≈ 0.99 ; 200 epochs; learning rate = 0.03; batch size = 128; averaged over 10 runs).

E EXTENDED ANALYSIS OF GRADIENT BIAS

E.1 MECHANISMS AND TOY EXAMPLE

This subsection provides additional clarification on how OrderDP eliminates biased gradient estimation. The method addresses the issue through three main mechanisms. **Uniform exploration.** Before pruning, s points are randomly sampled so that every sample, regardless of gradient magnitude, has equal probability of entering the coreset. This ensures the gradient distribution is much closer to that of full-data SGD compared with InfoBatch’s biased rescaling strategy. **Unbiased surrogate loss.** Instead of pruning the original loss directly, a new loss \mathcal{L}_q is constructed with closed-form weights γ_j derived from a two-stage sampler. Theorem 1 guarantees each update is an unbiased estimator of $\nabla \mathcal{L}_q(\theta)$, while Theorems 2, 3, and 4 provide convergence and generalization guarantees, avoiding the need for late-stage full-data annealing. **Exact pruning control.** By explicitly setting (s, q) , any target prune ratio (e.g., 70%, 80%, 90%) can be realized precisely, unlike InfoBatch’s mean-threshold scheme, which fluctuates around $\sim 77\%$.

To make the difference clear, we present a toy comparison under an 80% prune ratio with 5 samples of gradients $g = \{1, 2, 3, 4, 5\}$. In **InfoBatch (mean-threshold + rescale)**, samples 3, 4, 5 are always kept, while 1 and 2 are included with probability 0.2, and their gradients rescaled by a factor $1/(1 - 0.8) = 5$. This leads to four possible outcomes summarized in Table 10.

From Table 10, the expected gradient estimate is 4.336 with prune ratio < 0.8, indicating bias.

In contrast, for **OrderDP (5 samples, 80% prune)**, we randomly sample a batch with size $s \in \{1, \dots, 5\}$ and select the top-1 element. The detailed probability calculation for each index is as follows:

1350 Table 9: Stability comparison on CIFAR-100 with ResNet-50 across 10 runs under varying **training**
 1351 **progress** (percentage of epochs). Reported are **Accuracy (%) \pm Std** and **Gradient Std**. OrderDP
 1352 shows smoother convergence and eliminates instability observed in InfoBatch.

Method	Metric	0–30%	30–50%	50–70%	70–100%	Final
ϵ -Greedy	Acc \pm Std	48.01 \pm 4.60	49.77 \pm 2.54	52.61 \pm 1.42	66.24 \pm 1.23	74.77 \pm 0.30
	Grad \pm Std	3.08 \pm 1.19	3.49 \pm 0.62	2.78 \pm 0.57	2.05 \pm 0.45	1.53 \pm 0.37
UCB	Acc \pm Std	49.70 \pm 4.80	50.66 \pm 2.31	54.34 \pm 1.82	67.97 \pm 1.12	75.41 \pm 0.40
	Grad \pm Std	4.08 \pm 1.69	3.69 \pm 1.02	2.99 \pm 0.27	2.35 \pm 0.38	1.33 \pm 0.14
InfoBatch	Acc \pm Std	45.74 \pm 3.56	52.08 \pm 2.55	47.72 \pm 3.63	68.92 \pm 3.01	76.72 \pm 0.70
	Grad \pm Std	7.35 \pm 1.78	5.88 \pm 1.24	4.35 \pm 9.48	3.56 \pm 4.55	2.89 \pm 1.67
OrderDP	Acc \pm Std	48.00 \pm 3.23	56.00 \pm 2.01	61.00 \pm 1.34	72.00 \pm 0.56	78.32 \pm 0.20
	Grad \pm Std	4.08 \pm 1.19	3.49 \pm 0.62	2.78 \pm 0.47	2.05 \pm 0.55	1.03 \pm 0.33
Whole Dataset	Acc \pm Std	56.58 \pm 1.56	62.36 \pm 0.76	66.84 \pm 0.52	72.24 \pm 0.40	80.60 \pm 0.20
	Grad \pm Std	3.88 \pm 0.79	3.09 \pm 0.41	2.45 \pm 0.42	1.93 \pm 0.55	0.88 \pm 0.20

1365
 1366 Table 10: Toy example of InfoBatch under an 80% prune ratio with 5 gradients. The table shows the
 1367 kept set, probability of selection, rescaled gradients, average gradient, and prune rate.

Kept set	Probability	Gradients	Avg. grad.	Prune rate
$\{3, 4, 5\}$	0.64	3, 4, 5	4.0	0.60
$\{1, 3, 4, 5\}$	0.16	$5 \cdot 1, 3, 4, 5 = 5, 3, 4, 5$	4.25	0.20
$\{2, 3, 4, 5\}$	0.16	$5 \cdot 2, 3, 4, 5 = 10, 3, 4, 5$	5.5	0.20
$\{1, 2, 3, 4, 5\}$	0.04	$5 \cdot 1, 5 \cdot 2, 3, 4, 5 = 5, 10, 3, 4, 5$	5.4	0.00

$$\begin{aligned}
 \{1\} : & \frac{1}{5} \cdot \frac{1}{5} (s=1) = \frac{1}{25}, \\
 \{2\} : & \frac{1}{5} \cdot \frac{1}{5} (s=1) + \frac{1}{10} \cdot \frac{1}{5} (s=2) = \frac{3}{50}, \\
 \{3\} : & \frac{1}{5} \cdot \frac{1}{5} (s=1) + \frac{3}{10} \cdot \frac{1}{5} (s=2) + \frac{1}{10} \cdot \frac{1}{5} (s=3) = \frac{3}{25}, \\
 \{4\} : & \frac{1}{5} \cdot \frac{1}{5} (s=1) + \frac{3}{10} \cdot \frac{1}{5} (s=2) + \frac{3}{10} \cdot \frac{1}{5} (s=3) + \frac{1}{10} \cdot \frac{1}{5} (s=4) = \frac{9}{50}, \\
 \{5\} : & \frac{1}{5} \cdot \frac{1}{5} (s=1) + \frac{2}{5} \cdot \frac{1}{5} (s=2) + \frac{3}{5} \cdot \frac{1}{5} (s=3) + \frac{4}{5} \cdot \frac{1}{5} (s=4) + \frac{1}{5} (s=5) = \frac{3}{5}.
 \end{aligned}$$

1383 The expected gradient estimate under this distribution is 4.06 with prune ratio exactly 0.8. Therefore,
 1384 OrderDP not only maintains the target pruning ratio precisely but also achieves gradient estimates
 1385 closer to the true full gradient (= 3), effectively eliminating the bias observed in InfoBatch.

1387 E.2 GRADIENT DIRECTION ANALYSIS

1388 In addition to gradient magnitude analysis, we also examine gradient directions by measuring the
 1389 *cosine similarity* between the gradients computed with each pruning method and the full-data gradient
 1390 at matched checkpoints (same model weights). We train on CIFAR-100 with ResNet-18 for 200
 1391 epochs, evaluate at 20%, 40%, 60%, 80%, and 100% of training progress, using a learning rate of
 1392 0.03 and batch size of 128. Each setting is repeated 5 times, and we report mean \pm std. Results under
 1393 pruning ratios 40% and 70% are summarized in Table 11.

1394 These results demonstrate that **OrderDP’s gradients align more closely with full-data gradients**,
 1395 particularly at high pruning ratios, thereby reducing directional bias compared with InfoBatch.

1398 F LIMITATIONS AND FUTURE WORK

1399 While **OrderDP** excels on moderate-scale vision benchmarks, its performance on very large ar-
 1400 chitectures, streaming inference scenarios, and heterogeneous hardware platforms, as well as in
 1401 self-supervised or multi-modal settings, remains to be explored. In future work, we will extend
 1402 **OrderDP** to adaptive pruning schedules, investigate its integration with transformer and graph
 1403 models, and study its behavior under distribution shift and noisy labels.

1404
 1405 Table 11: Cosine similarity between pruned and full-data gradients on CIFAR-100 (ResNet-18) under
 1406 pruning ratios 40% and 70%. Each experiment is repeated 5 times, and mean \pm std are reported.
 1407 Higher values indicate stronger alignment with full-data gradients.

Prune Ratio	Method	0–20%	20–40%	40–60%	60–80%	80–100%	100%
40%	InfoBatch	0.915 \pm 0.044	0.940 \pm 0.008	0.916 \pm 0.007	0.904 \pm 0.011	0.897 \pm 0.008	0.895 \pm 0.009
	OrderDP	0.943\pm0.035	0.951\pm0.007	0.934\pm0.008	0.921\pm0.009	0.908\pm0.014	0.906\pm0.011
70%	InfoBatch	0.825 \pm 0.037	0.807 \pm 0.027	0.763 \pm 0.021	0.758 \pm 0.023	0.743 \pm 0.026	0.716 \pm 0.029
	OrderDP	0.853\pm0.048	0.896\pm0.018	0.901\pm0.015	0.893\pm0.014	0.868\pm0.021	0.844\pm0.018

1413
 1414 Another promising direction is to develop noise-robust variants of **OrderDP**. Although the current
 1415 work focuses on the top- q strategy, the surrogate-loss framework introduced in this paper is more
 1416 general and can naturally incorporate min- q selection or mixed hard/easy sampling schemes by
 1417 modifying the weight structure $\{\gamma_j\}$. Such extensions may help suppress extreme outliers, improve
 1418 stability under label noise, and adapt the pruning strategy across different stages of training (e.g.,
 1419 hard-sample emphasis in early stages and easy-sample regularization in later stages). We plan to
 1420 further explore these variants and evaluate their performance in noisy or adversarial settings.

G THE USE OF LARGE LANGUAGE MODELS (LLMs)

1424 Large language models (LLMs) were used solely for linguistic refinement and editing of the
 1425 manuscript. All scientific ideas, methodological contributions, and experimental results are en-
 1426 tirely conceived, implemented, and validated by the authors.

1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457