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ABSTRACT

Data pruning (DP), as an oft-stated strategy to alleviate heavy training burdens,
reduces the volume of training samples according to a well-defined pruning method
while striving for near-lossless performance. However, existing approaches, which
commonly select highly informative samples, can lead to biased gradient estimation
compared to full-dataset training. Furthermore, the analysis of this bias and its
impact on final performance remains ambiguous. To address these challenges, we
propose OrderDP, a plug-and-play framework that aims to obtain stable, unbiased,
and near-lossless training acceleration with theoretical guarantees. Specifically,
OrderDP first randomly selects a subset and then chooses the top-q samples,
where unbiasedness is established with respect to a surrogate loss. This ensures
that OrderDP conducts unbiased training in terms of the surrogate objective.
We further establish convergence and generalization analyses, elucidating how
OrderDP affects optimal performance and enables well-controlled acceleration
while ensuring guaranteed final performance. Empirically, we evaluate OrderDP
against comprehensive baselines on CIFAR-10, CIFAR-100, and ImageNet-1K,
demonstrating competitive accuracy, stable convergence, and exact control—all
with a simpler design and faster runtime, while reducing training cost by over 40%.
Delivering both strong performance and computational efficiency, our method
serves as a robust and easily adaptable tool for data-efficient learning.

1 INTRODUCTION

Neural scaling laws have revealed a consistent empirical pattern across a wide range of do-
mains (Amari et al., 1992; Hestness et al., 2017; Kaplan et al., 2020): model performance tends
to improve predictably, often as a power law (Hernandez et al., 2021; Cherti et al., 2023; Chen
et al., 2023), with increased model size and the data volume. This observation has fueled a surge
in computational demands and financial costs, as larger models and datasets are leveraged to push
the boundary of model capabilities. In this context, data pruning (DP) has emerged as a promising
strategy to alleviate training costs by selectively removing less informative samples (Killamsetty
et al., 2021b; Mirzasoleiman et al., 2020; Qin et al., 2024; Raju et al., 2021), offering a pathway to
enhance training efficiency without compromising model performance.

Depending on when sample selection is performed, data pruning strategies can be broadly classified
into static pruning and dynamic pruning. ① Static pruning assigns an informativeness score to each
training sample before training, typically using data influence functions (Borsos et al., 2020; Koh
& Liang, 2017; Yang et al., 2022) or coreset selection strategies (Huggins et al., 2016; Campbell &
Broderick, 2019; Kim et al., 2023). ② Dynamic pruning, on the other hand, performs sample selection
during training, updating scores on-the-fly based on evolving model states or gradients (Raju et al.,
2021; Qin et al., 2024; Chen et al., 2024). By continuously adapting to the training dynamics, it
can better identify and retain the most influential samples at each stage, potentially yielding higher
performance under constrained training budgets. A more comprehensive survey of static and dynamic
pruning methods is included in Appendix B.

Within supervised learning, data pruning aims to reduce data volume without sacrificing performance,
thereby achieving near-lossless1 pruning. However, the discarded data can cause the distribution

1Here, near-lossless means matching full-data accuracy up to normal stochastic fluctuations (typically within
0.1%) while achieving a noticeable training speedup.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a)

(c) (d)

(b)

Figure 1: Training dynamics of ResNet-18 on the CIFAR-100 under a 70% data pruning
ratio. Method comparison: full-dataset training (Baseline), representative dynamic pruning strategy
(InfoBatch), and our proposed method (OrderDP). (a-c) Test accuracy, gradient norm (shadow area
denotes standard deviation), and temporal stability of gradient norm over training epochs. (d) Joint
distribution of test accuracy and gradient norm throughout training.

shift and bias gradient. Although selecting a portion of the discarded data randomly via calibration
protocols (Ayed & Hayou, 2023) can theoretically ensure unbiasedness, finding the optimal proportion
can be difficult in practice. Inspired by this method, recent dynamic methods such as InfoBatch (Qin
et al., 2024) achieve this goal by rescaling the bias gradient toward the expected loss. However,
when training on a specific dataset, gradient bias in both scale and direction may still arise from
the discrepancy between empirical and expected loss. This bias is further amplified under extreme
pruning, where large scaling factors are applied and stabilization techniques such as annealing are
often required. These challenges reveal an incomplete understanding of the principles underlying
“near-lossless” pruning. A critical questions arise as to what ensures this property? how the bias
should be analyzed, and whether pruning can be pushed further toward more extreme regimes? To
investigate these questions, we conduct comparative studies and report a representative result on
CIFAR-100, comparing full-dataset training with InfoBatch (Qin et al., 2024) under a 70% pruning
ratio to test its limits. Further experiments are presented in Appendix D, E, and we highlight several
key observations as follows:

❶ Gradient norm serves as a reliable proxy for model performance: Under full-dataset training, test
accuracy exhibits a strong linear correlation with gradient norm (Pearson’s R = −0.93), as shown in
Figure 1 (d), which suggest the magnitude of gradients is a stable and informative indicator of both
training progress and generalization, which echoes prior observations in related studies (Zhao et al.,
2022; Zhang et al., 2023).

❷ Dynamic data pruning suffers from training instability: Compared to full-dataset training, dynamic
one displays pronounced fluctuations in test accuracy and volatile gradient norms. Moreover, the
rolling standard deviation reveals irregular and noisy optimization dynamics, indicating reduced
training stability, as shown in Figure 1 (a-c).

❸ Gradient estimation under dynamic pruning is still biased: Figure 1 (b,d) demonstrate that the
dynamic method induces a noticeable shift in the overall scale of gradient norms relative to the
baseline. This shift is more significant for InfoBatch, as a large scaling factor is imposed. The
previously observed linear relationship between accuracy and gradient norm weakens, suggesting
that it still distorts gradient estimates and introduces bias during training.

Together, these findings highlight that training instability and biased gradient estimation are two
key limitations of existing dynamic DP strategies. We provide an extended empirical analysis of
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Figure 2: Illustration of the proposed OrderDP framework: at each iteration, a candidate batch is
sampled uniformly, the top-q examples are selected by score to compute a subgradient and update
model parameters, and scores are refreshed only for the retained samples.

gradient bias in Appendix E. To this end, we take a step towards designing a DP method to mitigate
both issues, thus achieving stable, unbiased, and near-lossless data pruning. Inspired by the recent
stochastic optimization based on ordering statistics (Kawaguchi & Lu, 2020; Mehta et al., 2023), we
propose a simple yet effective DP framework, OrderDP, which aims to obtain near-lossless pruning
with improved efficiency, even at large pruning ratios. At the beginning of each epoch, we randomly
sample a batch of data points from the full dataset to form a pruning candidate pool. These candidates
are then ranked in descending order based on their loss values, and the Top-q samples are selected as
the most informative ones for model training. We formulate OrderDP as an optimization algorithm
that minimizes a proposed surrogate loss. We theoretically establish convergence analyses using an
unbiased gradient estimation of the surrogate loss. Furthermore, generalization analysis is provided
in terms of the surrogate loss and expected loss, demonstrating the effectiveness of OrderDP.

Our approach has several desirable properties. First, OrderDP ensures unbiased gradient estimation
and works with standard training pipelines without architectural changes or auxiliary approximations.
It maintains an exactly controlled pruning ratio with rigorous theoretical guarantees on convergence
and generalization. The surrogate loss fully captures the bias and enables principled, loss-aware prun-
ing while sustaining strong stability. Empirically, we validate OrderDP on CIFAR-10 (Krizhevsky
et al., a), CIFAR-100 (Krizhevsky et al., b), and ImageNet-1K (Deng et al., 2009). Across all
benchmarks, OrderDP achieves near-lossless performance at moderate pruning ratios and surpasses
state-of-the-art methods. On ImageNet-1K, it retains full accuracy at 40% pruning with the lowest
total computation, leading to faster runtime. These results show that OrderDP not only sustains
strong performance but also delivers superior efficiency, robustness, and a simple plug-and-play
design, making it a practical solution for scalable deep learning.

2 METHOD

Inspired by the iterative update process of stochastic gradient descent (SGD) (Kawaguchi & Lu, 2020;
Amari, 1993), we propose Ordered Data Pruning (OrderDP), a dynamic strategy that integrates
adaptive sample selection into the SGD pipeline to reduce training cost without sacrificing accuracy.
The overall framework is illustrated in Figure 2. OrderDP leverages a score-value mechanism to
rank and retain the most informative samples at each iteration.

2.1 PRELIMINARIES

We begin with the standard empirical risk minimization formulation over a dataset D = {zi}ni=1:

L(θ) := 1

n

n∑
i=1

Li(θ, zi) (1)

where θ ∈ Rd denotes the model parameters and each per-sample lossLi(θ, zi): Rd → R≥0 measures
the discrepancy on example zi. Solving this ERM via (mini-batch) stochastic gradient descent is at
the core of most modern machine learning tasks.

Score Value Function. To drive dynamic pruning, we associate each sample zi with a nonnegative
score valueHi(θ) = Hi(θ, zi), which quantifies its importance. In general,Hi can be any function
of model state and data (e.g., gradient norm or influence measure), but we adopt the instantaneous
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Algorithm 1: Dynamic Training Process with OrderDP

Input: Initial parameters θ1, initial scoresH1(θ
1, zi) for all i ∈ [n], learning rates {ηt} > 0,

exploration size s, exploitation size q.
Output: Final parameters θT .

1 for t = 1, 2, . . . , T do
2 // Ordered Data Pruning (OrderDP)
3 Sample candidate batch St ⊆ D uniformly at random, with |St| = s.
4 Select subset Qt ⊆ St of top-q scores:
5 Qt ∈ arg max

Q⊆St

|Q|=q

∑
i∈Q

Ht(θ
t, zi).

6 // Compute a subgradient

7 g̃t ∈ ∂LQt(θt), where LQt(θt) =
1

q

∑
i∈Qt

Li(θ
t, zi).

8 // Update model parameters

9 θt+1 ← θt − ηtg̃t.
10 // Update score values

11 Ht+1(θ
t+1, zi) =

{
Li(θ

t, zi), i ∈ Qt,

Ht(θ
t, zi), otherwise.

lossHi(θ) = Li(θ, zi) as a simple, adaptive proxy: higher loss indicates greater need for retention.
By updating scores only for samples that remain active, we avoid full-dataset recomputation each
step. Concretely, if Qt ⊆ D denotes the set of retained examples at epoch t, then

Ht+1(θ
t+1, zi) =

{
Li(θ

t+1, zi), i ∈ Qt,

Ht(θ
t, zi), i /∈ Qt.

(2)

This rule ensures that only the losses of selected samples are refreshed, while others retain their
previous scores. Together, the ERM objective and the score value function enable dynamic data
pruning: by ranking samples viaHi(θ), we focus computation on the most informative subset each
iteration, reducing training cost without hurting accuracy.

2.2 THE ORDERDP FRAMEWORK

Building on the ERM and score-value preliminaries, Ordered Data Pruning (OrderDP) integrates
dynamic sample selection into the SGD loop. At each iteration, a candidate batch is uniformly
sampled, the top-q samples are selected by score values, and a subgradient computed on this subset is
used for parameter update. Scores are refreshed only for the retained samples, while others remain
unchanged. The complete procedure is given in Algorithm 1.

OrderDP combines uniform sampling with score-based ranking to preserve diversity while focusing
on informative samples, and enforces an exact prune ratio of 1− (q/s) · (s/|D|) for predictable speed-
ups. Uniform sampling ensures every sample has a non-zero chance of being selected, improving
robustness (see Part 4.2, (Shah et al., 2020)) and reducing dependence on sorting. The sorting step can
be reduced to O(log q) time per sample (even O(1) when q = 1), with constant memory overhead,
unlike other dynamic methods such as UCB (Raju et al., 2021) and InfoBatch (Qin et al., 2024),
which require either O(logn) time or O(n) storage.

3 THEORETICAL ANALYSIS

In this section, we show that OrderDP provides unbiased gradient estimates for a surrogate loss and
achieves standard convex–Lipschitz convergence rates, then establish its generalization error bound
via a spectral-risk analysis. Full proofs are provided in Appendix A.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 BIAS AND CONVERGENCE ANALYSIS

In this subsection, we analyze the convergence of OrderDP by first capturing the bias introduced by
selective pruning. Specifically, we define a surrogate loss that yields unbiased gradient updates:

Lq(θ) :=
1

q

n∑
j=1

γj L(j)(θ), and where γj =

min{q,j}∑
l=max{1,s−n+j}

(
j−1
l−1

) (
n−j
s−l

)(
n
s

) , (3)

where L(j)(·) is the j-th rank of per-sample loss and each weight γj depends only on (n, s, q). This
construction guarantees that the gradient estimator g̃t produced by OrderDP is unbiased with respect
to Lq .
Theorem 1. Under the definitions above, the update g̃t in Algorithm 1 satisfies

E[g̃t] /∈ ∂L(θt) but E[g̃t] ∈ ∂Lq(θ
t), (4)

i.e., it is an unbiased estimator of a (sub-)gradient of Lq .

Theorem 1 shows that the biased gradient estimation of OrderDP w.r.t. empirical loss L can be
interpreted as an unbiased method for minimizing the surrogate objective Lq. Lq is well-defined for
any θ, and OrderDP enjoys three key advantages: ① By choosing s and q, the prune ratio 1− q

n is
easily adjusted; ② Computing γj adds no per-epoch cost, unlike other dynamic methods requiring
O(n) time and memory for weight tables; ③ OrderDP preserves unbiased, lower-variance gradient
estimates for Lq—eliminating the need for annealing. See Appendix A.1 for the complete proof.

Another view of Theorem 1 is that the parameters (n, s, q) shape the surrogate loss Lq(θ) via
the weights {γj}, which inherently represent the selective pruning. Inspired by the asymptotic
approximation in (Kawaguchi & Lu, 2020), we obtain:
Proposition 2. Denote z = j/n and γ(z) =

∑q
l=1 z

l−1(1−z) s−l s!
(l−1)! (s−l)! . Then, as j, n→∞

it holds that
lim

j,n→∞, j/n=z
nγj = γ(z). (5)

Furthermore, 1− n
s γ(z) is the cumulative distribution of Beta(z; s− q).

The weight sequence {γj/q}nj=1 generated by OrderDP forms a non-uniform probability distribu-
tion (Kawaguchi & Lu, 2020; Mehta et al., 2023; Shah et al., 2020), which can be easily verified
through a numerical simulation showing that

∑n
j=1 γj/q = 1 for given (n, s, q). A non-trivial proof

is also provided. For the structure of γj itself, Fig 5 shows that γj monotonically decays. If we fix
(s, q), the cliff becomes smoother and closer to r(z) as j, n increase. Similar observations are also
found in (Kawaguchi & Lu, 2020), but we make a more general formulation of γj . More discussions,
proof and empirical validation are deferred to Appendix A.2 and Appendix D.2.

Building on the unbiased gradient estimates of OrderDP, we leverage the classic mini-batch SGD
analysis to obtain the following guarantee.
Theorem 3. Let (θt)Tt=0 be the sequence generated by Algorithm 1. Suppose there exists a finite
θ∗ ∈ argminθ Lq(θ), Lq(θ

∗) <∞. If each Li(·) is convex and G-Lipschitz, then

min
0≤t≤T

E
[
Lq(θ

t)− Lq(θ
∗)
]
≤

ηmax

(
∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2
)

2 ηmin

∑T
t=1 η

t
. (6)

This matches the standard O(1/
√
T ) convergence rate of mini-batch SGD under the same convexity

and Lipschitz assumptions, demonstrating that OrderDP attains identical theoretical guarantees
despite pruning. In particular, choosing ηt = ∥θ1 − θ∗∥2/

(
G
√
T
)

yields the error bound (G∥θ1 −
θ∗∥2)/

√
T . By using the averaged iterate θ̂T = (1/

∑T
t=1)

∑T
t=1 η

tθt, the dependence on ηmax and
ηmin can be removed, that is E[Lq(θ̄

T )−Lq(θ
∗)] ≤ (∥θ1−θ∗∥22+G2

∑T
t=1(η

t)2)/(2
∑T

t=1 η
t). The

full proof is provided in Appendix A.3. Empirical evidence supporting the convergence assumptions
is provided in Appendix D.3.

Thus, despite pruning a large fraction of data each epoch, OrderDP does not slow optimization in
expectation, ensuring computational savings without loss in convergence speed.
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3.2 GENERALIZATION ANALYSIS

Having established convergence for the surrogate loss Lq(θ), we now quantify its approximation to
the expected risk L(θ∗) = Ez∼D[L(θ∗, z)]. Pruning creates a non-uniform sampling bias. Motivated
by the 1-Wasserstein distance (Mehta et al., 2023), we rewrite Lq(θ) =

∑n
j=1

γj

q L(j)(θ) and L(θ) =∑n
j=1

1
n L(j)(θ), thereby revealing the bias from the gap between {γj/q} and uniform weights

{1/n}. Noting that E[Lq(θ,D)] = E[
∑s

j=1(γ̂j/q)Li(j)(θ)] with γ̂j = (n/s)γj , we decompose the
generalization gap E[Lq(θ,D)]− L(θ∗) into a bias term E[Lq(θ,D)]− E[L(θ,D)] and a sampling
error E[L(θ,D)]− L(θ∗), where the expectation is over the random minibatch {i1, . . . , is}.
Theorem 4. (Generalization error bound). Under the same assumption of Theorem 3, the following
satisfies for any θt in the sequence Θ = {θ}Tt=1 generated by OrderDP:

L(θ∗)− E[Lq(θ
t, D)] ≤

√
2CsB

√
n− s

s(n− 1)
−Qn(θ

t; s, q)︸ ︷︷ ︸
bias term

+
ηmax(∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2)

2ηmin

∑T
t=1 η

t︸ ︷︷ ︸
unbiased term

,

where Cs = supt∈(0,1) |s(t)− u(t)|2, B = infθ∈Θ maxi∈[1,n] |Li(θ,Di)| <∞, and Qn(θ; s, q) :=

infθ∈Θ

∑n
i=1(

ri(θ,D)
q − 1

n )Li(θ,Di). The expectation is over the random batch sampling.

The bias term bounds the bias from selective pruning of OrderDP; the unbiased term is the standard
optimization error, which vanishes as T →∞ with suitable ηt. The dependence on ηmax and ηmin

can be removed by using the averaged iterate; see proof in Appendix A.4. In contrast, the value Cs and
Qn(θ; s, q) remain finite and quantify the deviation of {γj} from uniformity (Mehta et al., 2023), as
confirmed by simulations in Figure 6. As q → s,

(
ri(θ,D)/q − 1/n

)
→ 0, so Qn(θ; s, q)→ 0; and

as s→ n,
√
2CsB

√
n−s

s(n−1) → 0, implying L(θ∗) ≤ E[Lq(θ
t, D)]. Thus, by minimizing Lq(θ

t, D),
OrderDP also minimizes expected generalization error. In the special case s = q, it reduces to
standard mini-batch SGD (ri(θ,D)/q = 1/n, Cs = 0) and the bias vanishes. The approximation
behavior characterized in Theorem 4 is further illustrated empirically in Appendix D.2.

Theorem 4 shows that OrderDP ’s modifies the distribution shift as the gap between the surrogate
loss Lq and the original loss L, and the gap is fully captured by the values Cs and Qn of the biased
term. For a high pruning ratio, i.e., small exploitation size q or a small exploration size s since
q ≤ s, the distribution of γj

q , j ∈ {1, . . . , n} exhibates a large range. This leads to a significant bias
compared to the uniform distribution (which has a range of 0), a substantial discrepancy between
Cs and Qn(θ; s, q), and consequently, a poor approximation. As the pruning ratio decreases (i.e., q
approaches s), the range of the γj distribution narrows, and its shift from the uniform distribution
diminishes and both Cs and Qn(θ; s, q) decrease, thereby improving the approximation. Specifically,
when q = s, OrderDP reduces to standard SGD. In this case, the bias term vanishes, yielding Lq = L.
We visualize the distribution shift in Figure 7.

In summary, Theorem 4 demonstrates that OrderDP ’s generalization error comprises a vanishing
optimization term and a bounded pruning bias, maintaining SGD-rate convergence while controlling
dynamic pruning bias, which is consistent with the observation in Figure 1 (a-c).

4 EXPERIMENTAL SETTINGS

4.1 DATASETS AND TASKS

To comprehensively validate the effectiveness of our proposed OrderDP, we conduct experiments
on a range of image classification benchmarks: CIFAR-10 and CIFAR-100 (Krizhevsky et al., a;b),
ImageNet-1K (Deng et al., 2009).

CIFAR datasets comprise 32 × 32 color images across 10 and 100 categories, respectively. Each
split includes 50,000 training and 10,000 test samples, providing balanced classification evaluation.
ImageNet-1K, as a 1,000-class subset of ImageNet-21k, contains 1,281,167 training images and
50,000 validation images, spanning a variety of object categories.

2s(t) and u(t) refer to the probability density of the spectrum γj distribution and uniform distribution on
(0, 1). Details can be found in (Mehta et al., 2023).
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Table 1: Static pruning results (accuracy, %) on CIFAR10 and CIFAR100 with ResNet-18. Accu-
racy (%, ↑). Best in bold. Performance gaps to full-data are in blue / orange.

Dataset CIFAR10 CIFAR100

Prune Ratio % 30 50 70 30 50 70

Static Random 94.6↓1.0 93.3↓2.3 90.2↓5.4 73.8↓4.4 72.1↓6.1 69.7↓8.5
CD (Agarwal et al., 2020) 95.0↓0.6 94.3↓1.3 90.8↓4.8 74.2↓4.0 72.3↓5.9 70.3↓7.9
Herding (Welling, 2009) 92.2↓3.4 88.0↓7.6 80.1↓15.5 73.1↓5.1 71.8↓6.4 69.6↓8.0

K-Center (Sener & Savarese, 2018) 94.7↓0.9 93.9↓1.7 90.9↓4.7 74.1↓4.1 72.2↓6.0 70.2↓8.0
Least Confidence (Coleman et al., 2019) 95.0↓0.6 94.5↓1.1 90.3↓5.3 74.2↓4.0 72.3↓5.9 69.8↓8.4

Margin (Coleman et al., 2019) 94.9↓0.7 94.3↓1.3 90.9↓4.7 74.0↓4.2 72.2↓6.0 70.2↓8.0
Forgetting (Toneva et al., 2018) 94.7↓0.9 94.1↓1.5 91.7↓3.9 75.3↓2.9 73.1↓5.1 69.9↓8.3

GraNd-4 (Paul et al., 2021) 95.3↓0.3 94.6↓1.0 91.2↓4.4 74.6↓3.6 71.4↓6.8 68.8↓9.4
DeepFool (Ducoffe & Precioso, 2018) 95.1↓0.5 94.1↓1.5 90.0↓5.6 74.2↓4.0 73.2↓5.0 69.8↓6.4

Craig (Mirzasoleiman et al., 2020) 94.8↓0.8 93.3↓3.3 88.4↓7.2 74.4↓3.8 71.9↓6.3 69.7↓8.5
Glister (Killamsetty et al., 2021b) 95.2↓0.4 94.0↓1.6 90.9↓4.7 74.6↓3.6 73.2↓5.0 70.4↓7.8

Influence (Koh & Liang, 2017) 93.1↓2.5 91.3↓4.3 88.3↓7.3 74.4↓3.8 72.0↓6.2 68.9↓9.5
EL2N-2 (Toneva et al., 2018) 94.4↓1.2 93.2↓2.4 89.8↓5.8 74.1↓4.1 71.0↓7.2 68.5↓9.7
EL2N-20 (Toneva et al., 2018) 95.3↓0.3 95.1↓0.5 91.9↓3.7 77.2↓1.0 72.1↓6.1 -

DP (Yang et al., 2023) 94.9↓0.7 93.8↓1.8 90.8↓4.8 77.2↓1.0 73.1↓5.1 -

OrderDP 95.6↑0.0 95.3↓0.2 95.0↓0.6 78.2↑0.0 77.9↓0.3 76.7↓1.5

Whole Dataset 95.6±0.1 78.2±0.1

4.2 IMPLEMENTATION DETAILS

In this section, we provide a succinct overview of the implementation details for our experiments,
including backbone models and training details.

Backbone models. For classification, we train ResNet-18 and ResNet-50 (He et al., 2016) on
CIFAR-10/100 and ImageNet-1K.

Training Details. For OrderDP, an exploration ratio of 0.5 related to s (i.e., s/|D| = 0.5) and an
exploitation ratio of 0.6 related to q (i.e., q/s = 0.6) are used by default when no other values are
specified. All models are trained with the OneCycle scheduler, which employs cosine annealing,
using SGD with a momentum of 0.9 and a weight decay of 5× 10−4. Images are augmented through
normalization, random cropping, and horizontal flipping unless stated otherwise. The implementation
is based on PyTorch (Paszke, 2019). All other details are deferred to the Appendix C and D.1.

5 EMPIRICAL STUDIES

5.1 EMPIRICAL ANALYSIS ON CIFAR

For a comprehensive comparison on CIFAR-10/100, we consider two categories of DP methods
as baselines: static DP and dynamic DP. From static DP, we include 15 representative methods:
static random pruning, CD (Agarwal et al., 2020), Herding (Welling, 2009), K-means (Sorscher
et al., 2022), Least Confidence and Entropy (Coleman et al., 2019), Forgetting (Toneva et al., 2018),
GraNd and EL2N (Paul et al., 2021), DeepFool (Ducoffe & Precioso, 2018), Craig (Mirzasoleiman
et al., 2020), Glister (Killamsetty et al., 2021b), Influence (Koh & Liang, 2017), and DP (Yang et al.,
2022). From dynamic DP, we adopt four methods: dynamic random pruning, ϵ-greedy (Raju et al.,
2021), UCB (Raju et al., 2021), and InfoBatch3 (Qin et al., 2024), along with our proposed method
OrderDP, which also belongs here.

Performance comparison. From Tables 1 and 2, our systematic study suggests the following trends:
① Dynamic random pruning outperforms static random by preserving higher sample diversity, and
both ϵ-greedy and UCB adaptively explore sample importance, but OrderDP consistently surpasses
other baselines in accuracy and robustness across all prune ratios. ② At 30% pruning, only OrderDP
matches full-data accuracy. ③ Under 50% and 70%, OrderDP has the smallest accuracy drop,

3In the original experiments of InfoBatch (Qin et al., 2024), an annealing algorithm was incorporated. To
ensure fair comparison, we have removed this component from all implementations.
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Table 2: Dynamic pruning results (accuracy, %) on CIFAR10 and CIFAR100 with ResNet-18 and
ResNet-50. Accuracy (%, ↑). Best in bold. Performance gaps to full-data are in blue / orange.

Dataset CIFAR10 CIFAR100

Backbone ResNet-18 ResNet-50 ResNet-18 ResNet-50

Prune Ratio % 30 50 70 30 50 70 30 50 70 30 50 70

Dynamic Random 94.8↓0.8 94.5↓1.1 93.0↓2.6 95.1↓0.5 94.9↓0.7 93.6↓2.0 77.3↓0.9 75.3↓2.9 72.8↓5.4 77.9↓2.7 76.1↓4.5 73.9↓6.7
ϵ-greedy 95.2↓0.4 94.9↓0.7 94.1↓1.5 95.4↓0.2 95.1↓0.5 94.3↓1.3 76.4↓1.8 74.8↓3.4 72.9↓5.3 77.2↓3.4 76.3↓4.3 74.1↓6.5

UCB 95.3↓0.3 94.7↓0.9 93.9↓1.7 95.5↓0.1 95.0↓0.6 94.2↓1.4 77.3↓0.9 75.3↓2.9 73.2↓5.0 78.0↓2.6 76.5↓4.1 74.3↓6.3
InfoBatch 95.6↓0.0 95.0↓0.6 94.5↓1.1 95.6↓0.0 95.3↓0.3 94.7↓0.9 78.1↓0.1 77.7↓0.5 75.9↓2.3 80.4↓0.2 78.6↓2.0 76.4↓4.2

OrderDP 95.6↑0.0 95.3↓0.2 95.0↓0.6 95.6↑0.0 95.4↓0.2 95.0↓0.6 78.2↑0.0 77.9↓0.3 76.7↓1.5 80.6↑0.0 79.8↓0.8 77.9↓2.7

Whole Dataset 95.6±0.1 95.6±0.1 78.2±0.1 80.6±0.1
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Figure 3: More accuracy and time results for different prune ratios on CIFAR-10/100 for OrderDP
and InfoBatch, using ResNet-18. The lossless pruning ratios are marked in the figure.

outperforming both static and existing dynamic methods. ④ Compared to InfoBatch, OrderDP
consistently yields higher accuracy as pruning becomes more aggressive.

Efficiency comparison. Table 3 reports end-to-end training time and GPU-hours under identical
settings. OrderDP achieves the fastest training and lowest GPU-hours, improving upon InfoBatch
without loss in accuracy. Additional CIFAR results and extended comparisons are in Appendix D.

Extended comparison of varying pruning ratios. To further evaluate the performance of OrderDP,
we compare it with InfoBatch, a state-of-the-art data pruning algorithm, across different prune ratios
on the CIFAR-10 and CIFAR-100 datasets. The results are demonstrated in Figure 3. It can be
observed that OrderDP not only achieves higher accuracy at every pruning ratio, but also remains
comparable to other algorithms and reduces total training time in most cases. Moreover, InfoBatch
cannot prune to an extreme ratio (limited by 77.9% on CIFAR-10 or 72.2% on CIFAR-100 in our
setting) due to its fixed retention mechanism. OrderDP supports arbitrary pruning ratios because
data retention is fully specified by the the exploration size s and exploitation size q (see Section 5.3).
These results confirm that OrderDP ’s sample-selection strategy delivers near-optimal efficiency and
robustness, making it particularly well-suited for resource-constrained scenarios where preserving
accuracy is paramount.

5.2 EMPIRICAL ANALYSIS ON IMAGENET-1K

We evaluate Dynamic Random, UCB (Raju et al., 2021), InfoBatch (Qin et al., 2024) and our
OrderDP on ImageNet-1K with ResNet-50 at 40% pruning (Table 3). OrderDP matches/exceeds
all baselines in accuracy while not significantly increasing the total GPU runtime; it retains full-data
performance at 40% pruning and incurs only a 0.4% drop at 60% (Table 4). ① Efficiency: OrderDP
completes training faster and uses fewer GPU-hours than all competing methods. ② Robustness:
It shows no loss at moderate prune ratios and only minimal degradation under aggressive pruning.
Together, these findings confirm that OrderDP achieves near-lossless accuracy with a substantial
reduction in compute, making it ideal for large-scale training under tight resource budgets.

5.3 ABLATION EXPERIMENT

We study how two-stage pruning decomposition, parameterized by the exploration size s and ex-
ploitation size q, affects OrderDP ’s performance on CIFAR-10/100 with ResNet-18 (Figure 4).
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Table 3: Comparison of performance and time cost on
ImageNet-1K. Results are reported with ResNet-50 under
40% prune ratio for 90 epochs on a 2-L40-GPU server.
“Total (n*h)" is the total node hour.

Random ϵ-greedy UCB InfoBatch Ours Full Data

Acc (%) 73.4±0.3 75.2±0.3 75.4±0.3 75.6±0.2 76.4±0.2 76.4±0.2

Time (h) 21.1 21.1 21.1 21.6 21.5 35.2
Total (n*h) 42.2 42.2 42.2 43.2 43.0 70.4

Table 4: Experiments on ImageNet-1K.
The models here are all implemented
based on ResNet-50PyTorch.

Prune Ratio % 30 40 60

InfoBatch 76.4↓0.0 75.6↓0.8 74.9↓1.5

OrderDP 76.4↑0.0 76.4↑0.0 76.0↓0.4

Whole Dataset 76.4±0.1

Figure 4: Performance with different ratio parameters. Here (q/s) · (s/|D|) represents the retained
data ratio, and thus the prune ratio is calculated as 1 − (q/s) · (s/|D|). Results are reported with
ResNet-18.

Fixed prune ratio Under a fixed effective prune ratio, we vary the decomposition of the retained data
portion by adjusting the exploration ratio s/|D| and the exploitation ratio q/s, while keeping their
product (q/s) · (s/|D|) unchanged. As shown in Figure 4, OrderDP achieves identical accuracy
across all decompositions on both datasets, demonstrating its precise control over the prune ratio.
The training time remains stable across different decompositions, indicating consistent computational
cost when the overall prune ratio is fixed.

Varying prune ratios. As the prune ratio grows, training time drops sharply while accuracy degrades
more slowly—up to about 70% pruning, where we see over 95% on CIFAR-10 and over 76% on
CIFAR-100 with half the compute. Beyond that, further pruning gives diminishing accuracy but
continues to cut runtime. This shows OrderDP ’s ability to trace a smooth efficiency–performance
frontier and lets practitioners pick the “sweet spot” matching their compute budget.

Our ablation shows that decoupling exploration (s) and exploitation (q) achieves exact pruning ratios
without efficiency loss and yields a smooth accuracy–cost frontier, enabling straightforward budget
selection. We further provide stability results under multiple runs in Appendix D.6.

5.4 SENSITIVITY ANALYSIS

Cross-architecture robustness evaluation. Table 6 reports the maximum lossless prune ratios
of InfoBatch and OrderDP on ResNet-18/50 across CIFAR-10, CIFAR-100, and ImageNet-1K.
InfoBatch usually caps in the mid-30% range, while OrderDP extends this by 4–6 points, especially
on harder datasets, showing its ability to prune more aggressively without accuracy loss.

Table 5: Cross-architecture robustness evaluation on
ImageNet-1K. ViT-Base (MAE) is pretrained with
OrderDP for 300 epochs and fine-tuned for 100 epochs.
Swin-Tiny is trained from scratch with OrderDP.

Model Prune Ratio Original OrderDP

R-50Timm 29.8% 78.4 78.3↓0.1
Swin-T 22.1% 81.5 81.4↓0.1
ViT-B (MAE) 30.8% 82.8 82.8↑0.0

We adopt the Timm (Wightman et al.,
2021) ImageNet training stack, which com-
bines mixed-precision training with strong
augmentation and regularization methods
such as MixUp, and CutMix (Zhong et al.,
2017; Zhang et al., 2018; Yun et al., 2019),
and observe that OrderDP continues to
yield lossless speedups under this stronger
recipe, indicating that it is compatible
with existing acceleration and augmenta-
tion pipelines. Beyond CNN-based architectures, OrderDP also maintains lossless accuracy at
20%–30% pruning on Swin-Tiny (Liu et al., 2021) and ViT-Base (MAE) (He et al., 2021) (Table 5),
showing that the loss-based ordering remains stable on Vision Transformers, and that OrderDP
naturally transfers across heterogeneous architectures as a plug-and-play module.
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Table 6: Cross-architecture robustness results of
OrderDP. ‘Full Dataset’ denotes training on the
original dataset without pruning.

CIFAR-10 CIFAR-100 ImageNet-1K
R-18 R-50 R-18 R-50 R-18 R-50

Full Dataset 95.6 95.6 78.2 80.6 70.5 76.4

InfoBatch 95.5 95.6 78.2 80.6 70.4 76.4
Saved (%) 36.5 37.1 30.8 36.3 21.8 34.3

OrderDP 95.5 95.6 78.2 80.6 70.5 76.5
Saved (%) 41.2 42.6 35.8 41.1 27.3 39.8

Table 7: Comparison of accuracy (%) and saved
cost (%) on CIFAR-10 when trained with R-50
using different optimizers.

SGD AdamW LARS LAMB

Full Dataset 95.6 94.3 95.5 95.0

InfoBatch 95.6 94.3 95.5 95.0
Saved (%) 37.1 37.0 37.1 37.1

OrderDP 95.6 94.4 95.5 95.0
Saved (%) 42.6 42.4 42.5 42.6

Note: All the results are obtained from an 2-L40-GPU server.

Cross-optimizer robustness evaluation. We test widely used optimizers—SGD (Bottou et al., 1991),
AdamW (Loshchilov & Hutter, 2019), LARS (You et al., 2017), and LAMB (You et al., 2019)—on
ResNet-50/CIFAR-10 (Table 7). InfoBatch saves 37.1% of training cost across all optimizers, while
OrderDP raises savings to about 42.5%. This consistent gain shows that OrderDP ’s dynamic
sample selection is optimizer-agnostic: by focusing on high-loss examples, it reduces redundant
computation and delivers plug-and-play efficiency without accuracy loss.

6 CONCLUSION

In this paper, we introduced OrderDP, a novel dynamic data pruning framework that provides rigor-
ous theoretical guarantees while achieving substantial training acceleration. Unlike prior approaches,
OrderDP ensures unbiased gradient estimation and offers exact control of the pruning ratio, leading
to more stable and efficient data pruning. Our theoretical analysis establishes both convergence
guarantees and generalization bounds, demonstrating its robustness across datasets and pruning
levels. Empirically, OrderDP consistently attains equal or better accuracy than state-of-the-art
baselines, while reducing runtime and overall computational cost by 40–45%. Moreover, its simpler
plug-and-play design makes it easy to integrate into existing pipelines. These findings highlight the
potential of our method as a scalable solution that balances efficiency, accuracy, and theoretical rigor.

ETHICS STATEMENT

Our work focuses on improving training efficiency in deep learning through dynamic data pruning.
All experiments are conducted on widely used public benchmark datasets (CIFAR-10, CIFAR-100,
and ImageNet-1K), which do not involve any personally identifiable information, sensitive attributes,
or human subjects. The study does not pose foreseeable risks related to privacy, fairness, or security.
Moreover, no external sponsorship or conflicts of interest have influenced the design, analysis, or
reporting of this work. As such, we believe our research complies with the ICLR Code of Ethics and
raises no ethical concerns.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we provide detailed
descriptions of datasets (CIFAR-10, CIFAR-100, ImageNet-1K), model architectures (ResNet-18,
ResNet-50), hyperparameters, and training protocols in the main text and Appendix. For reproducibil-
ity, our implementation is based on PyTorch, with standard data augmentation (normalization, random
cropping, horizontal flipping), SGD optimizer with momentum, weight decay, and OneCycle learning
rate scheduling. We will submit the full source code and configuration files in the supplementary
material to enable independent verification of our experiments. In addition, ablation studies and
sensitivity analyses provide transparency into the robustness of our method across pruning ratios,
optimizers, and architectures.
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A PROOF OF THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM 1

Proof. We just need to show that g̃ is an unbiased estimator of a sub-gradient of Lq(θ) at θt, namely
Eg̃ ∈ ∂Lq(θ

t). At first, it holds that

Eg̃t =
1

q
E
∑
i∈Q

gti =
1

q

n∑
i=1

P (i ∈ Q)gti

=
1

q

n∑
j=1

P ((j) ∈ Q)gt(j) ,

where gti ∈ ∂Li(θ
t) is a sub-gradient of Li at θt. In the above equality chain, the third equality

is simply the definition of expectation, and the last equality is because ((1), (2), . . . , (n)) is a
permutation of (1, 2, . . . , n).

For any given index j, P ((j) ∈ Q) ̸= q
n thus Eg̃t /∈ ∂L(θt). To analyze P ((j) ∈ Q), define

Aj = ((1), (2), . . . , (j − 1)), and Ac
j = ((j + 1), (j + 2), . . . , (n)) then

P ((j) ∈ Q) = P
(
(j) ∈ q-argmaxi∈SHi(θ)

)
= P ((j) ∈ S and S contains at most q − 1 items in Aj)
= P ((j) ∈ S)P (S contains at most q − 1 items in Aj | (j) ∈ S)

= P ((j) ∈ S)
∑l2

l=l1
P ((j) appears at l position in S | (j) ∈ S) ,

(7)

where 0 ≤ l1 ≤ l2 ≤ s measures the possible positions of (j) ∈ S These two variables vary
depending on the choice of (j). For examples, if (j) = (1), (j) should be included in Q since (1)
would be at the top-1 position of S.

Notice that S is randomly chosen from sample index set (1, 2, . . . , n) without replacement. There are
in total

(
n
s

)
different sets S such that |S| = s. Among them, there are

(
n−1
s−1

)
different sets S which

contains the index (j), thus

P ((j) ∈ S) =

(
n−1
s−1

)(
n
s

) . (8)

Given the condition (j) ∈ S, (j) appears at l position means S contains l − 1 items in Aj and s− l
items in Ac

j , thus we have the constraints:
s− l ≤ n− j and 1 ≤ l − 1 ≤ j − 1.

Thus we conclude s− n+ j ≤ l ≤ j, i.e., l1 = max{1, s− n+ j} and l2 = min{1, j}. There are(
n−j
s−l

)
such possible set S for (j) ∈ S, whereby it holds that

P (S contains at most q − 1 items in Aj | (j) ∈ S)

=

l2∑
l=l1

P ((j) appears at l position in S | (j) ∈ S)

=

min{q,j}∑
l=max{1,s−n+j}

(
j−1
l−1

)(
n−j
s−l

)(
n−1
s−1

)
(9)

Substituting Equations (7) and (8) into Equation (6), we arrive at

P ((j) ∈ Q) =

(
n−1
s−1

)(
n
s

) min{q,j}∑
l=max{1,s−n+j}

(
j−1
l−1

)(
n−j
s−l

)(
n−1
s−1

) =

min{q,j}∑
l=max{1,s−n+j}

(
j−1
l−1

)(
n−j
s−l

)(
n
s

) = γj . (10)

Therefore,

Eg̃t =
1

q

n∑
j=1

P ((j) ∈ Q)gt(j) =
1

q

n∑
j=1

γjg
t
(j) ∈ ∂Lq(θ

t) , (11)

where the last inequality is due to the additivity of sub-gradient (for both convex and weakly convex
function) □.
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A.2 PROOF OF PROPOSITION 2

Proof. We will show that

lim
j,n→∞,j/n=z

γj =
1

n

s!

(l − 1)!(s− l)!

q∑
l=1

(
j

n

)l−1(
1− j

n

)s−l

. (12)

We begin the proof by changing the variable z = j
n .

At first, the Stirling’s approximation yields that when n and j are both sufficiently large, it holds that(
n

j

)
∼
√

n

2πj(n− j)

nn

jj(n− j)n−j
. (13)

Thus,

lim
j,n→∞,j/n=z

(
n−s
j−l

)(
n−1
j−1

) =

nn−s

jj−l(n−j)n−j−s+l

nn−1

jj−1(n−j)n−j

=
jl−1(n− j)s−l

ns−1
=

(
j

n

)l−1(
n− j

n

)s−l

(14)

where the first equality utilizes Equation (10) and the fact that s, l, 1 are negligible in the limit case
(except the exponent terms).

On the other hand, it holds by rearranging the factorial numbers that

1

n

(
n−s
j−l

)(
n−1
j−1

) s!

(l − 1)!(s− l)!
=

(
j−1
l−1

)(
n−j
s−l

)(
n
s

) . (12)

Recall γj =
∑min{q,j}

l=max{1,s−n+j}
(j−1
l−1)(

n−j
s−l)

(ns)
. Let

γj =

min{q,j}∑
l=max{1,s−n+j}

(
j−1
l−1

)(
n−j
s−l

)(
n
s

) =

q∑
l=1

(
j−1
l−1

)(
n−j
s−l

)(
n
s

) , (15)

where we set the value to 0 for l ∈ [1, s− n+ j] and [j, q] if s− n+ j > 1 and j < q. Therefore,
we conclude the following by noticing s > q,

d

dz
γ(z) =

q∑
l=2

(l − 1)zl−2(1− z)s−l s!

(l − 1)!(s− l)!
−

q∑
l=1

(s− l)zl−1(1− z)s−l−1 s!

(l − 1)!(s− l)!

=

q∑
l=2

zl−2(1− z)s−l s!

(l − 2)!(s− l)!
−

q∑
l=1

zl−1(1− z)s−l−1 s!

(l − 1)!(s− l − 1)!

=

q−1∑
l=1

zl−1(1− z)s−l−1 s!

(l − 1)!(s− l − 1)!
−

q∑
l=1

zl−1(1− z)s−l−1 s!

(l − 1)!(s− l − 1)!

= −zq−1(1− z)s−q−1 s!

(q − 1)!(s− q − 1)!

= −zq−1(1− z)s−q−1 (s− 1)!

(q − 1)!(s− q − 1)!
s.

(16)

In other words, 1− 1
sγ(z) is the cumulative distribution function of Beta(q, s−q) when n→∞.

A.3 PROOF OF THEOREM 3

Full version of Theorem 3: Let (θt)Tt=0 be the sequence generated by Algorithm 1. Suppose there
exists a finite θ∗ ∈ argminθ Lq(θ), Lq(θ

∗) <∞. If each Li(·) is convex and G-Lipschitz, then

min
0≤t≤T

E
[
Lq(θ

t)− Lq(θ
∗)
]
≤

ηmax

(
∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2
)

2 ηmin

∑T
t=1 η

t
. (17)
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Moreover, if we define the weighted average θ̄T = 1∑T
t=1 ηt

∑T
t=1 η

tθt, then

E
[
Lq(θ̄

T )− Lq(θ
∗)
]
≤
∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2

2
∑T

t=1 η
t

. (18)

Proof. Consider the one update at epoch t, we have

∥θt+1 − θ∗∥22 = ∥θt − θ∗∥22 − 2ηt⟨g̃t, θt − θ∗⟩+ (ηt)2∥g̃t∥22. (19)

Taking the conditional expectation of vt given θ of equation 19 yields

E[∥θt+1 − θ∗∥22] ≤ ∥θt − θ∗∥22 − 2ηt⟨E[g̃t], θt − θ∗⟩+ (ηt)2G2, (20)

where we use ∥g̃t∥2 ≤ G. Because we maintain an unbiased gradient estimator E[g̃t] ∈ ∂Lq(θ
t), we

have that with convexity of Lq , we have

−⟨E[g̃t], θt − θ∗⟩ ≤ −(Lq(θ
t)− Lq(θ

∗)), (21)

where the θ∗ :
def
= argminθ Lq(θ). Substituted equation 21 into equation 20 gives

E
[
∥θt+1 − θ∗∥22

]
≤ ∥θt − θ∗∥22 − 2ηt

(
Lq(θ

t)− Lq(θ
∗)
)
+ (ηt)2G2.

=⇒ 2ηt(Lq(θ
t)− Lq(θ

∗)) ≤
(
∥θt − θ∗∥22 − E[∥θt+1 − θ∗∥22]

)
+ (ηt)2G2.

(22)

Take the expectation over the entire sequence θ1, . . . , θt+1, sum over t = 1, . . . , T , we have

2

T∑
t=1

ηtE[Lq(θ
t)− Lq(θ

∗)] ≤
(
∥θ1 − θ∗∥22 − E[∥θT+1 − θ∗∥22]

)
+G2

T∑
t=1

(ηt)2. (23)

It shows that

1∑T
t=1 η

t

T∑
t=1

ηtE[Lq(θ
t)− Lq(θ

∗)] ≤
∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2

2
∑T

t=1 η
t

. (24)

With the observation that

1∑T
t=1 η

t

T∑
t=1

ηtE[Lq(θ
t)− Lq(θ

∗)]

=
1

1
T

∑T
t=1 η

t

1

T

T∑
t=1

ηtE[Lq(θ
t)− Lq(θ

∗)]

≥ min1≤t≤T ηtE[Lq(θ
t)− Lq(θ

∗)]

max1≤t≤T ηt

≥ ηmin

ηmax
min

1≤t≤T
E[Lq(θ

t)− Lq(θ
∗)],

(25)

where ηmin = min1≤t≤T ηt and ηmax = max1≤t≤T ηt. Therefore, it holds that

ηmin

ηmax
min

1≤t≤T
E[Lq(θ

t)− Lq(θ
∗)] ≤ 1∑T

t=1 η
t

T∑
t=1

ηtE[Lq(θ
t)− Lq(θ

∗)]

≤
∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2∑T
t=1 η

t
.

(26)

Then we can derive that

min
1≤t≤T

E[Lq(θ
t)− Lq(θ

∗)] ≤
ηmax(∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2)

2ηmin

∑T
t=1 η

t
. (27)
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A.4 PROOF OF THEOREM 4

Proof. We begin this proof by leveraging the concepts of spectral risk measure (Acerbi & Tasche,
2002; Mehta et al., 2023). the surrogate loss Lq(θ,D) =

∑n
i=1

γi

q L(i)(θ) =
∑n

i=1 σjZ(i) is called
an L-risk with a spectrum σi = γi

q and Z(i) = L(i)(θ) for i ∈ [n], which can be regarded as a
functional of the CDF known as a spectral risk measure. {Zi}ni=1 are arbitrary real-valued i.i.d.
random variables drawn from CDF F. For our case, these refer to data instance Di of n samples
drawn from distribution D under parameter vector θ.

Let Fn(z) :=
1
n

∑n
i=1 1(−∞,z](Zi) denote the (random) empirical CDF of the sample and define the

empirical quantile function (or inverse CDF) as

F−1
n (t) := inf{z : Fn(z) ≥ t} for t ∈ (0, 1). (28)

The population quantile function is defined similarly as

F−1(t) := inf{z : F (z) ≥ t}. (29)

The empirical quantile function can be written in terms of the order statistics as F−1
n (t) = Z(⌈nt⌉).

Notice in particular that when t ∈
(
i−1
n , i

n

)
, we have that F−1

n (t) = Z(i), where end-points are
chosen to make F−1

n left continuous.

The spectrum σ of an L-risk is typically defined as a discretization of a probability density s on (0, 1),
such that

σi =

∫ i/n

(i−1)/n

s(t) dt, (30)

so that it need not be redefined for every n. Given both the construction of s and F−1
n , we can rewrite

the L-risk as

Lq(θ,D) =

n∑
i=1

σiZ(i) =

n∑
i=1

(∫ i/n

(i−1)/n

s(t) dt

)
Z(i)

=

n∑
i=1

(∫ i/n

(i−1)/n

s(t) · Z(⌈nt⌉) dt

)

=

∫ 1

0

s(t) · F−1
n (t) dt =: Ls [Fn] ,

(31)

where Ls [G] :=
∫ 1

0
s(t)G−1(t) dt is called a spectral risk measure with spectrum s applied to CDF

G.

It stands to reason that Ls [Fn] converges to Ls [F ] in an appropriate sense. This convergence is
governed by the Wasserstein distance between the empirical and population distribution, which we
briefly recall here. In this section, we control the bias term appearing in the convergence analysis.
The following lemmas consider a set of real numbers, representing losses at a single θ ∈ Rd. Let
x1, . . . , xn ∈ R be call the full batch, and let X1, . . . Xm be a random sample selected uniformly
without replacement from {x1, . . . , xn}, called the minibatch. Let

Fn(x) :=
1

n

n∑
i=1

1(−∞,x] and Fn,m(x) :=
1

m

m∑
j=1

1(−∞,x) (32)

be the empirical CDFs, and let

F−1
n (t) := inf{x : Fn(x) ≥ t} and Fn,m(t) := inf{x : Fn,m(x) ≥ t}. (33)

be the empirical quantile functions of the full batch and minibatch, respectively. Similarly, let

µn :=

n∑
i=1

δxi and µn,m =

m∑
j=1

δXj (34)

be the empirical measures of the full batch and minibatch, respectively, with δx indicating a Dirac
point mass at x. Let u(t) := 1(0,1)t be the uniform spectrum.
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Recall the expressions of the L-risk. We denote L(θ∗) = ED∼D[L(θ∗, D)] as the optimal value.

For the sampled distribution, we have

E[Lq(θ
t, D)] = E

 s∑
j=1

γ̂j
q
Li(j)(θ

t)

 = E[Ls[Fn,s(·; θt)]], (35)

and for the uniform distribution, we define

E[Lu(θ
t, D)] = E

 s∑
j=1

1

s
Li(j)(θ

t)

 = E[Lu[Fn,s(·; θt)]]. (36)

Moreover, the full-batch loss satisfies

L(θt, D) = Lu(θ
t, D) = Lu[Fn(·; θt)]. (37)

Here, the distributions s and u correspond to the sampling distribution of γ in Lq(θ
t, D) at step t and

the uniform distribution, respectively. The expectation is taken over the minibatch {i1, . . . , is}.
Therefore, we establish the generalization error over the set Θ := {θi}Ti=1.

L(θ∗)− E[Lq(θ
t, D)]

≤ sup
θ∈Θ
L(θ∗)− E[Lq(θ

t, D)]

= sup
θ∈Θ
L(θ∗)− E[Ls[Fn,s]]− Ls[Fn] + Ls[Fn]− E[Lu[Fn,s]] + E[Lu[Fn,s]]− Lu[Fn] + Lu[Fn]

= sup
θ∈Θ
L(θ∗)− E[Lu[Fn,s]] + Lu[Fn]− Ls[Fn]

−
(
E[Ls[Fn,s]]− Ls[Fn]−

(
E[Lu[Fn,s]]− Lu[Fn]

))
≤ sup

θ∈Θ
L(θ∗)− E[Lu[Fn,s]] + sup

θ∈Θ

(
Lu[Fn]− Ls[Fn]

)
+ sup

θ∈Θ

(
− E[Ls[Fn,s]] + Ls[Fn] + E[Lu[Fn,s]]− Lu[Fn]

)
≤ inf

θ∈Θ

∣∣E[Lu[Fn,s]]− L(θ∗)
∣∣+ sup

θ∈Θ

(
Lu[Fn]− Ls[Fn]

)
+ sup

θ∈Θ

∣∣∣E[Ls[Fn,s]]− Ls[Fn]−
(
E[Lu[Fn,s]]− Lu[Fn]

)∣∣∣
≤

ηmax

(
∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2
)

2ηmin

∑T
t=1 η

t

+ sup
θ∈Θ

(
Lu[Fn]− Ls[Fn]

)
+ sup

θ∈Θ
∥s− u∥∞ E[∥F−1

n,m − F−1
n ∥1]

≤
ηmax(∥θ1 − θ∗∥22 +G2

∑T
t=1(η

t)2)

2ηmin

∑T
t=1 η

t︸ ︷︷ ︸
unbiased part

−Qn(θ
t; s, q) +

√
2CsB

√
n− s

s(n− 1)︸ ︷︷ ︸
biased part

,

(38)

where the third inequality follows the Theorem 3 and the fourth inequality follows
Lemma 14 in (Mehta et al., 2023). We denote Cs = supt∈(0,1) |s(t) − u(t)|, B =

infθ∈[1,T ] maxi∈[1,n] |Li(θ, zi)| <∞, and Qn(θ; s, q) := infθ∈Θ

∑n
i=1(

ri(θ,D)
q − 1

n )Li(θ, z).

Moreover, if we use the weighted average θ̄T = 1∑T
t=1 ηt

∑T
t=1 η

tθt as output of OrderDP, the
dependence on ηmax and ηmin can be removed and it holds that:
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L(θ∗)− E[Lq(θ̄
T , D)]

=L(θ∗)− E[Ls[Fn,s]]− Ls[Fn] + Ls[Fn]− E[Lu[Fn,s]] + E[Lu[Fn,s]]− Lu[Fn] + Lu[Fn]

=L(θ∗)− E[Lu[Fn,s]] + Lu[Fn]− Ls[Fn]− [E[Ls[Fn,s]]− Ls[Fn]− (E[Lu[Fn,s]]− Lu[Fn])]

≤
∣∣E[Lu[Fn,s]]− L(θ∗)

∣∣+ (Lu[Fn]− Ls[Fn]
)

+
∣∣∣E[Ls[Fn,s]]− Ls[Fn]−

(
E[Lu[Fn,s]]− Lu[Fn]

)∣∣∣
≤
∣∣E[Lu[Fn,s]]− L(θ∗)

∣∣+ sup
θ∈Θ

(
Lu[Fn]− Ls[Fn]

)
+
∣∣∣E[Ls[Fn,s]]− Ls[Fn]−

(
E[Lu[Fn,s]]− Lu[Fn]

)∣∣∣
≤

(∥θ1 − θ∗∥22 +G2
∑T

t=1(η
t)2)

2
∑T

t=1 η
t︸ ︷︷ ︸

unbiased part

−Qn(θ
t; s, q) +

√
2CsB

√
n− s

s(n− 1)︸ ︷︷ ︸
biased part

.

(39)

where the last inequality follows from (18) and other terms remain unchanged.

B RELATED WORKS

Static Data Pruning. Static pruning techniques aim to pre-select a compact subset of the training
data that can approximate the utility of the full dataset. A wide range of criteria have been proposed
for this purpose. Diversity-based methods such as Contextual Diversity (CD) (Agarwal et al., 2020),
Herding (Welling, 2009), and k-Center (Sener & Savarese, 2018) remove redundant samples by
ensuring broad feature-space coverage. Difficulty-based strategies including Cal (Margatina et al.,
2021) and Deepfool (Ducoffe & Precioso, 2018) prioritize hard-to-learn examples near decision
boundaries. Error- and gradient-driven approaches such as GraNd and EL2N (Paul et al., 2021) and
MOSO (Tan et al., 2023) instead exploit training dynamics or loss sensitivity. In parallel, uncertainty-
based sampling (Coleman et al., 2019), influence-function analysis (Koh & Liang, 2017), and gradient
matching approaches like GradMatch (Killamsetty et al., 2021b;a) provide alternative means of
quantifying informativeness. More principled frameworks include bilevel optimization (Killamsetty
et al., 2021b) and submodular subset selection (Iyer et al., 2021), where algorithms such as FL
and Graph Cut (GC) (Iyer et al., 2021) explicitly balance coverage and information gain. Early
computer vision work such as (Huh et al., 2016) also emphasized the importance of dataset diversity
for transferable representations. While effective in specific cases, static approaches often require
costly pre-computation, and their heuristics may not generalize well across architectures or datasets,
particularly at ImageNet scale.

Dynamic Data Pruning. Dynamic methods instead make pruning decisions adaptively during train-
ing by leveraging information from the evolving model state. Early efforts such as ActiveBias (Chang
et al., 2017) adjusted sampling probabilities based on prediction confidence, while forgetting-based
measures (Toneva et al., 2018) revealed that unstable or frequently forgotten examples often provide
valuable signal. Raju et al. (Raju et al., 2021) introduced exploration-based policies such as ϵ-greedy
and UCB, where uncertainty estimates guide the retention of high-value samples. Recent work has
also examined improving random sampling policies themselves: Okanovic et al. (Okanovic et al.,
2024) showed that repeated random sampling can significantly reduce time-to-accuracy, offering
a complementary perspective to loss-based dynamic pruning approaches such as InfoBatch and
OrderDP. More recently, InfoBatch (Qin et al., 2024) proposed an unbiased gradient estimator,
showing that loss-based pruning can accelerate training without compromising accuracy on bench-
marks like CIFAR-10/100 and ImageNet-1K. Building on this line of research, Yang et al. (Yang et al.,
2022) and Sorscher et al. (Sorscher et al., 2022) extended dynamic pruning principles to large-scale
pretraining, while He et al. (He et al., 2024) incorporated dynamically updated uncertainty estimates.
In particular, Sorscher et al. (Sorscher et al., 2022) demonstrated that the optimal choice between
hard and easy samples can depend on dataset scale, an observation that is complementary to the top-q
strategy analyzed in this work. Despite these advances, dynamic methods still face challenges: the
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achievable “lossless” pruning ratio on new datasets is unpredictable, sorting operations can become
expensive at scale, and empirical instability often emerges under aggressive pruning ratios. Ayed
and Hayou (Ayed & Hayou, 2023) further analyze the fundamental bias of score-based pruning and
show that reweighting can recover unbiasedness with respect to the original loss. Their perspec-
tive is complementary to ours: while they study limitations under L, we provide guarantees for a
ranking-induced surrogate Lq whose gap to L is explicitly controlled.

Cross-domain Data Selection and Pruning. Beyond computer vision, pruning and selection
strategies have been expanded to other domains such as NLP and speech. In speech recognition,
unsupervised data selection has been explored through discrete speech units (Lu et al., 2022).
For large-scale NLP pretraining, several studies investigate pruning and mixture optimization to
accelerate convergence. (Marion et al., 2023) explored pruning strategies for pretraining corpora,
while (Xie et al., 2023) introduced DoReMi, a framework that dynamically optimizes data mixtures
for faster language model pretraining. Instruction tuning has further motivated task-specific pruning,
exemplified by (Cao et al., 2023), who proposed instruction mining to select relevant subsets for
downstream tasks. These works highlight that pruning is not limited to vision but constitutes a
broader principle of efficient data utilization across modalities.

C EXPERIMENTAL INFRASTRUCTURES

Software infrastructures. All experiments are implemented in Python 3.12.4 using PyTorch
2.3.1 with CUDA 11.8 support. Key libraries include NumPy 1.26.4, pandas 2.2.3, torchvision
0.18.1, matplotlib 3.10.1, and scikit-learn 1.6.1 for data processing and analysis. We also employ
accelerate 1.6.0 for multi-GPU training and tqdm 4.67.1 for progress visualization.

Hardware infrastructures. We conduct all experiments on a computer server with 2 NVIDIA L40
GPUs (with 48GB memory each), a single Intel Xeon Gold 6448Y CPU (32 physical cores), and 944
GiB of system RAM.

D ADDITIONAL EMPIRICAL RESULTS

D.1 EXPERIMENTAL SETUP DETAILS

We provide software/hardware infrastructures in Appendix C; here we detail dataset-specific training
setups throughout this paper.

CIFAR-10/100: The CIFAR-10/100 experiment with ResNet-18 can be reproduced with SGD using a
maximum learning rate of 0.2 for the OneCycle scheduler under a batch size of 128. For experiments
with ResNet-50, SGD is used with a maximum learning rate of 0.03 and batch size of 128 for baseline,
InfoBatch, and OrderDP.

ImageNet-1K: The tests are implemented based on Pytorch/examples. The LARS optimizer
and a maximum learning rate of 6.4 / 1.98 are used for batch size 1024 on ImageNet-1K experiments
with ResNet-50/18.

D.2 VALIDATION OF THEORETICAL PROPERTIES

Both Figure 5 and Figure 6 illustrate theoretical properties derived in Appendix A. Figure 5 empirically
validates Proposition 2 by fixing (s, q) = (100, 30) and increasing n, showing how nγj converges to
γ(z) as n, s, and q increase. Figure 6 illustrates Theorem 4 by comparing γj to uniform sampling for
different q (fix (n, s) = (200, 100) and increase q → 100), highlighting that the gap between the two
distributions vanishes (i.e., Qn(θ; s, q) and Cs approach 0) as q increases.

In addition to the above validations, we further examine the normalization behavior of the weights
{γj} derived in Eq. (10). Although providing a fully symbolic proof for the combinatorial form of γj
is algebraically involved, the construction of Algorithm 1 implies that exactly q samples are selected
at each iteration, suggesting that

∑n
j=1 γj should be close to q, and therefore

∑n
j=1 γj/q ≈ 1.
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Figure 5: Empirical weight decay curves nγj
versus normalized index j/n, demonstrating con-
vergence to the limiting density γ(z) and the
smoothing of the “cliff” as n increases.

25 50 75 100 125 150 175 200
j n

0.00

0.01

0.02

0.03

0.04

0.05 uniform
j with q = 10
j with q = 50
j with q = 100

Figure 6: Comparison of the sampling weights
γj against uniform sampling for different ex-
ploitation sizes q, illustrating the deviation cap-
tured by the bias term Cs in Theorem 4.

Figure 7 plots the normalized distributions γj/q for different values of q (with (n, s) = (400, 100)).
As q increases, the curves gradually flatten and approach the uniform distribution, consistent with
Theorem 4.

Figure 8 further shows the empirical values of
∑n

j=1 γj/q across q ∈ {10, 20, . . . , 100}, all of which
lie extremely close to 1 (within floating-point error). This provides strong numerical evidence that
the weights induced by Algorithm 1 are properly normalized in practice.

Proof. We also provide proof of the claim
∑n

j=1 γj/q = 1 via Mathematical Induction.

For any n, s, when q = 1, we can show exactly that∑
j

γj
q

=
∑
j

(
n−1
s−1

)(
n
s

) = 1.

Suppose
∑

j γj/q = 1 for any q = m where m ∈ N and 1 ≤ m ≤ s− 1, we show
∑

j γj/q = 1 for
q = m+ 1. The case q = m can be rewritten as

∑
j

γj
q

=
1

m

∑
j

min{m,j}∑
l=max{1,s−n+j}

(
j−1
l−1

)(
n−j
s−l

)(
n
s

) = 1.

Thus for the case q = m+ 1, we have

∑
j

γj
q

=
1

m+ 1

∑
j

min{m+1,j}∑
l=max{1,s−n+j}

(
j−1
l−1

)(
n−j
s−l

)(
n
s

)
=

1

m+ 1

∑
j

( min{m,j}∑
l=max{1,s−n+j}

(
j−1
l−1

)(
n−j
s−l

)(
n
s

) +

(
j−1
m

)(
n−j

s−m−1

)(
n
s

) )

=
1

m+ 1

(
m+

n−s+m+1∑
j=m+1

(
j−1
m

)(
n−j

s−m−1

)(
n
s

) )

where the last equality follows that
(
j−1
m

)(
n−j

s−m−1

)
> 0 for m+ 1 ≤ j ≤ n− s+m+ 1 else 0. The

remain proof is to show
∑n−s+m+1

j=m+1
(j−1

m )( n−j
s−m−1)
(ns)

= 1.

Consider selecting a subset of size s from the set {1, 2, . . . , n}. Arrange the elements of the subset in
increasing order: a1 ≥ a2 ≥ · · · ≥ as Then am+1 is the (m+ 1)-th largest element. Let j = m+ 1,
i.e., the (m+ 1)-th largest element is at position j.

To construct such a subset, the following conditions must be satisfied:
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Figure 7: Normalized distributions γj/q for dif-
ferent q under (n, s) = (400, 100). As q in-
creases, the curves flatten and approach the uni-
form distribution.
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Figure 8: Empirical normalization of∑n
j=1 γj/q. Across all q ∈ {10, . . . , 100}, the

values remain extremely close to 1.

• Choose m elements from the first j − 1 elements (i.e., a1, . . . , am), which can be done in
(
j−1
m

)
choices.

• Choose s−m− 1 elements from the remaining n− j elements (i.e., am+2, . . . , as), which can be
done in

(
n−j

s−m−1

)
choices.

Thus, the number of subsets where the m + 1-th largest element is exactly at position j is:(
j−1
m

)(
n−j

s−m−1

)
Summing over j from m + 1 to n − s + m + 1 (since j must be at least m + 1 and at most
n− s+m+ 1 to ensure enough elements remain), we obtain the total number of subsets of size s:∑n−s+m+1

j=m+1

(
j−1
m

)(
n−j

s−m−1

)
=
(
n
s

)
,

Therefore, the original claim holds for all q:
∑n

j=1 γj/q = 1.

D.3 VALIDATION OF CONVERGENCE ASSUMPTIONS

To further support the validity of Theorem 3, we analyze whether the selected coreset stabilizes during
training. Although the selection depends on sampling scores H , which may vary across epochs, our
analysis shows that the coreset indeed becomes stable in later stages of training.

Coreset Dynamics. Our analysis does not assume a fixed coreset. Instead, OrderDP naturally
determines the coreset through the pruning strategy (captured by γj in Proposition 2), where the
sample zj ∈ coreset follows an approximate Beta-distribution.

Theoretical Parallel to SGD. The applicability of Theorem 3 is analogous to SGD’s convergence
guarantees: (i) SGD converges by deterministic batches per epoch (the sample zj ∈ selected follows
uniform sampling); (ii) OrderDP achieves convergence after the coreset stabilizes (via Beta-distributed
sampling).

To empirically verify this stabilization, we measure the Jaccard Similarity between the coreset at the
current epoch and that from the immediately preceding epoch, defined as

J(A,B) =
|A ∩B|
|A ∪B|

. (40)

A higher similarity indicates that the selected set of samples remains consistent across epochs. Table 8
shows that OrderDP consistently achieves higher coreset stability than InfoBatch, confirming the
practical applicability of Theorem 3.

D.4 SAMPLE COVERAGE UNDER DIFFERENT PRUNING RATIOS

To further examine the exploration behavior of OrderDP, we track for each training sample the
number of times it is selected into the update set throughout the entire training process. Figures 9, 10,
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Table 8: Jaccard Similarity between consecutive checkpoints on CIFAR-100 with ResNet-18. In-
foBatch and OrderDP are trained for 200 epochs (checkpoints at 20%, 40%, 60%, 80%, and final
100%), with learning rate = 0.03 and batch size = 128. Each setting is repeated 5 times, and mean ±
std are reported. Higher values indicate greater stability of the coreset.

Prune Ratio Method 0–20% 20–40% 40–60% 60–80% 80–100% 100%

40% InfoBatch 0.583±0.050 0.496±0.010 0.479±0.003 0.481±0.006 0.512±0.010 0.522±0.007
OrderDP 0.645±0.057 0.692±0.023 0.713±0.008 0.743±0.023 0.757±0.034 0.767±0.008

70% InfoBatch 0.593±0.012 0.532±0.024 0.459±0.019 0.403±0.018 0.455±0.036 0.512±0.012
OrderDP 0.552±0.049 0.592±0.016 0.647±0.020 0.661±0.018 0.678±0.023 0.704±0.090
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Figure 9: Sample usage count distribution (30%
prune ratio).
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Figure 10: Sample usage count distribution (50%
prune ratio).

and 11 show the empirical distributions of sample usage counts on CIFAR-10 under prune ratios of
30%, 50%, and 99%, respectively.

Across all pruning ratios, we observe that no sample has zero usage count: every example is selected
at least once during training. Under practical pruning settings (e.g., 30%–50%), most samples
fall within a reasonably concentrated range of usage counts, indicating that OrderDP does not
permanently discard any data point but instead explores the entire dataset with a frequency controlled
by (s, q).

These empirical findings are fully consistent with our theoretical analysis of coverage and directly
support our response to reviewer questions regarding whether OrderDP eventually sees the entire
dataset.

D.5 TIME-TO-ACCURACY CURVES

To complement the wall-clock results in Figure 3 and to directly address the reviewer’s suggestion on
evaluating time-to-accuracy, we report curves showing the relationship between training time and
accuracy. These curves provide a practical view of how fast different methods reach comparable
accuracy levels in real training scenarios.

Figures 12 and 13 present the Time-to-Accuracy curves on CIFAR-10 using ResNet-18 under prune
ratios of 40% and 70%. Consistent with our findings throughout the paper, OrderDP achieves faster
accuracy improvement and maintains stable convergence compared with both InfoBatch and Random,
especially under higher pruning levels.

D.6 STABILITY ANALYSIS

We further include a stability study of dynamic pruning methods under multiple independent runs.
In this analysis, we evaluate CIFAR-100 with ResNet-18 at a 70% real pruning ratio across 10
runs. InfoBatch often exhibits large mid-training gradient oscillations and occasional convergence
failures, while OrderDP consistently converges smoothly in every trial. Moreover, InfoBatch relies
on late-stage full-data “annealing” to stabilize training, whereas OrderDP maintains exact pruning
control via (s, q) without requiring such rescue. This highlights the robustness and practicality of our
approach. Under aggressive pruning, InfoBatch’s rescaling further causes severe fluctuations in both
gradient and accuracy.
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Figure 11: Sample usage count distribution under a 99% prune ratio. Even under extreme pruning,
every sample is selected at least once.
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Figure 12: Time-to-Accuracy on CIFAR-10 at
40% prune ratio.
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Figure 13: Time-to-Accuracy on CIFAR-10 at
70% prune ratio.

Detailed results are summarized in Table 9 (real prune ratio ≈ 0.61, InfoBatch nominal prune ratio
≈ 0.99; 200 epochs; learning rate = 0.03; batch size = 128; averaged over 10 runs).

E EXTENDED ANALYSIS OF GRADIENT BIAS

E.1 MECHANISMS AND TOY EXAMPLE

This subsection provides additional clarification on how OrderDP eliminates biased gradient estima-
tion. The method addresses the issue through three main mechanisms. Uniform exploration. Before
pruning, s points are randomly sampled so that every sample, regardless of gradient magnitude, has
equal probability of entering the coreset. This ensures the gradient distribution is much closer to that
of full-data SGD compared with InfoBatch’s biased rescaling strategy. Unbiased surrogate loss.
Instead of pruning the original loss directly, a new loss Lq is constructed with closed-form weights
γj derived from a two-stage sampler. Theorem 1 guarantees each update is an unbiased estimator of
∇Lq(θ), while Theorems 2, 3, and 4 provide convergence and generalization guarantees, avoiding
the need for late-stage full-data annealing. Exact pruning control. By explicitly setting (s, q), any
target prune ratio (e.g., 70%, 80%, 90%) can be realized precisely, unlike InfoBatch’s mean-threshold
scheme, which fluctuates around ∼ 77%.

To make the difference clear, we present a toy comparison under an 80% prune ratio with 5 samples
of gradients g = {1, 2, 3, 4, 5}. In InfoBatch (mean-threshold + rescale), samples 3, 4, 5 are
always kept, while 1 and 2 are included with probability 0.2, and their gradients rescaled by a factor
1/(1− 0.8) = 5. This leads to four possible outcomes summarized in Table 10.

From Table 10, the expected gradient estimate is 4.336 with prune ratio < 0.8, indicating bias.

In contrast, for OrderDP (5 samples, 80% prune), we randomly sample a batch with size s ∈
{1, . . . , 5} and select the top-1 element. The detailed probability calculation for each index is as
follows:
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Table 9: Stability comparison on CIFAR-100 with ResNet-50 across 10 runs under varying training
progress (percentage of epochs). Reported are Accuracy (% ± Std) and Gradient Std. OrderDP
shows smoother convergence and eliminates instability observed in InfoBatch.

Method Metric 0–30% 30–50% 50–70% 70–100% Final

ϵ-Greedy Acc ± Std 48.01 ± 4.60 49.77 ± 2.54 52.61 ± 1.42 66.24 ± 1.23 74.77 ± 0.30
Grad ± Std 3.08 ± 1.19 3.49 ± 0.62 2.78 ± 0.57 2.05 ± 0.45 1.53 ± 0.37

UCB Acc ± Std 49.70 ± 4.80 50.66 ± 2.31 54.34 ± 1.82 67.97 ± 1.12 75.41 ± 0.40
Grad ± Std 4.08 ± 1.69 3.69 ± 1.02 2.99 ± 0.27 2.35 ± 0.38 1.33 ± 0.14

InfoBatch Acc ± Std 45.74 ± 3.56 52.08 ± 2.55 47.72 ± 3.63 68.92 ± 3.01 76.72 ± 0.70
Grad ± Std 7.35 ± 1.78 5.88 ± 1.24 4.35 ± 9.48 3.56 ± 4.55 2.89 ± 1.67

OrderDP Acc ± Std 48.00 ± 3.23 56.00 ± 2.01 61.00 ± 1.34 72.00 ± 0.56 78.32 ± 0.20
Grad ± Std 4.08 ± 1.19 3.49 ± 0.62 2.78 ± 0.47 2.05 ± 0.55 1.03 ± 0.33

Whole Dataset Acc ± Std 56.58 ± 1.56 62.36 ± 0.76 66.84 ± 0.52 72.24 ± 0.40 80.60 ± 0.20
Grad ± Std 3.88 ± 0.79 3.09 ± 0.41 2.45 ± 0.42 1.93 ± 0.55 0.88 ± 0.20

Table 10: Toy example of InfoBatch under an 80% prune ratio with 5 gradients. The table shows the
kept set, probability of selection, rescaled gradients, average gradient, and prune rate.

Kept set Probability Gradients Avg. grad. Prune rate

{3, 4, 5} 0.64 3, 4, 5 4.0 0.60
{1, 3, 4, 5} 0.16 5 · 1, 3, 4, 5 = 5, 3, 4, 5 4.25 0.20
{2, 3, 4, 5} 0.16 5 · 2, 3, 4, 5 = 10, 3, 4, 5 5.5 0.20
{1, 2, 3, 4, 5} 0.04 5 · 1, 5 · 2, 3, 4, 5 = 5, 10, 3, 4, 5 5.4 0.00

{1} : 1
5 ·

1
5 (s = 1) = 1

25 ,

{2} : 1
5 ·

1
5 (s = 1) + 1

10 ·
1
5 (s = 2) = 3

50 ,

{3} : 1
5 ·

1
5 (s = 1) + 3

10 ·
1
5 (s = 2) + 1

10 ·
1
5 (s = 3) = 3

25 ,

{4} : 1
5 ·

1
5 (s = 1) + 3

10 ·
1
5 (s = 2) + 3

10 ·
1
5 (s = 3) + 1

10 ·
1
5 (s = 4) = 9

50 ,

{5} : 1
5 ·

1
5 (s = 1) + 2

5 ·
1
5 (s = 2) + 3

5 ·
1
5 (s = 3) + 4

5 ·
1
5 (s = 4) + 1

5 (s = 5) = 3
5 .

The expected gradient estimate under this distribution is 4.06 with prune ratio exactly 0.8. Therefore,
OrderDP not only maintains the target pruning ratio precisely but also achieves gradient estimates
closer to the true full gradient (= 3), effectively eliminating the bias observed in InfoBatch.

E.2 GRADIENT DIRECTION ANALYSIS

In addition to gradient magnitude analysis, we also examine gradient directions by measuring the
cosine similarity between the gradients computed with each pruning method and the full-data gradient
at matched checkpoints (same model weights). We train on CIFAR-100 with ResNet-18 for 200
epochs, evaluate at 20%, 40%, 60%, 80%, and 100% of training progress, using a learning rate of
0.03 and batch size of 128. Each setting is repeated 5 times, and we report mean ± std. Results under
pruning ratios 40% and 70% are summarized in Table 11.

These results demonstrate that OrderDP’s gradients align more closely with full-data gradients,
particularly at high pruning ratios, thereby reducing directional bias compared with InfoBatch.

F LIMITATIONS AND FUTURE WORK

While OrderDP excels on moderate-scale vision benchmarks, its performance on very large ar-
chitectures, streaming inference scenarios, and heterogeneous hardware platforms, as well as in
self-supervised or multi-modal settings, remains to be explored. In future work, we will extend
OrderDP to adaptive pruning schedules, investigate its integration with transformer and graph
models, and study its behavior under distribution shift and noisy labels.
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Table 11: Cosine similarity between pruned and full-data gradients on CIFAR-100 (ResNet-18) under
pruning ratios 40% and 70%. Each experiment is repeated 5 times, and mean ± std are reported.
Higher values indicate stronger alignment with full-data gradients.

Prune Ratio Method 0–20% 20–40% 40–60% 60–80% 80–100% 100%

40% InfoBatch 0.915±0.044 0.940±0.008 0.916±0.007 0.904±0.011 0.897±0.008 0.895±0.009
OrderDP 0.943±0.035 0.951±0.007 0.934±0.008 0.921±0.009 0.908±0.014 0.906±0.011

70% InfoBatch 0.825±0.037 0.807±0.027 0.763±0.021 0.758±0.023 0.743±0.026 0.716±0.029
OrderDP 0.853±0.048 0.896±0.018 0.901±0.015 0.893±0.014 0.868±0.021 0.844±0.018

Another promising direction is to develop noise-robust variants of OrderDP. Although the current
work focuses on the top-q strategy, the surrogate-loss framework introduced in this paper is more
general and can naturally incorporate min-q selection or mixed hard/easy sampling schemes by
modifying the weight structure {γj}. Such extensions may help suppress extreme outliers, improve
stability under label noise, and adapt the pruning strategy across different stages of training (e.g.,
hard-sample emphasis in early stages and easy-sample regularization in later stages). We plan to
further explore these variants and evaluate their performance in noisy or adversarial settings.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used solely for linguistic refinement and editing of the
manuscript. All scientific ideas, methodological contributions, and experimental results are en-
tirely conceived, implemented, and validated by the authors.
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