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Abstract

Recent attacks have shown that user data can be recovered from FedSGD updates, thus
breaking privacy. However, these attacks are of limited practical relevance as federated
learning typically uses the FedAvg algorithm. Compared to FedSGD, recovering data from
FedAvg updates is much harder as: (i) the updates are computed at unobserved intermediate
network weights, (ii) a large number of batches are used, and (iii) labels and network weights
vary simultaneously across client steps. In this work, we propose a new optimization-based
attack which successfully attacks FedAvg by addressing the above challenges. First, we solve
the optimization problem using automatic differentiation that forces a simulation of the
client’s update that generates the unobserved parameters for the recovered labels and inputs
to match the received client update. Second, we address the large number of batches by
relating images from different epochs with a permutation invariant prior. Third, we recover
the labels by estimating the parameters of existing FedSGD attacks at every FedAvg step.
On the popular FEMNIST dataset, we demonstrate that on average we successfully recover
>45% of the client’s images from realistic FedAvg updates computed on 10 local epochs of
10 batches each with 5 images, compared to only <10% using the baseline. Our findings
show many real-world federated learning implementations based on FedAvg are vulnerable.

1 Introduction

Federated learning (McMahan et al., 2017) is a general framework for training machine learning models in
a fully distributed manner where clients communicate gradient updates to the server, as opposed to their
private data. This allows the server to benefit from many sources of data, while preserving client privacy, and
to potentially use these massive amounts of data to advance the state of the art in various domains including
computer vision, text completion, medicine and others (Kairouz et al., 2021).

Unfortunately, recent works (Zhu et al., 2019; Zhao et al., 2020; Geng et al., 2021; Geiping et al., 2020;
Yin et al., 2021) have shown how to compromise the privacy aspect of federated learning. In particular,
they demonstrated that an honest-but-curious server can reconstruct clients’ private data from the clients’
gradient updates only - a phenomenon termed gradient leakage. While these attacks can recover data even for
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Figure 1: An overview of our attack on FedAvg. Our attack proceeds in two phases: first it estimates the
label counts λ̃c (left) and then uses these estimates to simulate the FedAvg updates on dummy inputs X̃c

(right). We then use automatic differentiation (green) to match the final weight θ̃2,2 to the observed weight
θ2,2 by minimizing the combination of the reconstruction loss Lsim and the epoch order-invariant prior Linv.

complex datasets and large batch sizes, they are still limited in their practical applicability. More specifically,
they typically assume that training is performed using FedSGD where clients compute a gradient update
on a single local batch of data, and then send it to the server. In contrast, in real-world applications of
federated learning, clients often train the model locally for multiple iterations before sending the updated
model back to the server, via an algorithm known as federated averaging (FedAvg) (McMahan et al., 2017),
thus reducing communication and increasing convergence speed (Kairouz et al., 2021). Under FedAvg, the
server only observes the aggregates of the client local updates and therefore, one may expect that this makes
the reconstruction of client’s private data much more difficult.

This work: Data Leakage in Federated Averaging In this work, we propose a data leakage attack
that allows for reconstructing client’s data from the FedAvg updates, which constitutes a realistic threat to
privacy-preserving federated learning. To this end, we first identify three key challenges that make attacking
FedAvg more difficult than FedSGD: (i) during the computation of client updates, the model weights change,
resulting in updates computed on weights hidden from the server, (ii) FedAvg updates the model locally
using many batches of data, (iii) labels and parameters are simultaneously changing during the update steps.

These challenges are illustrated in Figure 1, where a client with a total of 6 samples trains the model for 2
epochs, using a batch size of 3 resulting in 2 steps per epoch. Here, the model weights θ change at every step
and there are many different batches, with the samples being processed in a different order during the first
(blue) and second (red) epoch.

Addressing these challenges, we introduce a new reconstruction attack that targets FedAvg. Our method
first runs a FedAvg-specific procedure that approximately recovers the label counts λ̃c within the client’s
data (left in Figure 1) by interpolating the parameters, thus addressing the last challenge. This information
is then used to aid the second phase of the attack, which targets the individual inputs. To recover the
inputs, our algorithm uses automatic differentiation to optimize a reconstruction loss consisting of two parts.
The first part is a FedAvg reconstruction loss Lsim, designed by simulating the client’s training procedure,
that accounts for the changing parameter values, addressing the first challenge. The second part solves the
remaining challenge using an epoch order-invariant prior, Linv, which exploits the fact that the set of inputs
is the same in every epoch, thus mitigating the issue of having a large number of batches during the local
updates. To leverage this information, this term uses an aggregating order-invariant function g to compress
the sequence of samples in an epoch, and to then compare the results of this operation across different epochs.

We empirically validate the effectiveness of our method at recovering user data when the FedAvg algorithm is
used on realistic settings with several local epochs and several batches per epoch on the FEMNIST (Caldas
et al., 2018) and CIFAR100 (Krizhevsky et al., 2009) datasets. The results indicate that our method can
recover a significant portion of input images, as well as accurate estimates of class frequencies, outperforming
previously developed attacks. Further, we perform several ablation studies to understand the impact that
individual components of our attack have on overall attack performance.
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Main Contributions Our main contributions are:

• Identifying key challenges in applying gradient leakage algorithms to FedAvg updates (Section 4.1).

• Solving these challenges through a novel algorithm based on automatic differentiation through a
simulation of the FedAvg client update (Section 4.3) and an additional term incorporating prior
information about the optimization process (Section 4.4), as well as new FedAvg-specific label
reconstruction attack (Section 4.5).

• An implementation of this algorithm, that successfully attacks realistic FedAvg updates with multiple
epochs and batches per epoch. Code is available at https://github.com/eth-sri/fedavg_leakage.

• A thorough evaluation of our attack on the FEMNIST and CIFAR100 datasets that validates its
effectiveness at recovering private client data from FedAvg updates. In some of the settings we
consider, our attack is able to accurately recover more than 50% of the clients’ images, while prior
methods are only able to recover 10%.

2 Related work

In this section we discuss closely related work in the area of data leakage for federated learning.

Federated learning Federated learning (FL) was originally proposed by McMahan et al. (2017) as a
framework for training machine learning models with private data from edge devices (or clients), without
transferring the original data to a central server and instead communicating only gradient updates. Because
of the potential of FL to enable training machine learning models at scale while respecting the sensitive clients’
data, a substantial amount of recent research focuses on studying and enhancing the privacy guarantees
provided by FL (Abadi et al., 2016; Bonawitz et al., 2017). However, recent work has cast doubt on the
extent to which FL is inherently private, by demonstrating that in many cases the information about the
model gradients alone is enough to reconstruct the clients’ data.

Gradient leakage Melis et al. (2019); Zhu et al. (2019) demonstrated that clients’ data can be reconstructed
from federated gradient updates. Next, Zhao et al. (2020) improved on the previous attack by showing
that reconstructing inputs and labels separately simplifies the optimization process and leads to better
reconstruction. Orthogonally, Zhu & Blaschko (2020) formulated gradient leakage attacks as a system of
equations and provided an analytical solution under the assumption that the client has computed the update
on a single data point. More recently, much work has been done on gradient leakage attacks on specific data
domains through the use of input priors (Geiping et al., 2020; Dimitrov et al., 2022; Yin et al., 2021; Li et al.,
2022; Deng et al., 2021). What these attacks demonstrate is that it is possible to reconstruct individual inputs
from gradients aggregated over a batch of inputs, provided that a strong prior in the form of a regularizer is
added to the optimization problem. Our proposed prior in Section 4.4 provides similar benefits. Additionally,
following the observations of Zhao et al. (2020), Geng et al. (2021) designed attacks that approximate the
frequency counts of labels in a single client’s batch of data by looking at the gradients of the last linear layer
of the model. We introduce a FedAvg-specific extension of this method in Section 4.5.

While the aforementioned works have achieved substantial progress in making gradient leakage attacks
practical, the majority of these works focus on the reconstruction of a single data point or a single batch,
given the respective gradient. Even works that consider FedAvg updates, such as Geiping et al. (2020) and
Geng et al. (2021) focus on a setting where either small amount of epochs or small number of steps per epoch
are executed on the clients’ side. In contrast, we develop an end-to-end attack able to recover clients’ data
points from FedAvg updates computed on several epochs each with multiple intermediate steps – a problem
of greater practical relevance given that FL clients usually perform many local iterations before sending their
updates to the server to speed up convergence (McMahan et al., 2017).

Defenses against Gradient leakage Several works have studied the task of defending against gradient
leakage. There are three main types of defenses – heuristic (e.g Sun et al. (2021) and Scheliga et al. (2022)),

3

https://github.com/eth-sri/fedavg_leakage


Published in Transactions on Machine Learning Research (10/2022)

which are often broken by stronger attacks (Balunović et al., 2021); defenses based on adding random noise,
that provide differential privacy guarantees (Abadi et al., 2016) but often result in reduced model accuracy;
and defenses based on secure aggregation (Bonawitz et al., 2017) that ensure that only aggregated updates
from multiple clients are disclosed to the server thus making the reconstruction harder. In Appendix C.1, we
experiment with networks defended using Gaussian and Laplacian noise, as well as random gradient pruning
first suggested by Zhu et al. (2019). Further, while attacking securely-aggregated updates is not the main
focus of this work, following Wen et al. (2022), in Appendix C.5 we provide experiments on recovering data
from aggregated FedAvg updates. As attacking aggregated updates from large number of clients remains
unresolved problem in the gradient leakage community, future work is needed to obtain better results in this
setting, however, we see even aggregated updates do not provide absolute client privacy.

Other threat models In this work, we focus on the honest-but-curious server model for analyzing client’s
data privacy. That is, we assume that the server follows the standard training algorithm, but can attempt to
reconstruct clients data through the received updates. Stronger threat models have also been studied. Works
such as Fowl et al. (2022; 2021); Boenisch et al. (2021) demonstrate that the server can achieve much better
reconstruction of private data instances by adapting the model weights and/or architecture.

3 Background

In this section, we review the classic components of federated learning, provide an overview of existing
gradient leakage methods and their limitations, and introduce the relevant notation.

3.1 Federated learning

Throughout the paper, we assume that a server aims to train a neural network fθ parameterized by a
parameter vector θ, with the help of C clients. We also assume that the neural network has L layers of sizes
n1, n2, . . . , nL respectively, with the dimension of input variables being d and the number of classes equal to
K (with nL = K for notational convenience).

The vast majority of FL methods used in practice are based on the FedAvg algorithm (McMahan et al., 2017).
The optimization process consists of T communication rounds. In each round, the server sends the current
version of the model θst to a chosen subset of the clients. Each selected client c then computes an update to
the model, based on their own data, and sends an updated version θct of the model back to the server.

Algorithm 1 outlines the FedAvg’s client update algorithm for a selected client c at some communication
round. We denote Xc ∈ Rd×Nc and Y c ∈ [K]Nc the client’s private inputs and labels respectively, where N c

signifies the number of private data points of that client and [K] denotes the set {1, 2, . . . ,K}. At each local
client’s epoch e ∈ {1, 2, . . . , E}, the client randomly partitions its private data into sets of Bc = dNc

m e batches
{Xc

e,b | b ∈ [Bc]} and {Y ce,b | b ∈ [Bc]}, each of size m (Line 6). For each batch b and epoch e, a local SGD
update (Ruder, 2016) is computed for the cross entropy loss (denoted CE in Algorithm 1) on the respective
batch of data. The SGD update is then applied to the network weights, producing the new intermediate
weights θce,b (Line 8). Finally, the client sends the last updated weights θc = θcE,Bc back to the server.

As a special case of FedAvg, when only one epoch (E = 1) and one batch (Bc = 1) are used locally in all
rounds, one obtains the so-called FedSGD algorithm. While easier to attack, FedSGD is rarely used in
practice, especially when the number of clients is large, as it leads to a significant increase in communication.

3.2 Gradient leakage attacks

In this section, we review existing attacks based on the honest-but-curious server model. The majority of
these reconstruction methods, known as gradient leakage attacks, target the FedSGD training procedure (Zhu
et al., 2019; Zhao et al., 2020), where the clients communicate a single gradient update to the server. As we
attack FedAvg updates in this work, which share weights updates instead of individual gradients, we use the
more general term data leakage attacks to refer to leakage attacks from both types of updates.
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Algorithm 1 The FedAvg’s ClientUpdate Algorithm (Adapted from McMahan et al. (2017))
1: function ClientUpdate(Xc, Y c, f , θs, η, m, E)
2: Bc ← dN

c

m e
3: θc0,Bc ← θs

4: for epoch e ∈ [E ] do
5: θce,0 ← θce−1,Bc

6: {Xc
e,b}, {Y ce,b} ←PartitionData(Xc, Y c, m)

7: for batch b ∈ [Bc] do
8: θce,b ← θce,b−1 − η · ∇θ CE(f(Xc

e,b, θ
c
e,b−1), Y ce,b)

9: end for
10: end for
11: return θcE,Bc

12: end function

Reconstructions based on a single gradient To describe how existing attacks work, consider the case
where the batch size m = 1, so that θs−θc

η = ∇θCE(f(Xc
i , θ), Y ci ) is a gradient with respect to a single data

point (Xc
i , Y

c
i ) of the client c. The most common approach for reconstructing (Xc

i , Y
c
i ) from the gradient is to

search for an input-output pair, whose gradient most closely approximates the one that was sent back to the
server. Given a distance measure D in gradient space, this translates to the following optimization problem:

arg min
(x,y)

D (∇θCE(f(x, θs), y),∇θCE(f(Xc
i , θ

s), Y ci )) . (1)

The distance measure D is commonly chosen to be the L2 (Zhu et al., 2019), L1 (Deng et al., 2021) or cosine
distance (Geiping et al., 2020). In the case of FedSGD, it is known that additionally using prior knowledge of
the input distribution can improve the attacks (Geiping et al., 2020; Yin et al., 2021; Dimitrov et al., 2022),
as it can guide the design of regularization terms that help in navigating the large optimization search space.

Label reconstruction methods Previous work (Zhao et al., 2020; Huang et al., 2021) has shown that in
the cases when the labels of the associated data points are known, the optimization problem in Equation 1 is
easier to solve for x by standard gradients-based optimization methods. For this reason, a common approach
in the gradient leakage literature is to separate the process of recovering the clients’ labels from that of the
input reconstruction (Geiping et al., 2020; Geng et al., 2021; Yin et al., 2021).

Here we describe the procedure proposed by Geng et al. (2021) to reconstruct a client’s label counts from
FedSGD updates, which we later on adapt to the case of FedAvg. The paper assumes that the last layer of
the network is linear, i.e. f(Xc

i , θ) = WFC · fL−1(Xc
i , θ) + bFC, where WFC ∈ RnL−1×nL is a trained weight

matrix, bFC ∈ RnL is an optional bias term and fL−1(Xc
i , θ) is the activation of the network for input Xc

i at
layer L− 1. In addition to the linearity assumption, Geng et al. (2021) assume that the K network outputs
are converted into probabilities pk by applying the softmax function and are then fed to the cross entropy loss
for training, as in Algorithm 1. We note that these assumptions hold for most neural network architectures.

Under these assumptions, Geng et al. (2021) shows that one can precisely compute the label counts λck from
FedSGD updates if the following quantities, computed on θs, are known: (i) ∆kW

s
FC – the sum of the client’s

gradients with respect to the CE loss of the weights in WFC that correspond to the kth layer output, (ii) psi,k
– the softmax probability for class k computed on (Xc

i , Y
c
i ) and (iii) Osi – the sum of the neuron activations in

layer L− 1 computed on (Xc
i , Y

c
i ). While ∆kW

s
FC can be computed by the server from the client update,

psi,k and Osi are unknown as they depend on the client’s data. Instead, Geng et al. (2021) suggest to use
approximations p̃sk and Õs, computed by feeding the network at parameters θs with random dummy data, as
opposed to the unknown client’s data point. This results in the following approximation to the label counts:

λ̃ck = N c · p̃sk −
N c ·∆kW

s
FC

Õs
. (2)

A crucial limitation of these gradient leakage attacks is that they are tailored to FedSGD. As we show in the
next section, both the input and the label reconstruction are significantly harder in the context of FedAvg,
yielding previously developed attacks inapplicable.
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Algorithm 2 Overview of our attack
1: function Attack(f , θs, θc, η, m, E)
2: ∇θ̄c ← 1

η·Uc (θs − θc)
3: {λ̃ck} ← RecLabels(θs, θc, U c)
4: Ỹ c ← RandOrder({λ̃ck})
5: X̃c ← RandInit(m, E)
6: while not converged do
7: θ̃c ← SimUpdate(X̃c, Ỹ c, f , θs, η, m, E)
8: ∇θ̃c ← 1

η·Uc (θs − θ̃c)
9: `← Lsim(∇θ̄c,∇θ̃c) + λinv · Linv(X̃c)

10: X̃c ← X̃c − ηrec · ∂`

∂X̃c

11: end while
12: return MatchEpoch(X̃c), Ỹ c
13: end function

4 Effective Reconstruction Attack on FedAvg

In this section, we first discuss the challenges FedAvg updates pose for data leakage attacks in Section 4.1.
We then present an outline of our reconstruction attack in Section 4.2 and discuss how it addresses these
challenges. Finally, for the rest of the section we discuss each of the elements of the attack in more details.

4.1 Challenges to Data Leakage in Federated Averaging

We first outline the key challenges for performing gradient leakage when training with FedAvg, making the
leakage more difficult than in the case of FedSGD where these problems do not exist.

The most discernible challenge is that in FedAvg clients perform multiple local updates, each computed on
intermediate model parameters θce,b that are unavailable to the server. If the number of local updates is large,
the change in parameter values is likely to be large, making the data leakage problem substantially more
difficult. We address this issue in Section 4.3.

The second important challenge is that FedAvg updates the model locally using many different batches of
data. More concretely, the client updates the model for several local epochs, in each epoch performing several
local steps, and in each step using a different batch of data. As the server only sees the final parameters, it
does not know which batches were selected at each step. This is a more difficult case than FedSGD which
performs its update using only a single batch of data. We address this issue in Section 4.4.

Finally, the third challenge is that labels and parameters are simultaneously changing during local updates.
In practice, this makes it difficult to reconstruct label counts (necessary to reconstruct the inputs) via exiting
FedSGD methods. In Section 4.5 we introduce our method for label reconstruction which is more robust
w.r.t to changing batch sizes and number of epochs.

4.2 Federated Averaging Attack

We now present our attack, which aims to address the aforementioned challenges by reconstructing the clients’
data from the original weights θs, the client weights θc and client parameters η, m and E . We provide an
overview of our method in Algorithm 2. First, we invoke a label reconstruction procedure to generate the
reconstructed labels Ỹ c (Line 3–4) and then use Ỹ c as an input to an optimization problem that minimizes a
reconstruction loss ` (Line 9) with respect to a randomly initialized (via RandInit) input set X̃c (Line 5–11).

To address the challenge with label reconstruction, Algorithm 2 relies on our algorithm RecLabels. This
algorithm is an improved, more robust version of the method of Geng et al. (2021) discussed in Section 3.2
and tailored to FedAvg. The algorithm no longer directly estimates network statistics p̃sk and Õs from θs

(as introduced in Section 3.2), but instead estimates the statistics for each θce,b by interpolating between the
statistics at θs and the statistics at θc.
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For the input reconstruction, Algorithm 2 uses our novel FedAvg-specific reconstruction loss ` (Line 9), which
consists of two components. The first component is the gradient similarity loss Lsim(∇θ̄c,∇θ̃c), which uses
a server-side simulation of the client’s updates via the SimUpdate method to obtain the approximated
averaged update ∇θ̃c (Line 8) and measures its similarity to the true averaged update ∇θ̄c = 1

η·Uc (θs − θc),
where U c = E · Bc denotes the number of local update steps of the weights. This component aims to address
the issue of having multiple hidden local steps by simulating the client’s updates end-to-end. The second
part is our epoch order-invariant prior Linv(X̃c), which takes advantage of the fact that, even though the
number of local steps Uc is large in realistic FedAvg settings, each input is part of exactly one batch per
epoch. Finally, we reconcile our predictions by invoking MatchEpoch (discussed later in the section).

For simplicity, we present the optimization step in Algorithm 2 as an SGD update with a fixed learning rate
ηrec. In practice, we instead rely on Adam (Kingma & Ba, 2014), as it was shown to perform better for
solving gradient leakage problems (Zhao et al., 2020). The gradients ∂`

∂X̃c
, required by SGD and Adam, are

calculated via an automatic differentiation tool – in our case JAX (Bradbury et al., 2018).

Over the next few sections we formally describe the components of Algorithm 2. In particular, we first discuss
the reconstruction of inputs X̃c from given label counts λck, as the inputs are typically of primary interest
to the attacker. To this end, we describe our server simulation method SimUpdate in Section 4.3 and our
epoch order-invariant prior Linv(X̃c) in Section 4.4. Finally, in Section 4.5 we explain how to compute the
estimated label counts λ̃ck, thus creating a complete end-to-end attack.

4.3 Input Reconstruction through Simulation

As described in Section 4.1, a FedAvg client computes its gradient steps on the intermediate model parameters
θce,b unknown to the server. These parameters can substantially differ from both θs and θc when the number
of local steps U c is high. To address this issue, our attack relies on the method SimUpdate to simulate the
client’s updates from Algorithm 1 and thus generate approximations of the intermediate θce,b’s.

An important consideration for our simulation is how to split the optimization variables X̃c, initialized at Line 5
and repeatedly updated at Line 10 in Algorithm 2, as well as the label counts λck (or their reconstructions λ̃ck
in the case of an end-to-end attack), into batches, as the client’s original split is not available to the attacker.
We fix the split randomly into Bc batches Ỹ c = {Ỹ cb | b ∈ [Bc]} (via RandOrder) before the optimization in
Algorithm 2 begins and keep the same split for all E epochs throughout the reconstruction. This provides a
stable input order throughout the reconstruction and making the optimization simpler. We do this for two
reasons: (i) the original client split of the labels into batches is hard to reconstruct, and (ii) we experimentally
found that most batch splits produce similar weights at the end of each epoch. For the optimization variables
X̃c, we choose to split it into U c = E · Bc separate variables X̃c = {X̃c

e,b | e ∈ [E ], b ∈ [Bc]}, one for each
batch b and epoch e.

With these batch splits, SimUpdate executes a modified version of Algorithm 1. The two modification are:
(i) The original partition of the data (Line 6) is replaced by our partitioning as described above, and (ii) we
replace all occurrences of Xc

e,b and Y ce,b in Line 8 with X̃c
e,b and Ỹ cb . The final reconstruction error is then

calculated as the distance Lsim between the true average weight update ∇θ̄c and the simulated update ∇θ̃c.
In this paper, we rely on the cosine distance for Lsim, i.e. Lsim = 1− 〈∇θ̄c,∇θ̃c〉

||θ̄c||2||∇θ̃c||2
, as Geiping et al. (2020)

showed it reconstructs data well in a wide range of challenging settings.

In addition to the approach described above, we also experimented with other variants. In particular, we
investigated a version that uses Bc input optimization variables X̃c = {X̃c

b | b ∈ [Bc]} that are shared across
all E epochs, as in Geiping et al. (2020). This change is applied at initialization time (Line 5 in Algorithm 2).
Opposed to our algorithm (described above), the optimization problem now becomes more complicated,
since the optimization variables enter into the computation of multiple local steps. Further, we considered
a simulation where Bc = 1, which is relatively precise when the number of batches that the client uses per
epoch Bc is small, but significantly diverges for larger Bc, as typically used by FedAvg. We compare to these
variants in Section 5 and find that they perform worse, confirming the effectiveness of our method.
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4.4 Epoch Order-Invariant Prior

The use of multiple local batches of data for several epochs in the FedAvg client update makes the optimization
problem solved by Algorithm 2 harder compared to FedSGD. In particular, several reconstructions of each
input have to be generated and combined, as the inputs are repeatedly fed to the network. Ideally, we want
to enforce the property that all of the reconstruction variables corresponding to the same input at different
epochs hold similar values. However, the correspondence between the variables across epochs is hard to
establish as the client randomly splits its inputs into different sets of batches at each epoch. We make the
observation that the value of any order-invariant function g that takes all of the client data points as inputs
has the same value at different epochs, assuming that each input is processed exactly once per epoch. To this
end, during the simulation our prior encourages this property for every pair of epochs (e1, e2), by penalizing
a chosen distance function Dinv between the values of g on the optimization variables X̃c at epoch e1 and e2.
Let X̃c

e,b,i denote the ith element in batch b and epoch e in X̃c. This results in the loss term:

Linv = 1
E2

E∑
e1=1

E∑
e2=1

Dinv

(
g({X̃c

e1,b,i | b ∈ [Bc], i ∈ [m]}), g({X̃c
e2,b,i | b ∈ [Bc], i ∈ [m]})

)
. (3)

In Section 5.4, we experiment with several different order-invariant functions g and show that the best
choice is dataset-dependent. Further, we show that the `2 distance is a good choice for Dinv. In Line 9 of
Algorithm 2, the prior is balanced with the rest of the reconstruction loss using the hyperparameter λinv.

Once we have reconstructed the individual inputs at different epochs, we need to combine them into our final
input reconstructions {X̃c

i | i ∈ [N c]}. We do this in MatchEpoch (Line 12 in Algorithm 2) by optimally
matching the images at different epochs based on a similarity measure and averaging them. The full details of
MatchEpoch are presented in Appendix A. In Appendix C.6, we experimentally show that our matching and
averaging procedure improves the final reconstruction, compared to using the epoch-specific reconstructions,
which aligns with the observations from previous work (Yin et al., 2021).

4.5 Label Count Reconstruction

As we point out in Section 2, state-of-the-art FedSGD attack methods aim to recover the client’s label counts
λck before moving on to reconstruct the inputs Xc. This is commonly done by computing statistics on the
weights and the gradients of f (Yin et al., 2021; Geng et al., 2021). As demonstrated by our experiments in
Section 5.2, existing FedSGD methods struggle to consistently and robustly reconstruct the label counts λck.
We postulate that this is due to the simultaneous changes across local steps of both the labels inside the
processed client’s batch and the network parameters. To address the challenge of recovering label counts
robustly (to different batch and epoch sizes), we make the observation that the model statistics used by these
methods often change smoothly throughout the client training process.

As the label counts reconstruction mechanism demonstrated in Geng et al. (2021) is the current FedSGD
state-of-the-art, we chose to focus on adapting it to the FedAvg setting using the observation above. Recall
from Section 3.2 that the method depends on the estimates p̃sk and Õs of the average softmax probabilities
psk and of average sum of neuron activation at layer L− 1. For FedSGD, both estimates are computed at
θs and with respect to a dummy client dataset, since the true data of the client is unknown to the server.
However, in the case of FedAvg, multiple local steps are taken by the client, with each batch using different
labels and changing the intermediate model parameters (both labels and parameters remain unobserved by
the server). To account for these changes, we compute approximate counts λ̃ck,i for each local step i ∈ [U c]
and aggregate these counts to obtain the approximate label counts λ̃ck for the full dataset of the client.

We proceed as follows. First, we compute approximations p̃sk and Õs at θs (using a client dummy dataset)
and approximations p̃ck and Õc at θc (using the same client dummy dataset), as described in Section 3.2.
Then, we linearly interpolate these estimates between p̃sk and Õs and p̃ck and Õc for the U c steps of local
training, that is, we set p̃ck,i = i

Uc p̃
s
k + Uc−i

Uc p̃ck and Õci = i
Uc Õ

s + Uc−i
Uc Õc for each i ∈ [U c] and k ∈ [K]. Next,

we use these approximations to obtain approximate label counts λ̃ck,i for every training step i ∈ [U c], using
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Equation 2. To compute the final approximate counts, we set λ̃ck = 1
E
∑Uc

i=1 λ̃
c
k,i. Note that we may need to

adjust λ̃ck in order to enforce the invariant that
∑K
k=1 λ̃

c
k = N c. We remark that this interpolation of the

local statistics is general and can be applied to other label reconstruction methods.

5 Experimental Evaluation

In this section, we present an experimental evaluation of our proposed attack and various baselines.

Experimental setup We conduct our experiments on two image classification datasets. One is FEMNIST,
part of the commonly used federated learning framework LEAF (Caldas et al., 2018). FEMNIST consists
of 28× 28 grayscale images of handwritten digits and letters partitioned into 62 classes. We evaluate with
100 random clients from the training set and select N c = 50 data points from each. The other dataset is
CIFAR100 (Krizhevsky et al., 2009), which consists of 32× 32 images partitioned into 100 classes. Here, we
simply sample 100 batches of size N c = 50 from the training dataset to form the individual clients’ data.

We ran all of our experiments on a single NVIDIA RTX 2080 Ti GPU. The runtimes of different methods
and datasets are shown in Appendix D alongside with a discussion on the computational complexity of
SimUpdate. We apply our reconstruction methods on undefended CNN networks at initialization time.
We provide additional experiments on defended and trained networks in Appendix C. In all experiments,
we assume the attacker has knowledge of E , m, and N c. We relax this assumption in the experiments in
Appendix C.4. Throughout the section, FEMNIST attacks that use our epoch prior set the order-invariant
function g to the mean of the images in an epoch, while CIFAR100 attacks set it to the pixelwise maximum
of the randomly convolved images. We investigate different choices for g in Section 5.4. We provide the exact
network architectures and hyperparameters used in our experiments in Appendix B.

The rest of the section is organized as follows. First, in Section 5.1, we focus on image reconstruction with
known label counts. In this setting, we compare our attack to using non-simulation-based reconstruction
methods and justify our algorithm design choices by showing that our method compares favorably to a
selection of baselines. Next, in Section 5.2, we experiment with label counts recovery and show that compared
to Geng et al. (2021) our method is more robust while achieving similar or better label reconstruction results.
In Section 5.3, we evaluate our end-to-end attack that reconstructs both the inputs and label counts. Finally,
in Section 5.4 we justify our choice for g for the different datasets.

5.1 Input Reconstruction Experiments

In this section, we compare the image reconstruction quality, assuming the label counts per epoch are known
(but not to which batches they belong), with methods from prior work (Geiping et al., 2020; Geng et al., 2021)
as well as variants of our approach: (i) Ours (prior), our full input-reconstruction method, including the
order-invariant prior Linv, as described in Section 4.4, as well as the simulation-based reconstruction error Lsim
that uses separate optimization variables for the inputs at different epochs, (ii) Ours (no prior), same as
Ours (prior), but not using the epoch prior Linv, (iii) Shared (Geiping et al., 2020), the approach proposed
by Geiping et al. (2020) which assumes same order of batches in different epochs in SimUpdate, as described
in Section 4.3 (allows sharing of optimization variables without using the prior), (iv) FedSGD-Epoch, this
variant simulates the FedAvg update with a single batch per epoch (Bc = 1) and thus no explicit regularization
is needed, (v) FedSGD (Geng et al., 2021), the approach proposed by Geng et al. (2021), disregards the
simulation, and instead reconstructs the inputs from the average update ∇θ̄c like in FedSGD.

To deal with the unknown label batch split at the client, for all attack methods we pick the same random
batch split in Line 4 in Algorithm 2. We report the results for different values of the number of epochs E
and batch sizes m in Table 1, resulting in different number of local client steps U c. For all experiments, we
consider a reconstruction on FEMNIST (CIFAR100) successful if the corresponding PSNR value is > 20
(> 19) and we report two measures: (i) the percentage of images that were successfully reconstructed by
the attack, and (ii) the average peak signal-to-noise ratio (PSNR) (Hore & Ziou, 2010), which is a standard
measure of image reconstruction quality, between the client and the reconstructed images. We note that
PSNR is on a logarithmic scale, so even small differences in PSNR correspond to large losses in image quality.
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Table 1: The effectiveness of different methods for reconstructing images with known labels. We measure the
percentage of successfully reconstructed images and the average PSNR of the reconstructions.

Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD
Dataset E m N c U c Rec (%) PSNR Rec (%) PSNR Rec (%) PSNR Rec (%) PSNR Rec (%) PSNR

FEMNIST

1 5 50 10 42.3 19.7 42.3 19.7 42.3 19.7 37.7 19.5 37.7 19.5
5 5 50 50 63.1 21.2 56.2 20.7 59.0 20.6 56.1 20.4 13.7 17.4
10 10 50 50 63.8 21.3 58.5 20.9 62.0 20.7 60.2 20.6 11.8 17.2
10 5 50 100 65.5 21.5 50.6 20.3 59.9 20.3 56.0 19.6 8.3 16.7
10 1 50 500 49.5 20.1 21.5 16.7 14.9 16.1 1.6 4.5 5.2 16.6

CIFAR100

1 5 50 10 9.1 16.2 9.1 16.2 9.1 16.2 7.7 16.1 7.7 16.1
5 5 50 50 55.2 19.2 53.0 19.1 10.8 16.4 10.9 16.3 1.2 14.2
10 10 50 50 62.7 20.3 60.1 20.0 23.8 17.2 26.2 17.4 0.6 13.8
10 5 50 100 58.8 19.8 56.4 19.6 15.7 16.4 8.5 15.0 0.4 13.2
10 1 50 500 12.2 15.4 11.0 15.2 0.4 12.5 0.0 8.9 1.3 12.8

For the methods which produce multiple reconstructions of the same image (the two Ours methods and
FedSGD-Epoch), we use matching and averaging approach, described in Section 4.4, to generate a single
final reconstruction. We use a linear assignment problem similar to the one in Appendix A to match these
final reconstructions to the client’s original images before computing the reported PSNR values. All results
are averaged across all images and users. In Appendix C.3, we further experiment with the setting where
both the label counts and their batch assignments are known.

Evaluating reconstructions From Table 1 we make the following observations. First, the full version of
our method provides the best reconstructions in essentially all cases. Second, we find that our epoch prior
Linv improves the results in almost all cases except for the case of a single client epoch (E = 1). We point
out that in this case the three methods Ours (prior), Ours (no prior) and Shared, as well as the two
methods FedSGD-Epoch and FedSGD, are equivalent in implementation. We observe that the use of the
prior results in a bigger reconstruction gap on the FEMNIST dataset compared to CIFAR100. Our hypothesis
is that the reason is the added complexity of the CIFAR100 dataset. In Section 5.4, we further demonstrate
that more complex order-invariant functions g can help close this gap. Additionally, we observe that using
separate optimization variables in SimUpdate sometimes performs worse than having shared variables when
no epoch prior is used. However, this is not the case on the harder CIFAR100 dataset or when the prior
is used, justifying our choice of using the separate variables. Third, while the FedSGD method performs
worse when the number of epochs E is large, all other methods, perhaps counter-intuitively, benefit from the
additional epochs. We think this is due to the client images being used multiple times during the generation
of the client update resulting in easier reconstructions. Finally, our experiments show that FedSGD-Epoch
performs well when the number of batches per epoch Bc is small, but its performance degrades as more
updates are made per epoch, to the point where it becomes much worse than FedSGD on batch size m = 1.

5.2 Label Count Reconstruction Experiments

We now experiment with the quality of our label count reconstruction method and compare it to prior
work (Geng et al., 2021). We consider the following methods: (i) Ours, our label count reconstruction
algorithm RecLabels described in Section 4.5, (ii) Geng et al. θs, the label count reconstruction algorithm,
as described in Geng et al. (2021), (iii) Geng et al. θc, same as Geng et al. θs, but with the parameters
Õc and p̃ck estimated on the weights θc returned by the client.

In Table 2, we report the numbers of incorrectly reconstructed labels and their standard deviation for different
values of the number of epochs E , batch sizes m and different methods averaged across users. Unlike image
and text reconstructions where prior knowledge about the structure of inputs can be used to judge their
quality, judging the quality of label count reconstructions is hard for an attacker as they do not have access
to the client counts. To this end, a key property we require from label count reconstruction algorithms is that
they are robust w.r.t. FedAvg parameters such as datasets, number of epochs E and batch sizes m, as choosing
them on the fly is not possible without additional knowledge about the client label distribution. Results in
Table 2 show that the algorithm in Geng et al. (2021), as originally proposed, performs well when the number
of local FedAvg steps U c is small. Conversely, when approximating the parameters Õc and p̃ck at the client
weights θc, the algorithm works well predominantly when U c is large, except on CIFAR100 and U c = 500.
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Table 2: The effectiveness of our method and the baselines for the task of label counts reconstruction.
Dataset E m N c U c Ours Geng et al. θs Geng et al. θc

FEMNIST

1 5 50 10 3.4± 2.01 3.2± 1.84 3.6± 2.07
5 5 50 50 3.4± 2.10 7.8± 6.77 3.2± 1.92
10 10 50 50 3.2± 1.94 8.2± 7.06 3.2± 1.96
10 5 50 100 5.2± 2.98 9.2± 4.35 5.2± 3.55
10 1 50 500 14.0± 6.28 15.4± 4.73 13.3± 6.35

CIFAR100

1 5 50 10 4.2± 1.41 3.9± 1.30 4.6± 1.55
5 5 50 50 3.2± 1.24 7.6± 1.83 2.5± 1.09
10 10 50 50 2.8± 1.22 8.1± 1.84 2.0± 0.86
10 5 50 100 4.9± 1.57 12.2± 1.96 5.2± 1.45
10 1 50 500 8.1± 1.77 10.2± 1.95 15.7± 3.48

Table 3: The effectiveness of our method and the baselines for the image and label counts reconstruction.

Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD
Dataset E m N c U c Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR

FEMNIST

1 5 50 10 37.2 19.3 37.2 19.3 37.2 19.3 35.7 19.2 35.7 19.2
5 5 50 50 51.9 20.3 47.5 20.1 40.8 19.5 47.0 19.8 12.5 17.3
10 10 50 50 55.0 20.5 50.0 20.2 45.7 19.7 50.0 19.9 10.6 17.0
10 5 50 100 48.5 20.2 43.0 19.8 43.6 19.3 45.8 19.1 7.2 16.6
10 1 50 500 21.4 18.3 14.5 16.9 7.5 15.2 1.1 3.6 4.7 16.5

CIFAR100

1 5 50 10 5.0 15.7 5.0 15.7 5.0 15.7 4.8 15.7 4.8 15.7
5 5 50 50 46.7 18.5 45.0 18.3 7.0 15.8 7.7 15.8 0.8 14.1
10 10 50 50 54.3 19.4 52.0 19.1 15.1 16.5 18.8 16.7 0.5 13.7
10 5 50 100 46.0 18.5 43.2 18.2 8.7 15.7 8.1 14.9 0.6 13.1
10 1 50 500 6.7 14.7 5.7 14.6 0.4 11.9 0.1 9.0 1.4 12.7

This makes it difficult to decide which variant of Geng et al. (2021) to apply in practice. In contrast, the
results in Table 2 show that our label count reconstruction algorithm performs well across different settings.
Further, it achieves the best reconstruction in the most challenging setting of CIFAR100 with small batch
sizes (m = 1, 5) and its predictions often vary less than the alternatives. Therefore, we propose our method
as the default choice for the FedAvg label count reconstruction algorithm due to its robustness.

5.3 End-to-End Attack

In this section, we show the results of our end-to-end attack, that combines our methods for label count and
input reconstruction. We evaluate it under the same settings and compare it to the same methods as in
Section 5.1. For all methods under consideration, we use our label count reconstruction method since, as we
showed in Section 5.2, it performs well under most settings. We present the results in Table 3. Compared
to the results in Table 1 (where we assumed label counts are known), the performance of our end-to-end
attack remains strong even though we are now reconstructing the labels as well, showing the effectiveness of
our label reconstruction. In particular, most results remain within 10% of the original reconstruction rate
(resulting in > 45% success rate of our attack in most settings) except for the case of U c = 500, where due to
the higher error rate of the label reconstruction we observe more significant drop in performance. Note that
even in this setting our attack performs the best and is able to reconstruct 20% of the FEMNIST images
successfully. Furthermore, we observe that the Shared method is less robust to errors in the label counts
compared to the other methods, as with known label counts it performs better than the Ours (no prior)
method on FEMNIST, but the trend reverses when the label counts are imperfect. We think the reason is
the sensitivity to label count errors of the shared variables optimization procedure which further justifies our
use of separate optimization variables.

Reconstruction Visualizations In addition to Table 3, we also provide visualizations of the reconstruc-
tions from the different attacks for E = 10, m = 5, and N c = 50 in Figure 2. For both FEMNIST and CIFAR,
we show the reconstructions of 4 images from the first user’s batch. We provide the full batch reconstructions
in Appendix F.1. We observe that reconstructions obtained using our method are the least noisy. As we
show in Appendix C.6, this is due to the matching and averaging effect. Further, we see that the prior has
positive effect on the reconstruction as it can sharpen some of the edges in both the FEMNIST and CIFAR
reconstructions. Finally, we also observe that the reconstructions of the FedSGD method are very poor.
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Table 4: The effectiveness of our method with different priors on 10× 5× 50 FEMNIST and CIFAR100.
FEMNIST CIFAR100

g Dinv Rec(%) PSNR Rec(%) PSNR
mean `1 61.6 21.2 55.1 19.5
conv + mean `1 61.5 21.2 56.0 19.6
max `1 36.8 19.2 56.9 19.6
conv + max `1 56.0 20.7 58.0 19.8
mean `2 65.5 21.5 56.0 19.5
conv + mean `2 64.4 21.4 56.3 19.6
max `2 39.6 19.4 56.0 19.6
conv + max `2 63.6 21.2 58.8 19.8

Original Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD

Original Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD

Figure 2: Reconstructions of 4 images from the 10× 5× 50 FEMNIST and CIFAR end-to-end experiments.

5.4 Epoch Order-Invariant Priors

In this section, we investigate the effectiveness of various order-invariant functions g and distance measures
Dinv. We experiment with the `1 and `2 distances for Dinv, as they are the most natural choices for a distance
functions. For g, inspired by PointNet (Qi et al., 2017) that also relies on the choice of an order-invariant
function, we experiment with the mean and max functions. Further, following Li et al. (2022) that show image
features produced by randomly initialized image networks can serve as a good image reconstruction priors, we
also consider versions of g that apply the mean and max functions on the result of applying 1 layer random
convolution with 96 output channels, kernel size 3 and no stride on the images (denoted with conv + mean
and conv + max in Table 4). As our performance increased by adding more output convolution channels, we
chose the largest number of channels that fits in GPU memory. For both FEMNIST and CIFAR, we ran our
experiments on E = 10, m = 5, and N c = 50 with known label counts. We chose λinv by exponential search on
the Dinv = `2 and g = mean (Dinv = `1 and g = conv + max) combination on FEMNIST (CIFAR100). Due to
the computational costs, we adapted these values of λinv to the other combinations in a way that the value of
λinv · Linv(X̃c) matches on average at the first iteration of the optimization process. Comparison is performed
on the same 100 clients as before, as the attacker can select the prior which obtains the highest quality of the
reconstruction. The results are shown in Table 4. We observe that Dinv = `2 performs consistently better
in all experiments and thus we chose to use it. Furthermore, on FEMNIST g does not benefit from the
additional complexity of the convolution, likely due to being simpler dataset and that the max is a very poor
choice for this dataset. To this end, we choose g to be simply the mean. In contrast, on CIFAR we observe
that the random convolution is always helpful to the reconstruction. Also, we see that the combination of the
convolution and the max is particularly effective. To this end, we choose to use this combination on CIFAR.
We believe more complex feature extracting functions such as ones that use stacks of convolutions or more
output channels will have even greater benefit on this dataset. We leave that as future work.

6 Conclusion
In this work, we presented a new data leakage attack for the commonly used federated averaging learning
algorithm. The core ingredients of our attack were a novel simulation-based reconstruction loss combined with
an epoch order-invariant prior, and our FedAvg-specific extension of existing label reconstruction algorithms.
We experimentally showed that our method can effectively attack FedAvg updates computed on combinations
of large number of epochs and batches per epoch, thus for the first time demonstrating that realistic FedAvg
updates are vulnerable to data leakage attacks. We believe that our results indicate a need for a more
thorough investigation of data leakage in FedAvg and refer to our Broader Impact Statement in Appendix E,
that further discusses the practical implications of our work.
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Algorithm 3 Overview of our matching and averaging algorithm

1: function MatchEpoch(X̃c)
2: X̃c ← ReorderEpoch(X̃c)
3: for i← 1, . . . , N c do
4: bi ← b imc
5: I ← i− bi ·m
6: X̃c

i ← 1
E
∑E
e=1 X̃

c
e,bi,I

7: end for
8: return {X̃c

i | i ∈ [N c]}
9: end function

10: function ReorderEpoch(X̃c)
11: for e ∈ 2, . . . , E do
12: for (i, j) ∈ [N c]× [N c] do
13: bi ← b imc
14: bj ← b jmc
15: I ← i− bi ·m
16: J ← j − bj ·m
17: Mi,j = sim(X̃c

1,bi,I , X̃
c
e,bj ,J )

18: end for
19: ordere ← LinSumAssign(M)
20: {X̃c

e,b | b ∈ [Bc]} ← Reorder({X̃c
e,b | b ∈ [Bc]}, ordere)

21: end for
22: return X̃c

23: end function

A Matching and Averaging Algorithm

In this section, we present in details our matching and averaging method that takes our per-epoch reconstruc-
tions X̃c and combines them into our final input reconstructions {X̃c

i | i ∈ [N c]}. The method is shown in
Algorithm 3. The matching part of the method is separated in the function ReorderEpoch which computes
an optimal reordering of the reconstructions at every epoch e so that its reconstructions match the ones in
the first epoch best. To this end, we compute a similarity measure between every image X̃c

1,bi,I in every
batch bi in the first epoch and every image X̃c

e,bj ,J in every batch bj in epoch e, for every epoch e except
the first one, and store them in the matrix M (Line 12–18). For the image experiments in this paper, we
use the PSNR similarity measure. Once M is computed, we use the linear sum assignment problem solver
LinAssign provided by SciPy (Virtanen et al., 2020) to find the optimal reordering ordere of the images in
epoch e (Line 19–20). Finally, the matched inputs are then averaged across epochs in the MatchEpoch
function (Line 3–7).

B Further Experimental Details

B.1 Network Details

In Table 5, we show the neural network architectures we use for our FEMNIST and CIFAR100 experiments.
They both consists of 2 convolutional layers with average pooling, followed by 2 linear layers. As CIFAR is a
harder dataset than FEMNIST, we double the sizes of the layers in the CIFAR architecture.

B.2 Attack Hyperparameters

In all experiments, we use total variation (TV) (Estrela et al., 2016) as an additional regularizer, similarly
to Geiping et al. (2020), as well as, the clipping regularizer Rclip presented in Equation 17 in Geng et al.
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Table 5: The network architectures for the networks attacked in this paper.

Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
ReLU()

AvgPool2d(kernel_size=2, stride=2)
Conv2d(in_channels=32, out_channels=64, kernel_size=1, padding=1)

ReLU()
AvgPool2d(kernel_size=2, stride=2)

Linear(in_features=5184, out_features=100)
ReLU()

Linear(in_features=100, out_features=62)

(a) FEMNIST network architecture.

Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
ReLU()

AvgPool2d(kernel_size=2, stride=2)
Conv2d(in_channels=64, out_channels=128, kernel_size=1, padding=1)

ReLU()
AvgPool2d(kernel_size=2, stride=2)

Linear(in_features=10368, out_features=200)
ReLU()

Linear(in_features=200, out_features=100)

(b) CIFAR100 network architecture.

(2021). We balance them with the rest of our reconustruction loss ` using the hyperparameters λTV and
λclip, respectively. Additionally, we use different learning rates ηrec and learning rate decay factors γrec for
solving the optimization problem in Algorithm 2. For both datasets we use 200 optimization steps and
client learning rate η = 0.004 which was suggested as good learning rate for FEMNIST in LEAF(Caldas
et al., 2018). We selected the rest of the hyperparameters by optimizing the performance of the FedSGD
reconstruction on FedSGD updates with 50 images. We did this on FEMNIST and CIFAR100 separately.
The resulting hyperparameters are shown below and used for all experiments.

FEMNIST We use the following hyperparameters for our FEMNIST experiments λTV = 0.001, λclip = 2,
λinv = 1000, ηrec = 0.4, and exponential learning rate decay γrec = 0.995 applied every 10 steps.

CIFAR100 We use the following hyperparameters for our CIFAR100 experiments λTV = 0.0002, λclip = 10,
λinv = 6.075, ηrec = 0.1, and exponential learning rate decay γrec = 0.997 applied every 20 steps.

C Further Experiments

In this section we present a number of additional experiments that further validate the effectiveness of our
attack. In all cases, we focus for simplicity on the FEMNIST dataset and we use E = 10 epochs and batch
size m = 5 on N c = 50 images. Unless otherwise stated, we assume known label counts per epoch as in
Section 5.1.

C.1 Attacking Defended Networks

First, we experiment with attacking FL protocols that adopt known defenses against data leakage. In particular,
we consider defending by adding small amounts of Gaussian and Laplacian noise to the communicated gradients.
We note that if clipping is additionally applied this is equivalent to the differential privacy defenses in Abadi
et al. (2016). Additionally, we experiment with a defense that randomly prunes the entries of the gradient
with a certain probability, as suggested by Zhao et al. (2020). For each of the defense methods, we present
the results of the attacks in Section 5.1 at two different defense strength levels in Table 6. We chose the
defense strengths such that the resulting networks lose around 1% and 4% accuracy, respectively. We also
report the resulting network test-set accuracies after training for 250 communication rounds, each using 10
random clients.

As expected, the results show that stronger defenses sacrifice more network accuracy in exchange for more
data privacy. Even so, our attack is able to reconstruct > 15% of the images on all strongly defended
networks while also being the best performing method across the board. Further, we see that the noise-based
defenses provide a better trade-off between accuracy and defense performance. This is expected, due to their
connection with differential privacy. In particular, we see that the Gaussian noise defense results in only
17.2% reconstructed images, while achieving 66.14% accuracy, which results in the best trade-off among the
methods we considered.

16



Published in Transactions on Machine Learning Research (10/2022)

Table 6: The effectiveness of the variations of our method and the baselines with known labels and different
defenses on FEMNIST with 10 epochs of batch size 5 and 50 images.

Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD
Defense Accuracy(%) Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR
No Defense 70.09 65.5 21.5 50.6 20.3 59.9 20.3 56.0 19.6 8.3 16.7
Gaussian Noise, σ = 0.01 68.91 48.0 20.2 36.8 19.1 25.0 18.3 24.9 17.9 7.5 16.6
Gaussian Noise, σ = 0.03 66.14 17.2 16.8 13.1 15.5 2.8 13.0 4.5 13.2 4.5 15.6
Laplacian Noise, σ = 0.01 68.88 38.9 19.4 29.3 18.4 14.9 17.1 15.6 16.7 6.6 16.4
Laplacian Noise, σ = 0.02 65.94 19.0 17.0 14.4 15.7 3.7 13.4 5.0 13.5 4.8 15.7
Random Pruning, p = 0.2 68.84 51.5 20.4 40.2 19.5 40.5 19.2 40.8 18.9 9.2 17.0
Random Pruning, p = 0.5 66.62 27.6 18.7 22.3 18.1 18.3 17.5 18.6 17.5 10.2 17.2

Table 7: The effectiveness of the variations of our method and the baselines with known labels at different
training rounds on FEMNIST with 10 epochs of batch size 5 and 50 images.

Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD
Round Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR
1 65.5 21.5 50.6 20.3 59.9 20.3 56.0 19.6 8.3 16.7
6 58.8 20.8 27.4 16.2 39.2 17.9 22.8 15.6 7.3 15.4
11 38.4 18.0 7.4 13.1 21.3 15.4 10.8 13.2 5.9 15.4

C.2 Trained Networks Experiments

Next, we present our experiments in which the attack is conducted further into the training process, rather
than during the first communication round. In Table 7, we report the results for all attack methods from
Section 5.1 when applied at FedAvg communication rounds 6 and 11 and compare them to the results from
the main body (Round=1). We use 10 clients per communication round. While the effectiveness of the
attacks is reduced further into the training, our method is still able to recover as much as 38.4% of the images
at the later stages of the optimization process. In addition, the benefits of our design choices, in particular
using the order-invariance prior and epoch-specific optimization variables, become more apparent in this
context, as the performance of the rest of the attack methods in Table 7 is significantly reduced compared to
our full attack.

C.3 Label Order Experiments

Additionally, we conduct two ablations studies to evaluate the effectiveness of our attacks depending on
whether the split into batches at each local epoch is random or consistent across epochs and on whether the
server has knowledge of the label counts per batch or not. We present the results of this ablation study in
Table 8. We observe that while the addition of the batch label count information results in consistently better
reconstructions, for most methods the gap is not big. This suggests that our choice of randomly assigning the
labels into batches works well in practice. The exception is the Shared method that really benefits from
the additional information and with it, it is capable of matching the performance of our method in terms
of number of reconstructed images even though it still achieves lower PSNR. We believe this is due to the
sensitivity of the optimization problem when shared variables are used and motivates our choice of keeping
separate optimization variables per epoch when the label counts per batch is unknown. Another somewhat
surprising observation in Table 8 is that using random batches actually makes the reconstruction problem
slightly easier. We hypothesize that the randomization helps as every image gets batched with different
images at every epoch, making it easier to disambiguate it from the other images in the batch in at least one
of the epochs. This suggests that using consistent batches might be a cheap way to increase the privacy of
FedAvg updates.
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Table 8: The effectiveness of the variations of our method and the baselines with known labels depending on
the information available to the server on FEMNIST with 10 epochs of batch size 5 and 50 images.

Known Counts Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD
per Batch Random Batches Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR

3 3 68.2 21.7 52.8 20.4 68.4 21.1 56.0 19.6 8.3 16.7
3 7 63.4 21.3 49.4 20.1 63.4 20.6 52.7 19.4 7.9 16.7
7 3 65.5 21.5 50.6 20.3 59.9 20.3 56.0 19.6 8.3 16.7
7 7 60.7 21.1 46.6 19.9 55.4 20.0 52.7 19.4 7.9 16.7

Table 9: The effectiveness of the variations of our method and the baselines with known labels and known
values of N c and U c but unknown values of E and m. The True columns represent the value used by the
clients to compute their FedAvg update, while the Chosen columns represent the values used by the algorithms
during reconstruction.

E m N c U c Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD
True Chosen True Chosen True Chosen True Chosen Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR
5 5 5 5 50 50 50 50 63.1 21.2 56.2 20.7 59.0 20.6 56.1 20.4 13.7 17.4
5 10 5 10 50 50 50 50 55.8 20.7 55.2 20.6 53.8 20.1 53.8 20.1 12.7 17.3
5 25 5 25 50 50 50 50 51.0 20.2 51.7 20.3 40.5 19.0 39.7 19.0 11.4 17.1
5 50 5 50 50 50 50 50 52.0 20.2 51.4 20.2 34.3 18.5 34.6 18.5 10.8 17.0

C.4 Data Reconstruction without Knowledge of E and m

In the paper, so far, we assumed that the server has knowledge of E , m, and N c when mounting the
reconstruction attack. This allows the server to further calculate Bc and U c, as well, giving it full knowledge
over the clients’ dataset parameters. In this section, we look at a weaker attack model where the server
only knows U c and N c. This attack model is motivated by the fact that the FedAvg server only needs U c
and N c to decide how to weight the different client updates when aggregating them, suggesting that the
clients can choose not to share E and m. One possible way to mitigate this, is to run our reconstruction
with multiple values of E and m and pick the best reconstruction. To this end, we test the robustness of
our method to using a wrong value of E in our reconstruction. In particular, we generate FedAvg client
updates with E = 5, m = 5 and N c = 50 on the FEMNIST dataset and then reconstruct data from them
by plugging different values of E and m in our algorithm. As U c = E · Bc is avaliable to the attacker, it is
known that E is a divisor of U c = 50. Thus, we choose E to be either 10, 25 or 50, resulting in values for
Bc of 5, 2 and 1, respectively. In this experiment, we assume that all batches in the client are of equal size,
thus allowing us to compute m using the formula m = Nc

Bc . The results of reconstructing the data with these
(wrong) choices of the parameters E and m for the methods in Table 1 and known labels are presented in
Table 9. In Table 9, we also present the reconstruction with the correct values of E and m for comparison.
We make several observations. First, the image reconstruction becomes worse the further the chosen value of
E is from the correct value, 5, for all methods. Despite this, our method still outperforms the baselines and it
is capable of reconstructing more than 50% of the images in all cases. Second, our order-invariant prior is
less effective when the true value of E is unknown. We think there are two reasons for that. One is that we
rely on the value chosen for λinv originally on the correct values of E and m in all experiments in Table 9
which can be suboptimal when E is chosen wrongly. The other is that our prior relies on the knowledge of
the correct number of epochs E and therefore is less effective when the wrong value of E is used. Finally,
unlike our method, we see that the performance of the shared variable method degrades drastically when the
choice of E is wrong. This is in line with our other experiments where we also see this method is less robust
with respect to changes to the FedAvg client updates.

C.5 Reconstructing Data from Aggregated Updates

In this section, we experiment with reconstructing images from updates aggregated between several clients.
The experiment was carried out on the FEMNIST dataset with individual client updates consisting of 10
epochs with 10 batches of 5 images each. The aggregated updates were computed by taking the mean of
the client updates participating in the aggregation. We show the results in Table 10, where the first column
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Table 10: The effectiveness of the variations of our method and the baselines for reconstructing data from
aggregated updates with known labels on FEMNIST with 10 epochs of batch size 5 and 50 images.

Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD
# clients Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR Rec(%) PSNR

1 65.5 21.5 50.6 20.3 59.9 20.3 56.0 19.6 8.3 16.7
2 42.1 19.8 32.3 18.7 27.6 18.3 25.7 17.7 6.8 16.1
4 29.7 18.8 24.8 17.8 14.8 17.0 14.3 16.3 5.7 15.5

Average

0 1 2 3 4

5 6 7 8 9
Figure 3: An end-to-end reconstruction of 4 images at individual epochs from the 10× 5× 50 CIFAR100.

represents the number of participating clients. Thus, the first row in Table 10, showing the results of using
only 1 client, corresponds to the experiment presented in Table 1. Similarly to Table 1, we report the average
reconstruction results across 100 different aggregated updates and we assume that the total label counts for
each client is known, but the counts per batch are not. To account for the aggregated updates, we changed
SimUpdate to simulate all client updates separately with the procedure described in Section 4.3 and then
average them to produce the final simulated aggregated update used in Algorithm 2. From the results, we
see that as more client updates are aggregated we obtain lower reconstruction rates for all of the attacks.
However, our attack method reconstructs the most images in all settings compared to the alternatives, while
achieving higher PSNR. Further, our method is capable of reconstructing ≈ 30% of the images when updates
are aggregated across 4 different clients, suggesting that aggregated updates are vulnerable when aggregation
with a small number of clients is used.

C.6 Importance of averaging across epochs

In this section we visualize the effect of the matching and averaging, described in Section 4.4, used to generate
the final reconstructions for our method. In Figure 3, we show the reconstructions at different epochs for our
end-to-end attack computed on the same setup as Section 5.4 with E = 10, m = 5, and N c = 50. Further,
we provide full batch reconstructions with known and unknown label counts in Appendix F.2. We make
two observations. First, the reconstructions at later epochs are of worse quality. We think this is due to
the imperfect label reconstruction making the simulation worse at later epochs, since in Appendix F.2 we
show this effect is not seen when the label counts are known. Second, while the reconstructions at individual
epochs are noisy, the average reconstructs the original images significantly better than any individual epoch
reconstruction. This confirms that matching and averaging substantially improves the reconstruction results.

D Computational Complexity

D.1 Runtime and Memory Complexity of SimUpdate

The forward pass through SimUpdate has exactly the same time complexity as a regular FedAvg update.
Thus, it has O(U c · Tforw+back) time complexity, where U c is the number of local weight update steps used to
compute the original FedAvg update and Tforw+back is the time it takes to compute a forward and backward
pass through the network on a single batch of data. Further, SimUpdate’s forward pass has O(N c) memory
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Table 11: Runtimes of our method and the baselines on NVIDIA RTX 2080 Ti GPU for the FEMNIST
experiments originally presented in Table 1, measured in hours.

Dataset E m N c U c Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD

FEMNIST

1 5 50 10 0.50 0.50 0.50 0.25 0.25
5 5 50 50 2.25 2.25 2.00 0.75 0.25
10 10 50 50 2.50 2.50 2.50 1.25 0.25
10 5 50 100 4.25 4.25 4.50 1.50 0.25
10 1 50 500 7.50 7.50 7.50 1.25 0.50

CIFAR100

1 5 50 10 3.50 3.50 3.50 3.00 3.00
5 5 50 50 18.00 17.00 17.00 14.50 3.00
10 10 50 50 35.50 30.50 35.00 28.50 3.00
10 5 50 100 36.00 35.50 33.50 29.00 3.00
10 1 50 500 7.00 5.50 5.50 29.00 3.50

complexity in the case of shared epoch variables as it requires to fit all client images in GPU memory and
O(E ·N c) in the case of individual epoch variables.

D.2 Runtime Comparison

In Table 11, we provide a comparison between the total runtime of the different variants of our method and
the baselines for the FEMNIST experiments originally presented in Table 1. Predictably, methods based
on simulation, while obtaining significantly better reconstructions (See Table 1), are several times slower to
execute than FedSGD. On FEMNIST, the FedSGD-Epoch method presents an interesting tradeoff between
reconstruction results and speed as its runtime is much closer to the FedSGD method while still being able to
reconstruct a big portion of the images in many settings. It is important to note that in practice the attacker
can store the client’s updates locally and only later mount the attack outside of the FedAvg learning process.
Thus, the time taken to reconstruct the client data is less important than obtaining the data accurately,
provided that the attack itself can be executed in a reasonable time.

E Broader Impact Statement

This paper proposes an algorithm for data leakage in federated learning, that is, a method for reconstructing
clients’ data from their gradient updates only. Given that our attack is applicable to the general FedAvg
setting, it could be used by real-world FL service providers for reconstructing private data.

We believe that reporting the existence of effective data leakage methods like ours is a crucial step towards
making future FL protocols less vulnerable to such attacks. Indeed, understanding the vulnerabilities of
currently used algorithms can inspire further work on defending private data from malicious servers and on
understanding what FL algorithms provide optimal protection in such scenarios. In addition, our evaluation in
Appendix C.1 suggest that existing techniques that add noise to gradients and but come with some reduction
of model accuracy, might be necessary in order to protect the data of the participating clients.

F Additional Visualizations

In this section, we present the complete batch visualizations of the images reconstructed by our method and
baselines, a limited version of which were presented in the main text.

F.1 Reconstruction Visualizations

First we visualize the reconstructions of all the data of the first user on the FEMNIST and CIFAR100
experiment with 10 epochs, batch size 5 and 50 images per client. Figures Figure 4 and Figure 6 show the
results when the labels are available to the server, while Figure 5 and Figure 7 present the reconstructions for
when the labels are unknown (similarly to the visualizations in the main body).
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We see that our attack is able to reconstruct many of the images with significant accuracy while being less
noisy than the other methods. We also note that, naturally, prior knowledge of the labels counts helps for
the image reconstruction and in particular the recovered images are less blurry.

F.2 Epoch Reconstruction Visualizations

We also provide the complete batch visualizations for the experiment in Figure 3 from the main body for
both FEMNIST and CIFAR100. Results for when the epoch label counts are known are shown in Figure 8
and Figure 10, while those for unknown label counts are presented in Figure 9 and Figure 11.

We observe that, overall, our reconstruction performs better during the earlier local epochs, similarly to the
observations in the main text. However, this effect is less expressed for the case when the labels are known,
possibly because the resulting simulation is more accurate.

Original Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD

Figure 4: A reconstruction of the images from the 10× 5× 50 FEMNIST experiment with known labels on
the variations of our method and the baselines.

Original Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD

Figure 5: A reconstruction of the images from the 10×5×50 FEMNIST experiment with label reconstruction
on the variations of our method and the baselines.
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Original Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD

Figure 6: A reconstruction of the images from the 10× 5× 50 CIFAR100 experiment with known labels on
the variations of our method and the baselines.

Original Ours (prior) Ours (no prior) Shared FedSGD-Epoch FedSGD

Figure 7: A reconstruction of the images from the 10× 5× 50 CIFAR100 experiment with label reconstruction
on the variations of our method and the baselines.
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Figure 8: A reconstruction of the images at individual epochs from the 10× 5× 50 FEMNIST experiment
with known labels by our full method.

Average

0 1 2 3 4

5 6 7 8 9

Figure 9: A reconstruction of the images at individual epochs from the 10× 5× 50 FEMNIST experiment
with label reconstruction by our full method.
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Figure 10: A reconstruction of the images at individual epochs from the 10× 5× 50 CIFAR100 experiment
with known labels by our full method.

Average
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5 6 7 8 9

Figure 11: A reconstruction of the images at individual epochs from the 10× 5× 50 CIFAR100 experiment
with label reconstruction by our full method.
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