
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELFBUDGETER: ADAPTIVE TOKEN ALLOCATION
FOR EFFICIENT LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large reasoning models demonstrate exceptional performance on various
tasks. However, reasoning models inefficiently over-process both trivial and com-
plex queries, leading to resource waste and prolonged user latency. To address this
challenge, we propose SelfBudgeter - a self-adaptive controllable reasoning strat-
egy for efficient reasoning. Our approach adopts a dual-phase training paradigm:
first, the model learns to pre-estimate the reasoning cost based on the difficulty of
the query. Then, we introduce budget-guided GPRO for reinforcement learning,
which effectively maintains accuracy while reducing output length. SelfBudgeter
allows users to anticipate generation time and make informed decisions about
continuing or interrupting the process. Furthermore, our method enables direct
manipulation of reasoning length via pre-filling token budget. Experimental results
demonstrate that SelfBudgeter can dynamically allocate budgets according to prob-
lem complexity, yielding an average response length compression of 61% for the
1.5B model on GSM8K, MATH500, and AIME2025, and 48% for the 7B model,
while maintaining nearly undiminished accuracy.

1 INTRODUCTION

Recent large reasoning models, such as O1 (OpenAI, 2024), has shown remarkable performance
in various complex reasoning tasks (DeepSeek-AI et al., 2025; Qwen, 2024). The primary success
factor lies in the long chain of thought (CoT) process learned through reinforcement learning (RL),
which allows the model to break down reasoning steps and scaling test-time compute (Snell et al.,
2024; Luo et al., 2025b).

However, reasoning models tend to use overly long thought processes even for simple questions. This
“overthinking” phenomenon leads to a waste of computational resources and excessive user waiting
times (Chen et al., 2024; Sui et al., 2025). For example, when answering the simple questions such as
“What is the answer of 2+3?”, the QwQ-32B model provides 13 different solutions and generates 100
times more tokens than Qwen2.5-72B-Instruct model (Qwen et al., 2025).

Prior studies have explored various approaches to mitigate overthinking through response length
control and computation routing. Existing methods mainly include: (1) Prompt-based approaches (Lee
et al., 2025; Xu et al., 2025a) that implicitly guide length through instructions, (2) Integrated training
strategies that teach models to adaptively determine reasoning steps via SFT (Munkhbat et al., 2025;
Ma et al., 2025) or RL with length penalties (Aggarwal & Welleck, 2025; Arora & Zanette, 2025),
and (3) Router-based (Aytes et al., 2025; Chuang et al., 2025) architectures employing classifiers to
allocate computation paths. While achieving partial progress, these methods either lack precise length
control, require additional computational overhead, or fail to explicitly output optimal reasoning
lengths (Aggarwal & Welleck, 2025; Xu et al., 2025b).

We propose SelfBudgeter that enables reasoning models to (1) estimate the minimal token budget
required for correct responses when users do not specify token constraints, and (2) generate responses
of corresponding lengths while adhering to either self-estimated or user-defined token budgets.
SelfBudgeter aims to mitigate the overthinking issue by predicting the minimal possible token budget,
thereby significantly reducing user waiting time. As shown in Figure 1, SelfBudgeter can provide a
relatively accurate token budget estimation before generating responses, users can precisely anticipate
the waiting time and decide whether to wait for the full output or terminate early based on their needs.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLM

SelfBudgeterUser

Token Budget

Solution

User Interface

No Constraint

User specified

Question: …

(Easy)

Self-Allocated ~200

200 Let’s …

Waiting time: 10s. Ans: Let’s …

Question: …

(Hard)

Self-Allocated    ~1800

1800 To decide …

Waiting time: 90s. Ans: To decide … 

Question: …

about 500 tokens

Pre-filled as User’s Request  ~500

500 First, I …

Waiting time: 25s. Ans: First, I … 

No Constraint

Figure 1: Overview of the SelfBudgeter. SelfBud-
geter’s responses comprise two sections: Token
Budget and Solution. For unrestricted queries, it
estimates tokens needed for the Solution based on
problem complexity. When users specify require-
ments, it pre-fills the Token Budget accordingly.
The Solution generation strictly adheres to Token
Budget limits, whose numerical value indicates
anticipated response duration.

Additionally, when specific requirements arise,
users can pre-fill the token budget field to con-
strain the model’s response within the given
limit, thereby improving interaction efficiency.

Our training framework consists of two main
stages. During the Cold-Start stage, we fine-
tune the model to learn how to first output its
estimated token budget within <budget> tags.
Subsequently, in the RL training stage, we op-
timize SelfBudgeter using the GRPO algorithm.
For this stage, we design a reward function that
primarily focuses on three key aspects: (1) an-
swer correctness, (2) minimal achievable token
budget, and (3) consistency between response
length and the allocated token budget.

We conduct full-parameter training of Deepseek-
R1-Distill-Qwen-1.5B using SelfBudgeter and
evaluate its performance on the GSM8K,
MATH500 and AIME2025 datasets. Experi-
mental results demonstrate that SelfBudgeter
achieves an average response length compres-
sion of 61% with the 1.5B model, while main-
taining nearly equivalent accuracy. Furthermore,
on GSM8K and MATH500, SelfBudgeter si-
multaneously reduces response length while im-
proving accuracy. SelfBudgeter also exhibits
excellent capability in predicting output length
and, when provided with pre-filled <budget>
tags, consistently adheres to the specified token budget constraints. In addition, experiments on
Deepseek-R1-Distill-Qwen-7B show an average compression of 48%, further validating the scalability
of SelfBudgeter to larger model sizes.

2 RELATED WORK

Overthinking in LLMs The emergence of the reasoning models like O1, Deepseek-R1 and
QwQ advanced complex problem-solving through RL-enhanced CoT (Wei et al., 2022; OpenAI,
2024; DeepSeek-AI et al., 2025; Qwen, 2024). However, researchers observed a tendency for
reasoning models to overthink simple problems—expending unnecessary computational effort on
trivial queries (Chen et al., 2024; Sui et al., 2025). Excessive long CoT may lead to a decrease
in accuracy (Wu et al., 2025). Current solutions for overthinking mainly involve following three
strategies. Prompt-based methods try to control response length by adding instructions in prompts,
but cannot control the length accurately (Lee et al., 2025; Renze & Guven, 2024; Xu et al., 2025a;
Nayab et al., 2024). Integated Training-based methods try to teach model decide the length by
the difficulty of the problems. Supervised fine-tuning(SFT)-based methods collect the dataset with
variable length (Munkhbat et al., 2025; Ma et al., 2025; Liu et al., 2024; Han et al., 2024; Kang et al.,
2024; Xia et al., 2025; Yang et al., 2025b). RL-based methods incorporate length penalties into the
reward function (Aggarwal & Welleck, 2025; Arora & Zanette, 2025; Luo et al., 2025a; Chen et al.,
2025a; Chang et al., 2025; Xu et al., 2025b; Yang et al., 2025a). These methods fail to control the
length as users’ requirements. And Router-based methods train another model as a classifier (Aytes
et al., 2025; Chuang et al., 2025; 2024; Ong et al., 2024; Pan et al., 2025). The classifier decide
to route the query to fast models or reasoning models. However, an extra classifier means more
computation resources are needed. Current methods either sacrifice precise control, require extra
computation, or fail to bridge autonomous budget estimation with strict adherence.

Token Budget In addressing the issue of overthinking, a highly intuitive approach involves directly
constraining the output length. CCoT (Nayab et al., 2024) attempt to achieve this by incorporating a
word budget into the prompt, various approaches—including character, token, and step budgets (Lee

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2025)—have been attempted by directly incorporating them into prompts, yet achieving precise
control over the model’s output behavior remains challenging. TALE (Han et al., 2024) introduce, for
the first time, the concept of a token budget. TOPS (Yang et al., 2025b) attempt to enable the model to
autonomously determine the required effort for solving a given task. However, both TALE and TOPS
fail to explicitly guide the model to produce the optimal token budget. They also fail to effectively
control the output length according to a given token budget. L1 (Aggarwal & Welleck, 2025) and
Elastic Reasoning (Xu et al., 2025b) can more precisely control the output length under a given token
budget, yet they fail to enable the model to autonomously estimate an appropriate response length.
Our proposed method enables the model to autonomously estimate the optimal token budget and
subsequently generate text in strict adherence to it.

3 METHOD

To minimize the overthinking problem in LLMs, we propose SelfBudgeter for efficient reasoning.
Our method aims to enable the model to autonomously determine an appropriate token budget and
generate responses of corresponding length while adhering to this budget. Although reasoning models
may occasionally overthink simple problems, their response lengths generally increase with problem
difficulty. This phenomenon demonstrates that the model possesses the capability to allocate token
quantities reasonably based on problem complexity. Previous works such as L1 (Aggarwal & Welleck,
2025) and Elastic Reasoning (Xu et al., 2025b) have also demonstrated that models can generate
responses of appropriate length according to a given token budget.

Therefore, we design SelfBudgeter, which employs a reward function to guide the model in: (1)
learning an output format where it first predicts a token budget before generating the answer, (2)
allocating appropriate token budgets based on its own capabilities and question difficulty, and (3)
generating solutions with optimal length while ensuring answer accuracy.

3.1 SELFBUDGETER

SelfBudgeter is a concise and efficient method for automatic precise length controlled. We design the
Precise Budget Control Reward (PreB Reward) to achieve precise control over length. The detailed
introduction of PreB Reward can be found in Section 3.3. We employ GRPO algorithm to train the
model in predicting appropriate token budgets based on problem difficulty and generating responses
with lengths conforming to the specified budget.

Our reward function is formally defined as Formula 1:

R(C,F, ℓ, b, bmax) =


rf , if F = 0,
PB(b, bmax) + PreB(sWmin, s

W
max, ℓ, b, α, b

W
best), if F = 1 and C = 0,

PB(b, bmax) + PreB(sCmin, s
C
max, ℓ, b, α, b

C
best), if F = 1 and C = 1.

(1)

where
bCbest = (1− α) · b, bWbest = (1 + α) · b (2)

The inputs and hyperparameters in the reward function are listed in Table 1. To ensure stable prediction
of the token budget prior to response generation, any responses deviating from the prescribed format
will be assigned the minimum reward score of rf .

3.2 BUDGET PENALTY

To enable the model to learn token budget allocation, we introduce a budget penalty module defined
by Formula 3. The model incurs a penalty rb when its estimated token budget exceeds the maximum
acceptable budget bmax. No penalty is applied when the estimated token budget remains within bmax.
A detailed introduction of bmax is presented in Section 4.2. Briefly stated, for a given question, bmax
equals the response length if the base model can answer it correctly; otherwise, bmax is set to ∞.

PB(b, bmax) =

{
0, if b ≤ bmax,

rb, else.
(3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Input and Hyperparameters (HPs) in the reward function
Input Description HPs Description
C Correctness for answer rf Penalty for format error
F Correctness for format s

W/C
min Minimum reward (wrong/correct)

l Response length s
W/C
max Maximum reward (wrong/correct)

b Model’s budget α Tightness coefficient of budget
bmax Maximum acceptable budget rb Penalty for excessive budget

3.3 PRECISE BUDGET CONTROL REWARD

Inspired by the cosine reward (Chang et al., 2025), we propose the Precise Budget Control Reward
(PreB Reward). While the cosine reward helps mitigate overthinking tendencies, it lacks precise
control over output length, as it only constrains the upper bound of the response. To address this
limitation, we introduce a tightness coefficient α to better align the response length with the specified
token budget.

Given the inherent challenge for models to precisely comply with token budgets, we relax the length
constraint to require only approximate adherence within α · b around the target budget b. As shown in
Formula 4, when the model’s response length falls outside the specified range, the corresponding
reward score plummets to its minimum value smin.

For incorrect responses, the function incentivizes longer reasoning chains (increasing length ℓ) to
encourage deeper analysis that might lead to correct conclusions. Conversely, for correct answers,
the reward peaks at the minimally sufficient length (1− α) · b to prevent unnecessary computational
overhead while maintaining accuracy. This explains why in Formula 2, the value of bbest differs
between correct and incorrect responses from the model.This dual mechanism promotes efficient
reasoning by adaptively modulating response lengths based on answer correctness.

PreB(smin, smax, ℓ, b, α, bbest) =


smin, if

|ℓ− b|
b

> α,

smin + (smax − smin)×
1

2

(
1 + cos

(
π · |ℓ− bbest|

2αb

))
,

else.
(4)

3.4 ACCURACY REWARD

To ensure the model’s post-training accuracy does not degrade below its initial performance, we
configure hyperparameters to guarantee that the minimum reward for correct responses always
exceeds the maximum reward for incorrect responses. Specifically, our design ensures that: A correct
response, which has a token budget exceeding bmax and receives the lowest budget following reward
sCmin, will yield a higher total reward than an incorrect response that has a token budget within bmax

and receives the highest budget following reward sWmax. This constraint is formally expressed as:
sCmin + rb ≥ sWmax.

Overall, the core design of SelfBudgeter consists of three key modules: Budget Penalty, Preb Reward,
and Accuracy Reward, which collectively balance length compression, correctness, and precise length
control–ultimately delivering a better user experience.

4 EXPERIMENT

4.1 TRAINING TEMPLATE

The existing reasoning models utilize a pair of <think></think> tags to demarcate the thinking
process from the final solution output. Building upon this format, we have further incorporated a
token budget component.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Ori Model SFT data RL data

＋

Step 1: Data Preprocessing Step 3: RL training

QRL1, budgetmax = TCRL1

LLM

Step 2: Cold Start

Ori Model

Q: Jim has a 20 pack of 

gum. He chews …

A: To determine how 

many pieces …＋

SFT Model

A: 

<budget>1000</budget>

<solution>To 

determine …</solution>

Input: Prompt Prefix + QSFT1

Output: <budget>TCSFT1</budget>

<solution>ASFT1</solution>

Input: Prompt Prefix + QSFT3

Output: <budget>TCSFT3</budget>

<solution>ASFT3</solution>

…

SelfBudgeter

QRL2, budgetmax = TCRL2

QRL3, budgetmax = ∞

Format Penalty

Budget Penalty

PreB Reward

…

＋

500 

token is 

enough!

Ques   Ans     Acc     Token Count     budgetmax 

QSFT1   ASFT1                  TCSFT1               \ 

QSFT2   ASFT2                  TCSFT2               \ 

QSFT3   ASFT3                  TCSFT3               \ 

…        …       …             …                  …  

QRL1     ARL1 TCRL1            TCRL1 

QRL2     ARL2 TCRL2            TCRL2 

QRL3     ARL3 TCRL3            ∞ 

…        …       …            …                  …  

Generate Response

Figure 2: Overview of the SelfBudgeter training framework. The workflow consists of three key
steps: (1) Data preprocessing: The initial model preprocesses the data to compute token budgets
for subsequent training; (2) Cold-start: The model is fine-tuned to adopt the new output format; (3)
RL Training: Through reward functions, the model learns to allocate token budgets and generate
compliant outputs.

To enable the model to dynamically allocate token usage based on question difficulty, we design an
output format as follows:

<budget>an integer</budget><solution>response</solution>

The format requires the model to first estimate the required token budget before providing the answer
to the question. When no user constraint exists, the model autonomously predicts the token budget.
When users specify a token limit, we pre-fill the <budget> field and let the model generate the
<solution> within this constraint.

4.2 DATA PREPROCESSING

At this stage, we collect model’s responses to the test questions used in both the cold-start and RL
training phases, and then evaluate the correctness and length of the responses.

For the cold-start data, we retain the model’s correct responses along with their lengths and discard
incorrect answers to prevent reinforcing the model’s memory of wrong responses.

For the RL training data, we calculate budgetmax (for convenience, we will refer to it as bmax in
the following sections) using Formula 5, representing the maximum acceptable token budget for a
given question. When the model answers correctly, the correctness of the response indicates that the
minimum token budget required for a correct answer does not exceed the current length. Therefore,
we encourage the model to further compress the response length and set bmax to the current response
length. When the model answers incorrectly, the relationship between the minimum token budget
needed for correctness and the current length remains unclear, so any token budget is acceptable.

bmax =

{
response length, if model answers correctly,
∞, else.

(5)

4.3 COLD START

In our actual RL training process, we observe that requiring the model to simultaneously master
multiple objectives - learning the new output format, providing appropriate token budgets, generating
solutions of corresponding lengths according to the budget, while maintaining or improving accuracy

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

- proved excessively challenging. After extended training periods, the model often only succeeds in
adopting the output format without achieving the other goals. Inspired by the Deepseek-R1 training
methodology, we introduce a cold-start phase to accelerate training and enable the model to first learn
the new output format before proceeding to more complex tasks. The overall training framework is
illustrated in Figure 2.

To prevent the model from losing its original reasoning capability during the cold-start phase, fine-
tuning must be performed using either the model’s own generated responses or datasets containing
long CoT responses. In our approach, we pre-populate the <budget> section with token counts
obtained during the preprocessing stage. The <solution> section is filled with the model’s
generated responses. And the instruction prefix we prepend to each question can be found in
Appendix B .

4.4 EXPERIMENT SETTINGS

We conduct experiments on the DeepSeek-R1-Distill-Qwen-1.5B (R1-1.5B) model. We reproduce L1-
Max using R1-1.5B, and select R1-1.5B and L1-Max as baseline methods for comparative evaluation
against SelfBudgeter. In addition, we extend our experiments to the larger DeepSeek-R1-Distill-
Qwen-7B (R1-7B) model. For more comprehensive comparison, we also include E1-Math-1.5B,
R1-7B, Eurus-2-7B-PRIME (Cui et al., 2025), and Qwen-2.5-7B-Simple-RL (Shao et al., 2024) as
additional baselines.

During the cold-start phase, we employ three datasets of varying difficulty—GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), and s1k-1.1 (Muennighoff et al., 2025)—to help the model
learn the new output format while producing token budgets with diverse distributions. The s1k-1.1
dataset contains 1,000 challenging mathematical problems with long reasoning chains generated
by DeepSeek-R1, which support both reasoning ability and format adaptation. For GSM8K and
MATH, we select 1,500 training samples each that the model can answer correctly. For s1k-1.1,
we directly use the native responses and compute the corresponding token counts with the model’s
tokenizer to populate our designed template; in total, we retain 630 problems that DeepSeek-R1
answered correctly. This yields a training set of 3,630 samples. Following the preprocessing protocol
in Sections 4.2 and 4.3, we fine-tune the model for one epoch. Throughout data collection and
training, the model’s temperature is consistently set to 0.6.

During the reinforcement learning phase, we use STILL-3-Preview-RL-Data (Chen et al., 2025b)
dataset. It also serves as the training dataset for reproducing L1-max. This dataset collects 30K
high-quality samples based on the MATH (Hendrycks et al., 2021), NuminaMathCoT (LI et al.,
2024), and AIME 1983-2023 (Veeraboina, 2023) datasets. It includes problems of varying difficulty
levels, which also helps the model learn to allocate token counts adaptively based on difficulty. As
described in Section 4.2, we compute the maximum acceptable budget (bmax) based on the model’s
responses, then train the model for 3 epochs on this dataset. More detailed information can be found
in Appendix A.

4.5 MAIN RESULTS

Table 2 presents a comprehensive comparison of model performance on the GSM8K, MATH500,
and AIME2025 test sets, evaluated in terms of accuracy (Acc) and average response length (Len).
The table contrasts baseline models with different variants of the SelfBudgeter framework across
varying model scales. For clarity, the best performance is highlighted in bold, while the second-best
performance is indicated with underline. It is worth noting that token limits for L1 are explicitly
specified through prompt templates, whereas those for E1 are enforced via hard truncation. In contrast,
SelfBudgeter autonomously estimates its token constraints during inference. All reported results are
averaged over three runs with different random seeds.

Baseline Comparison Although the Deepseek-R1-Distill-Qwen-1.5B baseline demonstrates strong
accuracy, it requires substantially longer responses. On GSM8K, our method improves accuracy by
11.01 percentage points while compressing response length to 43% of the original. On MATH500,
it achieves a 3.54-point accuracy gain with response length reduced to 44%. On AIME2025, our
approach compresses response length to 30% of the original while maintaining comparable accuracy.
In contrast, although L1 and E1 attain stronger compression on certain datasets, they incur larger

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on GSM8K, MATH500, and AIME2025. Accuracy (Acc) is
reported in percentage, and length (Len) in tokens.

Models GSM8K MATH500 AIME2025

Acc Len Acc Len Acc Len

DeepSeek-R1-Distill-Qwen-1.5B 73.09 2865.08 74.93 5327.12 22.22 14444.03
E1-Math-1.5B(0.5K,1K) 60.20 1205.21 35.53 1499.54 4.44 3008.44
E1-Math-1.5B(4K,1K) 72.10 1299.62 72.47 2088.44 21.11 5578.13
L1-Max(3600) 79.56 571.72 76.73 1753.42 17.88 5213.89
SelfBudgeter-1.5B 84.10 1231.79 78.47 2326.85 21.11 4288.10

DeepSeek-R1-Distill-Qwen-7B 87.09 1918.21 86.73 5387.19 28.89 22158.79
Eurus-2-7B-PRIME 90.98 302.72 79.73 582.58 15.56 1254.52
Qwen-2.5-7B-Simple-RL 75.94 519.07 61.13 823.89 6.67 1429.94
SelfBudgeter-7B 90.30 991.13 86.87 2666.58 30.00 12241.84

accuracy losses—L1 performs poorly on the challenging AIME2025 benchmark, while E1 suffers
more pronounced accuracy degradation on the simpler GSM8K and MATH500 datasets.

In addition, Table 2 highlights that SelfBudgeter consistently strikes a better balance between
accuracy and response length than existing baselines. Unlike L1, which enforces explicit length limits
but collapses on AIME2025, or E1, which relies on hard truncation and severely harms accuracy,
SelfBudgeter autonomously learns effective token budgeting. As a result, it achieves the best or
second-best accuracy across all datasets while simultaneously reducing response length substantially.

Beyond its effectiveness at the 1.5B scale, our method also delivers efficient reasoning with larger
models. SelfBudgeter-7B achieves the highest accuracy on MATH500 and AIME2025, and the
second-best accuracy on GSM8K—only 0.68 points lower than the best-performing model. Mean-
while, SelfBudgeter-7B attains an average compression ratio of 48%, further demonstrating the gener-
ality of our approach and its effectiveness at larger model scales. Compared with Eurus-2-7B-PRIME,
which excels only on GSM8K but falls behind on harder reasoning tasks, and Qwen-2.5-7B-Simple-
RL, which underperforms across all benchmarks, SelfBudgeter exhibits robust gains across datasets
of varying difficulty.

4.6 DYNAMIC ALPHA SCHEDULE

100 200 300 400 500 600 700
Steps

0

1000

2000

3000

4000

To
ke

ns

GSM8K
Response Length
Token Budget

100 200 300 400 500 600 700
Steps

MATH
Response Length
Token Budget

Figure 3: Response length and token budget on GSM8K and MATH benchmarks across training
steps with α = 0.5. The curves show how the average response length (solid circles) and allocated
token budget (solid diamonds) evolve during training.

In SelfBudgeter, α serves as a critical hyperparameter. As shown in Figure 3, we observe that using a
fixed and relatively loose α can lead to reward hacking: once the model learns to align the budget
with the actual response length, it tends to inflate the predicted budget during later training stages,
pushing the output length toward the lower bound of the acceptable range to obtain higher PreB

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

scores. Conversely, when α is fixed but relatively tight, the token budget quickly collapses to the
response length, which hinders the model from learning an optimal budgeting strategy. To address
these issues, we introduce a dynamic alpha schedule, where α is linearly decreased over training
steps. This gradually tightens the tolerance range for acceptable response lengths and encourages
closer convergence between the predicted budget and the actual output length. Consequently, the
optimal α is not static but evolves throughout the training process.

Formally, the dynamic α is defined by a linear schedule:

αnow = αstart − (αstart − αend) ·
stepnow

Total steps
. (6)

This schedule only requires specifying the starting and ending values of α (i.e., αstart and αend), which
are set to 6.0 and 0.1, respectively.

5 DISCUSSION

In the Analysis section, we systematically examine SelfBudgeter’s adaptive computation allocation
mechanism through two pivotal aspects: its ability to dynamically adjust budgets according to problem
complexity, and compliance with token constraints while preserving response quality. This holistic
evaluation reveals fundamental insights into how adaptive language models negotiate computational
efficiency with task requirements, informing both theoretical understanding and practical deployment
considerations.

5.1 ADAPTIVE BUDGET ALLOCATION

GSM MATH L1 MATH L2 MATH L3 MATH L4 MATH L5 AIME0

1000

2000

3000

4000

5000

Bu
dg

et
 A

llo
ca

tio
n

SelfBudgeter(GSM,alpha=0.2)
SelfBudgeter(GSM,alpha=0.5)
SelfBudgeter(s1k,alpha=0.2)
SelfBudgeter(s1k,alpha=0.5)

Figure 4: Token budget allocation patterns across problem difficulty levels for four SelfBudgeter-1.5B
configurations (initialized on GSM8K/s1k with α=0.2/0.5). All variants exhibit monotonic budget es-
calation with increasing task complexity (GSM8K, MATH Level 1-5, AIME2024), confirming robust
cross-configuration alignment between computational investment and intrinsic problem difficulty.

To investigate SelfBudgeter’s capacity for difficulty-aware budget allocation, we conduct empirical
evaluations across three mathematical reasoning benchmarks with inherent complexity gradients:
GSM8K, MATH, and AIME 2024. Our experimental framework systematically evaluates four
architectural variants combining cold-start initialization strategies (GSM8K vs. s1k) with α hyperpa-
rameter values (0.2 vs. 0.5).

Figure 4 shows a consistent positive correlation between problem complexity and allocated token
budgets across all model variants, demonstrating SelfBudgeter’s ability to scale computation with
task difficulty. The near-linear allocation across difficulty tiers highlights its emergent capacity for
intrinsic difficulty estimation, while the minimal variance across configurations indicates robust and
generalized learning of task-complexity metrics rather than configuration-specific artifacts.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

400 600 800 1000
Budget

400

600

800

1000

1200

1400

1600
Re

sp
on

se
 L

en
gt

h
slope: 1.025
intercept: 14.56

MATH500

Model Response
Linear Fitting

300 400 500 600 700 800 900
Budget

200

400

600

800

1000

Re
sp

on
se

 L
en

gt
h

slope: 0.793
intercept: 109.42

GSM8K

Model Response
Linear Fitting

Figure 5: Linear regression analysis of token budget prediction versus actual response length for
SelfBudgeter on the MATH500 dataset(left) and GSM8K test set(right). The figure demonstrates
SelfBudgeter with GSM initialization and hyperparameter α = 0.2.

5.2 BUDGET-CONSTRAINED GENERATION

To systematically evaluate the generation capability of SelfBudgeter under budget constraints, this
study employs linear regression modeling to quantitatively analyze the mapping relationship between
predicted token budgets and actual response lengths. We conduct a quantitative analysis on the
MATH500 dataset and GSM8K test set using linear regression to investigate the mapping between
predicted budgets and actual response lengths (as shown in the Figure 5). On MATH500 dataset,
the least squares fitting yields a slope of 1.025 (95% CI [0.9466, 1.1042]). And on GSM8K test set,
the least squares fitting yields a slope of 0.793 (95% CI [0.7512, 0.8354]). The slope coefficient
approaching unity validates the efficacy of the budget control mechanism, indicating that each 1-token
increase in the predicted budget corresponds to an average increase of about 1-token in output.

Quantitative results demonstrate that 96% of generated responses exhibit relative deviations ≤ 50%
from the target token budget, with 65.40% achieving tighter deviations ≤ 20% . Extended experiments
on full benchmark datasets reveal that 97.65% (GSM8K) and 95.82% (MATH) of samples satisfy
the ≤ 50% relative deviation constraint. Notably, the model’s budget adherence is influenced by the
cold-start dataset and hyperparameter α. The optimized SelfBudgeter configuration (initialized with
GSM8K and α = 0.2), which balances generation quality and budget compliance, is reported here as
the best-performing variant.

We further validate SelfBudgeter’s adherence to user-defined token budgets through controlled exper-
iments. The results indicate that the actual generated length follows a linear functional relationship
with user-defined budgets, demonstrating robust alignment even under explicit external constraints.
Details are provided in Appendix C.

6 CONCLUSION

We propose the SelfBudgeter framework, which autonomously predicts required token budgets
for reasoning while effectively adhering to self-imposed constraints, successfully optimizing the
accuracy-response length trade-off. By leveraging SelfBudgeter’s token budget predictions, users can
anticipate total inference duration in advance, significantly enhancing user experience. In resource-
efficient reasoning, SelfBudgeter demonstrates performance comparable to several existing methods,
highlighting its potential for deployment in resource-constrained environments. Additionally, output
length can be dynamically regulated through transformation functions when required. SelfBudgeter
paves a promising pathway toward more efficient, controllable, and user-friendly reasoning models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work uses only publicly available datasets under their original licenses, and does not involve
human subjects, private data, or personally identifiable information. Our contributions are method-
ological, focusing on improving reasoning efficiency, and do not amplify risks of harmful or biased
content. We declare no conflicts of interest or ethical concerns, and we have complied with the ICLR
Code of Ethics throughout the research and submission process. Additional details regarding the use
of large language models (LLMs) are provided in Appendix D.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The datasets used in our
experiments are publicly available. Detailed descriptions of data preprocessing, training settings,
and evaluation protocols are provided in Section 4, with additional implementation details and
hyperparameters included in the appendix. We will release anonymous source code and scripts for
training and evaluation as supplementary material.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. CoRR,
abs/2502.04463, 2025. doi: 10.48550/ARXIV.2502.04463. URL https://doi.org/10.
48550/arXiv.2502.04463.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Edward Y. Chang, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. CoRR, abs/2502.03373, 2025. doi: 10.48550/ARXIV.2502.
03373. URL https://doi.org/10.48550/arXiv.2502.03373.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025a.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Do not think that much for 2+3=? on the overthinking of o1-like llms, 2024. URL https:
//arxiv.org/abs/2412.21187.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An empirical
study on eliciting and improving r1-like reasoning models. arXiv preprint arXiv:2503.04548,
2025b.

Yu-Neng Chuang, Helen Zhou, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio, Sara
Bolouki, and Xia Hu. Learning to route with confidence tokens. CoRR, abs/2410.13284, 2024.
doi: 10.48550/ARXIV.2410.13284. URL https://doi.org/10.48550/arXiv.2410.
13284.

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang Sui,
Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based
on-device llm routing from benchmarking to generalization. arXiv preprint arXiv:2502.04428,
2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

10

https://doi.org/10.48550/arXiv.2502.04463
https://doi.org/10.48550/arXiv.2502.04463
https://doi.org/10.48550/arXiv.2502.03373
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://doi.org/10.48550/arXiv.2410.13284
https://doi.org/10.48550/arXiv.2410.13284
https://arxiv.org/abs/2110.14168


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. CoRR, abs/2412.11664, 2024. doi: 10.48550/ARXIV.2412.
11664. URL https://doi.org/10.48550/arXiv.2412.11664.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought?
A token complexity approach. CoRR, abs/2503.01141, 2025. doi: 10.48550/ARXIV.2503.01141.
URL https://doi.org/10.48550/arXiv.2503.01141.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

11

https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2412.11664
https://doi.org/10.48550/arXiv.2503.01141
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng
Zhang. Can language models learn to skip steps? In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
504fa7e518da9d1b53a233ed20a38b46-Abstract-Conference.html.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning.
CoRR, abs/2501.12570, 2025a. doi: 10.48550/ARXIV.2501.12570. URL https://doi.org/
10.48550/arXiv.2501.12570.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025b. Notion Blog.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. CoRR, abs/2502.09601, 2025. doi: 10.48550/ARXIV.2502.
09601. URL https://doi.org/10.48550/arXiv.2502.09601.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. CoRR, abs/2501.19393, 2025. doi: 10.48550/ARXIV.2501.19393. URL
https://doi.org/10.48550/arXiv.2501.19393.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun.
Self-training elicits concise reasoning in large language models. CoRR, abs/2502.20122, 2025.
doi: 10.48550/ARXIV.2502.20122. URL https://doi.org/10.48550/arXiv.2502.
20122.

Sania Nayab, Giulio Rossolini, Giorgio C. Buttazzo, Nicolamaria Manes, and Fabrizio Giacomelli.
Concise thoughts: Impact of output length on LLM reasoning and cost. CoRR, abs/2407.19825,
2024. doi: 10.48550/ARXIV.2407.19825. URL https://doi.org/10.48550/arXiv.
2407.19825.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M. Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. CoRR,
abs/2406.18665, 2024. doi: 10.48550/ARXIV.2406.18665. URL https://doi.org/10.
48550/arXiv.2406.18665.

OpenAI. Learning to reason with llms, September 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specreason:
Fast and accurate inference-time compute via speculative reasoning, 2025. URL https://
arxiv.org/abs/2504.07891.

Qwen. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL https:
//qwenlm.github.io/blog/qwq-32b-preview/.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2nd International Conference on Foundation and Large Language Mod-
els, FLLM 2024, Dubai, United Arab Emirates, November 26-29, 2024, pp. 476–483. IEEE,
2024. doi: 10.1109/FLLM63129.2024.10852493. URL https://doi.org/10.1109/
FLLM63129.2024.10852493.

12

http://papers.nips.cc/paper_files/paper/2024/hash/504fa7e518da9d1b53a233ed20a38b46-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/504fa7e518da9d1b53a233ed20a38b46-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2501.12570
https://doi.org/10.48550/arXiv.2501.12570
https://doi.org/10.48550/arXiv.2502.09601
https://doi.org/10.48550/arXiv.2501.19393
https://doi.org/10.48550/arXiv.2502.20122
https://doi.org/10.48550/arXiv.2502.20122
https://doi.org/10.48550/arXiv.2407.19825
https://doi.org/10.48550/arXiv.2407.19825
https://doi.org/10.48550/arXiv.2406.18665
https://doi.org/10.48550/arXiv.2406.18665
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2504.07891
https://arxiv.org/abs/2504.07891
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2412.15115
https://doi.org/10.1109/FLLM63129.2024.10852493
https://doi.org/10.1109/FLLM63129.2024.10852493


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. doi: 10.48550/
ARXIV.2408.03314. URL https://doi.org/10.48550/arXiv.2408.03314.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419, 2025.

Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime-problem-set-1983-2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. CoRR, abs/2502.07266, 2025. doi: 10.48550/ARXIV.
2502.07266. URL https://doi.org/10.48550/arXiv.2502.07266.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. CoRR, abs/2502.12067, 2025. doi: 10.48550/ARXIV.2502.
12067. URL https://doi.org/10.48550/arXiv.2502.12067.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. CoRR, abs/2502.18600, 2025a. doi: 10.48550/ARXIV.2502.18600. URL https:
//doi.org/10.48550/arXiv.2502.18600.

Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, and Caiming Xiong. Scalable chain of
thoughts via elastic reasoning, 2025b. URL https://arxiv.org/abs/2505.05315.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin,
Li Cao, and Weiping Wang. Dynamic early exit in reasoning models, 2025a. URL https:
//arxiv.org/abs/2504.15895.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

13

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.48550/arXiv.2408.03314
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2502.07266
https://doi.org/10.48550/arXiv.2502.12067
https://doi.org/10.48550/arXiv.2502.18600
https://doi.org/10.48550/arXiv.2502.18600
https://arxiv.org/abs/2505.05315
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

A.1 EXPERIMENTAL ENVIRONMENTS

Our server is equipped with two 80GB A100 GPUs and two 45GB A40 GPUs. We conducted
fine-tuning experiments and inference tests on the two A40 GPUs, while the GRPO training was
performed on the two A100 GPUs.

A.2 PARAMETER SETTINGS

In the fine-tuning training during the cold-start phase, our parameter settings are configured as
follows. The sequence length is capped at 16,384, with a per-device training and evaluation batch
size of 1, while gradient accumulation (2 steps) is employed to alleviate GPU memory constraints. A
cosine learning rate scheduler is adopted with a 10% warm-up ratio and a base learning rate of 5e-5.
The model is trained for 1 epoch, with 10% of the training set allocated for validation. The model
checkpoints are saved and evaluated every 500 steps, and the best-performing checkpoint is retained.

In the GRPO (Global Reward Policy Optimization) training, our parameter configuration is set as
follows. The training and validation batch sizes are set to 128 and 1,250, respectively, with maximum
prompt and response lengths of 1,024 and 32,000 tokens. The Actor model employs a learning rate
of 1e-6, dynamic batching (up to 24K tokens per GPU), and a KL divergence loss (coefficient 0.001),
with gradient checkpointing and FSDP (Fully Sharded Data Parallel) distributed training enabled
(parameter offloading disabled). During the Rollout phase, the vLLM inference engine is utilized
with tensor parallelism (TP=2) and 80% GPU memory utilization, generating 5 responses per round.
Global settings include 3 training epochs, a checkpoint-saving interval of 50 steps, and a KL control
coefficient of 0.001, executed on a single node with dual GPUs. And key hyperparameters involved
in the reward function are specified in Table 3.

Table 3: Hyperparameters Settings
Parameters C = 0 C = 1 Parameters Value

smin -0.5 0.5 rf -1
smax 0 1 rb -0.4

For the GSM-initialized SelfBudgeter, we select the checkpoint after 699 training steps when alpha
was set to 0.2, and the checkpoint after 575 steps when alpha was 0.5. For the s1k-initialized
SelfBudgeter, we choose the checkpoint after 475 training steps with alpha=0.2, and the checkpoint
after 500 steps with alpha=0.5. For L1-Max, we choose the checkpoint after 280 training steps.

B COLD-START DATA SELECTION

Prompt Template

Answer the given question. You should first estimate the total number of tokens you will need
to answer this question based on its difficulty. Then you think about the reasoning process
in the mind and provide the user with the answer. The token budget and whole solution
are enclosed within <budget></budget> and <solution> </solution> tags, respectively, i.e.,
<budget> token budget here, just an integer </budget><solution> solution here, please output
the final answer within \boxed{} </solution>.
Question:

Figure 6: The prompt template used in the cold-start stage.

The choice of initialization data substantially impacts model performance. SelfBudgeters initialized
with the s1k dataset outperform their GSM-initialized SelfBudgeters by 8.82–10.72 percentage points

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Model performance comparison on GSM8K and MATH test sets, showing accuracy (Acc/%),
average response length (Len/tokens) and matching rate between token limits and response length
(Mat/%). The SelfBudgeter variants with different cold-start data and α parameters are contrasted
with baseline models.

Model GSM8K MATH

Acc↑ Len↓ Mat↑ Acc↑ Len↓ Mat↑
Cold Start (GSM) 71.95 1003.79 85.82 64.74 3043.29 41.16
SelfBudgeter (GSM, α = 0.2) 76.27 523.77 97.65 63.46 779.54 95.82
SelfBudgeter (GSM, α = 0.5) 74.68 520.82 96.97 63.78 777.80 96.66
Cold Start (s1k) 82.49 1983.29 21.76 76.64 4001.29 23.28
SelfBudgeter (s1k, α = 0.2) 81.50 662.08 70.74 74.18 919.27 78.36
SelfBudgeter (s1k, α = 0.5) 80.44 719.36 71.19 72.60 1022.99 79.76

on MATH (74.18% vs. 63.46% for α = 0.2) and 5.23–5.76 percentage points on GSM8K (80.44%
vs. 74.68% for α = 0.5). While SelfBudgeters with GSM-initialized exhibit lower accuracy, they
generate significantly more concise responses compared to s1k-initialized SelfBudgeters. Specifically,
GSM-initialized SelfBudgeters reduces response length by approximately 15–24% on MATH and
achieves 21–28% length reduction on GSM8K. This performance gap highlights the importance of
high-quality initialization for the budgeting mechanism.

As shown in Table 4, significant performance variations exist between models fine-tuned with
different cold-start datasets. The s1k-fine-tuned model demonstrates superior accuracy over the
GSM-fine-tuned counterpart, achieving 10.54% and 11.90% higher accuracy on GSM8K and MATH
respectively. However, this comes at the cost of substantially longer responses, with the s1k model
generating 97.58% and 31.48% lengthier outputs on GSM8K and MATH. This discrepancy stems
from the s1k dataset’s responses being generated by Deepseek-R1, which produces higher-quality
outputs than those self-generated by Deepseek-R1-Distill-Qwen-1.5B. Additionally, the s1k dataset’s
average length of 7,677.43 tokens (we only retained correct responses under 16,000 tokens) vastly
exceeds GSM8K’s 837.14 tokens, explaining the dramatic difference in response lengths after
fine-tuning. These factors substantially influence SelfBudgeter’s final performance, as evidenced
by: (1) SelfBudgeter’s accuracy closely mirroring that of its fine-tuned base model, and (2) the
response length relationships and matching rate relationships between different SelfBudgeter variants
remaining consistent with their respective cold-start models.

C PREFILLED TOKEN BUDGET FOLLOWING

0 250 500 750 1000 1250 1500 1750 2000
User-defined Token Budget

1350

1400

1450

1500

1550

1600

Av
er

ag
e 

Re
sp

on
se

 L
en

gt
h

y = 0.135x + 1338.45
MATH500

Model Response
Curve Fitting

0 250 500 750 1000 1250 1500 1750 2000
User-defined Token Budget

750

800

850

900

Av
er

ag
e 

Re
sp

on
se

 L
en

gt
h

y = 0.089x + 759.31
GSM8K

Model Response
Curve Fitting

Figure 7: Relationship between user-defined token budgets and SelfBudgeter average response
lengths with curve fitting analysis.

To systematically evaluate model performance under user-defined token budget constraints, we
conduct quantitative analysis using SelfBudgeter with GSM initialization and hyperparameter α = 0.2

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

on both MATH500 dataset and GSM8K test set. In the experimental design, fixed token budgets were
pre-filled in the <budget> field of training templates, with empirical results obtained by measuring
average generated response lengths. We evaluated SelfBudgeter’s performance with user-defined
token budgets ranging from 50 to 2000 (specifically: 50, 100, 200, 400, 500, 600, 800, 1000, 1200,
1400, 1600, 1800, and 2000), as shown in the Figure 7.

Regression intercepts effectively reflect problem complexity, where GSM8K’s simpler questions
yield significantly smaller intercepts. Despite a moderate slope, SelfBudgeter demonstrates robust
budget adaptability, maintaining a stable positive correlation between user-defined budgets and output
lengths. This linear relationship enables deterministic length control through derived transformation
functions.

D THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, large language models (LLMs) were used solely as auxiliary tools
for grammar checking, text polishing, and improving clarity of exposition. No experimental design,
data analysis, or substantive research conclusions were generated by LLMs. All methodological and
experimental contributions are original and conducted entirely by the authors.

16


	Introduction
	Related Work
	Method
	SelfBudgeter
	Budget Penalty
	Precise Budget Control Reward
	Accuracy Reward

	Experiment
	Training Template
	Data Preprocessing
	Cold Start
	Experiment Settings
	Main Results
	Dynamic Alpha Schedule

	Discussion
	Adaptive Budget Allocation
	Budget-Constrained Generation

	Conclusion
	Training Details
	Experimental Environments
	Parameter Settings

	Cold-start Data Selection
	Prefilled Token Budget Following
	The Use of Large Language Models

