Under review as a conference paper at ICLR 2026

SELFBUDGETER: ADAPTIVE TOKEN ALLOCATION
FOR EFFICIENT LLLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large reasoning models demonstrate exceptional performance on various
tasks. However, reasoning models inefficiently over-process both trivial and com-
plex queries, leading to resource waste and prolonged user latency. To address this
challenge, we propose SelfBudgeter - a self-adaptive controllable reasoning strat-
egy for efficient reasoning. Our approach adopts a dual-phase training paradigm:
first, the model learns to pre-estimate the reasoning cost based on the difficulty of
the query. Then, we introduce budget-guided GPRO for reinforcement learning,
which effectively maintains accuracy while reducing output length. SelfBudgeter
allows users to anticipate generation time and make informed decisions about
continuing or interrupting the process. Furthermore, our method enables direct
manipulation of reasoning length via pre-filling token budget. Experimental results
demonstrate that SelfBudgeter can dynamically allocate budgets according to prob-
lem complexity, yielding an average response length compression of 61% for the
1.5B model on GSM8K, MATH500, and AIME2025, and 48% for the 7B model,
while maintaining nearly undiminished accuracy.

1 INTRODUCTION

Recent large reasoning models, such as O1 (OpenAl, |2024), has shown remarkable performance
in various complex reasoning tasks (DeepSeek-Al et al., 2025} |[Qwen, |[2024). The primary success
factor lies in the long chain of thought (CoT) process learned through reinforcement learning (RL),
which allows the model to break down reasoning steps and scaling test-time compute (Snell et al.,
2024; Luo et al., [2025b).

However, reasoning models tend to use overly long thought processes even for simple questions. This
“overthinking” phenomenon leads to a waste of computational resources and excessive user waiting
times (Chen et al.,2024;[Sui et al.}2025). For example, when answering the simple questions such as
“What is the answer of 2+37?”, the QwQ-32B model provides 13 different solutions and generates 100
times more tokens than Qwen2.5-72B-Instruct model (Qwen et al.| 2025]).

Prior studies have explored various approaches to mitigate overthinking through response length
control and computation routing. Existing methods mainly include: (1) Prompt-based approaches (Lee
et al., [2025} [Xu et al.|[2025a) that implicitly guide length through instructions, (2) Integrated training
strategies that teach models to adaptively determine reasoning steps via SFT (Munkhbat et al., 2025}
Ma et al., [2025) or RL with length penalties (Aggarwal & Welleckl 2025} |Arora & Zanette| [2025)),
and (3) Router-based (Aytes et al., 2025} |Chuang et al., [2025) architectures employing classifiers to
allocate computation paths. While achieving partial progress, these methods either lack precise length
control, require additional computational overhead, or fail to explicitly output optimal reasoning
lengths (Aggarwal & Welleckl 2025} Xu et al.| 2025b)).

We propose SelfBudgeter that enables reasoning models to (1) estimate the minimal token budget
required for correct responses when users do not specify token constraints, and (2) generate responses
of corresponding lengths while adhering to either self-estimated or user-defined token budgets.
SelfBudgeter aims to mitigate the overthinking issue by predicting the minimal possible token budget,
thereby significantly reducing user waiting time. As shown in Figure[l] SelfBudgeter can provide a
relatively accurate token budget estimation before generating responses, users can precisely anticipate
the waiting time and decide whether to wait for the full output or terminate early based on their needs.

Under review as a conference paper at ICLR 2026

Additionally, when specific requirements arise,

users can pre-fill the token budget field to con- § ' User Interface
strain the model’s response within the given ‘@'

.. . e . . C %0 Token Budget
limit, thereby improving interaction efficiency. N m

‘ Solution
Our training framework consists of two main User i SelfBudgeter
stages. During the Cold-Start stage, we fine- No Constraint | Self-Allocated ~200
tune the model to learn how to first output its [T
estimated token budget within <budget > tags.
Subsequently, in the RL training stage, we op-
timize SelfBudgeter using the GRPO algorithm. No Constraint | Self-Allocated ~ ~1800
For this stage, we design a reward function that ' 1
primarily focuses on three key aspects: (1) an-
swer correctness, (2) minimal achievable token
budget, and (3) consistency between response
length and the allocated token budget.

Question: ... P 200 Let’s ...
(Easy) ! Waiting time: 10s. Ans: Let’s ...

Question: ... 1800 To decide ...
(Hard) | Waiting time: 90s. Ans: To decide ...

User specified Pre-ﬁl%ed as User’s Request ~500

Question: ... 500 First, I ...
We conduct full-parameter training of Deepseek- about 500 tokens | waiting time: 25s. Ans: First, I ...
R1-Distill-Qwen-1.5B using SelfBudgeter and _ o,
evaluate its performance on the GSMS8K,

MATHS500 and AIME2025 datasets. EXperi- Fijgyre 1: Overview of the SelfBudgeter. SelfBud-
mer.ltal results demonstrate that SelfBudgeter geter’s responses comprise two sections: Token
achieves an average response length compres- Budget and Solution. For unrestricted queries, it
sion of 61% with the 1.5B model, while main- qqtimates tokens needed for the Solution based on
taining nearly equivalent accuracy. Furthermorg, problem complexity. When users specify require-
on GSM8K and MATHS00, SelfBudgeter si- ments, it pre-fills the Token Budget accordingly.
multaneously reduces response length while im- ppe Solution generation strictly adheres to Token
proving accuracy. SelfBudgeter also exhibits Budget limits, whose numerical value indicates

excellent capability in predicting output length anticipated response duration.
and, when provided with pre-filled <budget>

tags, consistently adheres to the specified token budget constraints. In addition, experiments on
Deepseek-R1-Distill-Qwen-7B show an average compression of 48%, further validating the scalability
of SelfBudgeter to larger model sizes.

2 RELATED WORK

Overthinking in LLMs The emergence of the reasoning models like O1, Deepseek-R1 and
QwQ advanced complex problem-solving through RL-enhanced CoT (Wei et al.| 2022} (OpenAlL
2024; [DeepSeek-Al et al.l 2025; [Qwen, 2024). However, researchers observed a tendency for
reasoning models to overthink simple problems—expending unnecessary computational effort on
trivial queries (Chen et al., [2024} [Sui et al. [2025)). Excessive long CoT may lead to a decrease
in accuracy (Wu et al} [2025)). Current solutions for overthinking mainly involve following three
strategies. Prompt-based methods try to control response length by adding instructions in prompts,
but cannot control the length accurately (Lee et al., 2025} Renze & Guven, |[2024; | Xu et al., 2025a;
Nayab et al., [2024). Integated Training-based methods try to teach model decide the length by
the difficulty of the problems. Supervised fine-tuning(SFT)-based methods collect the dataset with
variable length (Munkhbat et al.,|[2025; Ma et al., 2025} [Liu et al.| 2024; Han et al., 2024} Kang et al.}
2024; Xia et al.| 2025} |Yang et al.,[2025b)). RL-based methods incorporate length penalties into the
reward function (Aggarwal & Welleckl 2025; |Arora & Zanettel 2025; Luo et al.,|2025a; (Chen et al.,
2025a;|Chang et al., [2025} | Xu et al.| | 2025b; [Yang et al., [2025a). These methods fail to control the
length as users’ requirements. And Router-based methods train another model as a classifier (Aytes
et al., 2025} |(Chuang et al., 2025} 2024; |Ong et al.| [2024; [Pan et al., 2025). The classifier decide
to route the query to fast models or reasoning models. However, an extra classifier means more
computation resources are needed. Current methods either sacrifice precise control, require extra
computation, or fail to bridge autonomous budget estimation with strict adherence.

Token Budget In addressing the issue of overthinking, a highly intuitive approach involves directly
constraining the output length. CCoT (Nayab et al.| 2024) attempt to achieve this by incorporating a
word budget into the prompt, various approaches—including character, token, and step budgets (Lee

Under review as a conference paper at ICLR 2026

et al.,2025)—have been attempted by directly incorporating them into prompts, yet achieving precise
control over the model’s output behavior remains challenging. TALE (Han et al., |2024) introduce, for
the first time, the concept of a token budget. TOPS (Yang et al.| |2025b) attempt to enable the model to
autonomously determine the required effort for solving a given task. However, both TALE and TOPS
fail to explicitly guide the model to produce the optimal token budget. They also fail to effectively
control the output length according to a given token budget. L1 (Aggarwal & Welleckl, 2025) and
Elastic Reasoning (Xu et al.,|2025b) can more precisely control the output length under a given token
budget, yet they fail to enable the model to autonomously estimate an appropriate response length.
Our proposed method enables the model to autonomously estimate the optimal token budget and
subsequently generate text in strict adherence to it.

3 METHOD

To minimize the overthinking problem in LLMs, we propose SelfBudgeter for efficient reasoning.
Our method aims to enable the model to autonomously determine an appropriate token budget and
generate responses of corresponding length while adhering to this budget. Although reasoning models
may occasionally overthink simple problems, their response lengths generally increase with problem
difficulty. This phenomenon demonstrates that the model possesses the capability to allocate token
quantities reasonably based on problem complexity. Previous works such as L1 (Aggarwal & Welleck,
2025) and Elastic Reasoning (Xu et al., 2025b)) have also demonstrated that models can generate
responses of appropriate length according to a given token budget.

Therefore, we design SelfBudgeter, which employs a reward function to guide the model in: (1)
learning an output format where it first predicts a token budget before generating the answer, (2)
allocating appropriate token budgets based on its own capabilities and question difficulty, and (3)
generating solutions with optimal length while ensuring answer accuracy.

3.1 SELFBUDGETER

SelfBudgeter is a concise and efficient method for automatic precise length controlled. We design the
Precise Budget Control Reward (PreB Reward) to achieve precise control over length. The detailed
introduction of PreB Reward can be found in Section [3.3] We employ GRPO algorithm to train the
model in predicting appropriate token budgets based on problem difficulty and generating responses
with lengths conforming to the specified budget.

Our reward function is formally defined as Formula [T}

T, if F =0,
R(C, F, £, b, byax) = < Pp(b, bax) + PreB(sW, s 0.b,a,bV), if F=1andC =0, (1)
Pg (b, bnax) + PreB(s$,,, 85 axs £, b, ,05.), if F=1and C = 1.
where
bpes = (1=) - b, by = (1+0a)-b 2)

The inputs and hyperparameters in the reward function are listed in Table[I} To ensure stable prediction
of the token budget prior to response generation, any responses deviating from the prescribed format
will be assigned the minimum reward score of 7.

3.2 BUDGET PENALTY

To enable the model to learn token budget allocation, we introduce a budget penalty module defined
by Formula[3] The model incurs a penalty 7, when its estimated token budget exceeds the maximum
acceptable budget by,x. No penalty is applied when the estimated token budget remains within bp,x.
A detailed introduction of by, is presented in Section Briefly stated, for a given question, by,x
equals the response length if the base model can answer it correctly; otherwise, by, is set to oc.

0, ifb < bmax,
ry, else.

PB(b7 bmax) = { (3)

Under review as a conference paper at ICLR 2026

Table 1: Input and Hyperparameters (HPs) in the reward function

Input Description ‘ HPs Description

C Correctness for answer Ty Penalty for format error

F Correctness for format HVK © Minimum reward (wrong/correct)
l Response length s%ﬁc Maximum reward (wrong/correct)
b Model’s budget @ Tightness coefficient of budget
bimax Maximum acceptable budget | 7, Penalty for excessive budget

3.3 PRECISE BUDGET CONTROL REWARD

Inspired by the cosine reward (Chang et al.,[2025)), we propose the Precise Budget Control Reward
(PreB Reward). While the cosine reward helps mitigate overthinking tendencies, it lacks precise
control over output length, as it only constrains the upper bound of the response. To address this
limitation, we introduce a tightness coefficient « to better align the response length with the specified
token budget.

Given the inherent challenge for models to precisely comply with token budgets, we relax the length
constraint to require only approximate adherence within « - b around the target budget b. As shown in
Formula 4] when the model’s response length falls outside the specified range, the corresponding
reward score plummets to its minimum value sp;,.

For incorrect responses, the function incentivizes longer reasoning chains (increasing length ¢) to
encourage deeper analysis that might lead to correct conclusions. Conversely, for correct answers,
the reward peaks at the minimally sufficient length (1 — «) - b to prevent unnecessary computational
overhead while maintaining accuracy. This explains why in Formula [2] the value of by differs
between correct and incorrect responses from the model. This dual mechanism promotes efficient
reasoning by adaptively modulating response lengths based on answer correctness.

€ — bl
b
PreB(smil17 Smaxs g’ b’ o, bbest) — J Smin + (Smax - Smin) X (4)

1 | — bhest] else.
— (1 L2 oSl
2 < + cos (71' 2oh)) s

Smin, if > a,

3.4 ACCURACY REWARD

To ensure the model’s post-training accuracy does not degrade below its initial performance, we
configure hyperparameters to guarantee that the minimum reward for correct responses always
exceeds the maximum reward for incorrect responses. Specifically, our design ensures that: A correct
response, which has a token budget exceeding by,,,x and receives the lowest budget following reward
s¢, will yield a higher total reward than an incorrect response that has a token budget within by
and receives the highest budget following reward s}V . This constraint is formally expressed as:
sC 4+ ry > sW .

min max

Overall, the core design of SelfBudgeter consists of three key modules: Budget Penalty, Preb Reward,
and Accuracy Reward, which collectively balance length compression, correctness, and precise length

control-ultimately delivering a better user experience.

4 EXPERIMENT

4.1 TRAINING TEMPLATE

The existing reasoning models utilize a pair of <think></think> tags to demarcate the thinking
process from the final solution output. Building upon this format, we have further incorporated a
token budget component.

Under review as a conference paper at ICLR 2026

Step 1: Data Preprocessing A: Q Step 3: RL training
<budget>1000</budget> > (GO}
<solution>To Qrey: bUdGetay = TCr1y
determine ...</solution>) SFT Model > Qru budget,,, = TCr(,
Ori Model SFTdata RLdata o A Qrus: budget,, = o
N Generate Response (©9) [Q: Jim hasa 20 pack of
P = gum. He chews ...
Ques| Ans | Acc | Token Count | budget,, = A: To determine how
Ori Model . . Format Penalty
Qsra| Asera ° TCsery \ + many preces ...

" + Budget Penalt
SS=r tasay: FCsrr A Input: Prompt Prefix + Qgery uage d
Qsrra| Asera ° TCsprs \ OUINE S8y BTy ol PreB Reward

> <solution>Aggr,</solution>
Input: Prompt Prefix + Q

A TC TC seT3
Quus |Aris 9 R R Output: <budget>TCgrrp</budget> 500
Qriz [Are2 Q TCriz TCrey <solution>Aggr</solution> token is
Qris |ArLs 6 TChris e enough!

Step 2: Cold Start SelfBudgeter

Figure 2: Overview of the SelfBudgeter training framework. The workflow consists of three key
steps: (1) Data preprocessing: The initial model preprocesses the data to compute token budgets
for subsequent training; (2) Cold-start: The model is fine-tuned to adopt the new output format; (3)
RL Training: Through reward functions, the model learns to allocate token budgets and generate
compliant outputs.

To enable the model to dynamically allocate token usage based on question difficulty, we design an
output format as follows:

<budget>an integer</budget><solution>response</solution>

The format requires the model to first estimate the required token budget before providing the answer
to the question. When no user constraint exists, the model autonomously predicts the token budget.
When users specify a token limit, we pre-fill the <budget> field and let the model generate the
<solution> within this constraint.

4.2 DATA PREPROCESSING

At this stage, we collect model’s responses to the test questions used in both the cold-start and RL
training phases, and then evaluate the correctness and length of the responses.

For the cold-start data, we retain the model’s correct responses along with their lengths and discard
incorrect answers to prevent reinforcing the model’s memory of wrong responses.

For the RL training data, we calculate budgetyx (for convenience, we will refer to it as by, in
the following sections) using Formula[5] representing the maximum acceptable token budget for a
given question. When the model answers correctly, the correctness of the response indicates that the
minimum token budget required for a correct answer does not exceed the current length. Therefore,
we encourage the model to further compress the response length and set by« to the current response
length. When the model answers incorrectly, the relationship between the minimum token budget
needed for correctness and the current length remains unclear, so any token budget is acceptable.

&)

b response length, if model answers correctly,
7 o0, else.

4.3 COLD START

In our actual RL training process, we observe that requiring the model to simultaneously master
multiple objectives - learning the new output format, providing appropriate token budgets, generating
solutions of corresponding lengths according to the budget, while maintaining or improving accuracy

Under review as a conference paper at ICLR 2026

- proved excessively challenging. After extended training periods, the model often only succeeds in
adopting the output format without achieving the other goals. Inspired by the Deepseek-R1 training
methodology, we introduce a cold-start phase to accelerate training and enable the model to first learn
the new output format before proceeding to more complex tasks. The overall training framework is
illustrated in Figure 2]

To prevent the model from losing its original reasoning capability during the cold-start phase, fine-
tuning must be performed using either the model’s own generated responses or datasets containing
long CoT responses. In our approach, we pre-populate the <budget > section with token counts
obtained during the preprocessing stage. The <solution> section is filled with the model’s
generated responses. And the instruction prefix we prepend to each question can be found in

Appendix [B].
4.4 EXPERIMENT SETTINGS

We conduct experiments on the DeepSeek-R1-Distill-Qwen-1.5B (R1-1.5B) model. We reproduce L1-
Max using R1-1.5B, and select R1-1.5B and L1-Max as baseline methods for comparative evaluation
against SelfBudgeter. In addition, we extend our experiments to the larger DeepSeek-R1-Distill-
Qwen-7B (R1-7B) model. For more comprehensive comparison, we also include E1-Math-1.5B,
R1-7B, Eurus-2-7B-PRIME (Cui et al., [2025), and Qwen-2.5-7B-Simple-RL (Shao et al.,|[2024) as
additional baselines.

During the cold-start phase, we employ three datasets of varying difficulty—GSMS8K (Cobbe et al.|
2021), MATH (Hendrycks et al.,[2021)), and s1k-1.1 (Muennighoff et al.,[2025)—to help the model
learn the new output format while producing token budgets with diverse distributions. The s1k-1.1
dataset contains 1,000 challenging mathematical problems with long reasoning chains generated
by DeepSeek-R1, which support both reasoning ability and format adaptation. For GSM8K and
MATH, we select 1,500 training samples each that the model can answer correctly. For s1k-1.1,
we directly use the native responses and compute the corresponding token counts with the model’s
tokenizer to populate our designed template; in total, we retain 630 problems that DeepSeek-R1
answered correctly. This yields a training set of 3,630 samples. Following the preprocessing protocol
in Sections {f.2] and [4.3] we fine-tune the model for one epoch. Throughout data collection and
training, the model’s temperature is consistently set to 0.6.

During the reinforcement learning phase, we use STILL-3-Preview-RL-Data (Chen et al., [2025b)
dataset. It also serves as the training dataset for reproducing L1-max. This dataset collects 30K
high-quality samples based on the MATH (Hendrycks et al., [2021), NuminaMathCoT (LI et al.,
2024), and AIME 1983-2023 (Veeraboina), [2023) datasets. It includes problems of varying difficulty
levels, which also helps the model learn to allocate token counts adaptively based on difficulty. As
described in Section[4.2] we compute the maximum acceptable budget (bmay) based on the model’s
responses, then train the model for 3 epochs on this dataset. More detailed information can be found
in Appendix [A]

4.5 MAIN RESULTS

Table [2] presents a comprehensive comparison of model performance on the GSM8K, MATH500,
and AIME2025 test sets, evaluated in terms of accuracy (Acc) and average response length (Len).
The table contrasts baseline models with different variants of the SelfBudgeter framework across
varying model scales. For clarity, the best performance is highlighted in bold, while the second-best
performance is indicated with underline. It is worth noting that token limits for L1 are explicitly
specified through prompt templates, whereas those for E1 are enforced via hard truncation. In contrast,
SelfBudgeter autonomously estimates its token constraints during inference. All reported results are
averaged over three runs with different random seeds.

Baseline Comparison Although the Deepseek-R1-Distill-Qwen-1.5B baseline demonstrates strong
accuracy, it requires substantially longer responses. On GSMS8K, our method improves accuracy by
11.01 percentage points while compressing response length to 43% of the original. On MATHS00,
it achieves a 3.54-point accuracy gain with response length reduced to 44%. On AIME2025, our
approach compresses response length to 30% of the original while maintaining comparable accuracy.
In contrast, although L1 and E1 attain stronger compression on certain datasets, they incur larger

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on GSM8K, MATH500, and AIME2025. Accuracy (Acc) is
reported in percentage, and length (Len) in tokens.

GSMSK MATHS500 AIME2025
Models
Acc Len Acc Len Acc Len
DeepSeek-R1-Distill-Qwen-1.5B 73.09 2865.08 74.93 5327.12 22.22 14444.03
E1-Math-1.5B(0.5K,1K) 60.20 1205.21 35.53 1499.54 444 3008.44
E1-Math-1.5B(4K,1K) 72.10 1299.62 7247 2088.44 21.11 5578.13
L1-Max(3600) 79.56 571.72 76.73 175342 17.88 5213.89
SelfBudgeter-1.5B 84.10 1231.79 78.47 2326.85 21.11 4288.10
DeepSeek-R1-Distill-Qwen-7B 87.09 1918.21 86.73 5387.19 28.89 22158.79
Eurus-2-7B-PRIME 90.98 302.72 79.73 582.58 15.56 1254.52
Qwen-2.5-7B-Simple-RL 7594 519.07 61.13 823.89 6.67 1429.94
SelfBudgeter-7B 90.30 991.13 86.87 2666.58 30.00 12241.84

accuracy losses—L1 performs poorly on the challenging AIME2025 benchmark, while E1 suffers
more pronounced accuracy degradation on the simpler GSM8K and MATH500 datasets.

In addition, Table [2] highlights that SelfBudgeter consistently strikes a better balance between
accuracy and response length than existing baselines. Unlike L1, which enforces explicit length limits
but collapses on AIME2025, or E1, which relies on hard truncation and severely harms accuracy,
SelfBudgeter autonomously learns effective token budgeting. As a result, it achieves the best or
second-best accuracy across all datasets while simultaneously reducing response length substantially.

Beyond its effectiveness at the 1.5B scale, our method also delivers efficient reasoning with larger
models. SelfBudgeter-7B achieves the highest accuracy on MATH500 and AIME2025, and the
second-best accuracy on GSM8K—only 0.68 points lower than the best-performing model. Mean-
while, SelfBudgeter-7B attains an average compression ratio of 48%, further demonstrating the gener-
ality of our approach and its effectiveness at larger model scales. Compared with Eurus-2-7B-PRIME,
which excels only on GSMS8K but falls behind on harder reasoning tasks, and Qwen-2.5-7B-Simple-
RL, which underperforms across all benchmarks, SelfBudgeter exhibits robust gains across datasets
of varying difficulty.

4.6 DYNAMIC ALPHA SCHEDULE

GSM8K MATH

Response Length Response Length
4000 Token Budget Token Budget

3000

%]

c

9

S 2000

1000 .__.—_.-——.—_—k’—.___‘ — _ PE———]
0
100 200 300 400 500 600 700 100 200 300 400 500 600 700

Steps Steps

Figure 3: Response length and token budget on GSM8K and MATH benchmarks across training
steps with o« = 0.5. The curves show how the average response length (solid circles) and allocated
token budget (solid diamonds) evolve during training.

In SelfBudgeter, « serves as a critical hyperparameter. As shown in Figure 3] we observe that using a
fixed and relatively loose « can lead to reward hacking: once the model learns to align the budget
with the actual response length, it tends to inflate the predicted budget during later training stages,
pushing the output length toward the lower bound of the acceptable range to obtain higher PreB

Under review as a conference paper at ICLR 2026

scores. Conversely, when « is fixed but relatively tight, the token budget quickly collapses to the
response length, which hinders the model from learning an optimal budgeting strategy. To address
these issues, we introduce a dynamic alpha schedule, where « is linearly decreased over training
steps. This gradually tightens the tolerance range for acceptable response lengths and encourages
closer convergence between the predicted budget and the actual output length. Consequently, the
optimal « is not static but evolves throughout the training process.

Formally, the dynamic « is defined by a linear schedule:

Stepnow

— W 6
Total steps ©)

Qpow = Olgtart — (astart - aend) .

This schedule only requires specifying the starting and ending values of « (i.e., tgtare and eeng), Which
are set to 6.0 and 0.1, respectively.

5 DISCUSSION

In the Analysis section, we systematically examine SelfBudgeter’s adaptive computation allocation
mechanism through two pivotal aspects: its ability to dynamically adjust budgets according to problem
complexity, and compliance with token constraints while preserving response quality. This holistic
evaluation reveals fundamental insights into how adaptive language models negotiate computational
efficiency with task requirements, informing both theoretical understanding and practical deployment
considerations.

5.1 ADAPTIVE BUDGET ALLOCATION

[SelfBudgeter
50001 =3 SelfBudgeter
[SelfBudgeter
[SelfBudgeter

~ Al ol

MATH L1 MATH L2 MATHL3 MATHL4 MATH L5 AIME

GSM,alpha=0.2) |
GSM,alpha=0.5)
slk,alpha=0.2)
slk,alpha=0.5) ™

N
o
S
o

g
Q
|
|

Budget Allocation
2
o

Figure 4: Token budget allocation patterns across problem difficulty levels for four SelfBudgeter-1.5B
configurations (initialized on GSM8K/s1k with @=0.2/0.5). All variants exhibit monotonic budget es-
calation with increasing task complexity (GSM8K, MATH Level 1-5, AIME2024), confirming robust
cross-configuration alignment between computational investment and intrinsic problem difficulty.

To investigate SelfBudgeter’s capacity for difficulty-aware budget allocation, we conduct empirical
evaluations across three mathematical reasoning benchmarks with inherent complexity gradients:
GSMS8K, MATH, and AIME 2024. Our experimental framework systematically evaluates four
architectural variants combining cold-start initialization strategies (GSMS8K vs. s1k) with o hyperpa-
rameter values (0.2 vs. 0.5).

Figure] shows a consistent positive correlation between problem complexity and allocated token
budgets across all model variants, demonstrating SelfBudgeter’s ability to scale computation with
task difficulty. The near-linear allocation across difficulty tiers highlights its emergent capacity for
intrinsic difficulty estimation, while the minimal variance across configurations indicates robust and
generalized learning of task-complexity metrics rather than configuration-specific artifacts.

Under review as a conference paper at ICLR 2026

MATH500 GSM8K
slope: 1.025 ° slope: 0.793 °
1600 intercept: 14.56 intercept: 109.42 o g o 8
° 1000
o
o (o] o
1400 o o 7 © °
s © o ® co gpo%omo
5 o Top pw ° £ o0, 0@ %
2 1200 °g &8 o 800 of)
[} 00 o]
| .}
@V 1000 g 4]
(%] %)
c C 600
2 g
2 800 2
i}]
o4 <

600 400

400 Model Response o Model Response

o
® (4 = Linear Fitting 200 [} = Linear Fitting

400 600 800 1000 300 400 500 600 700 800 900
Budget Budget

Figure 5: Linear regression analysis of token budget prediction versus actual response length for
SelfBudgeter on the MATHS00 dataset(left) and GSMS8K test set(right). The figure demonstrates
SelfBudgeter with GSM initialization and hyperparameter o = 0.2.

5.2 BUDGET-CONSTRAINED GENERATION

To systematically evaluate the generation capability of SelfBudgeter under budget constraints, this
study employs linear regression modeling to quantitatively analyze the mapping relationship between
predicted token budgets and actual response lengths. We conduct a quantitative analysis on the
MATHS500 dataset and GSMB8K test set using linear regression to investigate the mapping between
predicted budgets and actual response lengths (as shown in the Figure [5). On MATH500 dataset,
the least squares fitting yields a slope of 1.025 (95% CI [0.9466, 1.1042]). And on GSMSK test set,
the least squares fitting yields a slope of 0.793 (95% CI [0.7512, 0.8354]). The slope coefficient
approaching unity validates the efficacy of the budget control mechanism, indicating that each 1-token
increase in the predicted budget corresponds to an average increase of about 1-token in output.

Quantitative results demonstrate that 96% of generated responses exhibit relative deviations < 50%
from the target token budget, with 65.40% achieving tighter deviations < 20% . Extended experiments
on full benchmark datasets reveal that 97.65% (GSMS8K) and 95.82% (MATH) of samples satisfy
the < 50% relative deviation constraint. Notably, the model’s budget adherence is influenced by the
cold-start dataset and hyperparameter «v. The optimized SelfBudgeter configuration (initialized with
GSMB8K and o = 0.2), which balances generation quality and budget compliance, is reported here as
the best-performing variant.

We further validate SelfBudgeter’s adherence to user-defined token budgets through controlled exper-
iments. The results indicate that the actual generated length follows a linear functional relationship
with user-defined budgets, demonstrating robust alignment even under explicit external constraints.
Details are provided in Appendix [C]

6 CONCLUSION

We propose the SelfBudgeter framework, which autonomously predicts required token budgets
for reasoning while effectively adhering to self-imposed constraints, successfully optimizing the
accuracy-response length trade-off. By leveraging SelfBudgeter’s token budget predictions, users can
anticipate total inference duration in advance, significantly enhancing user experience. In resource-
efficient reasoning, SelfBudgeter demonstrates performance comparable to several existing methods,
highlighting its potential for deployment in resource-constrained environments. Additionally, output
length can be dynamically regulated through transformation functions when required. SelfBudgeter
paves a promising pathway toward more efficient, controllable, and user-friendly reasoning models.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work uses only publicly available datasets under their original licenses, and does not involve
human subjects, private data, or personally identifiable information. Our contributions are method-
ological, focusing on improving reasoning efficiency, and do not amplify risks of harmful or biased
content. We declare no conflicts of interest or ethical concerns, and we have complied with the ICLR
Code of Ethics throughout the research and submission process. Additional details regarding the use
of large language models (LLMs) are provided in Appendix [F|

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The datasets used in our
experiments are publicly available. Detailed descriptions of data preprocessing, training settings,
and evaluation protocols are provided in Section] with additional implementation details and
hyperparameters included in the appendix. We will release anonymous source code and scripts for
training and evaluation as supplementary material.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. CoRR,
abs/2502.04463, 2025. doi: 10.48550/ARXIV.2502.04463. URL https://doi.org/10.
48550/arXiv.2502.04463\

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

Edward Y. Chang, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. CoRR, abs/2502.03373, 2025. doi: 10.48550/ARXIV.2502.
03373. URL|https://doi.org/10.48550/arXiv.2502.03373|

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025a.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Do not think that much for 2+3=? on the overthinking of ol-like llms, 2024. URL https:
//arxiv.org/abs/2412.21187.

Zhipeng Chen, Yingqgian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An empirical
study on eliciting and improving rl-like reasoning models. arXiv preprint arXiv:2503.04548,
2025b.

Yu-Neng Chuang, Helen Zhou, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio, Sara
Bolouki, and Xia Hu. Learning to route with confidence tokens. CoRR, abs/2410.13284, 2024.
doi: 10.48550/ARX1V.2410.13284. URL https://doi.org/10.48550/arXiv.2410.
13284\

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang Sui,
Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based
on-device llm routing from benchmarking to generalization. arXiv preprint arXiv:2502.04428,
2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

10

https://doi.org/10.48550/arXiv.2502.04463
https://doi.org/10.48550/arXiv.2502.04463
https://doi.org/10.48550/arXiv.2502.03373
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://doi.org/10.48550/arXiv.2410.13284
https://doi.org/10.48550/arXiv.2410.13284
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiagi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dclb0al7836al-Abstract—round2.htmll

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. CoRR, abs/2412.11664, 2024. doi: 10.48550/ARXIV.2412.
11664. URL https://doi.org/10.48550/arXiv.2412.11664.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do 1lms compress their own chain-of-thought?
A token complexity approach. CoRR, abs/2503.01141, 2025. doi: 10.48550/ARXIV.2503.01141.
URL https://doi.org/10.48550/arXiv.2503.01141.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. = Numinamath. [https://huggingfacel
co/AI-MO/NuminaMath—-CoT] (https://github.com/project—numina/
aimo-progress—-prize/blob/main/report/numina_dataset .pdf), 2024.

11

https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2412.11664
https://doi.org/10.48550/arXiv.2503.01141
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

Under review as a conference paper at ICLR 2026

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng
Zhang. Can language models learn to skip steps? In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024,2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
504fa’e518da9dlb53a233ed20a38b4d6—-Abstract—-Conference.htmll

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqgiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
CoRR, abs/2501.12570, 2025a. doi: 10.48550/ARXIV.2501.12570. URL https://doi.org/
10.48550/arXiv.2501.12570.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-preview
with a 1.5b model by scaling rl, 2025b. Notion Blog.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. CoRR, abs/2502.09601, 2025. doi: 10.48550/ARXIV.2502.
09601. URL https://doi.org/10.48550/arXiv.2502.09601.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel J. Candes, and Tatsunori Hashimoto. sl: Simple
test-time scaling. CoRR, abs/2501.19393, 2025. doi: 10.48550/ARXIV.2501.19393. URL
https://doi.org/10.48550/arXiv.2501.19393|

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun.
Self-training elicits concise reasoning in large language models. CoRR, abs/2502.20122, 2025.
doi: 10.48550/ARXIV.2502.20122. URL https://doi.org/10.48550/arXiv.2502,
20122,

Sania Nayab, Giulio Rossolini, Giorgio C. Buttazzo, Nicolamaria Manes, and Fabrizio Giacomelli.
Concise thoughts: Impact of output length on LLM reasoning and cost. CoRR, abs/2407.19825,
2024. doi: 10.48550/ARXIV.2407.19825. URL https://doi.org/10.48550/arXiv.
2407.19825.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M. Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. CoRR,
abs/2406.18665, 2024. doi: 10.48550/ARXIV.2406.18665. URL https://doi.org/10.
48550/arXiv.2406.18665.

OpenAl. Learning to reason with llms, September 2024. URL https://openai.com/index/
learning-to-reason-with-11lms/\

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specreason:
Fast and accurate inference-time compute via speculative reasoning, 2025. URL https://
arxiv.orqg/abs/2504.07891.

Qwen. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL https:
//gqwenlm.github.io/blog/gwg-32b—-preview/.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2nd International Conference on Foundation and Large Language Mod-
els, FLLM 2024, Dubai, United Arab Emirates, November 26-29, 2024, pp. 476-483. IEEE,
2024. doi: 10.1109/FLLM63129.2024.10852493. URL https://doi.org/10.1109/
FLILM63129.2024.10852493.

12

http://papers.nips.cc/paper_files/paper/2024/hash/504fa7e518da9d1b53a233ed20a38b46-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/504fa7e518da9d1b53a233ed20a38b46-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2501.12570
https://doi.org/10.48550/arXiv.2501.12570
https://doi.org/10.48550/arXiv.2502.09601
https://doi.org/10.48550/arXiv.2501.19393
https://doi.org/10.48550/arXiv.2502.20122
https://doi.org/10.48550/arXiv.2502.20122
https://doi.org/10.48550/arXiv.2407.19825
https://doi.org/10.48550/arXiv.2407.19825
https://doi.org/10.48550/arXiv.2406.18665
https://doi.org/10.48550/arXiv.2406.18665
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2504.07891
https://arxiv.org/abs/2504.07891
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2412.15115
https://doi.org/10.1109/FLLM63129.2024.10852493
https://doi.org/10.1109/FLLM63129.2024.10852493

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. doi: 10.48550/
ARXIV.2408.03314. URL https://doi.org/10.48550/arXiv.2408.03314l

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419, 2025.

Hemish Veeraboina. Aime problem set 1983-2024, 2023. URL https://www.kaggle.com/
datasets/hemishveeraboina/aime—-problem—-set-1983-2024l

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurlPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecfd4flbafO0f7b3labcad—Abstract-Conference.html.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. CoRR, abs/2502.07266, 2025. doi: 10.48550/ARXIV.
2502.07266. URL https://doi.org/10.48550/arXiv.2502.07266k

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. CoRR, abs/2502.12067, 2025. doi: 10.48550/ARXIV.2502.
12067. URL | https://doi.org/10.48550/arXiv.2502.12067.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. CoRR, abs/2502.18600, 2025a. doi: 10.48550/ARXIV.2502.18600. URL https
//doi.org/10.48550/arXiv.2502.18600.

Yuhui Xu, Hanze Dong, Lei Wang, Doyen Sahoo, Junnan Li, and Caiming Xiong. Scalable chain of
thoughts via elastic reasoning, 2025b. URL https://arxiv.org/abs/2505.05315,

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin,
Li Cao, and Weiping Wang. Dynamic early exit in reasoning models, 2025a. URL https:
//arxiv.org/abs/2504.15895.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

13

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.48550/arXiv.2408.03314
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2502.07266
https://doi.org/10.48550/arXiv.2502.12067
https://doi.org/10.48550/arXiv.2502.18600
https://doi.org/10.48550/arXiv.2502.18600
https://arxiv.org/abs/2505.05315
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

A.1 EXPERIMENTAL ENVIRONMENTS

Our server is equipped with two 80GB A100 GPUs and two 45GB A40 GPUs. We conducted
fine-tuning experiments and inference tests on the two A40 GPUs, while the GRPO training was
performed on the two A100 GPUs.

A.2 PARAMETER SETTINGS

In the fine-tuning training during the cold-start phase, our parameter settings are configured as
follows. The sequence length is capped at 16,384, with a per-device training and evaluation batch
size of 1, while gradient accumulation (2 steps) is employed to alleviate GPU memory constraints. A
cosine learning rate scheduler is adopted with a 10% warm-up ratio and a base learning rate of Se-5.
The model is trained for 1 epoch, with 10% of the training set allocated for validation. The model
checkpoints are saved and evaluated every 500 steps, and the best-performing checkpoint is retained.

In the GRPO (Global Reward Policy Optimization) training, our parameter configuration is set as
follows. The training and validation batch sizes are set to 128 and 1,250, respectively, with maximum
prompt and response lengths of 1,024 and 32,000 tokens. The Actor model employs a learning rate
of le-6, dynamic batching (up to 24K tokens per GPU), and a KL divergence loss (coefficient 0.001),
with gradient checkpointing and FSDP (Fully Sharded Data Parallel) distributed training enabled
(parameter offloading disabled). During the Rollout phase, the vLLM inference engine is utilized
with tensor parallelism (TP=2) and 80% GPU memory utilization, generating 5 responses per round.
Global settings include 3 training epochs, a checkpoint-saving interval of 50 steps, and a KL control
coefficient of 0.001, executed on a single node with dual GPUs. And key hyperparameters involved
in the reward function are specified in Table

Table 3: Hyperparameters Settings

Parameters C =0 C(C =1 Parameters Value

Smin -0.5 0.5 Ty -1
Smax 0 1 T -04

For the GSM-initialized SelfBudgeter, we select the checkpoint after 699 training steps when alpha
was set to 0.2, and the checkpoint after 575 steps when alpha was 0.5. For the slk-initialized
SelfBudgeter, we choose the checkpoint after 475 training steps with alpha=0.2, and the checkpoint
after 500 steps with alpha=0.5. For L1-Max, we choose the checkpoint after 280 training steps.

B COLD-START DATA SELECTION

Prompt Template

Answer the given question. You should first estimate the total number of tokens you will need
to answer this question based on its difficulty. Then you think about the reasoning process
in the mind and provide the user with the answer. The token budget and whole solution
are enclosed within <budget></budget> and <solution> </solution> tags, respectively, i.e.,
<budget> token budget here, just an integer </budget><solution> solution here, please output
the final answer within \boxed{} </solution>.

Question:

Figure 6: The prompt template used in the cold-start stage.

The choice of initialization data substantially impacts model performance. SelfBudgeters initialized
with the s1k dataset outperform their GSM-initialized SelfBudgeters by 8.82—-10.72 percentage points

14

Under review as a conference paper at ICLR 2026

Table 4: Model performance comparison on GSM8K and MATH test sets, showing accuracy (Acc/%),
average response length (Len/tokens) and matching rate between token limits and response length
(Mat/%). The SelfBudgeter variants with different cold-start data and « parameters are contrasted
with baseline models.

GSMS8K MATH
Model
Acct Len| Matt Acct Len] Matt
Cold Start (GSM) 71.95 1003.79 85.82 64.74 304329 41.16

SelfBudgeter (GSM, o = 0.2) 76.27 52377 97.65 63.46 779.54 95.82
SelfBudgeter (GSM, a = 0.5) 74.68 520.82 9697 63.78 777.80 96.66
Cold Start (s1k) 8249 1983.29 21.76 76.64 4001.29 23.28
SelfBudgeter (s1k, o = 0.2) 81.50 662.08 70.74 7418 919.27 78.36
SelfBudgeter (s1k, o = 0.5) 80.44 71936 71.19 72.60 1022.99 79.76

on MATH (74.18% vs. 63.46% for o = 0.2) and 5.23-5.76 percentage points on GSMS8K (80.44%
vs. 74.68% for o = 0.5). While SelfBudgeters with GSM-initialized exhibit lower accuracy, they
generate significantly more concise responses compared to s1k-initialized SelfBudgeters. Specifically,
GSM-initialized SelfBudgeters reduces response length by approximately 15-24% on MATH and
achieves 21-28% length reduction on GSMS8K. This performance gap highlights the importance of
high-quality initialization for the budgeting mechanism.

As shown in Table [} significant performance variations exist between models fine-tuned with
different cold-start datasets. The slk-fine-tuned model demonstrates superior accuracy over the
GSM-fine-tuned counterpart, achieving 10.54% and 11.90% higher accuracy on GSM8K and MATH
respectively. However, this comes at the cost of substantially longer responses, with the s1k model
generating 97.58% and 31.48% lengthier outputs on GSM8K and MATH. This discrepancy stems
from the s1k dataset’s responses being generated by Deepseek-R1, which produces higher-quality
outputs than those self-generated by Deepseek-R1-Distill-Qwen-1.5B. Additionally, the s1k dataset’s
average length of 7,677.43 tokens (we only retained correct responses under 16,000 tokens) vastly
exceeds GSMS8K’s 837.14 tokens, explaining the dramatic difference in response lengths after
fine-tuning. These factors substantially influence SelfBudgeter’s final performance, as evidenced
by: (1) SelfBudgeter’s accuracy closely mirroring that of its fine-tuned base model, and (2) the
response length relationships and matching rate relationships between different SelfBudgeter variants
remaining consistent with their respective cold-start models.

C PREFILLED TOKEN BUDGET FOLLOWING

MATH500 GSM8K

y=0.089x + 759.31

16004 |y =0.135x +1338.45

1550 1

1500

1450

1400 4

Average Response Length
Average Response Length

O Model Response 750 4 O Model Response
o = Curve Fitting o = Curve Fitting

13501

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
User-defined Token Budget User-defined Token Budget

Figure 7: Relationship between user-defined token budgets and SelfBudgeter average response
lengths with curve fitting analysis.

To systematically evaluate model performance under user-defined token budget constraints, we
conduct quantitative analysis using SelfBudgeter with GSM initialization and hyperparameter o = 0.2

15

Under review as a conference paper at ICLR 2026

on both MATHS500 dataset and GSMSK test set. In the experimental design, fixed token budgets were
pre-filled in the <budget> field of training templates, with empirical results obtained by measuring
average generated response lengths. We evaluated SelfBudgeter’s performance with user-defined
token budgets ranging from 50 to 2000 (specifically: 50, 100, 200, 400, 500, 600, 800, 1000, 1200,
1400, 1600, 1800, and 2000), as shown in the Figure m

Regression intercepts effectively reflect problem complexity, where GSM8K’s simpler questions
yield significantly smaller intercepts. Despite a moderate slope, SelfBudgeter demonstrates robust
budget adaptability, maintaining a stable positive correlation between user-defined budgets and output
lengths. This linear relationship enables deterministic length control through derived transformation
functions.

D CASE STUDY

To examine how SelfBudgeter’s length compression affects reasoning quality, we compare the
GSMSK outputs of R1-1.5B and SelfBudgeter-1.5B, focusing on cases where the compressed output
is shorter than 70% of the original. Among the 381 samples where both models answer correctly,
96.06% of the reductions arise from eliminating conversational filler (e.g., “Alright, so I've got this
problem here,” “Hmm, okay,” “Let me check”), while only 3.94% reflect genuinely more efficient
problem-solving strategies. This suggests that SelfBudgeter primarily shortens CoTs by removing
non-essential verbalization without altering the underlying logic.

We further analyze instances where length is reduced to under 70% and the two models diverge
in correctness. In 13.12% of these cases (173 examples), the shorter reasoning chain produces
a correct answer where the baseline fails, indicating that compression can improve reasoning by
avoiding distractions or redundant steps. However, in 1.52% of cases (20 examples), the tightened
budget omits crucial intermediate steps, causing the model to switch from a correct to an incorrect
answer. Together, these results show that compression is generally benign or even beneficial, though
excessively restrictive budgets can harm solution completeness. We also provide representative
examples for each category: baseline wrong — compressed correct, baseline correct — compressed
wrong, and both correct.

Case 1: Wrong to Correct

Question
Andrew travels from New Jersey to Rochester by bus, which takes 6 days. Traveling by car
takes half as many days. If he goes by bus and returns by car, how many days will he travel?
R1-1.5B’s Answer
Answer
The number of days Andrew will travel is .
Step-by-step explanation
First, determine the number of days to travel by bus from New Jersey to Rochester. Since it
takes 6 days by bus, the return trip by car will take half as many days, which is 3 days.
Next, add the days for the trip to and return from New Jersey to Rochester: 6 days for the bus
to New York City plus 3 days for the car back to New Jersey.
Finally, sum up these two durations to find the total travel time.
To determine the total number of days Andrew will travel, we need to consider both the trip
to New York City by bus and the return trip by car.
Step 1: Calculate the travel time by bus
It takes 6 days to travel from New Jersey to New York City by bus.
Step 2: Calculate the return travel time by car
The return trip by car takes half as many days as the bus trip to New York City. Therefore,
the travel time by car is:

6
Car travel time = 3= 3 days

Step 3: Calculate the total travel time
Add the travel time by bus and the return travel time by car:

16

Under review as a conference paper at ICLR 2026

Total travel time = 6 days + 3 days = 9 days

However, there’s a correction needed. The problem states that Andrew plans to go to New
York City by bus and return by car. This implies that the return journey is by car, which we
have already calculated as 3 days.
Therefore, the total travel time is:

Total travel time = 6 days + 3 days = 9 days

However, upon re-evaluation, the initial calculation might have been misinterpreted. Let’s
correct it:

Correct Step 2: Calculate the return travel time by car

The return trip by car takes:

6
Car travel time = 5= 3 days
Step 3: Calculate the total travel time

Total travel time = 6 + 3 = 9 days
The correct total travel time is 9 days.
However, considering the initial answer provided was , the correct interpretation might
be:
Let x be the number of days to travel by bus to New York City.
Return trip by car takes x /2.

x+§:6+3:9days

But to match the initial answer, we assume:

SelfBudgeter-1.5B’s Answer

Okay, let’s see. Andrew is planning a road trip from New Jersey to Rochester. The problem
says it takes 6 days to travel by bus. Then it mentions that it takes half as many days to travel
by car from New Jersey to Rochester. Hmm, so first, I need to figure out how many days it
takes to get from New Jersey to Rochester by car. The problem says half as many days as
by bus. Since the bus trip takes 6 days, the car trip should take half of that, right? Let me
calculate that.

Half of 6 days is 3 days. So, the car trip from New Jersey to Rochester takes 3 days. Now,
the question is asking how many days Andrew will travel if he plans to go to Rochester by
bus and return by car. So, he’s going there by bus and coming back by car. That means he’ll
be traveling from New Jersey to Rochester by bus, which takes 6 days, and then returning
from Rochester to New Jersey by car, which takes 3 days. To find the total travel days, I need
to add the days for the trip to Rochester and the days for the return trip.

So, 6 days (bus) plus 3 days (car) equals 9 days total. Let me just double-check to make sure
I didn’t miss anything. The problem says “how many days will he travel if he plans to go to
Rochester by bus and return by car.” So, yes, that’s the total time for both trips. The key steps
were figuring out the car trip time by taking half of the bus trip time and then adding both
trips together. I think that’s correct.

Wait, let me make sure about the wording. It says “it takes half as many days to travel by car
from New Jersey to Rochester.” So, if the bus takes 6 days, the car takes half of that, which
is 3 days. Then, going to Rochester by bus is 6 days, and returning by car is 3 days. So,
6 + 3 = 9 days total. Yeah, that seems right. I don’t think I made any mistakes there.

Just to be thorough, let’s consider if there’s any possibility of overlap or different travel times,
but the problem doesn’t mention anything about stops, rest, or different routes, so I think it’s
a straightforward addition of the two travel times. Therefore, the total travel days are 9 days.
Final Answer

The total number of days Andrew will travel is @

17

Under review as a conference paper at ICLR 2026

Case 2: Correct to Wrong

Question
There are 4 snails in one aquarium and 32 snails in another aquarium. The difference between
the number of snails in the two aquariums is twice the amount of fish in both aquariums.
If both aquariums have the same number of fish in them, how many fish are there in each
aquarium?

R1-1.5B’s Answer

Note: The problem might be tricky and require careful setup of equations.

Okay, so I have this problem here about snails in two aquariums. Let me try to figure it out
step by step. Sometimes these word problems can be a bit confusing at first, but if I break
them down, they should make sense.
Alright, the problem says: There are 4 snails in one aquarium and 32 snails in another
aquarium. The difference between the number of snails in the two aquariums is twice the
amount of fish in both aquariums. If both aquariums have the same number of fish in them,
how many fish are there in each aquarium?

Hmm, so let me parse this. First, there are two aquariums. One has 4 snails, the other has 32
snails. So, the number of snails in the first aquarium is 4, and in the second one is 32.

Now, the next part says: “The difference between the number of snails in the two aquariums
is twice the amount of fish in both aquariums.”
Wait, that’s a bit of a mouthful. Let me try to translate that into math. The difference between
the snails in the two aquariums is 32 — 4, which is 28 snails. So, the difference is 28.
Then, it says that this difference (28) is twice the amount of fish in both aquariums. Hmm, so
twice the amount of fish in both aquariums. So, first, I need to find the total number of fish in
both aquariums. Let me denote the number of fish in the first aquarium as F} and the second
as Fy.

So, the difference in snails is 28, and that’s equal to twice the total number of fish in both
aquariums. So, equation-wise, that would be:

28 = 2(Fy + F)

So, that’s equation one.

The problem also says, “If both aquariums have the same number of fish in them.” So, that
means F; = F5.

Oh, that’s a key point. So, if both aquariums have the same number of fish, then F} = F5.
Let’s denote this common number as F'. So, F; = F, = F.

So, substituting that into our first equation, we have:

28=2(F+ F)
Which simplifies to:
28 = 2(2F)
Which is:
28 = 4F
So, solving for F":
28
F=—
4
F=T

Wait, so each aquarium has 7 fish? Let me check.

So, if each aquarium has 7 fish, then the total number of fishis 7 + 7 = 14.

The difference in the number of snails is 32 — 4 = 28. And twice the total number of fish is
2 x 14 = 28. So, 28 equals 28. That checks out.

But wait a second, hold on. The problem says, “the difference between the number of snails
in the two aquariums is twice the amount of fish in both aquariums.” So, does this mean that

18

Under review as a conference paper at ICLR 2026

the difference is equal to twice the total number of fish? Or is it twice each of the number of
fish in the aquariums? Hmm.

Let me re-read the problem to make sure.

“The difference between the number of snails in the two aquariums is twice the amount of
fish in both aquariums.”

So, it’s the difference in snails is equal to twice the amount of fish in both aquariums. So,
maybe it’s 2(F} + F3), which is what I did earlier.

But if it’s twice the amount of fish in both aquariums, maybe it’s 2F; + 2F5? Hmm, no, that
doesn’t make sense because that would be 2(F; + F5). Wait, 2(Fy + F5) is 28, which is the
difference in the number of snails.

Wait, now I’'m getting confused.

Let me go back to the problem statement again.

“There are 4 snails in one aquarium and 32 snails in another aquarium. The difference between
the number of snails in the two aquariums is twice the amount of fish in both aquariums.”
So, the difference in snails is 32 — 4 = 28.

This difference is equal to twice the amount of fish in both aquariums.

So, the difference in snails (28) is equal to 2 x (amount of fish in both aquariums). So, 28 =
2(F; + F5). That seems to be the correct interpretation.

But in that case, I think my original solution is correct.

So, total fish in both aquariums is 14, so each aquarium has 7 fish.

But let me make sure I’m not misinterpreting the problem. If it were 2F) + 2F5, that would
be 2(Fy + F»), which is the same as before.

So: 28 = 2(F1 + F2) => F1 + F2 = 14 => each aquarium has 7 fish.

But let me think again, is this the correct interpretation?

Alternatively, maybe the problem is saying the difference is twice the amount of fish in each
aquarium? So, 2F} and 2F5, but that wouldn’t make much sense, because the difference is a
single value.

Thus:

28 = 2(Fy + F)

Still seems right.

Hence, each aquarium has 7 fish.

Let me check consistency: Total fish = 14 Twice total fish = 28 Difference in snails = 28 —
matches.

Alternatively, if each aquarium had 14 fish:

Total fish = 28 Twice total fish = 56 But the snail difference is only 28 — mismatch.

So that interpretation fails.

Thus:

28:2(F1 +F2) =N+ =14
Given equal fish:

FF=F=F=2F=14=F="1.
Therefore, each aquarium has 7 fish.
Final Answer: The number of fish in each aquarium is .

Given that there are 4 snails in one aquarium and 32 snails in another, the difference in the
number of snails between the two aquariums is 32 — 4 = 28. This difference is twice the
amount of fish in both aquariums. Let F3 and F5 be the number of fish in the first and second
aquariums, respectively. Since both aquariums have the same number of fish, we denote this
common number as F'. Therefore, I} = F5 = F.

The equation given by the problem is:

28 = 2(Fy + Fy)
Substituting:

19

Under review as a conference paper at ICLR 2026

28=2(F+ F)=4F
Thus:

F=7
Thus, the number of fish in each aquarium is .

SelfBudgeter-1.5B’s Answer

Alright, so I need to figure out how many fish are in each aquarium. Let me start by
understanding the problem again.

There are two aquariums: one with 4 snails and another with 32 snails. The difference
between the number of snails in the two aquariums is twice the amount of fish in both
aquariums. Also, both aquariums have the same number of fish. I need to find out how many
fish are in each aquarium.

First, let’s break down the information given:

1. Number of snails in the first aquarium: 4 2. Number of snails in the second aquarium: 32
3. The difference between the number of snails in the two aquariums is twice the amount of
fish in both aquariums. 4. Both aquariums have the same number of fish.

Wait, the problem says “the difference between the number of snails in the two aquariums is
twice the amount of fish in both aquariums.” Hmm, that’s a bit confusing. Let me parse that
again.

The difference between the number of snails in the two aquariums is twice the amount of
fish in both aquariums. So, if I let F' be the number of fish in each aquarium, then the total
number of fish in both aquariums is 2F'. The difference between the number of snails in the
two aquariums is 32 — 4 = 28. According to the problem, this difference (28) is twice the
amount of fish in both aquariums (2F’). So:

28 = 2F
Solving for F', we get:

F =14

So, each aquarium has 14 fish. Let me check if that makes sense.

If each aquarium has 14 fish, then the total number of fish in both aquariums is 28. The
difference between the number of snails (32 — 4 = 28) is equal to twice the number of fish
(2 x 14 = 28). Yes, that checks out. So, the answer is 14 fish in each aquarium.

Wait, but let me make sure I didn’t misinterpret the problem. The problem says “the difference
between the number of snails in the two aquariums is twice the amount of fish in both
aquariums.” So, the difference in snails (28) is equal to twice the total number of fish (2F).
So, 28 = 2F, which means F' = 14. That seems correct.

Let me just go through it one more time to ensure I didn’t mix up any numbers.

Number of snails in first aquarium: 4 Number of snails in second aquarium: 32 Difference
in snails: 32 — 4 = 28 Let F' be the number of fish in each aquarium Total fish in both
aquariums: 2F' According to the problem: 28 = 2F Solving for F': F' = 14

So, each aquarium has 14 fish. That seems correct. I don’t see any mistakes in this reasoning.
Just to double-check, if each aquarium has 14 fish, then the total number of fish is 28. The
difference in the number of snails is 28, which is twice the total number of fish (2 x 14 = 28).
Yep, that matches the problem statement.

Therefore, the number of fish in each aquarium is 14.

Final Answer The number of fish in each aquarium is .

Case 3: Correct to Correct

Question

Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every
second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he
need to pay for them?

20

Under review as a conference paper at ICLR 2026

R1-1.5B’s Answer

Note: The answer should be in a box.
Alright, so Kylar wants to buy glasses for his new apartment, and he needs to figure out how
much he has to pay for 16 glasses. Let me try to understand the problem step by step.

First off, the problem says that one glass costs $5. But here’s the twist: every second glass
costs only 60% of the price. Hmm, okay, so it’s like every even-numbered glass is cheaper,
right? So, if Kylar is buying 16 glasses, he’ll have to buy 16 items, alternating between $5
and 60% of $5.

Let me break this down. Maybe I can figure out the cost of two glasses first, and then see how
that pattern repeats for 16 glasses. That sounds manageable because 16 is an even number, so
it should come out even.

So, let’s think: the first glass is $5, and the second one is 60% off. What’s 60% of $5? Hmm,
60% is the same as 0.6, right? So, 0.6 times 5. Let me calculate that. 0.6 * 5 = 3. So, the
second glass is $3.

Okay, so every pair of glasses costs $5 + $3 = $8. That seems right. So, for every two glasses,
Kylar spends $8.

Now, if he needs 16 glasses, how many pairs is that? Well, 16 divided by 2 is 8. So, there are
8 pairs of glasses. Each pair costs $8.
Therefore, to find the total cost, I can multiply the cost per pair by the number of pairs.
Total cost = 8 pairs * $8 per pair = $64.
Wait, is that all? Let me verify to make sure I didn’t miss anything.

Each pair is two glasses: one at $5 and one at $3. So, two glasses for $8. 16 glasses mean 8
pairs, so 8*8 is indeed 64.

Let me think another way to double-check. Maybe I can calculate the total cost without
grouping. So, for each glass, if it’s an odd-numbered one, it’s $5, and if it’s even-numbered,
it’s $3.

So, let’s list out the cost for each glass:

Ist glass: $5

2nd glass: $3

3rd glass: $5
4th glass: $3

Sth glass: $5

6th glass: $3
7th glass: $5

8th glass: $3

9th glass: $5

10th glass: $3

11th glass: $5

12th glass: $3

13th glass: $5

14th glass: $3

15th glass: $5

16th glass: $3
Now, let’s count how many $5s and how many $3s there are.
Looking at the list, the odd-numbered glasses (1,3,5,7,9,11,13,15) are $5 each. That’s 8
glasses at $5.
The even-numbered glasses (2,4,6,8,10,12,14,16) are $3 each. That’s also 8 glasses at $3.
So, total cost is (8*$5) + (8#$3).

Calculating that:
8#$5 = $40
8+$3 = $24

Adding them together: $40 + $24 = $64.

Yep, same result as before. So, that seems consistent.

Is there another way to think about this? Maybe considering the average price per glass?
Wait, if every second glass is 60% of the price, that’s effectively making every other glass
60% instead of 100%. Since 60% is less than 100%, the overall average price per glass is
somewhere between $5 and $3.

21

Under review as a conference paper at ICLR 2026

Let me compute the average price.

Total cost is $64 for 16 glasses, so the average price is $64 / 16 = $4 per glass.

So, the average price is $4, which is exactly halfway between $3 and $5. Wait, hold on, no.
$3 and $5 average to $4. So, actually, the average price per glass is $4.

But wait, that’s interesting. So, if you have 16 glasses, each costing an average of $4, then
total is 16%$4 = $64.

So, that’s another way to see it.

Alternatively, I can think of each pair as a unit that costs $8, so 16/2 pairs = 8 units, 8*$8 =
$64.

Either way, it seems the total is $64.

But just to be thorough, let me simulate it with smaller numbers.

Suppose Kylar buys 2 glasses. That should be $5 + $3 = $8.

If he buys 4 glasses: two pairs, so 2*$8 = $16.

Breaking it down: 1,2,3,4. So, $5, $3, $5, $3. Total is $5 + $3 + $5 + $3 = $16.

Similarly, 6 glasses: 3 pairs, so 3*$8 = $24.

1,2,3,4,5,6: $5, $3, $5, $3, $5, $3. Total is 3*$5 + 3#$3 = $15 + $9 = $24.

So, the pattern holds. So, for 16 glasses, it’s 8 pairs, each worth $8, so 8*$8 = $64.

I think that makes sense.

Alternatively, I can think about the pricing structure as a sequence where every even term is
60% of the first term. So, it’s a geometric sequence where each term is 0.6 times the previous
term.

But wait, no, that might complicate things. Maybe it’s better to model it as two separate
arithmetic sequences: one for the odd-numbered glasses and one for the even-numbered
glasses.

So, for odd-numbered glasses (1,3,5....15): each is $5. There are 8 of them, so total is 8*$5 =
$40.

For even-numbered glasses (2,4,6,...16): each is $3. There are 8 of them, so total is 8*$3 =
$24.

Total cost is $40 + $24 = $64.

Yes, same answer again.

I wonder if someone might get confused and think that every glass is 60% of the first one,
which would be $3, but that’s not the case. It’s every second glass, meaning every even-
numbered glass is 60% of the price, not every glass. So, it’s not a discount on all glasses, just
on every second one.

So, in other words, the pricing alternates between $5 and $3 for each glass, with the even-
numbered ones being $3. So, the pattern is consistent and straightforward.

Let me just do a quick check. If he buys 16 glasses, 8 of them are $5, 8 are $3. 8*$5 is 40,
8%$3 is 24. Total is 64.

Alternatively, if I tried to calculate the total by just multiplying 16 by the average price.

If the average price is $4, then 16*$4 is $64.

So, regardless of the method, the answer is $64.

I think I’ve considered multiple approaches and each time I come back to the same total. So,
I’m pretty confident that the answer is $64.

Final Answer

Kylar needs to pay

boxed64 dollars for the glasses. </think>

Kylar wants to buy 16 glasses, where each glass costs $5, but every second glass costs 60%
of the price.

First, we note that every pair of glasses consists of one at $5 and one at $3 (since 60% of $5
is $3). Each pair costs $8.

For 16 glasses, there are 8 pairs. Therefore, the total cost is calculated as follows:

8 pairs x 8 per pair = $64.

Thus, Kylar needs to pay dollars for the glasses.

SelfBudgeter-1.5B’s Answer
Okay, so Kylar needs to buy 16 glasses for his new apartment, and the store is offering a deal:

22

Under review as a conference paper at ICLR 2026

one glass costs $5, but every second glass costs only 60% of the price. Hmm, let me try to
figure out how much he has to pay in total.

First, let me make sure I understand the problem correctly. The first glass is $5, right? Then
the second glass is 60% of $3, the third glass is $5 again, the fourth glass is 60% of $5, and
so on. So, it’s like every even-numbered glass is 60% off, and the odd-numbered ones are
full price. That makes sense. So, for 16 glasses, there will be 8 pairs of glasses, each pair
consisting of one full price and one discounted price.

Let me break it down step by step. If each pair consists of one $5 glass and one 60%
discounted glass, then the cost for each pair would be:

$540.6 x $5.

Since:
0.6 x 5 =3,
each pair costs:
5+3=28.
There are 16 glasses, so:
16 + 2 = 8 pairs.

Thus the total cost is:

8 x 8 = $64.

Wait, let me double-check. If each pair is $8, then 8 pairs would be:

8 X 8 = 64.

Let me verify again: Odd-numbered glasses: $5 each Even-numbered glasses: $3 each
So:

8x5=40, 8x3=24,

40 4 24 = 64.
Yes, that seems right.
Another approach: Without discount:
16 x 5 = 80.
Savings per discounted glass:
5—3=2
There are 8 discounted glasses, so:
8 x 2=16.
Total:
80 — 16 = 64.

Yes, matches the earlier result.
So regardless of the method, the total cost is:

$64.

Final Answer
Kylar needs to pay dollars for the 16 glasses.

23

Under review as a conference paper at ICLR 2026

E ABLATION STUDY ON REWARD COMPONENTS

To understand the contribution of each reward component, we ablate SelfBudgeter by progressively
adding format, correctness, preb, and budget-penalty terms. As shown in Table [] learning format
only fails to preserve problem-solving ability: accuracy on all datasets collapses (e.g., GSM8K
1.64%), despite producing shorter outputs. Adding correctness substantially restores accuracy, but
compression becomes inconsistent, especially on harder datasets such as MATHS500 and AIME2025,
where reasoning lengths remain long (e.g., 5327 tokens on MATHS500). Incorporating preb improves
budget adherence but harms performance on easier tasks, leading to notable accuracy drops on
GSMSK and AIME2025. Adding budget-penalty instead yields good compression on easy tasks but
sacrifices performance on difficult ones (e.g., lower AIME2025 accuracy with long residual lengths).
In contrast, SelfBudgeter, which integrates all reward components, achieves the best overall trade-off:
high accuracy across datasets and strong, stable compression (e.g., 1231 tokens on GSM8K and 2327
tokens on MATH500). This demonstrates that the reward components are complementary—format
ensures structure, correctness preserves reasoning quality, preb stabilizes predicted budgets, and the
budget-penalty enforces compliance—and only their combined use yields robust reasoning-length
control without degrading accuracy.

GSMS8K MATHS500 AIME2025
Models
Acc Len Acc Len Acc Len
R1-1.5B 73.09 2865.08 7493 5327.12 22.22 14444.03
Format only 1.64 4866.40 147 555835 0.00 6448.66
F+Correctness 84.58 125845 76.27 3123.37 20.00 11095.39
F+C+Preb 82.89 2151.26 78.00 3109.43 15,56 4671.86

F+C+BudgetPenalty 8426 126338 76.67 2983.28 21.11 7263.38
SelfBudgeter-1.5B 84.10 1231.79 7847 2326.85 21.11 4288.10

Table 5: Ablation of Reward Components on Accuracy and Response Length

F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, large language models (LLMs) were used solely as auxiliary tools
for grammar checking, text polishing, and improving clarity of exposition. No experimental design,
data analysis, or substantive research conclusions were generated by LLMs. All methodological and
experimental contributions are original and conducted entirely by the authors.

24

	Introduction
	Related Work
	Method
	SelfBudgeter
	Budget Penalty
	Precise Budget Control Reward
	Accuracy Reward

	Experiment
	Training Template
	Data Preprocessing
	Cold Start
	Experiment Settings
	Main Results
	Dynamic Alpha Schedule

	Discussion
	Adaptive Budget Allocation
	Budget-Constrained Generation

	Conclusion
	Training Details
	Experimental Environments
	Parameter Settings

	Cold-start Data Selection
	Prefilled Token Budget Following
	Case Study
	Ablation Study on Reward Components
	The Use of Large Language Models

