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ABSTRACT

Recently, large reasoning models demonstrate exceptional performance on various
tasks. However, reasoning models inefficiently over-process both trivial and com-
plex queries, leading to resource waste and prolonged user latency. To address this
challenge, we propose SelfBudgeter - a self-adaptive controllable reasoning strat-
egy for efficient reasoning. Our approach adopts a dual-phase training paradigm:
first, the model learns to pre-estimate the reasoning cost based on the difficulty of
the query. Then, we introduce budget-guided GPRO for reinforcement learning,
which effectively maintains accuracy while reducing output length. SelfBudgeter
allows users to anticipate generation time and make informed decisions about
continuing or interrupting the process. Furthermore, our method enables direct
manipulation of reasoning length via pre-filling token budget. Experimental results
demonstrate that SelfBudgeter can dynamically allocate budgets according to prob-
lem complexity, yielding an average response length compression of 61% for the
1.5B model on GSM8K, MATH500, and AIME2025, and 48% for the 7B model,
while maintaining nearly undiminished accuracy.

1 INTRODUCTION

Recent large reasoning models, such as O1 (OpenAl, |2024), has shown remarkable performance
in various complex reasoning tasks (DeepSeek-Al et al., 2025} |[Qwen, |[2024). The primary success
factor lies in the long chain of thought (CoT) process learned through reinforcement learning (RL),
which allows the model to break down reasoning steps and scaling test-time compute (Snell et al.,
2024; Luo et al., [2025b).

However, reasoning models tend to use overly long thought processes even for simple questions. This
“overthinking” phenomenon leads to a waste of computational resources and excessive user waiting
times (Chen et al.,2024;[Sui et al.}2025). For example, when answering the simple questions such as
“What is the answer of 2+37?”, the QwQ-32B model provides 13 different solutions and generates 100
times more tokens than Qwen2.5-72B-Instruct model (Qwen et al.| 2025]).

Prior studies have explored various approaches to mitigate overthinking through response length
control and computation routing. Existing methods mainly include: (1) Prompt-based approaches (Lee
et al., [2025} [ Xu et al.|[2025a) that implicitly guide length through instructions, (2) Integrated training
strategies that teach models to adaptively determine reasoning steps via SFT (Munkhbat et al., 2025}
Ma et al., [2025) or RL with length penalties (Aggarwal & Welleckl 2025} |Arora & Zanette| [2025)),
and (3) Router-based (Aytes et al., 2025} |Chuang et al., [2025) architectures employing classifiers to
allocate computation paths. While achieving partial progress, these methods either lack precise length
control, require additional computational overhead, or fail to explicitly output optimal reasoning
lengths (Aggarwal & Welleckl 2025} Xu et al.| 2025b)).

We propose SelfBudgeter that enables reasoning models to (1) estimate the minimal token budget
required for correct responses when users do not specify token constraints, and (2) generate responses
of corresponding lengths while adhering to either self-estimated or user-defined token budgets.
SelfBudgeter aims to mitigate the overthinking issue by predicting the minimal possible token budget,
thereby significantly reducing user waiting time. As shown in Figure[l] SelfBudgeter can provide a
relatively accurate token budget estimation before generating responses, users can precisely anticipate
the waiting time and decide whether to wait for the full output or terminate early based on their needs.
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Additionally, when specific requirements arise,
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‘ Solution
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estimated token budget within <budget > tags.
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MATHS500 and AIME2025 datasets. EXperi- Fijgyre 1: Overview of the SelfBudgeter. SelfBud-
mer.ltal results demonstrate that SelfBudgeter geter’s responses comprise two sections: Token
achieves an average response length compres- Budget and Solution. For unrestricted queries, it
sion of 61% with the 1.5B model, while main-  qqtimates tokens needed for the Solution based on
taining nearly equivalent accuracy. Furthermorg, problem complexity. When users specify require-
on GSM8K and MATHS00, SelfBudgeter si- ments, it pre-fills the Token Budget accordingly.
multaneously reduces response length while im- ppe Solution generation strictly adheres to Token
proving accuracy. SelfBudgeter also exhibits Budget limits, whose numerical value indicates

excellent capability in predicting output length anticipated response duration.
and, when provided with pre-filled <budget>

tags, consistently adheres to the specified token budget constraints. In addition, experiments on
Deepseek-R1-Distill-Qwen-7B show an average compression of 48%, further validating the scalability
of SelfBudgeter to larger model sizes.

2 RELATED WORK

Overthinking in LLMs The emergence of the reasoning models like O1, Deepseek-R1 and
QwQ advanced complex problem-solving through RL-enhanced CoT (Wei et al.| 2022} (OpenAlL
2024; [DeepSeek-Al et al.l 2025; [Qwen, 2024). However, researchers observed a tendency for
reasoning models to overthink simple problems—expending unnecessary computational effort on
trivial queries (Chen et al., [2024} [Sui et al. [2025)). Excessive long CoT may lead to a decrease
in accuracy (Wu et al} [2025)). Current solutions for overthinking mainly involve following three
strategies. Prompt-based methods try to control response length by adding instructions in prompts,
but cannot control the length accurately (Lee et al., 2025} Renze & Guven, |[2024; | Xu et al., 2025a;
Nayab et al., [2024). Integated Training-based methods try to teach model decide the length by
the difficulty of the problems. Supervised fine-tuning(SFT)-based methods collect the dataset with
variable length (Munkhbat et al.,|[2025; Ma et al., 2025} [Liu et al.| 2024; Han et al., 2024} Kang et al.}
2024; Xia et al.| 2025} |Yang et al.,[2025b)). RL-based methods incorporate length penalties into the
reward function (Aggarwal & Welleckl 2025; |Arora & Zanettel 2025; Luo et al.,|2025a; (Chen et al.,
2025a;|Chang et al., [2025} | Xu et al.| | 2025b; [Yang et al., [2025a). These methods fail to control the
length as users’ requirements. And Router-based methods train another model as a classifier (Aytes
et al., 2025} |(Chuang et al., 2025} 2024; |Ong et al.| [2024; [Pan et al., 2025). The classifier decide
to route the query to fast models or reasoning models. However, an extra classifier means more
computation resources are needed. Current methods either sacrifice precise control, require extra
computation, or fail to bridge autonomous budget estimation with strict adherence.

Token Budget In addressing the issue of overthinking, a highly intuitive approach involves directly
constraining the output length. CCoT (Nayab et al.| 2024) attempt to achieve this by incorporating a
word budget into the prompt, various approaches—including character, token, and step budgets (Lee
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et al.,2025)—have been attempted by directly incorporating them into prompts, yet achieving precise
control over the model’s output behavior remains challenging. TALE (Han et al., |2024) introduce, for
the first time, the concept of a token budget. TOPS (Yang et al.| |2025b) attempt to enable the model to
autonomously determine the required effort for solving a given task. However, both TALE and TOPS
fail to explicitly guide the model to produce the optimal token budget. They also fail to effectively
control the output length according to a given token budget. L1 (Aggarwal & Welleckl, 2025) and
Elastic Reasoning (Xu et al.,|2025b) can more precisely control the output length under a given token
budget, yet they fail to enable the model to autonomously estimate an appropriate response length.
Our proposed method enables the model to autonomously estimate the optimal token budget and
subsequently generate text in strict adherence to it.

3 METHOD

To minimize the overthinking problem in LLMs, we propose SelfBudgeter for efficient reasoning.
Our method aims to enable the model to autonomously determine an appropriate token budget and
generate responses of corresponding length while adhering to this budget. Although reasoning models
may occasionally overthink simple problems, their response lengths generally increase with problem
difficulty. This phenomenon demonstrates that the model possesses the capability to allocate token
quantities reasonably based on problem complexity. Previous works such as L1 (Aggarwal & Welleck,
2025) and Elastic Reasoning (Xu et al., 2025b)) have also demonstrated that models can generate
responses of appropriate length according to a given token budget.

Therefore, we design SelfBudgeter, which employs a reward function to guide the model in: (1)
learning an output format where it first predicts a token budget before generating the answer, (2)
allocating appropriate token budgets based on its own capabilities and question difficulty, and (3)
generating solutions with optimal length while ensuring answer accuracy.

3.1 SELFBUDGETER

SelfBudgeter is a concise and efficient method for automatic precise length controlled. We design the
Precise Budget Control Reward (PreB Reward) to achieve precise control over length. The detailed
introduction of PreB Reward can be found in Section [3.3] We employ GRPO algorithm to train the
model in predicting appropriate token budgets based on problem difficulty and generating responses
with lengths conforming to the specified budget.

Our reward function is formally defined as Formula [T}

T, if F =0,
R(C, F, £, b, byax) = < Pp(b, bax) + PreB(sW, s 0.b,a,bV), if F=1andC =0, (1)
Pg (b, bnax) + PreB(s$,,, 85 axs £, b, ,05.), if F=1and C = 1.
where
bpes = (1= ) - b, by = (1+0a)-b 2)

The inputs and hyperparameters in the reward function are listed in Table[I} To ensure stable prediction
of the token budget prior to response generation, any responses deviating from the prescribed format
will be assigned the minimum reward score of 7.

3.2 BUDGET PENALTY

To enable the model to learn token budget allocation, we introduce a budget penalty module defined
by Formula[3] The model incurs a penalty 7, when its estimated token budget exceeds the maximum
acceptable budget by,x. No penalty is applied when the estimated token budget remains within bp,x.
A detailed introduction of by, is presented in Section Briefly stated, for a given question, by,x
equals the response length if the base model can answer it correctly; otherwise, by, is set to oc.

0, ifb < bmax,
ry, else.

PB(b7 bmax) = { (3)
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Table 1: Input and Hyperparameters (HPs) in the reward function

Input Description ‘ HPs Description

C Correctness for answer Ty Penalty for format error

F Correctness for format HVK © Minimum reward (wrong/correct)
l Response length s%ﬁc Maximum reward (wrong/correct)
b Model’s budget @ Tightness coefficient of budget
bimax Maximum acceptable budget | 7, Penalty for excessive budget

3.3 PRECISE BUDGET CONTROL REWARD

Inspired by the cosine reward (Chang et al.,[2025)), we propose the Precise Budget Control Reward
(PreB Reward). While the cosine reward helps mitigate overthinking tendencies, it lacks precise
control over output length, as it only constrains the upper bound of the response. To address this
limitation, we introduce a tightness coefficient « to better align the response length with the specified
token budget.

Given the inherent challenge for models to precisely comply with token budgets, we relax the length
constraint to require only approximate adherence within « - b around the target budget b. As shown in
Formula 4] when the model’s response length falls outside the specified range, the corresponding
reward score plummets to its minimum value sp;,.

For incorrect responses, the function incentivizes longer reasoning chains (increasing length ¢) to
encourage deeper analysis that might lead to correct conclusions. Conversely, for correct answers,
the reward peaks at the minimally sufficient length (1 — «) - b to prevent unnecessary computational
overhead while maintaining accuracy. This explains why in Formula [2] the value of by differs
between correct and incorrect responses from the model. This dual mechanism promotes efficient
reasoning by adaptively modulating response lengths based on answer correctness.

€ — bl
b
PreB(smil17 Smaxs g’ b’ o, bbest) — J Smin + (Smax - Smin) X (4)

1 | — bhest] else.
— (1 L2 oSl
2 < + cos (71' 2oh )) s

Smin, if > a,

3.4 ACCURACY REWARD

To ensure the model’s post-training accuracy does not degrade below its initial performance, we
configure hyperparameters to guarantee that the minimum reward for correct responses always
exceeds the maximum reward for incorrect responses. Specifically, our design ensures that: A correct
response, which has a token budget exceeding by,,,x and receives the lowest budget following reward
s¢, will yield a higher total reward than an incorrect response that has a token budget within by
and receives the highest budget following reward s}V . This constraint is formally expressed as:
sC 4+ ry > sW .

min max

Overall, the core design of SelfBudgeter consists of three key modules: Budget Penalty, Preb Reward,
and Accuracy Reward, which collectively balance length compression, correctness, and precise length

control-ultimately delivering a better user experience.

4 EXPERIMENT

4.1 TRAINING TEMPLATE

The existing reasoning models utilize a pair of <think></think> tags to demarcate the thinking
process from the final solution output. Building upon this format, we have further incorporated a
token budget component.
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Step 2: Cold Start SelfBudgeter

Figure 2: Overview of the SelfBudgeter training framework. The workflow consists of three key
steps: (1) Data preprocessing: The initial model preprocesses the data to compute token budgets
for subsequent training; (2) Cold-start: The model is fine-tuned to adopt the new output format; (3)
RL Training: Through reward functions, the model learns to allocate token budgets and generate
compliant outputs.

To enable the model to dynamically allocate token usage based on question difficulty, we design an
output format as follows:

<budget>an integer</budget><solution>response</solution>

The format requires the model to first estimate the required token budget before providing the answer
to the question. When no user constraint exists, the model autonomously predicts the token budget.
When users specify a token limit, we pre-fill the <budget> field and let the model generate the
<solution> within this constraint.

4.2 DATA PREPROCESSING

At this stage, we collect model’s responses to the test questions used in both the cold-start and RL
training phases, and then evaluate the correctness and length of the responses.

For the cold-start data, we retain the model’s correct responses along with their lengths and discard
incorrect answers to prevent reinforcing the model’s memory of wrong responses.

For the RL training data, we calculate budgetyx (for convenience, we will refer to it as by, in
the following sections) using Formula[5] representing the maximum acceptable token budget for a
given question. When the model answers correctly, the correctness of the response indicates that the
minimum token budget required for a correct answer does not exceed the current length. Therefore,
we encourage the model to further compress the response length and set by« to the current response
length. When the model answers incorrectly, the relationship between the minimum token budget
needed for correctness and the current length remains unclear, so any token budget is acceptable.

&)

b response length, if model answers correctly,
7 o0, else.

4.3 COLD START

In our actual RL training process, we observe that requiring the model to simultaneously master
multiple objectives - learning the new output format, providing appropriate token budgets, generating
solutions of corresponding lengths according to the budget, while maintaining or improving accuracy
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- proved excessively challenging. After extended training periods, the model often only succeeds in
adopting the output format without achieving the other goals. Inspired by the Deepseek-R1 training
methodology, we introduce a cold-start phase to accelerate training and enable the model to first learn
the new output format before proceeding to more complex tasks. The overall training framework is
illustrated in Figure 2]

To prevent the model from losing its original reasoning capability during the cold-start phase, fine-
tuning must be performed using either the model’s own generated responses or datasets containing
long CoT responses. In our approach, we pre-populate the <budget > section with token counts
obtained during the preprocessing stage. The <solution> section is filled with the model’s
generated responses. And the instruction prefix we prepend to each question can be found in

Appendix [B].
4.4 EXPERIMENT SETTINGS

We conduct experiments on the DeepSeek-R1-Distill-Qwen-1.5B (R1-1.5B) model. We reproduce L1-
Max using R1-1.5B, and select R1-1.5B and L1-Max as baseline methods for comparative evaluation
against SelfBudgeter. In addition, we extend our experiments to the larger DeepSeek-R1-Distill-
Qwen-7B (R1-7B) model. For more comprehensive comparison, we also include E1-Math-1.5B,
R1-7B, Eurus-2-7B-PRIME (Cui et al., [2025), and Qwen-2.5-7B-Simple-RL (Shao et al.,|[2024) as
additional baselines.

During the cold-start phase, we employ three datasets of varying difficulty—GSMS8K (Cobbe et al.|
2021), MATH (Hendrycks et al.,[2021)), and s1k-1.1 (Muennighoff et al.,[2025)—to help the model
learn the new output format while producing token budgets with diverse distributions. The s1k-1.1
dataset contains 1,000 challenging mathematical problems with long reasoning chains generated
by DeepSeek-R1, which support both reasoning ability and format adaptation. For GSM8K and
MATH, we select 1,500 training samples each that the model can answer correctly. For s1k-1.1,
we directly use the native responses and compute the corresponding token counts with the model’s
tokenizer to populate our designed template; in total, we retain 630 problems that DeepSeek-R1
answered correctly. This yields a training set of 3,630 samples. Following the preprocessing protocol
in Sections {f.2] and [4.3] we fine-tune the model for one epoch. Throughout data collection and
training, the model’s temperature is consistently set to 0.6.

During the reinforcement learning phase, we use STILL-3-Preview-RL-Data (Chen et al., [ 2025b)
dataset. It also serves as the training dataset for reproducing L1-max. This dataset collects 30K
high-quality samples based on the MATH (Hendrycks et al., [2021), NuminaMathCoT (LI et al.,
2024), and AIME 1983-2023 (Veeraboina), [2023) datasets. It includes problems of varying difficulty
levels, which also helps the model learn to allocate token counts adaptively based on difficulty. As
described in Section[4.2] we compute the maximum acceptable budget (bmay) based on the model’s
responses, then train the model for 3 epochs on this dataset. More detailed information can be found
in Appendix [A]

4.5 MAIN RESULTS

Table [2] presents a comprehensive comparison of model performance on the GSM8K, MATH500,
and AIME2025 test sets, evaluated in terms of accuracy (Acc) and average response length (Len).
The table contrasts baseline models with different variants of the SelfBudgeter framework across
varying model scales. For clarity, the best performance is highlighted in bold, while the second-best
performance is indicated with underline. It is worth noting that token limits for L1 are explicitly
specified through prompt templates, whereas those for E1 are enforced via hard truncation. In contrast,
SelfBudgeter autonomously estimates its token constraints during inference. All reported results are
averaged over three runs with different random seeds.

Baseline Comparison Although the Deepseek-R1-Distill-Qwen-1.5B baseline demonstrates strong
accuracy, it requires substantially longer responses. On GSMS8K, our method improves accuracy by
11.01 percentage points while compressing response length to 43% of the original. On MATHS00,
it achieves a 3.54-point accuracy gain with response length reduced to 44%. On AIME2025, our
approach compresses response length to 30% of the original while maintaining comparable accuracy.
In contrast, although L1 and E1 attain stronger compression on certain datasets, they incur larger
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Table 2: Performance comparison on GSM8K, MATH500, and AIME2025. Accuracy (Acc) is
reported in percentage, and length (Len) in tokens.

GSMSK MATHS500 AIME2025
Models
Acc Len Acc Len Acc Len
DeepSeek-R1-Distill-Qwen-1.5B  73.09 2865.08 74.93 5327.12 22.22 14444.03
E1-Math-1.5B(0.5K,1K) 60.20 1205.21 35.53 1499.54 444 3008.44
E1-Math-1.5B(4K,1K) 72.10 1299.62 7247 2088.44 21.11 5578.13
L1-Max(3600) 79.56 571.72 76.73 175342 17.88 5213.89
SelfBudgeter-1.5B 84.10 1231.79 78.47 2326.85 21.11 4288.10
DeepSeek-R1-Distill-Qwen-7B 87.09 1918.21 86.73 5387.19 28.89 22158.79
Eurus-2-7B-PRIME 90.98 302.72 79.73 582.58 15.56 1254.52
Qwen-2.5-7B-Simple-RL 7594 519.07 61.13 823.89 6.67 1429.94
SelfBudgeter-7B 90.30 991.13 86.87 2666.58 30.00 12241.84

accuracy losses—L1 performs poorly on the challenging AIME2025 benchmark, while E1 suffers
more pronounced accuracy degradation on the simpler GSM8K and MATH500 datasets.

In addition, Table [2] highlights that SelfBudgeter consistently strikes a better balance between
accuracy and response length than existing baselines. Unlike L1, which enforces explicit length limits
but collapses on AIME2025, or E1, which relies on hard truncation and severely harms accuracy,
SelfBudgeter autonomously learns effective token budgeting. As a result, it achieves the best or
second-best accuracy across all datasets while simultaneously reducing response length substantially.

Beyond its effectiveness at the 1.5B scale, our method also delivers efficient reasoning with larger
models. SelfBudgeter-7B achieves the highest accuracy on MATH500 and AIME2025, and the
second-best accuracy on GSM8K—only 0.68 points lower than the best-performing model. Mean-
while, SelfBudgeter-7B attains an average compression ratio of 48%, further demonstrating the gener-
ality of our approach and its effectiveness at larger model scales. Compared with Eurus-2-7B-PRIME,
which excels only on GSMS8K but falls behind on harder reasoning tasks, and Qwen-2.5-7B-Simple-
RL, which underperforms across all benchmarks, SelfBudgeter exhibits robust gains across datasets
of varying difficulty.

4.6 DYNAMIC ALPHA SCHEDULE

GSM8K MATH

Response Length Response Length
4000 Token Budget Token Budget

3000

%]

c

9

S 2000

1000 .__.—_.-——.—_—k’—.___‘ — _ PE——— ]
0
100 200 300 400 500 600 700 100 200 300 400 500 600 700

Steps Steps

Figure 3: Response length and token budget on GSM8K and MATH benchmarks across training
steps with o« = 0.5. The curves show how the average response length (solid circles) and allocated
token budget (solid diamonds) evolve during training.

In SelfBudgeter, « serves as a critical hyperparameter. As shown in Figure 3] we observe that using a
fixed and relatively loose « can lead to reward hacking: once the model learns to align the budget
with the actual response length, it tends to inflate the predicted budget during later training stages,
pushing the output length toward the lower bound of the acceptable range to obtain higher PreB
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scores. Conversely, when « is fixed but relatively tight, the token budget quickly collapses to the
response length, which hinders the model from learning an optimal budgeting strategy. To address
these issues, we introduce a dynamic alpha schedule, where « is linearly decreased over training
steps. This gradually tightens the tolerance range for acceptable response lengths and encourages
closer convergence between the predicted budget and the actual output length. Consequently, the
optimal « is not static but evolves throughout the training process.

Formally, the dynamic « is defined by a linear schedule:

Stepnow

— W 6
Total steps ©)

Qpow = Olgtart — (astart - aend) .

This schedule only requires specifying the starting and ending values of « (i.e., tgtare and eeng), Which
are set to 6.0 and 0.1, respectively.

5 DISCUSSION

In the Analysis section, we systematically examine SelfBudgeter’s adaptive computation allocation
mechanism through two pivotal aspects: its ability to dynamically adjust budgets according to problem
complexity, and compliance with token constraints while preserving response quality. This holistic
evaluation reveals fundamental insights into how adaptive language models negotiate computational
efficiency with task requirements, informing both theoretical understanding and practical deployment
considerations.

5.1 ADAPTIVE BUDGET ALLOCATION

[ SelfBudgeter
50001 =3 SelfBudgeter
[ SelfBudgeter
[ SelfBudgeter

~ Al ol

MATH L1 MATH L2 MATHL3 MATHL4 MATH L5 AIME

GSM,alpha=0.2) |
GSM,alpha=0.5)
slk,alpha=0.2)
slk,alpha=0.5) ™

N
o
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o
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|

Budget Allocation
2
o

Figure 4: Token budget allocation patterns across problem difficulty levels for four SelfBudgeter-1.5B
configurations (initialized on GSM8K/s1k with @=0.2/0.5). All variants exhibit monotonic budget es-
calation with increasing task complexity (GSM8K, MATH Level 1-5, AIME2024), confirming robust
cross-configuration alignment between computational investment and intrinsic problem difficulty.

To investigate SelfBudgeter’s capacity for difficulty-aware budget allocation, we conduct empirical
evaluations across three mathematical reasoning benchmarks with inherent complexity gradients:
GSMS8K, MATH, and AIME 2024. Our experimental framework systematically evaluates four
architectural variants combining cold-start initialization strategies (GSMS8K vs. s1k) with o hyperpa-
rameter values (0.2 vs. 0.5).

Figure ] shows a consistent positive correlation between problem complexity and allocated token
budgets across all model variants, demonstrating SelfBudgeter’s ability to scale computation with
task difficulty. The near-linear allocation across difficulty tiers highlights its emergent capacity for
intrinsic difficulty estimation, while the minimal variance across configurations indicates robust and
generalized learning of task-complexity metrics rather than configuration-specific artifacts.



Under review as a conference paper at ICLR 2026

MATH500 GSM8K
slope: 1.025 ° slope: 0.793 °
1600 intercept: 14.56 intercept: 109.42 o g o 8
° 1000
o
o (o] o
1400 o o 7 © °
s © o ® co gpo%omo
5 o Top pw ° £ o0, 0@ %
2 1200 °g &8 o 800 of )
[} 00 o]
| .}
@V 1000 g 4]
(%] %)
c C 600
2 g
2 800 2
i} ]
o4 <

600 400

400 Model Response o Model Response

o
® (4 = Linear Fitting 200 [} = Linear Fitting

400 600 800 1000 300 400 500 600 700 800 900
Budget Budget

Figure 5: Linear regression analysis of token budget prediction versus actual response length for
SelfBudgeter on the MATHS00 dataset(left) and GSMS8K test set(right). The figure demonstrates
SelfBudgeter with GSM initialization and hyperparameter o = 0.2.

5.2 BUDGET-CONSTRAINED GENERATION

To systematically evaluate the generation capability of SelfBudgeter under budget constraints, this
study employs linear regression modeling to quantitatively analyze the mapping relationship between
predicted token budgets and actual response lengths. We conduct a quantitative analysis on the
MATHS500 dataset and GSMB8K test set using linear regression to investigate the mapping between
predicted budgets and actual response lengths (as shown in the Figure [5). On MATH500 dataset,
the least squares fitting yields a slope of 1.025 (95% CI [0.9466, 1.1042]). And on GSMSK test set,
the least squares fitting yields a slope of 0.793 (95% CI [0.7512, 0.8354]). The slope coefficient
approaching unity validates the efficacy of the budget control mechanism, indicating that each 1-token
increase in the predicted budget corresponds to an average increase of about 1-token in output.

Quantitative results demonstrate that 96% of generated responses exhibit relative deviations < 50%
from the target token budget, with 65.40% achieving tighter deviations < 20% . Extended experiments
on full benchmark datasets reveal that 97.65% (GSMS8K) and 95.82% (MATH) of samples satisfy
the < 50% relative deviation constraint. Notably, the model’s budget adherence is influenced by the
cold-start dataset and hyperparameter «v. The optimized SelfBudgeter configuration (initialized with
GSMB8K and o = 0.2), which balances generation quality and budget compliance, is reported here as
the best-performing variant.

We further validate SelfBudgeter’s adherence to user-defined token budgets through controlled exper-
iments. The results indicate that the actual generated length follows a linear functional relationship
with user-defined budgets, demonstrating robust alignment even under explicit external constraints.
Details are provided in Appendix [C]

6 CONCLUSION

We propose the SelfBudgeter framework, which autonomously predicts required token budgets
for reasoning while effectively adhering to self-imposed constraints, successfully optimizing the
accuracy-response length trade-off. By leveraging SelfBudgeter’s token budget predictions, users can
anticipate total inference duration in advance, significantly enhancing user experience. In resource-
efficient reasoning, SelfBudgeter demonstrates performance comparable to several existing methods,
highlighting its potential for deployment in resource-constrained environments. Additionally, output
length can be dynamically regulated through transformation functions when required. SelfBudgeter
paves a promising pathway toward more efficient, controllable, and user-friendly reasoning models.
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A TRAINING DETAILS

A.1 EXPERIMENTAL ENVIRONMENTS

Our server is equipped with two 80GB A100 GPUs and two 45GB A40 GPUs. We conducted
fine-tuning experiments and inference tests on the two A40 GPUs, while the GRPO training was
performed on the two A100 GPUs.

A.2 PARAMETER SETTINGS

In the fine-tuning training during the cold-start phase, our parameter settings are configured as
follows. The sequence length is capped at 16,384, with a per-device training and evaluation batch
size of 1, while gradient accumulation (2 steps) is employed to alleviate GPU memory constraints. A
cosine learning rate scheduler is adopted with a 10% warm-up ratio and a base learning rate of Se-5.
The model is trained for 1 epoch, with 10% of the training set allocated for validation. The model
checkpoints are saved and evaluated every 500 steps, and the best-performing checkpoint is retained.

In the GRPO (Global Reward Policy Optimization) training, our parameter configuration is set as
follows. The training and validation batch sizes are set to 128 and 1,250, respectively, with maximum
prompt and response lengths of 1,024 and 32,000 tokens. The Actor model employs a learning rate
of le-6, dynamic batching (up to 24K tokens per GPU), and a KL divergence loss (coefficient 0.001),
with gradient checkpointing and FSDP (Fully Sharded Data Parallel) distributed training enabled
(parameter offloading disabled). During the Rollout phase, the vLLM inference engine is utilized
with tensor parallelism (TP=2) and 80% GPU memory utilization, generating 5 responses per round.
Global settings include 3 training epochs, a checkpoint-saving interval of 50 steps, and a KL control
coefficient of 0.001, executed on a single node with dual GPUs. And key hyperparameters involved
in the reward function are specified in Table

Table 3: Hyperparameters Settings

Parameters C =0 C(C =1 Parameters Value

Smin -0.5 0.5 Ty -1
Smax 0 1 T -04

For the GSM-initialized SelfBudgeter, we select the checkpoint after 699 training steps when alpha
was set to 0.2, and the checkpoint after 575 steps when alpha was 0.5. For the slk-initialized
SelfBudgeter, we choose the checkpoint after 475 training steps with alpha=0.2, and the checkpoint
after 500 steps with alpha=0.5. For L1-Max, we choose the checkpoint after 280 training steps.

B COLD-START DATA SELECTION

Prompt Template

Answer the given question. You should first estimate the total number of tokens you will need
to answer this question based on its difficulty. Then you think about the reasoning process
in the mind and provide the user with the answer. The token budget and whole solution
are enclosed within <budget></budget> and <solution> </solution> tags, respectively, i.e.,
<budget> token budget here, just an integer </budget><solution> solution here, please output
the final answer within \boxed{} </solution>.

Question:

Figure 6: The prompt template used in the cold-start stage.

The choice of initialization data substantially impacts model performance. SelfBudgeters initialized
with the s1k dataset outperform their GSM-initialized SelfBudgeters by 8.82—-10.72 percentage points
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Table 4: Model performance comparison on GSM8K and MATH test sets, showing accuracy (Acc/%),
average response length (Len/tokens) and matching rate between token limits and response length
(Mat/%). The SelfBudgeter variants with different cold-start data and « parameters are contrasted
with baseline models.

GSMS8K MATH
Model
Acct Len| Matt  Acct Len] Matt
Cold Start (GSM) 71.95 1003.79 85.82 64.74 304329 41.16

SelfBudgeter (GSM, o = 0.2) 76.27 52377 97.65 63.46 779.54 95.82
SelfBudgeter (GSM, a = 0.5) 74.68 520.82 9697 63.78 777.80 96.66
Cold Start (s1k) 8249 1983.29 21.76 76.64 4001.29 23.28
SelfBudgeter (s1k, o = 0.2) 81.50 662.08 70.74 7418 919.27 78.36
SelfBudgeter (s1k, o = 0.5) 80.44 71936 71.19 72.60 1022.99 79.76

on MATH (74.18% vs. 63.46% for o = 0.2) and 5.23-5.76 percentage points on GSMS8K (80.44%
vs. 74.68% for o = 0.5). While SelfBudgeters with GSM-initialized exhibit lower accuracy, they
generate significantly more concise responses compared to s1k-initialized SelfBudgeters. Specifically,
GSM-initialized SelfBudgeters reduces response length by approximately 15-24% on MATH and
achieves 21-28% length reduction on GSMS8K. This performance gap highlights the importance of
high-quality initialization for the budgeting mechanism.

As shown in Table [} significant performance variations exist between models fine-tuned with
different cold-start datasets. The slk-fine-tuned model demonstrates superior accuracy over the
GSM-fine-tuned counterpart, achieving 10.54% and 11.90% higher accuracy on GSM8K and MATH
respectively. However, this comes at the cost of substantially longer responses, with the s1k model
generating 97.58% and 31.48% lengthier outputs on GSM8K and MATH. This discrepancy stems
from the s1k dataset’s responses being generated by Deepseek-R1, which produces higher-quality
outputs than those self-generated by Deepseek-R1-Distill-Qwen-1.5B. Additionally, the s1k dataset’s
average length of 7,677.43 tokens (we only retained correct responses under 16,000 tokens) vastly
exceeds GSMS8K’s 837.14 tokens, explaining the dramatic difference in response lengths after
fine-tuning. These factors substantially influence SelfBudgeter’s final performance, as evidenced
by: (1) SelfBudgeter’s accuracy closely mirroring that of its fine-tuned base model, and (2) the
response length relationships and matching rate relationships between different SelfBudgeter variants
remaining consistent with their respective cold-start models.

C PREFILLED TOKEN BUDGET FOLLOWING
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Figure 7: Relationship between user-defined token budgets and SelfBudgeter average response
lengths with curve fitting analysis.

To systematically evaluate model performance under user-defined token budget constraints, we
conduct quantitative analysis using SelfBudgeter with GSM initialization and hyperparameter o = 0.2
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on both MATHS500 dataset and GSMSK test set. In the experimental design, fixed token budgets were
pre-filled in the <budget> field of training templates, with empirical results obtained by measuring
average generated response lengths. We evaluated SelfBudgeter’s performance with user-defined
token budgets ranging from 50 to 2000 (specifically: 50, 100, 200, 400, 500, 600, 800, 1000, 1200,
1400, 1600, 1800, and 2000), as shown in the Figurem

Regression intercepts effectively reflect problem complexity, where GSM8K’s simpler questions
yield significantly smaller intercepts. Despite a moderate slope, SelfBudgeter demonstrates robust
budget adaptability, maintaining a stable positive correlation between user-defined budgets and output
lengths. This linear relationship enables deterministic length control through derived transformation
functions.

D THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, large language models (LLMs) were used solely as auxiliary tools
for grammar checking, text polishing, and improving clarity of exposition. No experimental design,
data analysis, or substantive research conclusions were generated by LLMs. All methodological and
experimental contributions are original and conducted entirely by the authors.
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