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Abstract

Molecular docking is a fundamental technique in structure-based drug discovery,
playing a critical role in predicting the binding poses of protein-ligand complexes.
While traditional docking methods are generally reliable, they are often compu-
tationally expensive. Recent deep learning (DL) approaches have substantially
accelerated docking and improved prediction accuracy; however, they frequently
generate conformations that lack physical plausibility due to insufficient integration
of physical priors. To deal with these challenges, we propose ForceFM, a novel
force-guided model that integrates a force-guided network into the generation
process, steering ligand poses toward low-energy, physically realistic conforma-
tions. Force guidance also halves inference cost compared with the unguided
approaches. Importantly, replacing the guiding potential with diverse energy
functions-including Vina, Glide, Gnina, and Confscore-preserves or improves
performance, underscoring the method’s generality and robustness. These results
highlight ForceFM’s ability to set new standards in docking accuracy and physical
consistency, surpassing the limitations of previous methods. Code is available at
https://github.com/Guhuary/ForceFM.

1 Introduction

Molecular docking is a critical component of structure-based drug discovery [1], aiming to predict
the predominant binding modes of protein-ligand complexes based on experimentally determined
or computationally modeled protein structures and ligands. Traditional docking programs such
as AutoDock 4 [2], AutoDock Vina [3], Glide [4], and GOLD [5] use heuristic search algorithms
to explore a range of possible ligand conformations. These programs employ scoring functions
grounded in physics and chemistry principles to estimate binding strengths and select optimal poses.
Despite their effectiveness, these classical methods often involve high computational costs, leading to
slow processing and significant resource demands, which limit their applicability in large-scale drug
discovery projects. In high-throughput screening scenarios, researchers may need to dock millions of
molecules daily. The prohibitive runtime of traditional methods thus significantly constrains their
utility in practical pharmaceutical pipelines.

Motivated by the success of deep learning (DL) and geometric learning (GL) in diverse 3D generation
tasks in the vision community, recent works have begun to leverage these techniques for molecular
docking. This has given rise to two broad categories of DL-based docking approaches. The first
category encompasses regression-based models, which directly predict the ligand coordinates in
3D space [6, 7, 8, 9]. The second category relies on generative modeling, producing multiple
candidate poses for selection [10, 11, 12]. Although these methods significantly improve efficiency
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Figure 1: Overview of ForceFM. The baseline flow matching model operates on translational, rota-
tional, and torsional degrees of freedom. By incorporating additional force guidance based on physi-
cal principles, ForceFM generates ligands with lower energy. Color scheme: Blue—initialization,
Green—ground truth, Red—sampled ligand without force guidance, Purple—sampled ligand with
force guidance.

and accuracy (e.g., in terms of the root-mean-square deviation, RMSD), a notable shortcoming
remains: many generated conformations are physically implausible, exhibiting steric clashes or
residing in high-energy regions [13], primarily because physical priors are under-utilized in the model
design.

However, purely data-driven methods often fail to incorporate critical physical constraints, which
can lead to unphysical poses. In real-world drug discovery, low-energy and physically consistent
poses are vital. To address this gap and combine the advantages of both traditional physics-based
approaches and deep generative methods, we propose a novel force-guided flow matching model
called ForceFM. Specifically, ForceFM integrates physics-based priors in the form of guiding force
terms derived from multiple scoring functions, including the Vina score [3], Gnina score [14], Glide
score [4], and Confscore [10]. By explicitly modeling a force-guidance network with these diverse
energy functions, our approach steers the generative process toward lower-energy conformations,
thereby improving physical plausibility while also improving the sampling efficiency. Moreover, it
demonstrates robust generalization in blind docking scenarios, showing promising performance on
unseen examples. This aligns with the growing demand for generalization in DL-based molecular
docking, addressing concerns about overfitting to specific protein or ligand types and broadening its
applicability across diverse drug discovery tasks.

In summary, our main contributions are as follows: (1) Innovative Docking Model. We present a
force-guided flow matching model for molecular docking that integrates deep learning with multiple
energy functions (e.g., Vina, Glide, Gnina, Confscore). This hybrid approach combines the flexibility
of deep learning with the physical accuracy of energy-based methods, guiding the generative process
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toward low-energy conformations with fewer steps, improving computational efficiency, especially in
high-throughput screening applications. (2) Comprehensive Benchmark Validations. Extensive
experiments on the PDBBind dataset demonstrate that our model outperforms existing methods
in both docking accuracy and physical plausibility, consistently generating more realistic ligand
poses. Moreover, we evaluate the generalization of our approach across multiple energy functions,
confirming its broader applicability in various docking scenarios.

2 Related Works

2.1 Molecular Docking

Molecular docking, or protein-ligand docking, is a computational technique for predicting the
optimal binding pose of a protein-ligand complex. Traditional approaches, such as AutoDock 4 [2],
AutoDock Vina [3], Glide [4], and GOLD [5], use heuristic search algorithms to explore possible
ligand conformations. These methods rely on physics-based energy functions to evaluate, rank, and
refine ligand structures. However, with recent advances, geometric deep learning has emerged as
a promising approach for docking predictions. These approaches can be broadly categorized into
regression-based and sampling-based methods.

1) Regression-based methods aim to directly predict ligand binding coordinates or refine structures
by predicting pairwise atomic distances. Notable methods in this category include EquiBind [6],
TankBind [15], E3Bind [7], FABind [8], and KarmaDock [16].

2) Sampling-based methods generate multiple ligand poses and then optimize or select from the
sampled conformations [17, 10, 11]. Although these methods are computationally more demanding
than regression-based models, they generally yield more accurate predictions.

In addition, Alphafold-latest achieves huge breakthroughs, but in close-form introduction without
details. DeltaDock [18] and HelixDock [19] also obtain competitive results for us. However, they
either generate large-scale data with simulators or add external high quality data for the training,
which is not a fair comparison.

2.2 Guided Generation

In generative modeling, controllable generation is essential to align diffusion models with desired
outputs. Classifier guidance [20] and classifier-free guidance [21] are prominent approaches that
conditionally guide diffusion models, achieving impressive results in applications like text-to-image
[22, 23] and video generation [24]. Recently, Zhou et al. [25] adopts an energy-based perspective
to understand the confidence model. FlowAB [26] adopts the important physical prior knowledge
into the flow model to guide the antibody generation, which is not an exact guidance. Lu et al.
[27] proposed an exact energy guidance policy using a scalar reward function, rather than fixed
conditioning, while Wang et al. [28] introduced CONFDIFF for protein conformation generation.
These advances motivate our proposed exact force guidance strategy, which uses an equivariant
network to approximate the intermediate force vector directly.

3 Proposed Method

This section describes our force-guided flow matching framework, ForceFM, which generates
physically plausible ligand conformations by integrating physics-based priors into a data-driven
manifold flow matching approach. Section 3.1 briefly reviews Riemannian Flow Matching, while
Section 3.2 introduces our baseline manifold flow matching model that operates on the translational,
rotational, and torsional degrees of freedom of ligands. Finally, Section 3.3 presents our key
contribution: a force-guided generation strategy that incorporates the different energy function as a
corrective signal to ensure low-energy conformations.

3.1 Preliminaries: Riemannian Flow Matching

Let P(M) represent the space of probability distributions defined on a manifold M endowed
with a Riemannian metric g. Suppose we have a data distribution q(x) and a prior p(x). We
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define a probability path pt : [0, 1]→ P(M) interpolating between p0 and p1, with corresponding
tangent vector fields ut(x) ∈ TxM. Flow Matching (FM) [29, 30] approximates ut(x) by a
learned vector field vt(x), minimizing LRFM(θ) = Et, pt(x)

∥∥vt(x) − ut(x)∥∥2g, where ∥ · ∥g is the
Riemannian norm and θ the parameters of vt. In practice, we use the Conditional Flow Matching
(CFM) formulation: LCRFM(θ) = Et∼U(0,1), p1(x1), pt(x|x1)

∥∥vt(x) − ut(x | x1)
∥∥2
g
, which is easier

to compute. Once trained, sampling from the data distribution is performed by integrating the learned
ODE d

dtφt(x) = vt(φt(x)), transforming points from the prior p0 to p1.

3.2 Baseline: Manifold Flow Matching

To adapt Flow Matching to ligand docking, we note that a ligand’s pose can be decomposed into
three main types of geometric transformations [10]: translation, rotation, and torsion angles (internal
rotation around rotatable bonds). Each transformation lives on a distinct manifold: Translation in R3,
Rotation in SO(3) and Torsion angles in (SO(2))m (a hypertorus).

Hence, the ligand pose is represented as x ≜
(
C,O, τ1, . . . , τm

)
, where C ∈ R3, O ∈ SO(3), and

τi ∈ [−π, π). This decomposition naturally leverages the Lie group structures T(3), SO(3), and
SO(2) for each respective degree of freedom, aligning well with Riemannian Flow Matching.

3.2.1 Translational Degree of Freedom

To model the translation, we treat the path of the center Ct as a flow on a Euclidean manifold. We
use a vanilla Gaussian flow matching (CFM) approach on this manifold, which employs independent
coupling techniques [31] to model the conditional flow:

Ct = t C1 + (1− t)C0, (1)
where C0 ∼ N (0, σ2

tr,maxI) is sampled from an isotropic Gaussian (the prior), and C1 is the ground-
truth ligand translation. The corresponding CFM objective is

Ltr(θ) = Et,q1(x1),q0(x0) ∥vt,tr(x)− C1 + C0∥22 . (2)

3.2.2 Rotational Degree of Freedom

To model the probability path of rotation matrix Ot ∈ SO(3), we adopt SO(3)-CFM [32] as
Ot = expO0

(
t logO0

(O1)
)
, (3)

where exp and log are the exponential and logarithmic maps on SO(3), which can be efficiently
computed using Rodrigues’ formula and the Lie algebra so(3). The prior distribution to sample O0 is
defined as isotropic Gaussian distribution on SO(3) [33]. Then the loss is

Lrot(θ) = Et,q1(x1),q0(x0)

∥∥∥∥vt,rot(xt)−
logOt

(O0)

t

∥∥∥∥2
SO(3)

. (4)

3.2.3 Torsional Degree of Freedom

For a ligand with m rotatable bonds, the torsion angles lie in [−π, π)m. For the torus, the manifold is
the quotient space Rm/2πZ, leading to the equivalence relations with period 2π [34]. We choose the
prior distribution p0 as the product of standard wrapped normal distribution as:

p0(τ ) ∝
N∏
i=1

∑
d∈Z

exp

(
−
∥∥τ (i) + 2πd

∥∥2
2

)
. (5)

The path τt(τ0, τ1) is then an interpolation on the torus [34]. We approximate the geodesic distance
with a linear shift to handle 2π periodicities:

τ ′
0 =(τ0 + π) mod (2π)− π,

ut (τ
′
0, τ1) =(τ1 − τ ′

0 + π) mod (2π)− π,
τt (τ

′
0, τ1) =τ ′

0 + t ∗ ut (τ ′
0, τ1) .

(6)

The conditional Flow Matching loss is:

Ltor(θ) = Et, q1(x1), q0(x0)

∥∥∥vt,tor(xt)− ut(τ ′
0, τ1)

∥∥∥2
2
. (7)

4



3.2.4 Baseline Flow Matching Objective

We combine these three losses with respective weights:

L(θ) = λtrLtr + λrotLrot + λtorLtor. (8)

Here, we set λtr = 1, λrot = 1, λtor = 1. After training, sampling is performed by solving the ODE
d
dtx = vt(x) with x0 drawn from the prior. This baseline approach is purely data-driven, relying on
learned distributions of ligand poses, but it does not explicitly ensure low-energy or sterically valid
configurations. As we will see, unconstrained flow matching can sometimes produce high-energy or
overlapping geometries in the absence of physical priors.

3.3 Force-Guided Generation

To address the limitations of baseline flow matching and ensure physically valid docking poses, we
introduce a force-guided strategy inspired by energy-based diffusion methods [27, 28]. Our goal is to
bias ligand conformations toward low-energy regions of the conformational space by incorporating
an additional force term derived from a chosen scoring function.

Let q1(x1) be the distribution generated by our baseline flow model in Section 3.2, and let E1(x1) be
the energy function for conformation x1 given protein y (y is omitted for simplification). We aim to
form a Boltzmann-like distribution:

p1(x1) ∝ q1(x1) exp
[
−k E1(x1)

]
, (9)

where k is an inverse temperature factor controlling the strength of energy guidance. By incorporating
this additional energy term, p1 (x1) provides a more accurate estimate and generates ligands that
adhere to physical plausibility.

3.3.1 Deriving the Force-Guided Flow

The following theorem suggests a force-guided flow from a conditional vector field to generate the
modified probability distribution.

Theorem 3.1 Given an energy function E1(·) and a conditional flow ut (x | x1) that generates
the probability distribution qt (x | x1). Assume the guided distribution has the form pt(x) ∝
qt(x) exp (−kEt(x)) and pt (x | x1) := qt (x | x1). Then

Et (x) = −
1

k
logEqt(x1|x)

[
e−kE1(x1)

]
+ const, (10)

and the guided distribution pt(x) will be generated by the flow

ût(x) =

∫
x1
qt (x1 | x)ut (x | x1) exp (−kE1 (x1)) dx1∫

x1
qt (x1 | x) exp (−kE1 (x1)) dx1

, (11)

which will generate final distribution p1(x) ∝ q1(x) exp(−kE1(x)).

Theorem 3.1 provide a method to construct the vector field ût(x) from the conditional vector field
ut(x|x1) and the intermediate energy function Et in the closed-form solution. Since we have learned
the vector field vt(x), we have the following corollary.

Corollary 3.2 Given an energy function E1(·) and a trained flow vt(x) that generates the probability
distribution qt (x). Following the presumption in Theorem 3.1, then the guided distribution pt(x) ∝
qt(x) exp (−kEt(x)) is generated by the flow

ût(x) = vt(x) + rt(x), (12)

where rt(x) =
∫
x1
qt(x1|x)ζ(x,x1) exp(−kE1(x1))dx1∫
x1
qt(x1|x) exp(−kE1(x1))dx1

and ζ(x,x1) = ut (x | x1)− vt(x).

As shown in Theorem 3.1 and Corollary 3.2, incorporating the energy term into the learned flow can
be viewed as adding a corrective vector field rt(x) to the baseline vector field vt(x):

ût(x) = vt(x) + rt(x). (13)
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Algorithm 1: Training Procedure (Single Epoch) for Force Model
Input: trained flow network v, energy function E1(·), guided network hθ
foreach x1, y in training set do

Randomly perturb x1 to obtain x1:K
a

Sample x0 = (C0, O0, τ0) ∼ p0, t ∼ U(0, 1);
Sample xt ∼ pt(x | x0,x1) = pt(C | C0, C1)× pt(O | O0, O1)× pt(τ | τ0, τ1);
Set wi =

exp(log qt(xi
a|xt)−kE1(xi

a))∑K
j=1 exp(log qt(xj

a|xt)−kE1(xj
a))

,

ζi,tr = ut,tr
(
Ct | Cia

)
− vt,tr(xt),

ζi,rot = ut,rot
(
Ot | Oia

)
− vt,rot(xt),

ζi,tor = ut,tor
(
τt | τ ia

)
− vt,rot(xt);

L = ∥ht,tr(xt)−
∑K
i=1 wiζi,tr∥22+

∥ht,rot(xt)−
∑K
i=1 wiζi,rot∥2SO(3)+

∥ht,tor(xt)−
∑K
i=1 wiζi,tor∥22;

Update θ ← θ − η∇θL.

The correction term rt(x) accounts for how likely each conformation x1 is, weighted by
exp[−k E1(x1)]. In practice, we introduce an additional force network ht(x) to approximate rt(x),
enabling efficient end-to-end training.

Algorithm 1 outlines the single-epoch training procedure. For each training complex (x1,y), we
sampleK candidate ligand conformations from the random perturbations of x1 and compute weighted
residuals ζi based on exp[−k E1(xia)]. The objective is to match ht(xt) to the weighted average of
these residuals. Here, the perturbed data is sampled from p1−δ(x | x1), with δ ∈ U(0, 0.1) and K is
a critical hyper-parameter in our method, as it directly affects the accuracy of the energy landscape
estimation during training. A higher K leads to a more accurate approximation of this distribution
and, consequently, more precise force estimation.

After training, samples can be generated by integrating the modified ODE d
dtx = vt(x) + ηht(x),

where η is a user-defined guidance strength. Larger η emphasizes physical energy constraints more
strongly, reducing the risk of steric clashes but potentially sacrificing some flexibility.

4 Experimental Results

4.1 Experiment Settings

Dataset: We utilized protein-ligand complexes from PDBBind, originating from the Protein Data
Bank (PDB) [35]. Adopting the time-based splitting in [6], we trained our model on 17k complexes
up to 2018 and tested on 363 structures in 2019, ensuring no ligand overlaps. This temporal split is
favored over molecular scaffold or protein similarity-based methods [36, 15]. Further details about
the pre-processing steps and construction of heterogeneous graphs are presented in Appendix B.

Evaluating metrics: We follow prior works [6, 10] and use ligand root-mean-square deviation
(RMSD) of heavy atomic positions and centroid distance to compare predicted binding structures with
ground-truth. The Ligand RMSD calculates the normalized Frobenius norm of the two corresponding
matrices of ligand coordinates. The centroid distance is defined as the distance between the averaged
3D coordinates of the predicted and ground-truth bound ligand atoms. In addition, we use the
PoseBuster [13] to validate chemical consistency and physical plausibility of the generated ligands.

Implementation Details: All statistics are averaged over three random seeds. We implemented all
the models using the open-source Python library PyTorch and e3nn [37], and the experiments were
conducted on a PC equipped with 4 NVIDIA A100-40GB GPUs. The network structures for flow
matching model and guidance model are presented in Appendix C and the training and inference
details with hyper-parameters are listed in Appendix D. In the inference stage, to generate an initial
ligand conformation, we employed the ETKDG algorithm using RDKit, which randomly produces
a low-energy ligand conformation. we follow common blind docking practice by first predicting
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Method
Ligand RMSD Centroid Distance

Percentiles↓ % Below↑ Percentiles↓ % Below↑ Average
25% 50% 75% Mean 2Å 5 Å 25% 50% 75% Mean 2Å 5Å Runtime (s)

QVINA-W 2.5 7.7 23.7 13.6 20.9 40.2 0.9 3.7 22.9 11.9 41.0 54.6 49*
GNINA 2.8 8.7 22.1 13.3 21.2 37.1 1.0 4.5 21.2 11.5 36.0 52.0 146*
SMINA 3.8 8.1 17.9 12.1 13.5 33.9 1.3 3.7 16.2 9.8 38.0 55.9 146
GLIDE 2.6 9.3 28.1 16.2 21.8 33.6 0.8 5.6 26.9 14.4 36.1 48.7 1405*
VINA 5.7 10.7 21.4 14.7 5.5 21.2 1.9 6.2 20.1 12.1 26.5 47.1 205*

EQUIBIND 3.8 6.2 10.3 8.2 5.5 39.1 1.3 2.6 7.4 5.6 40.0 67.5 0.03
TANKBind 2.4 4.0 7.7 7.4 19.3 61.7 0.9 1.7 4.2 5.5 56.5 77.4 0.87

E3Bind 2.1 3.8 7.8 7.2 23.4 60.0 0.8 1.5 4.0 5.1 60.0 78.8 0.44
FABind 1.7 3.1 6.7 6.4 33.1 64.2 0.7 1.3 3.6 4.7 60.3 80.2 0.12

FABind+ 1.3 2.4 5.3 5.1 43.8 73.3 0.5 1.0 2.6 3.5 69.1 86.2 6.4

DiffDock 1.4 3.6 8.0 7.5 38.4 62.4 0.5 1.3 3.2 5.5 60.8 79.0 68.1
DiffDock + Vina 1.3 3.2 5.5 3.8 43.5 73.0 0.3 1.2 3.0 4.1 66.1 88.3 45.6
DiffDock + Conf 1.3 3.3 5.5 4.3 42.6 69.1 0.4 1.1 3.1 4.5 65.8 83.2 45.5
DiffDock + Gnina 1.3 3.1 4.9 4.2 43.5 70.5 0.4 1.1 2.9 4.4 67.7 86.5 45.5
DiffDock + Glide 1.2 3.1 5.7 4.0 45.8 71.2 0.4 1.1 3.2 4.3 67.4 85.7 45.4

Ours 1.3 2.3 5.3 4.2 41.1 73.7 0.5 1.0 2.5 3.1 71.7 89.4 46.9
Ours + Vina 1.1 2.2 4.3 3.8 48.6 78.0 0.3 0.9 2.2 2.4 76.2 93.5 25.3
Ours + Conf 1.2 2.3 5.4 3.3 49.1 76.5 0.3 0.8 2.2 2.2 75.1 92.5 25.1
Ours + Gnina 1.2 2.2 5.2 3.1 47.5 75.6 0.4 0.9 2.0 2.4 74.3 91.6 25.1
Ours + Glide 1.2 2.1 4.2 3.2 49.5 78.0 0.3 0.9 2.1 1.9 77.1 92.5 25.2

Table 1: PDBBind blind Top-1 self-docking performance. The first quarter contains the results from
traditional docking software, and the second contains recent deep learning-based docking methods .
The last two lines show the force-guided results of DiffDock and our baseline model. The symbol “*”
means that the method operates exclusively on the CPU. The best results are shown in bold.

binding pockets with P2Rank [38] and initializing ligand conformations around predicted centers. 40
poses are sampled in the inference stage and they are ranked by using the rank model in [10].

4.2 Molecular Docking Quality Assessment

In our assessment of molecular docking quality, we benchmarked our proposed method against
several well-established methods, including SMINA [39], QuickVina-W [40], GLIDE [4], GNINA
[14], Autodock Vina [3], EquiBind [6], TANKBind [15], E3Bind [7], DiffDock [10], FABind [8],
FABind+ [12]. To demonstrate both the absolute performance of our model and the generality of the
proposed force-guided sampling framework, we evaluate two families of methods (1) Our base model
(Ours) and its energy-guided variants, and (2) DiffDock with exactly the same guidance procedure,
detail for sampling with force guided diffusion model is presented in Appendix F. This section reports
the main results for comparison, the additional results on the sensitive analysis on guidance strength
η, number of generative samples are presented in appendix E.

4.2.1 Blind Self-Docking Performance for Seen and Unseen Proteins

Blind self-docking involves docking a flexible ligand to a protein without prior knowledge of the
binding site, which requires accurate prediction of the ligand’s conformation. We observe the notable
performance of our ForceFM as shown in Table 1. By introducing force guidance strategies, both
the DiffDock and our baseline models see notable improvements. Specifically, using force guidance
results in a marked improvement in RMSD and centroid distance metrics. For example, one of
the most notable results occurs with Ours + Glide, where the model achieves a mean RMSD of
3.2Å, a 49.5% success rate below 2Å, and an impressive 78.0% success rate under the 5Å threshold.
These figures underscore the positive impact of integrating force guidance on docking accuracy. This
model’s performance is superior not only in RMSD but also in the overall prediction accuracy when
compared to both the baseline models and traditional docking approaches such as Vina and DiffDock.
When comparing results across models, it is evident that integrating force-guided strategies (either
with Vina, Conf, Gnina, or Glide) improves both the percentile RMSD and the percent below 2Å and
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Method
Ligand RMSD Centroid Distance

Percentiles↓ % Below↑ Percentiles↓ % Below↑
25% 50% 75% Mean 2Å 5 Å 25% 50% 75% Mean 2Å 5Å

QVINA-W 3.4 10.3 28.1 16.9 15.3 31.9 1.3 6.5 26.8 15.2 35.4 47.9
GNINA 4.5 13.4 27.8 16.7 13.9 27.8 2.0 10.1 27.0 15.1 25.7 39.5
SMINA 4.8 10.9 26.0 15.7 9.0 25.7 1.6 6.5 25.7 13.6 29.9 41.7
GLIDE 3.4 18.0 31.4 19.6 19.6 28.7 1.1 17.6 29.1 18.1 29.4 40.6
VINA 7.9 16.6 27.1 18.7 1.4 12.0 2.4 15.7 26.2 16.1 20.4 37.3

EQUIBIND 5.9 9.1 14.3 11.3 0.7 18.8 2.6 6.3 12.9 8.9 16.7 43.8
TANKBind 3.4 5.7 10.8 10.5 3.5 43.7 1.2 2.6 8.4 8.2 40.9 70.8

E3Bind 3.0 6.1 10.2 10.1 6.3 38.9 1.2 2.3 7.0 7.6 43.8 66.0
FABind 2.2 3.4 8.3 7.7 19.4 60.4 0.9 1.5 4.7 5.9 57.6 75.7

FABind+ 1.7 2.9 8.4 7.2 33.3 63.9 0.8 1.5 4.6 5.4 59.7 77.1

DiffDock 2.8 6.4 16.3 12.0 17.2 42.3 1.0 2.7 14.2 9.8 43.3 62.6
DiffDock + Vina 2.6 5.8 12.5 9.7 23.8 49.9 0.9 2.5 12.1 8.9 47.6 70.2
DiffDock + Conf 2.7 5.9 13.2 10.1 20.1 46.4 1.0 2.6 12.4 9.6 48.4 70.5
DiffDock + Gnina 2.4 5.4 11.8 9.3 25.1 50.2 0.9 2.5 11.3 9.0 50.5 72.3
DiffDock + Glide 2.5 5.6 12.0 9.5 25.4 49.1 1.0 2.4 11.6 8.9 49.2 71.0

Ours 1.7 3.2 7.3 5.7 31.8 62.8 0.7 1.4 4.0 4.6 63.2 78.3
Ours + Vina 1.5 2.7 6.5 4.9 38.6 69.5 0.5 1.3 3.5 3.2 70.2 84.9
Ours + Conf 1.7 3.2 7.2 5.6 32.7 63.7 0.7 1.4 3.9 4.4 65.2 79.5
Ours + Gnina 1.5 2.8 6.5 4.8 40.1 69.5 0.6 1.2 3.2 3.3 70.2 83.4
Ours + Glide 1.4 2.7 6.6 4.8 39.7 70.3 0.5 1.3 3.5 3.1 71.7 85.2

Table 2: Performance of blind self-docking on unseen receptors.

5Å. The Ours + Glide method, for instance, produces some of the best performance, especially with a
remarkable 77.1% success rate for predictions within 5Å and a 92.5% success rate for predictions
within 5Å when including Conf guidance.

In conclusion, incorporating force guidance significantly enhances the performance of self-docking,
offering more reliable and accurate predictions for ligand-protein interactions, especially when there
is no prior knowledge of the binding site. This approach represents a key advancement in the field of
computational docking and ligand-protein interaction prediction.

4.2.2 Blind Self-Docking Performance for Unseen Proteins

This section evaluates the generalization capability of our model on proteins not seen during training.
Following the approach of previous studies [8, 12], we assess the model’s performance on a set of
proteins filtered by their UniProt IDs, excluding those encountered during training or validation. The
evaluation results, summarized in Table 2, provide an in-depth analysis of the model’s performance
on these unseen proteins.

Based on the data in Table 2, the force-guided models significantly outperform other methods on
unseen proteins. Specifically, the Ours + Glide model achieves the best performance with a 4.8Å mean
RMSD and success rates of 39.7% at 2Å and 70.3% at 5Å, surpassing all baseline methods, especially
in terms of precision.

4.2.3 PoseBuster Evaluation

In addition to conventional metrics, we employed the PoseBuster benchmark (Fig.2(a)) to assess the
physical validity of the generated ligand poses, which is crucial for their practical applicability. While
standard metrics such as RMSD provide spatial alignment evaluations, the PoseBuster benchmark
further examines the generated poses for physical and chemical plausibility. It imposes specific
criteria, such as avoiding steric clashes and maintaining realistic bond lengths and angles, to ensure
that predicted poses are biologically viable.
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(a) PoseBuster evaluation (b) Ablation study on the number of sampling steps

Figure 2: (a) PoseBuster evaluation: The model with force guidance significantly outperform the
model without guidance. (b) Ablation study on the number of sampling steps.

Figure 2(a) reveals a clear stratification among the evaluated pipelines. The pure deep-learning
(DL) baselines methods including “Ours” show poor energetic reasoning, underscoring the pitfalls
of relying on geometric alignment alone. Crucially, supplementing both DiffDock and our method
with force guidance produces a dramatic jump in physical validity. For DiffDock, the best guidance
option (+Glide) lifts the pass rate from 14.3% to 25.6%—an absolute gain of 11.3% and a relative
improvement of about 79%. Our method benefits even more: the same Glide-based refinement
boosts performance from 17.5% to 31.4% (+13.9%, also 79% relative). Across all four guidance
strategies (Vina, ConfGen, Gnina, Glide), our approach consistently stays 4–6% ahead of the
corresponding DiffDock variant, establishing a new state-of-the-art with up to 31.4% PoseBuster-
compliant predictions. These findings demonstrate that the energetic guidance is indispensable for
converting generated poses into physically realistic, drug-like conformations.

4.2.4 Performance with Number of Sampling Steps.

Figure 2(b) illustrates the relationship between the number of sampling steps and the fraction of
docking results with RMSD ≤ 2Åacross four methods: DiffDock, DiffDock + Vina, Ours, and Ours +
Vina. The key observation is that energy-based guidance significantly improves the convergence speed
and performance of generative sampling. DiffDock alone converges around 20 samples, reaching
a plateau in the success rate beyond this point. DiffDock + Vina, which incorporates energy-based
sampling, achieves similar performance with 5 steps, converging around 12 steps. The method
Ours without force guidance converges slightly faster than DiffDock, around 14 steps. Ours + Vina,
combining our generative approach with Vina scoring, shows the fastest convergence, reaching a
performance plateau at approximately 8.

These results demonstrate that integrating energy-based guidance significantly enhances sampling
efficiency, reducing the number of required steps to achieve optimal docking performance.

5 Conclusion

In this work, we introduce ForceFM, a novel force-guided flow-matching model for protein-ligand
docking. By integrating generative model with physical principles, ForceFM addresses key limitations
of current state-of-the-art (SOTA) methods, particularly their struggles with physically consistency
and structural validity. The incorporation of a force-guided network enables ForceFM to significantly
outperform existing models in both accuracy and physical plausibility with fewer sampling steps.
Extensive experiments on the PDBBind dataset and PoseBuster benchmark demonstrate its superior
performance, yielding physically consistent and structurally valid ligand conformations. Additionally,
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ForceFM shows strong generalization to unseen protein data, making it a versatile and reliable tool
for drug discovery and molecular docking.

However, there are still certain limitations. Despite its promising results, ForceFM relies on the
energy functions chosen for force guidance, and performance may vary depending on the choice of
energy function. Furthermore, while the model successfully handles static protein-ligand interactions,
it does not yet fully account for protein flexibility or the dynamic conformational changes that occur
during ligand binding. In addition, while the force-guided network improves physical plausibility
and data efficiency, its generalization ability remains constrained by the training data. ForceFM
is primarily trained on the PDBBind dataset, which limits its exposure to diverse protein families,
binding environments, and rare conformational states. This can affect performance when applied to
novel targets or large-scale virtual screening tasks.

In future work, we plan to enhance ForceFM by incorporating molecular dynamics simulations to
capture protein flexibility and the conformational transitions in the protein-ligand complex during
binding, and expand training across larger and more diverse datasets. These directions will enhance
the model’s robustness, improve generalization, and allow a more realistic description of protein-
ligand interactions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We demonstrate the efficacy of our method through extensive experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mainly focus on rigid docking and not consider the protein flexibility and
the conformational changes of the protein-ligand complex during binding.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: A complete proof is provided in appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details are implemented in the appendix. We will also disclose our full
codes for producing the reported results after publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use public dataset PDBBind. Code will be provided after publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details are implemented in the appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All statistics are averaged over three random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We train the models on a PC equipped with 2 NVIDIA A100-40GB GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We focus on general algorithm design for solving molecular docking problem.
We demonstrate our method on public PDBBind dataset, which is not specific to any
particular negative applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We demonstrate our method on public PDBBind dataset.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the original papers that produced the code or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the full code as the new asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLM is used only for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix
A Proof of Theorem 3.1

Before proof, we need the following lemma:

Lemma A.1 (Theorem 3.1 in [27]) Let qt (xt) be the data-based marginal distribution on specific
protein y. Suppose pt (xt | x1) := qt (xt | x1) and pt (xt) ∝ qt (xt) e−kEt(xt), for t ∈ [0, 1]. Then
Et (xt) satisfies

Et (xt) = −
1

k
logEqt(x1|xt)

[
e−kE1(x1)

]
, (14)

after dropping the constant, and

∇xt
Et (xt) =

Eq1(x1)

[
qt (xt | x1) e

−kE1(x1)G (x1,xt)
]

kEq1(x1)

[
qt (xt | x1) e−kE1(x1)

] , (15)

with G (x1,xt) := ∇xt log qt (xt)−∇xt log qt (xt | x1).

Proof of Lemma A.1 Given p1 (x1) = q1 (x1) e
−kE1(x1)/Z and pt (xt | x1) = qt (xt | x1), the

distribution pt (xt) follows

pt (xt) =

∫
pt (xt | x1) p1 (x1) dx1 =

∫
qt (xt | x1)

q1 (x1) e
−kE1(x1)

Z
dx1

=

∫
qt (x1 | xt) qt (xt)

e−kE1(x1)

Z
dx1 = qt (xt)Eqt(x1|xt)

[
e−kE1(x1)

Z

]
.

(16)

Under the assumption that
pt (xt) := qt (xt) e

−kEt(xt), (17)
then Et (xt) satisfies

Et (xt) = −
1

k
logEqt(x1|xt)

[
e−kE1(x1)

]
+

1

k
logZ, (18)

for 0 < t ≤ 1.

The corresponding intermediate force can be derived by

∇xtEt (xt) = −
∫
e−kE1(x1)∇xt

qt (x1 | xt) dx1

k
∫
qt (x1 | xt) e−kE1(x1)dx1

. (19)

The numerator can be derived as∫
e−kE1(x1)∇xtqt (x1 | xt) dx1

=

∫
e−kE1(x1)qt (x1 | xt)∇xt

log qt (x1 | xt) dx1

=

∫
qt (x1 | xt) e−kE1(x1)∇xt

log
qt (xt | x1) q1 (x1)

qt (xt)
dx1

=

∫
qt (x1 | xt) e−kE1(x1) (∇xt

log qt (xt | x1)−∇xt
log qt (xt)) dx1

=− Eqt(x1|xt)

[
e−kE1(x1)ζ (x1,xt)

]
,

(20)

where ζ (x1,xt) := ∇xt
log qt (xt)−∇xt

log qt (xt | x1). Therefore

∇xtEt (xt) =
Eqt(x1|xt)

[
e−kE1(x1)ζ (x1,xt)

]
kEqt(x1|xt)

[
e−kE1(x1)

]
=
Eq1(x1)

[
qt (xt | x1) e

−kE1(x1)ζ (x1,xt)
]

kEq1(x1)

[
qt (xt | x1) e−kE1(x1)

] .

(21)

20



Proof of Theorem 3.1. Considering the dynamic of probability distribution pt(x) = qt(x)Et(x)
Z ,

according to the continuity equation, we have

dpt(x)

dt
=

d

dt

qt(x) exp (−kEt(x))
Z

=
d

dt

qt(x)
∫
x1
q (x1 | x) exp (−kE (x1)) dx1

Z

=
d

dt

∫
x1
qt (x1,x) exp (−kE (x1)) dx1

Z

=
d

dt

∫
x1
qt (x | x1) q (x1) exp (−kE (x1)) dx1

Z

=
1

Z

∫
x1

d

dt
qt (x | x1) q (x1) exp (−kE (x1)) dx1.

(22)

In addition,
dqt (x | x1)

dt
= −div · [qt (x | x1)ut (x | x1)] . (23)

Plugging the definition of continuity equation 23 into 22 we can obtain that

dpt(x)

dt
=

1

Z

∫
x1

d

dt
qt (x | x1) q (x1) exp (−kE (x1)) dx1

= −
∫
x1

div · [qt (x | x1)ut (x | x1)] q (x1) exp (−kE (x1)) dx1

Z

= −
div ·

[∫
x1
qt (x | x1)ut (x | x1) q (x1) exp (−kE (x1)) dx1

]
Z

= −div ·
[
qt(x) exp (−kEt(x))

Z

∫
x1

qt (x1 | x)ut (x | x1)
exp (−kE (x1))

exp (−kEt(x))
dx1

]
= −div · [pt(x)ût(x)]

(24)

Thus we conclude our proof by showing ût(x) defined by Eqn. (11) can generate the guided
distribution sequence pt(x).

B Details for Constructing Protein, Ligand Features, and Heterogeneous
Graphs

B.1 Protein Representation

For protein representation, we utilize residue levels features. Each amino acid, denoted as npi , is
characterized by a feature vector hpi , encoded using ESM2 [41] (esm2_t33_650M_UR50D), including
its residue type. The position of each node, xpi , corresponds to the Cartesian coordinates of the Cαi
atom in R3. The total number of protein nodes is represented as Np.

B.2 Ligand Representation

The ligand is represented at the atom level, where each atom is considered a node with features such
as atomic number, chirality, degree, formal charge, implicit valence, number of connected hydrogens,
number of radical electrons, hybridization type, aromaticity, ring membership, and six ring-size
indicators. Each atom’s spatial coordinates are denoted as xlj ∈ R3. The total number of ligand nodes
is given as N l.

B.3 Geometric heterogeneous graph construction

In this work, structures are represented as heterogeneous geometric graphs with nodes representing
ligand (heavy) atoms, receptor residues (located in the position of the α-carbon atom), receptor heavy
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atoms. To build the radius graph, we connect nodes using cutoffs that are dependent on the types of
nodes they are connecting:

• Ligand atoms-Ligand atoms: An edge between two ligand heavy atoms exists if the
distance between them is less than 5Å or a covalent bond exists. We also represent covalent
bonds with some initial embedding representing the bond type (single, double, triple, and
aromatic).

• Receptor residues-Receptor residues: An edge between residual vpk and vpi exists if vpk is
among the 24 nearest neighbors of vpi within 15Å.

• Receptor residues-Ligand atoms: It uses a cutoff of 20 + 3 ∗ σtrÅ where σtr = (1 −
t)σtr, max + tσtr, min is the current standard deviation for translation.

All these features (protein, ligand nodes and edges) are concatenated with sinusoidal embeddings
of the time. As for the edges, they are concatenated with radial basis embeddings of edge length.
These scalar features of each node and edge are then transformed with learnable two-layer MLPs
(different for each node and edge type) into a set of scalar features with number ns that are used as
initial representations by the following layers.

C Network Structures

In this part, we provide a detailed description of the network structures of each stage. We first
introduce the core feature extraction module: E3-equivariant graph convolution layer (EGCL).

EGCL: E3-equivariant graph convolution layer

EGCL serves as the foundational module for feature extraction in our model, which is build upon
Tensor field and e3nn [37]. It operates by utilizing the tensor products of current node features with
the spherical harmonic representations of edge vectors to construct messages. These tensor products
are weighted according to the edge embeddings and scalar features of the connected nodes. For any
node a in a set of nodes GA, a radius graph is constructed with target nodes from GB. The output
feature for node a is then formulated as follows:

outa = BN

(
1

|Na|
∑
b∈Na

Y (r̂ab)⊗ψab
hb

)
(25)

with ψab = Ψ(eab,ha,hb), where Na denotes the neighbors of a in GB, ha and hb are feature
vectors, eab is the edge embeddings of (a, b), and Y (r̂ab) represents the spherical harmonics of the
edge direction vector up to ℓ = 2. The BN symbolizes the equivariant batch normalization. The
orders of the output are restricted to a maximum of ℓ = 1. In addition, ⊗ψab

refers to the spherical
tensor product of irreps with path weights ψab, and all learnable weights are contained in Ψ, a
dictionary of MLPs with dropout. This process generates scalar and vector representations for each
node, leading to the output feature matrix as described in the following equation:

EGCL(GA,GB) = [out1, out2, . . . , outNA
], (26)

where NA is the number of nodes in GA.

C.1 Baseline Model

Bt stacking EGCLs, at time t, the current perturbed ligand graph is represent as Glig = {H lig, X lig}
and protein residue graph Gp = {Hp, Xp}. The feature matrices are updated by using the EGCLs,
which are shown as follows:

Hp
l =f lp,p(Gl−1

p ,Gl−1
p ) + f lp,lig(Gl−1

p ,Gl−1
lig )

+Hp
l−1,

(27)

H lig
l =f llig,lig(Gl−1

lig ,G
l−1
lig ) + f llig,p(Gl−1

lig ,G
l−1
p )

+H lig
l−1,

(28)
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where the functions f l∗,∗, l = 1, ..., L here are EGCLs. Finally, after obtaining high-quality features
for ligand, these features are utilized to predict the translation, rotation, and torsion vector at current
time t. Translation and rotation can intuitively represent the linear and angular accelerations of the
ligand’s center of mass and the remaining molecular structure, respectively.

Translation and Rotation: The translation and rotation of the ligand are represented as the linear and
angular accelerations, respectively, of its molecular structure. Specifically, we aim to produce two
output vectors, one each for translation and rotation. These vectors are generated by convolution each
ligand atom’s features with the ligand’s center of mass, c. The process is mathematically expressed
as:

v← 1

|Vℓ|
∑
a∈Vℓ

Y (r̂ca)⊗ψca
ha

with ψca = Ψ(µ (rca) ,ha)

(29)

where µ(·) indicates radial basis embeddings of the edge length. The output vector v contains 2 odd
and 2 even vectors (1 single odd and 1 even for translation and another 2 for rotation and they are
summed). These vectors’ magnitudes are fine-tuned using an MLP, which considers their current
magnitudes and sinusoidal embeddings of the time. The final translation and rotation vectors are
adjusted by multiplying by 1/σtr and σrot, respectively.

Torsion: The torsional aspect of ligand movement is defined based on its rotatable bonds. Assuming
there are m rotatable bonds in a ligand, we employ a pseudo-torque layer, akin to the approach in
Jing et al. [34], to predict SE(3)-invariant scalars for each rotatable bond.

For a rotatable bond g = (g0, g1) (g0 and g1 are two nodes on the bond) and node b in the ligand
graph Glig , the vectorial components rgb and r̂gb denote the magnitude and direction connecting bond
g’s center and atom b respectively. A convolutional filter Tg, specific to each bond g, is constructed
using:

Tg(r̂) := Y 2 (r̂g)⊗ Y (r̂) (30)
where ⊗ represents the complete tensor product as detailed in [37], and the second term contains the
spherical harmonics up to ℓ = 1. This filter is then used to convolve with the representations of every
neighbor on a radius graph:

Eτ = {(g, b) | g a rotatable bond, b ∈ Vℓ}
egb = F (µ (rgb)) ∀(g, b) ∈ Eτ

hg =
1

|Ng|
∑
b∈Ng

Tg (r̂gb)⊗γgb hb

with γgb = G (egb,hb,hg0 + hg1)

(31)

Here,Ng = {b | (g, b) ∈ Eτ}, and F andG are MLPs with learnable parameters. Finally, we produce
a single scalar prediction for each bond by using both odd and even representations:

outg = Fout (hg,odd,hg,even) (32)

where Fout is a two-layer MLP with tanh non-linearity and no biases. This is also multiplied by
σtor.

C.2 Force Model

The force model has the same structure with baseline model, with a smaller network size.

D Training & Inference Details with Hyper-parameters

General Settings: Both baseline model and force model employ the AdamW optimizer with a
learning rate of 5e− 5 and weight decay 1e− 4. The learning rate is controlled by cosine annealing
scheduler with minimum lr=1e − 6. During inference, we use the exponential moving average of
weights, updated after each optimization step with a decay factor of 0.999.

For manifold flow matching, we actually randomly perturb x1 to get x0. The rotation vector can be
obtained in the axis-angle parameterization by sampling a unit vector uniformly and random angle
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omega in [0, π] according to the following distribution.

p(ω) =
1− cos(ω)

π
f(ω), (33)

where f(ω) =
∑∞
l=0(2l+1) exp(−l(l+1)σ2

rot,max) sin(ω(l+1/2))/ sin(ω/2). The translation per-
turbation kernel is normal with variance σ2

tr,max and torsion is warped normal with variance σ2
tor,max.

σtr,max = 8.0, σtr,min = 0.1, σrot,max = π/2, σrot,min = π/100, σtor,max = π, σtor,min =
π/100.

D.1 Details for Baseline Flow Matching Model

Objective: The baseline model aims for producing primitive estimation of ligand position.

Training Protocol:

• Training Duration: The model is trained over 2000 epochs on the PDBBind dataset, with a
batch size of 8 and a dropout rate of 0.1.

• Model Architecture: The number of edge length embeddings is set to 64. We employ 5
EGCLs (L = 6), with 60 scalar features (ns) and 12 vector features (nv).

• Inference Process: Pockets are identified based on P2Rank [38]. By initializing ligand
conformations around the pocket, we can sampling ligands via reverse diffusion. The reverse
process is split into 15 time steps.

D.2 Details for Force Model

Training Settings:

• Extended Training: The model involves 400 epochs of training, a batch size of 8, and a
dropout rate of 0.1.

• Model Complexity: The model includes 4 EGCLs (L = 4), with each EGCL having 48
scalar (ns) and 10 vector (nv) features.

• Hyper-parameters: The inverse of the temperature k = 1
10 , η = 1. The number of samples

K for expectation approximation in Eqn.(12) is 40.

(a) Results on vina score. (b) Results on mean RMSD. (c) Results on percentage of
RMSD ≤ 2 and those also pass
the Posebuster test.

Figure 3: Ablation study on η.

Energy function/software details: We run GLIDE, GNINA, and Autodock Vina with their default
settings

• Autodock Vina is a well-established tool. Vina score is computed by following https:
//autodock-vina.readthedocs.io/en/latest/docking_python.html.

• Gnina builds on SMINA by additionally using a learned 3D CNN for scoring. We uses Gnina
v1.3.2 in this work https://github.com/gnina/gnina/releases/tag/v1.3.2. We
used the Vina-style scoring function implemented in gnina as score function in table 1 in
main text. We conduct additional experiments using GNINA’s CNN-based scoring functions
(e.g., CNNscore, CNNaffinity) in table 7.

24

https://autodock-vina.readthedocs.io/en/latest/docking_python.html
https://autodock-vina.readthedocs.io/en/latest/docking_python.html
https://github.com/gnina/gnina/releases/tag/v1.3.2


• ConfScore [10] is computed using version 1.1 https://github.com/gcorso/
DiffDock/releases/download/v1.1/diffdock_models.zip.

• Glide is a strong heavily used commercial docking tool.

• P2Rank v2.3 is used for pocket identification https://github.com/rdk/p2rank/
releases/download/2.3/p2rank_2.3.tar.gz.

E Additional Experimental Results

In this part, addition ablation studies are conducted for hyper parameter tuning. All these experiments
are conducted by using force-guided model with energy function Vina score.

E.1 Number of Samples K for Expectation Estimation

K Percentiles↓ % Below↑
Mean 2Å 5 Å

5 7.5 37.1 62.7
10 7.0 39.5 65.3
20 6.3 41.2 71.3
40 5.3 42.3 72.5
60 5.2 42.9 73.2
80 5.2 43.0 73.5

Table 3: Flexible blind Top-1 self-docking performance. Comparative results on the number of
samples K for expectation estimation.

In this part, for computation efficiency, the model is trained only for 100 epochs. By fixing k = 1
10

and η = 1, we train the force model by setting K ∈ {5, 10, 20, 40, 60, 80}. The results are shown in
Table 3. The metrics evaluated include the mean RMSD and the percentages below specific thresholds.
While K = 80 achieves the best performance across all metrics, the improvements between K = 40
and 80 are negligible compared to the computational cost of increasing K. Considering the balance
between computational efficiency and model performance, K = 40 is selected as the optimal choice.
This value provides a good trade-off, offering near-peak performance with significantly reduced
computation compared to K = 80.

E.2 Guidance Strength

In this part, by fixing k = 1
10 and K = 40, we evaluate the effect of η by setting η = 0.1 to 1.2 with

step 0.1. The results are presented in Figure 3. It can be observe that as η increases up to 1.0, both
the vina score and mean RMSD decrease, the percentage of ligand atomic RMSD less than 2Å, as
well as the proportion of ligands passing the PoseBuster tests, improve. Thus, we choose η = 1.

E.3 Role of P2Rank for Pocket Identification

As noted in prior work [11, 8, 12], predicting binding pockets can significantly reduce the conforma-
tional search space and improve the efficiency and accuracy of docking models. In this work, we
adopt P2Rank to estimate the binding site center and initialize the ligand around it—this aligns with
standard practice in blind docking evaluation.

To ensure a fair comparison and factor out the influence of P2Rank, we conducted additional
experiments. Since FABind [8] and FABind+ [12] incorporate built-in pocket prediction modules,
we added a DiffDock + P2Rank baseline for direct comparison. As shown in the table 4, integrating
P2Rank improves the mean RMSD and centroid distance significantly, with minimal change in the
%RMSD < 2Åmetric—indicating more precise pose sampling near the true binding site, even if the
top-ranked pose isn’t always within the strict 2Åthreshold. More importantly, we find that our method
is robust to small perturbations in the predicted pocket location. To evaluate sensitivity, we injected
Gaussian noise with increasing variance (σ = 1 to 10 Å) into the P2Rank-predicted pocket center
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Table 4: Effect of pocket prediction (P2Rank) on DiffDock (Top-1, PDBBind).

Method Mean RMSD ↓ % RMSD≤2Å ↑ Mean Centroid ↓ % Centroid≤2Å ↑
DiffDock 7.5 38.2 5.5 60.8
DiffDock + P2Rank 5.4 37.6 3.5 67.3

before ligand initialization. As shown below, performance remains stable across all noise levels up to
σ = 5 Å, with only minor degradation at σ = 10 Å, comparable to results without P2Rank at all.

Table 5: Sensitivity to pocket-center noise (Gaussian, σ Å).

Method / Setting Mean RMSD ↓ % RMSD≤2Å ↑ Mean Centroid ↓ % Centroid≤2Å ↑
Ours (no noise) 4.2 41.1 3.1 71.7
σ=1 4.2 41.2 3.0 72.3
σ=2 4.5 41.7 3.1 71.4
σ=3 4.3 41.5 3.1 71.7
σ=5 4.4 41.5 3.2 70.9
σ=10 4.8 39.8 3.8 66.1
w/o P2Rank 4.8 39.4 3.7 66.9

E.4 Post-Minimization Ablation

A critical question whether the improvements from our force-guided framework stem from genuine
integration during generation or could be replicated by post-hoc energy minimization of poses
generated by a standard model. To this end, we conducted a additional ablation experiment, where
we took the top-1 poses generated by both DiffDock (w or w/o force model) and our baseline
model ("Ours"), and applied energy minimization using AutoDock Vina’s local optimizer (without
re-docking). The results are summarized in the table 6. It can be observed that:

• Energy minimization dramatically improves PoseBuster scores, increasing them from
14–24% to over 40%. This confirms that poor physical plausibility is largely due to local
geometric distortions (e.g., clashes, bad bond angles) that minimization can fix.

• However, minimization has limited impact on RMSD — it slightly reduces mean RMSD
but does not significantly improve the percentage of poses below 2Å. In some cases, RMSD
even increases slightly, likely because the minimizer pulls the ligand away from the crystal
pose while optimizing internal energy.

• Combining force-guided generation with minimization yields the best of both worlds: 45.8%
PoseBuster pass rate, significantly outperforming any other combination.

Table 6: Post-hoc Vina minimization on model variants (Top-1, PDBBind).

Method Mean RMSD ↓ % RMSD≤2Å ↑ PoseBuster ↑
DiffDock 7.5 38.2 14.3
DiffDock + Mini 7.0 37.9 40.3
DiffDock + Vina 3.8 43.5 24.6
DiffDock + Vina + Mini 3.9 42.8 42.5

Ours 1.7 41.1 17.5
Ours + Mini 1.8 40.8 43.1
Ours + Vina 1.1 48.6 29.7
Ours + Vina + Mini 1.2 46.2 45.8
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E.5 GNINA scoring function

We have conducted additional experiments on PDBBind testset using CNNscore and CNNaffinity
as the guiding potentials in our force-guided framework. The results are summarized below. This
confirms that our method is not only compatible with classical physics-based scoring but also benefits
from data-driven, deep learning-based energy models that capture complex protein-ligand interaction
patterns.

Table 7: Performance of the force-guided framework using different scoring functions for GNINA.

Method Mean RMSD ↓ % RMSD≤2Å ↑ Mean Centroid ↓ % Centroid≤2Å ↑
GNINA + Affinity 3.1 47.5 2.4 74.3
GNINA + CNNscore 3.2 46.3 2.5 72.9
GNINA + CNNaffinity 3.1 48.6 2.3 75.8

E.6 DockGen Cross-Domain Benchmark

For the generalization assessment, stronger OOD evaluation is desirable. To better assess the
generalizability of our method in a realistic cross-docking scenario, we evaluate our model—trained
solely on the PDBBind dataset—on the DockGen test set. This setup provides a test of cross-domain
generalization. The results are shown as follows in table 8. Our results show that when integrating
our plug-and-play force guidance module with the baseline model, there is a significant improvement
compared to the baseline model on this challenging OOD benchmark. This demonstrates that our
method not only enhances docking accuracy but also improves robustness to structural and functional
shifts across the proteome.

Table 8: DockGen cross-domain evaluation (train: PDBBind only).

Method Mean RMSD ↓ % RMSD≤2Å ↑ Mean Centroid ↓ % Centroid≤2Å ↑
FABind 19.1 1.3 18.1 14.2
FABind+ 18.5 1.5 16.9 16.1

DiffDock 16.2 5.3 14.5 21.4
DiffDock + Vina 12.5 7.1 10.9 25.7
DiffDock + Conf 13.4 6.9 12.5 24.6
DiffDock + Gnina 12.9 7.2 11.2 25.3
DiffDock + Glide 12.6 7.2 11.9 26.6

Ours 14.5 6.5 14.1 23.2
Ours + Vina 12.3 8.1 10.4 26.8
Ours + Conf 12.5 7.9 11.6 25.4
Ours + Gnina 13.1 7.6 12.1 26.9
Ours + Glide 12.2 8.1 10.3 27.8

E.7 Visual Quality Assessment

In Figure 4, we present a comparative visual analysis involving our model with Vina force guidance
(Red), FABind+ (Purple), and the actual Crystal Structure (Green) of ligands for PDBIDs 6oy1 and
6uvv. This side-by-side comparison highlights the positioning accuracy of our model relative to
FABind+.

Notably, although FABind+ achieves similar RMSD performance for 6oy1, the energy of the generated
ligand is extremely high, as indicated by the Vina score. This high energy suggests that the generated
conformation is chemically unstable, a common issue with many DL-based methods that lack
sufficient physical guidance. In contrast, the ligand generated by our force-guided model has a much
lower Vina score, indicating a more stable and physically plausible conformation. As for 6uvv,
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FABind+ generates an incorrect ligand conformation, which further emphasizes the robustness of our
method.

In summary, our model not only demonstrates superior RMSD performance but also generates
ligands that are chemically stable and biologically relevant. These ligands accurately replicate crucial
hydrogen bond interactions with protein residues. This visual assessment clearly highlights the
enhanced precision and adaptability of our model in generating ligands with physical plausibility.

Figure 4: Comparative visualization of generated ligands for PDBIDs 6oy1 and 6uvv, displayed from
left to right. The color coding is as follows: Our model with force guidance (Red), FABind+ (Purple),
and the actual Crystal Structure (Green). RMSDs and Vina scores are provided, highlighting the
precision and accuracy of our method in generating low-energy ligand conformations with improved
physical plausibility.

F Implementing Detail for Training/Inference DiffDock with Energy
Guidance

First of all, it needs to point out that the time index for prior and data distribution for diffusion model
is 1 and 0 while flow matching perform it in the reverse way.

Let p0 (x0 | y) = q0 (x0 | y) e
−kE0(x0,y)

Z . We are able to sampling from p0 by the reverse-time SDE
with the score function:

∇xt log pt (xt,y) = sθ (xt,y, t)− k∇xtEt (xt,y) (34)
where sθ (xt,y, t) denotes the given score model, ∇xt

Et (xt,y) is the intermediate force guidance.
Lemma A.1 provides the precise force function at time t, thereby advancing our understanding of the
intermediate energy function. Thus, similar to ForceFM, an additional force network is proposed to
approximate∇xtEt (xt,y).
Training process. We first employ the given score model to generate ligand candidates from
q0 (x0 | y), which are then used to train an independent intermediate force network hψ(xt,y, t).
For each protein-ligand pair (x0,y), we first sample K ligand conformations x(1:K)

0 ∼ q0 (x0 | y)
and perturb the data at time t according to the forward SDE. We define the intermediate force loss
function Lforce(ψ) as

Ep(t)E(x0,y)

[
||hψ(xt,y, t)−

K∑
i=1

wiζ
(
x
(i)
0 ,xt,y

)
||22

]
, (35)

where wi =
qt
(
xt|x(i)

0 ,y
)
e
−kE0(x(i)

0 ,y)

∑K
j=1 qt

(
xt|x(j)

0 ,y
)
e
−kE0(x(j)

0 ,y)
and ζ

(
x
(i)
0 ,xt,y

)
= ∇xt log qt (xt | y) −

∇xt
log qt

(
xt | x(i)

0 ,y
)

. The latter component of Eqn.(35) signifies the precise value of the in-
termediate force at time t, where ∇xt

log qt (xt | y) is the estimated by the given score model
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Algorithm 2: Training Procedure (Single Epoch) for Force Model
Input :Training pairs {(x0,y)}, score model sθ (xt, y, t), energy E0 (·), intermediate force

network hψ (xt, y, t)
for each x0,y do

t ∼ U(0, 1);
xt ∼ qt (xt | x0); # perturb data
x
(1:K)
0 ∼ q0 (x0 | y);

for i = 1, ...,K do
ζ
(
x
(i)
0 ,xt,y

)
= sθ (xt,y, t)−∇ log qt

(
xt | x(i)

0 ,y
)

;

Y =

∑
i ζ

(
x
(i)
0 , xt, y

)
qt
(
xt|x(i)

0 ,y
)
e
−kE0(x(i)

0 ,y)

∑
i qt

(
xt|x(i)

0 ,y
)
e
−kE0(x(i)

0 ,y)
;

L = ∥hψ (xt, y, t)− Y ∥22;
minψ L.

sθ (xt,y, t) and ∇xt
log qt

(
xt | x(i)

0 ,y
)

is the tractable perturbation kernel on the product space
defined by transition, rotation and torsion. The force-guided training process is summarized in
Algorithm 2
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