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Abstract

Advancements in language modelling over001
the last decade have significantly improved002
downstream tasks such as automated text003
classification. However, deploying such sys-004
tems requires high computational resources005
and extensive training data. Human adults006
can effortlessly perform such tasks with min-007
imal computational overhead and training008
data which prompts research into leverag-009
ing neurocognitive signals such as Electroen-010
cephalography (EEG). We compare Large011
Language Models (LLMs) and EEG fea-012
tures captured during natural reading for013
text classification. Additionally, we intro-014
duce GeNeRTe, a novel state-of-the-art syn-015
thetic EEG generative model. Using only a016
limited amount of data, GeNeRTe learns to017
produce synthetic EEG features for a sen-018
tence through a neural regressor that re-019
solves the relationship between embeddings020
for a sentence and its natural EEG. From021
our experiments, we show that GeNeRTe can022
effectively synthesize EEG features for un-023
seen test sentences with just 236 sentence-024
EEG training pairs. Furthermore, using syn-025
thetic EEG features significantly improves026
text classification performance and reduces027
computation time. Our results emphasize028
the potential of synthetic EEG features, pro-029
viding a viable path to create a new type of030
physiological embedding with lower comput-031
ing requirements and improved model per-032
formance in practical applications.033

1 Introduction034

Text classification serves as the foundation for many035
automated systems that are used every day such036
as categorizing medical documents, filtering harm-037
ful content, generating personalized reports, and038
more. Large improvements in the accuracy of auto-039
mated text classification systems have become possi-040

ble recently due to developments in natural language 041
model architectures including transformers (Vaswani 042
et al., 2017), which have led to large language mod- 043
els (LLMs) that are better at capturing semantic 044
patterns in text. One caveat, however, is that pre- 045
training LLMs requires vast amounts of training 046
text. Even after pre-training, fine-tuning and de- 047
ploying these models in production is very compute 048
intensive and requires resources including GPUs and 049
a high amount of RAM which are not widely avail- 050
able. 051

However, in this current era of deep learning 052
and LLMs, it is worth remembering that an aver- 053
age healthy human adult can easily perform lan- 054
guage tasks using minimal computational resources 055
and without needing to train on vast amounts of 056
data. Recent advancements in electroencephalogra- 057
phy (EEG) and eye-tracking systems have enabled 058
researchers to record brain data while performing 059
reading tasks, which offers a wealth of informa- 060
tion about internal representations of words and lin- 061
guistic structures. For example, Ling et al. (2019) 062
demonstrated how EEG pattern analyses can serve 063
to decode the internal representation of visually pre- 064
sented words in healthy adults with word classifica- 065
tion and image reconstruction from the EEG signal 066
well above chance. 067

However, whilst research in this area has shown 068
the power of EEG and other cognitive features, their 069
practical application within NLP tasks has been less 070
studied. The requirement to have humans read the 071
text in order to generate cognitive features for clas- 072
sification, seems to negate the utility in most auto- 073
mated text-processing applications. There has been 074
work (Hollenstein et al., 2019) combining word-level 075
EEG features with static word embeddings. How- 076
ever, such word-based models are no longer com- 077
petitive with LLMs which employ contextualised 078
word embeddings. Thus, the challenge becomes how 079
to effectively generate context-sensitive EEG fea- 080
tures without requiring the collection of human brain 081
data at test-time. Here, we compare EEG features 082
recorded during natural reading with LLM embed- 083
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dings in a text classification setting and explore the084
extent to which information contained within EEG085
features can be synthetically generated and then086
used in text classification tasks.087

Our contributions are fourfold. First, we investi-088
gate and compare a Large Language Model (BERT)089
against EEG features collected from subjects during090
natural reading for the task of text classification.091
Second, we propose a novel state-of-the-art syn-092
thetic EEG generative model, GeNeRTe, that learns093
to output EEG features for a sentence by regress-094
ing between its sentence embeddings and its natural095
EEG. Our results show that GeNeRTe can produce096
good quality synthetic EEG from just 236 training097
sentence-EEG pairs. Third, we generate synthetic098
EEG for an unseen test set and compare its perfor-099
mance with baseline BERT, achieving significantly100
higher scores on the classification task. Fourth, we101
test our generative model on a separate benchmark102
dataset and demonstrate its superior performance to103
baseline BERT.104

2 Background and Related Work105

In this section, we first discuss text classification106
using word embedding methods (Section 2.1). We107
then explore what EEG features mean for language108
comprehension (Section 2.2). Finally, we discuss109
the studies that have incorporated cognitive features110
with NLP models and studies that have proposed111
models to generate synthetic cognitive features in112
Sections 2.3 and 2.4.113

2.1 Word Embeddings for Text114
Classification115

The foundation of modern LLMs are word embed-116
dings. Word embeddings are n-dimensional vector117
representations of words which form a vector (or se-118
mantic) space with the property that words which119
are close together are typically similar in meaning.120
Static (or non-contextual) word embeddings were121
first popularised by Word2Vec (Mikolov et al., 2013)122
and GloVe (Pennington et al., 2014). Whilst the op-123
erational mechanisms are different, the underlying124
principle in both is one of distributional similarity:125
words are considered similar if they have similar co-126
occurrences. Word embeddings are trained on very127
large text corpora to learn meaning from context but128
they are non-contextual in the sense that each word129
in the vocabulary has a single static embedding inde-130
pendent of its use in a particular sentence or context.131
Static word embeddings have been much employed132
in text classification systems e.g., Wang et al. (2020).133

Devlin et al. (2019) introduced Bidirectional En-134
coder Representation from Transformers (BERT)135

which is a Transformer-based encoder. BERT uses 136
stacked encoders and a self-attention mechanism to 137
learn contextualised embeddings, where each usage 138
of a word has a different embedding dependent on 139
the context. One of the reasons for the success 140
of BERT, and subsequent LLMs, is the successful 141
application of transfer learning. These models are 142
pre-trained to carry out general language modelling 143
tasks (e.g., Masked Language Modelling and Next 144
Sentence Prediction) on vast amounts of unanno- 145
tated language data. The representations learnt dur- 146
ing pre-training are then utilised in the subsequent 147
task-specific fine-tuning. BERT-based approaches 148
have been hugely popular and successful in text clas- 149
sification, and still provide one of the best baseline 150
models, achieving a very high accuracy (González- 151
Carvajal and Garrido-Merchán, 2021). 152

2.2 Analyzing language comprehension 153
through EEG. 154

Physiological processes recorded from the brain are 155
studied using specific frequency bands or brain os- 156
cillations/waves named using the Greek alphabet: 157
delta, theta, alpha, beta, and gamma. It is well- 158
known that these oscillations vary depending on the 159
tasks performed. For language, the brain requires at- 160
tention, memory, and comprehension (syntactic and 161
semantic). Williams et al. (2019) suggest that theta 162
activity increases when focusing attention on a cur- 163
rent task involving short-term memory and Basti- 164
aansen et al. (2002) suggested an increase in theta 165
activity during real-time language comprehension. 166
Klimesch (2012) reports the involvement of alpha- 167
band activity during temporal attention which is an 168
important aspect of language comprehension. Beta- 169
band has been associated with more complex linguis- 170
tic functions such as semantic retrieval of lexicons, 171
parsing sequences, and generating correct sentences 172
Weiss and Mueller (2012). Lastly, Prystauka and 173
Lewis (2019) also suggests that gamma-band activ- 174
ity is sensitive to semantic manipulations and factual 175
inconsistencies. 176

The N400 response in the brain was discovered 177
in the 1980s as an indicator of reading comprehen- 178
sion and linguistic manipulations (Holcomb, 1993). 179
N400 is a late event-related potential that manifests 180
around 400ms after the event as a negative peak. 181
Grabner et al. (2007) report theta-band response 182
around 200-600ms after a linguistic stimulus such as 183
word presentation, including alpha, and beta-band 184
inhibition 200-400ms after the stimulus. The in- 185
crease in the gamma-band activity due to factually 186
incorrect stimulus was also around 400-600ms after 187
the stimulus (Prystauka and Lewis, 2019). 188
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2.3 Augmenting NLP models with189
cognitive features190

The Zurich cognitive corpus (ZuCo) (Hollenstein191
et al., 2018) dataset contains EEG and eye-tracking192
recordings from 12 subjects performing natural read-193
ing tasks. Hollenstein et al. (2019) proposed inte-194
grating the cognitive features from ZuCO with the195
neural-network based relation classification system196
of Rotsztejn et al. (2018). Specifically, they find197
that combining word-level EEG features from ZuCo198
dataset with word embeddings from GloVe (Pen-199
nington et al., 2014) as input to the relation clas-200
sification model increases performance. They also201
proposed a method to generate a dictionary of word-202
level EEG features that can be used with datasets203
that do not provide any cognitive features to address204
the problem of not having EEG at test time.205

In later work, Hollenstein et al. (2021) showed the206
advantage of using EEG features with contextual207
BERT embeddings. They first use BERT embed-208
dings as input to a bi-LSTM model while keeping the209
BERT parameters trainable as the baseline. Second,210
they experiment with two approaches to decode the211
EEG features by using bi-LSTM and an inception212
Convolution Neural Network that uses multiple fil-213
ters of different lengths to extract features from the214
EEG data (Szegedy et al., 2015). They then concate-215
nate the output of the EEG decoder to the output216
of the BERT bi-LSTM to be passed to the classifier.217
This setup relies on the classifier being able to effec-218
tively learn the decoded EEG and the text represen-219
tations. The complexity of this setup may increase220
training time and add additional parameters on top221
of the large language model. Moreover, their setup222
requires cognitive features at test time which is not223
suitable for other datasets and real-world use.224

Ren and Xiong (2023) proposed CogAlign. They225
first train two individual Bi-LSTM encoders to learn226
task specific modalities using ZuCo cognitive fea-227
tures and word-level textual features from GloVe228
Pennington et al. (2014). Then they use a shared en-229
coder with a modality discriminator to jointly learn230
cognitive and textual inputs in combination with231
the separate encoders. This shared encoder aligns232
both the representations by minimizing on the ad-233
versarial loss between them. Hence, at inference,234
they have the option only to use the textual input235
with transfer learning and obtain a joint textual-236
cognitive representation from the shared encoder for237
datasets having no cognitive features for the same238
task. While they show performance increases over239
previous methods, the use of non-contextual embed-240
dings with the EEG features could be hampering241
the joint representations obtained from the shared242

encoder. 243

2.4 Generating synthetic cognitive features 244

Bolliger et al. (2023) proposed ScanDL, a model 245
for generating synthetic eye-tracking data for texts. 246
They train a diffusion model to predict gaze data 247
on text. They convert word indices and their 248
natural fixation sequence to embeddings and the 249
model learns to reconstruct the natural fixation se- 250
quence using a diffusion process that introduces 251
noise in the word index embeddings and then re- 252
solves that noise to get the original index embedding. 253
They show improvement over previous state-of-the- 254
art synthetic eye-tracking data generation Eyetten- 255
tion (Deng et al., 2023a). Deng et al. (2023b) use 256
Eyettention to enhance BERT, rearranging the input 257
token embeddings according to the predicted gaze 258
fixations for a sentiment classification task. 259

We are not aware of any prior work generat- 260
ing synthetic EEG features and examining whether 261
EEG alone is useful for downstream NLP tasks. 262
This setup can potentially provide cognitive features 263
closer to ground truth rather than a soft represen- 264
tation of those features. This would mean that 265
LLMs won’t be required during training time for 266
downstream tasks, and we can potentially shift away 267
from requiring huge amounts of computational re- 268
sources for fine-tuning and deploying LLMs by cre- 269
ating EEG or physiological embeddings for various 270
tasks. Hence, we not only address the potential is- 271
sues from related work through our proposed gen- 272
erative model, but we also provide a novel solution 273
to further bridge the gap between cognitive sciences 274
and NLP. Moreover, it opens new opportunities to 275
develop human cognition-inspired models that can 276
co-relate better with human comprehension of lan- 277
guage thereby creating language models that gener- 278
alize like humans from a moderate amount of data. 279

3 Dataset and Feature Modelling 280

As discussed in Section 2.3, the Zurich cognitive cor- 281
pus (ZuCo) (Hollenstein et al., 2018) dataset con- 282
tains EEG and eye-tracking recordings from 12 sub- 283
jects performing natural reading tasks. Here, we 284
focus on the relation classification task. The sen- 285
tences for the relation classification task were cho- 286
sen from the Wikipedia relation extraction dataset 287
which has 1110 paragraphs mentioning 4681 rela- 288
tions in 53 relation types. The authors of ZuCo 289
selected approximately 40 sentences for each of 8 re- 290
lation types (award, education, job title, political af- 291
filiation, wife, visited, nationality, and founder) and 292
presented these to the subjects. 293
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Subjects had to report whether a relation type was294
present for each sentence and there were 72 control295
sentences in the mix that did not have any relation296
type to check if there is actual comprehension of the297
sentences. Before starting the experiment, they had298
a practice round to familiarize themselves with the299
control and the stimuli. The instructions were pre-300
sented as follows (Hollenstein et al., 2018):301

AWARD; while reading the following sentences302
please watch out for the relation between a person303
or their work and the award they/it received or were304
nominated for.305

Task instruction “Please read the following sen-306
tences. After you read each sentence, answer the307
question below. Press 6 when you are ready.”308

Example sentence: “She won a Nobel Prize in309
1911”310

“Does this sentence contain the award relation?311
[1] = Yes, [2] = No”312

3.1 Electroencephalography (EEG)313

The EEG data was recorded with a 128-channel non-314
invasive electrode system from Electrical Geodesics.315
The data was recorded with a sampling rate of 500Hz316
and filtered to retain wave frequency between 0.1 –317
100Hz using the band pass filtering method. Out318
of the 128 channels, 105 were used for recording319
the scalp, 9 were used as electrooculography (EOG)320
channels for artifact removal (e.g., eye-blinks) and321
the rest of the channels that were placed on the322
neck and the face were discarded as they did not323
provide any essential data for processing. The ar-324
tifacts were identified using MARA (Multiple Arti-325
fact Rejection Algorithm) which is an open-source326
plug-in for an effective supervised machine learning327
algorithm that analyses the EEG data so that the328
artifacts can be automatically rejected. Figure 3 in329
Appendix A shows the example of the raw EEG data330
and the pre-processed EEG data for a sentence.331

To extract word-level EEG features, the EEG332
and eye-tracking data were synchronized by identi-333
fying shared events using the “EYE EEG extension”334
(Winkler et al., 2014) that can time lock the EEG335
data to the onset of eye fixations. The EEG features336
are spread across multiple frequency bands with each337
band serving its own cognitive function as discussed338
earlier. A total of 8 bands were identified and the339
data was band-pass filtered to get theta1 (t1: 4-6Hz),340
theta2 (t2: 6.5-8Hz), alpha1 (a1: 8.5-10Hz), alpha2341
(a2: 10.5-13Hz), beta1 (b1: 13.5-18Hz), beta2 (b2:342
18.5-30Hz), gamma1 (g1: 30.5-40Hz), and gamma2343
(g2: 40-49.5Hz) frequencies. The final EEG features344
are power measures for each of these frequency bands345

in 105 channels that are the electrodes placed on the 346
scalp. The power measurement of the EEG signals 347
indicates the total activity in each frequency band 348
per channel (Xiao et al., 2018). The authors used 349
Hilbert transformation to estimate the amplitude 350
and phase for each frequency band which was cru- 351
cial for identifying fixation segments in eye-tracking 352
data. For the sentence-level EEG features, they cal- 353
culated the power of each frequency band over the 354
full spectrum in 105 channels. This results in word- 355
level EEG features: 8×5× 105-dimensional vectors1 356
for each fixated word; and sentence-level EEG fea- 357
tures: 8 × 105-dimensional vectors for each full sen- 358
tence. 359

The EEG features for some sentences are not avail- 360
able for multiple subjects. Hence, for our model, 361
we chose one of the highest scoring subjects with 362
the most complete data following Hollenstein et al. 363
(2019) who suggested that single-subject models per- 364
formed slightly better than taking average across 365
subjects. We first take the mean of 8 × 105 dimen- 366
sional sentence EEG features. Each frequency band 367
reflects a comprehension state of language as dis- 368
cussed in Section 2.2. Hence, this mean provides 369
the full comprehension data from all the frequency 370
bands allowing us to compile a final 105-dimensional 371
sentence EEG. We then pre-process the sentences 372
by lowercasing and removing punctuations and nor- 373
malize the final sentence EEG features between 0-1 374
scaled by 1000x. The final dataset consists of nor- 375
malized sentences, mean of the sentence EEG fea- 376
tures in 8 frequency bands, and one of the 8 rela- 377
tion types of each sentence. Finally, we divide the 378
dataset into training and testing set with 80-20 split 379
and make sure that the test data does not contain 380
any repetition of training data. 381

3.2 EEG Features Across Subjects and 382
Relation Types: 383

The task specific reading experiment setup in ZuCo 384
is particularly interesting as the authors instruct 385
the subjects to look for a specific relation type in 386
a sentence while recording EEG data. Wehbe et al. 387
(2014a) recorded fMRI data from subjects while they 388
read stories. They showed how neural representa- 389
tions can have distinct signatures for different stories 390
that can be classified with high accuracy. Following 391
this, we speculate that since the subjects were shown 392
the relation type to look for before the sentence was 393
presented, the EEG features recorded when reading 394
that sentence amplified the signature for its relation 395
type which might lead to distinct patterns of EEG 396
features. 397

1#frequency bands = 8, #gaze features = 5
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To test the above hypothesis, we create a func-398
tion that groups the final sentence EEGs into their399
respective relation types resulting in 8 groups of sen-400
tence EEGs. We then take the mean of the sentence401
EEGs within each group to get the average sentence402
EEG features per relation type. Now, we can com-403
pare if the mean EEG features for each relation type404
show a unique pattern. We perform an Analysis of405
Variance (ANOVA) test to check if the mean EEG406
features across the different relation types are signif-407
icantly different. Figure 1 shows the average EEG408
features per relation type for the best subject with409
the most complete data.410

We can observe from Figure 1 that the EEG fea-411
tures for different relation types are clearly unique.412
This is further corroborated through the ANOVA413
test with the p-values well below 0.05 affirming that414
EEG patterns vary significantly across different re-415
lation types. This behavior is replicated for other416
subjects (See Figure 4 in Appendix B). Wehbe et al.417
(2014b) showed how word embeddings produced by418
recurrent neural networks can be aligned with word419
level brain activity recorded via Magnetoencephalog-420
raphy (MEG) while subjects read stories. Hence, in421
theory, these well separated sentence EEG features422
should lay a strong foundation for classification and423
regression modelling. The models should be able to424
efficiently learn the relationships between the sen-425
tence EEG features, sentence embeddings, and their426
relation types by aligning their unique patterns.427

4 Synthetic EEG features428

We propose GeNeRTe, an Encoder-Regressive Gen-429
erator model that can produce synthetic EEG fea-430
tures for any sentence. We employ this model along431
with a random forest classifier for text classification.432
Figure 2 shows the model architecture.433

Encoder-Regressive Generator: The core of434
our model is a deep neural regressor. The regres-435
sor outputs a 105-dimensional vector in line with436
the natural EEG features provided in ZuCo. The437
training process consists of two parts. First, we use438
a language model (BERT-base2 in this case) as the439
encoder to extract word embeddings for the ZuCo440
sentences and create a lookup table where we store441
these embeddings as static objects to be used later442
for training the model. The sentence embedding is443
the mean of the last hidden state of BERT for all444
tokens. Then, the model trains to resolve the rela-445
tionship between the sentence and its natural EEG446
by taking as input the static sentence embeddings447

2Other ‘larger’ flavours of BERT can potentially fur-
ther increase the performance.

and generating the EEG features. During training, 448
the regressor backpropagates over the neural net- 449
work and adjusts its parameters to essentially dis- 450
cern patterns of similarity between the sentence and 451
its natural EEG. Our model consists of three hidden 452
layers containing dropouts to randomly set a fraction 453
of hidden layer nodes to 0 and batch-normalization 454
to prevent overfitting. The forward pass uses ReLU 455
activation. Given an input sentence embedding vec- 456
tor X ∈ RI where I is the dimension of the em- 457
bedding, the synthetic EEG can be generated using 458
F(X): 459

F (X) = L4 ◦ D3 ◦ δ ◦ BN3 ◦ L3 ◦ D2 ◦ δ ◦ BN2 ◦ 460
L2 ◦D1 ◦ δ ◦BN1 ◦ L1(X) 461

where ◦ denotes composition of functions, 462
Li, Di, BNi for i = 1, 2, 3, 4 denote fully connected 463
layers, dropout, and batch normalization respec- 464
tively and δ denotes the ReLU activation. 465

GeNeRTe can produce synthetic EEG features 466
for sentences resembling ZuCo relation extraction 467
classes, removing the need for natural EEG during 468
testing for real-world use. To test if it can maintain 469
the same distinct patterns for relation classes, we 470
performed the same ANOVA analysis as discussed 471
in Section 3.2. Please refer to Figure 5 and 6 in 472
Appendix B). 473

Classifier: We use a Random Forest classifier 474
along with the synthetic EEG generator to imple- 475
ment the relation classification task. We first setup 476
a parameter distribution dictionary that covers var- 477
ious permutations of hyperparameters, then we use 478
RandomSearchCV with 5-fold cross validation to 479
find the best performing parameters. The classifier 480
takes EEG features as input and classifies it to a re- 481
lation class. Hence, this setup uses only EEG data 482
for text classification thereby eliminating the need 483
for fine-tuning LLMs and word embeddings. 484

5 Experiments 485

There are a total of 236 training samples and 60 486
test samples in the ZuCo dataset that we use in this 487
research. Each sentence is assigned one of the 8 re- 488
lation classes. 489

Relation classification baseline: We fine tune 490
pre-trained BERT-base on the ZuCo dataset as the 491
baseline. We initialize a Trainer class from the trans- 492
formers library3 with the Adam optimizer and use 493
Cross-Entropy Loss to train the model for 15 epochs. 494
We keep BERT parameters trainable so that the 495
model can learn to predict the relation class given 496
the sentence and update itself. 497

3https://huggingface.co/docs/transformers
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Figure 1: Average EEG features per relation type: The graphs illustrate group mean EEG features
across eight relation types. The Y-axis denotes the EEG values. X-axis denotes the vector range (105-
dimensions). ANOVA test results show p-values for the subject below the X-axis. The P-value for the
subject is below 0.05 indicating statistical significance.

Figure 2: GeNeRTe and Classifier Architecture: GeNeRTe is shown within the blue box consisting of
the Encoder-Regressive Generator. Encoder outputs are stored in the embedding lookup table and queried
during regressor training and generation. Input EEG features for the random classifier training can be
natural EEG or synthetic EEG depending on the experiment setup.

Relation classification GeNeRTe-Classifier:498
For our proposed model, we setup the experiments in499
two phases. First, we train our Encoder-Regressive500
Generator model on the ZuCo training set. We use501
Mean Squared Error Loss and a custom loss function502
combining Cosine Loss and MSE along with Adam503
optimizer and train the model for 300 epochs. We504
then generate synthetic EEG features for the unseen505
ZuCo test set. In the second phase, we use the ran-506
dom forest classifier with the best hyperparameters507
given by the RandomSearchCV process for the rela-508
tion classification task. The classifier takes in EEG509
features as input and classifies those features into a510

relation class. We run the following experiments: 511

1. Training and testing with natural EEG: 512
As the ZuCo dataset contains natural EEG for 513
the sentences, we have the availability of EEG 514
features at test time. Hence, we can train and 515
test the random forest classifier with natural 516
EEG features to evaluate the performance stan- 517
dard. 518

2. Training with natural EEG and testing 519
with synthetic EEG: This test informs us 520
about the generalization capabilities of the gen- 521
erative model and the nature of the synthetic 522
data. The synthetic EEG features for the test 523

6



sentences should maintain the general direction524
and magnitude of its relation type learned from525
the training set.526

3. Training and testing with synthetic EEG:527
This test is crucial to eliminate the requirement528
of natural EEG completely. This test also in-529
forms us about the compatibility of synthetic530
EEG features with itself when used for both531
training and testing.532

Wikipedia Benchmark: The final test is to533
check if the generative model can perform well on534
a completely new dataset. We compile a benchmark535
dataset with sentences and their relation classes from536
Culotta et al. (2006). We use the same relations537
classes as the ZuCo dataset. There are a total of 900538
training samples in the benchmark training and 225539
testing samples in the benchmark testing dataset.540
Both the training and testing samples do not have541
any EEG data associated with it hence, we use our542
generative model to generate synthetic EEG features543
for both sets. First, we fine-tune BERT-base on the544
benchmark training set. The input to the BERT545
model is the sentence and the model classifies the546
sentences into their relation classes and updates its547
parameters based on the prediction error. Then we548
use the fine-tuned BERT model to predict the un-549
seen test set and report the performance metrics and550
computation costs. We compare this to our gener-551
ative model by training our random forest classifier552
with the synthetic EEG on the training set and mak-553
ing predictions on the unseen synthetic EEG features554
on the test set and report the same performance met-555
rics and computation costs.556

6 Results557

Computation Costs: One of the prime foci of this558
research is to reduce the computation cost of training559
and setting up inference on LLMs. Fast and efficient560
training of LLMs requires GPUs that might not be561
accessible to everyone. Even with GPUs, the com-562
putation time is not modest. Our proposed model563
avoids the computation costs of BERT. Even com-564
bining the training and generation time of the syn-565
thetic EEG model (which needs to be trained only566
once) and the train and test random forest classi-567
fier is significantly faster than fine-tuning BERT on568
the same GPU. Table 1 shows the computation times569
for the experiments. It can be observed from Table 1570
that the complete process of training the generator,571
generating the synthetic EEG, and training-testing572
(5-fold) on the random forest classifier is 56.57 sec-573
onds whereas fine-tuning and testing using BERT574
(5-fold) is 23.2 minutes.575

Task Duration (seconds)

ZuCo Benchmark

GeNeRTe
- Generator Training 55 55
- Generate synthetic EEG 0.5 1.07

Random Forest Classifier (RF)
- Train-Test 0.98 3.24

BERT
- Train/Test 1392 6540

Table 1: Computation time for GeNeRTe-Random
Forest Classifier vs Fine-tuning BERT on a Tesla
T4 GPU.

In addition to the significantly lower computa- 576
tional costs, our proposed model achieves remark- 577
able performance increase over baseline BERT. We 578
have three baselines. First is utilizing BERT em- 579
beddings in a neural network, the second, applying 580
BERT embeddings in the same RF model as GeN- 581
eRTe and the third, utilizing TF-IDF vectors again 582
in the RF model as GeNeRTe for consistency. Table 583
2 shows the performance for the experiments. Train- 584
ing and testing on natural EEG features provided 585
in ZuCo gives an F1-Score of 94.36%. This shows 586
the raw capability of the natural sentence EEG fea- 587
tures. Our proposed model is able to maintain the 588
general characteristics of the natural EEG data very 589
well which is evident from the second experiment i.e. 590
training on natural EEG and testing on synthetic 591
EEG. This informs the generalization capability of 592
our regressive model that can correlate well between 593
word embeddings and natural EEG. Results for the 594
third experiment shows that the synthetic EEG fea- 595
tures are compatible with itself when used in both 596
training and testing sets. This again shows that the 597
regressive generator does a great job of maintaining 598
the patterns of the EEG data. We also note that our 599
model performs just 4.5% shy of the human subject. 600
On the other hand, low performance of BERT clas- 601
sification might stem from sentences in the dataset 602
which could point to multiple relation types. 603

It is evident from the above experiments that 604
using only EEG for text classification outperforms 605
LLMs like BERT and the benchmarking experiment 606
further corroborates those findings. The benchmark 607
dataset is a separate and new dataset with no EEG 608
features associated with it. We generated synthetic 609
EEG features for both training and testing sets and 610
the classifier replicates the success of our third ZuCo 611
based experiment which is training and testing with 612
synthetic EEG data. Table 3 shows the results of the 613
benchmark dataset. We ran the benchmark exper- 614
iment for 5-folds for both BERT and the Random 615
Forest Classifier. Our model shows a notable in- 616
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Model Accuracy Precision Recall F1
Human Subject (ZJM) 0.9656 - - -
Baseline BERT 0.7266 0.7435 0.7266 0.7181
Baseline BERT Random Forest 0.7336 0.7319 0.7336 0.7190
Baseline TF-IDF Random Forest 0.5636 0.5361 0.5636 0.5184
Hollenstein et al. (2019) - 0.683 0.648 0.651
Ren & Xiong (2023) - 77.94 82.60 78.66
Random Forest (Train/Test on Natural EEG) 0.9436 0.9459 0.9436 0.9438
GeNeRTe Random Forest (Train on Natural/Test on Synthetic EEG) 0.9373 0.9388 0.9373 0.9371
GeNeRTe Random Forest (Train/Test on Synthetic EEG) 0.9191 0.9277 0.9191 0.9207

Table 2: Experiment results (5-fold) for task-specific relation classification. Input to the RF classifier are
Natural EEG features and synthetic EEG features generated by the Encoder-Regressive model. We report
Accuracy, Precision, Recall, and F1.

Model Accuracy Precision Recall F1
Baseline BERT 0.7306 0.7133 0.7306 0.7188
Baseline BERT Random Forest 0.7378 0.7291 0.7378 0.7253
Baseline TF-IDF Random Forest 0.5200 0.5265 0.5200 0.4467
GeNeRTe Random Forest (Train/Test on Synthetic EEG) 0.7511 0.7453 0.7511 0.7440

Table 3: Benchmark result comparison (5-fold) BERT vs GeNeRTe-RFClassifier. Input to the RF classifier
are synthetic features generated by the Encoder-Regressive model.

crease in performance by 2-3% over baseline BERT.617

7 Discussions and Conclusions618

With this paper, we address our research goals to de-619
velop models that may generalize like humans with620
low data and computational resources using cogni-621
tive features. We investigated whether EEG only622
could perform better than LLMs for downstream623
NLP tasks. For this, we proposed a novel Encoder-624
Regressive generator model GeNeRTe which pro-625
duces synthetic EEG data for a given sentence and626
we compare it with BERT in a text classification627
task. We trained GeNeRTe on the task specific read-628
ing dataset from ZuCo and performed three experi-629
ments to determine performance standard, general-630
ization capability, and self-compatibility of the syn-631
thetic EEG features produced by the model. We632
chose text classification for the experiment setup633
in ZuCo hypothesizing that unique patterns could634
emerge for each relation type when subjects read635
the sentences. Text classification systems that use636
BERT models are deployed in many real-world sys-637
tems which is why it is a strong baseline. De-638
spite pre-training on a huge dataset, BERT per-639
forms poorly as one sentence can relate to multiple640
classes which is accounted for in the natural EEG641
features. Our model performance significantly ex-642
ceeded the previous methods and the baseline by643
up to 30% on the unseen ZuCo test set. Further-644
more, our model surpassed the baseline by 3% on the645
benchmark dataset (without any cognitive features)646
achieving overall state-of-the-art performance.647

All our findings support the hypothesis that EEG 648
features alone are beneficial for downstream NLP 649
tasks. Specifically, the experiment setup of task- 650
specific reading in ZuCo produces EEG features that 651
generalize across participants in terms of emergent 652
comprehension patterns for relation classes. It is im- 653
portant to note that LLMs like BERT encode the 654
semantic and syntactic patterns of language quite 655
well, which is why our Regressive generator was able 656
to learn the relationship between the word embed- 657
dings and its natural EEG. Most importantly, the 658
synthetic features produced by our generative model 659
naturally exhibit the same comprehension patterns 660
for relation classes as its human subject, which is 661
very interesting. While there is no requirement for 662
word embeddings during classification, they are im- 663
portant to train GeNeRTe. This setup could lead 664
to new physiological embeddings with low compu- 665
tational needs, performing close to human subjects. 666
Our research addresses the major drawback of re- 667
quiring EEG features at test time and in real-world 668
use, as it is not possible to conduct EEG data col- 669
lection experiments at scale. With just a few sam- 670
ples, our model generates good quality synthetic fea- 671
tures which can generalize over similar datasets as 672
evident from our benchmark results. Our research 673
opens new possibilities to model patterns of brain 674
activity with applications in NLP. It is our hope 675
that with further research, physiological embeddings 676
could replace word embeddings in many tasks includ- 677
ing syntactic and semantic analysis, sentence simi- 678
larity, paraphrasing, and summarization. 679
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8 Limitations680

While our research shows promising results for the681
application of synthetic EEG in NLP, there are cer-682
tain limitations. First, without any changes, our683
method for text classification might not be entirely684
applicable to other NLP problems. Second, our685
model is specific to relation classification experi-686
ment of ZuCo since only that experiment setup687
provided the distinct EEG signatures necessary to688
build a good synthetic EEG generator. Third, be-689
cause our model depends on task-specific datasets690
the experimentation strategies described in relation-691
classificaiton experiment in ZuCo must be used to692
obtain comparable findings for other downstream693
tasks. Fourth, even though our model only needs694
a small amount of training data, scalability is un-695
certain because not everyone has access to EEG696
recording technology. Ultimately, additional vali-697
dation and analysis of artificial EEG features is re-698
quired for NLP through various downstream tasks.699
We acknowledge that our work is prohibitive in the700
sense that similar experiments to ZuCo needs to be701
conducted to replicate our findings in other down-702
stream tasks and datasets. However, the results are703
encouraging and motivates the use case of build-704
ing a database of domain-expert EEG recordings for705
downstream tasks. We hope to address some of these706
limitations in our future work, as they are critical to707
improving the practical usability of EEG-based NLP708
models.709
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fer, and L. A. Jäger. 2023a. Eyettention: An 732
attention-based dual-sequence model for predict- 733
ing human scanpaths during reading. Proceed- 734
ings of the ACM on Human-Computer Interac- 735
tion, 7(ETRA):1–24. 736

Jacob Devlin, Ming-Wei Chang, Kenton Lee, 737
Google, and Artificial Language. 2019. Bert: Pre- 738
training of deep bidirectional transformers for lan- 739
guage understanding. In Proceedings of the 2019 740
Conference of the North American Chapter of the 741
Association for Computational Linguistics: Hu- 742
man Language Technologies, pages 4171–4186. 743
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Figure 3: Raw and Pre-processed EEG data for an example sentence (Hollenstein et al., 2018):
(A) shows the raw EEG data, (B) shows the pre-processed EEG data. The y-axis shows the brain regions
where electrodes were placed. F=frontal, FP=pre-frontal, C=central, T=temporal, P=parietal, O=occipital.
The x-axis shows the time.
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Figure 4: Average EEG features per relation type: The graphs illustrate group mean EEG features
across eight relation types. Y-axis denotes the EEG values. X-axis denotes the vector range (105-dimensions).
ANOVA test results show p-values for each subject below the X-axis. P-value for each subject is below 0.05
indicating statistical significance.
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Synthetic EEG features generated by our model also show distinct patterns for each relation type which is
corroborated by the ANOVA test giving a statistically significant result.

Figure 5: Average EEG features per relation type: The graph illustrates group mean EEG features
across eight relation types as prodced by GeNeRTe for the ZuCo dataset. Y-axis denotes the EEG values.
X-axis denotes the vector range (105-dimensions). ANOVA test results show p-values for each subject below
the X-axis. P-value for each subject is below 0.05 indicating statistical significance.

Figure 6: Average EEG features per relation type: The graph illustrates group mean EEG features
across eight relation types as prodced by GeNeRTe for the Benchmark dataset. Y-axis denotes the EEG
values. X-axis denotes the vector range (105-dimensions). ANOVA test results show p-values for each subject
below the X-axis. P-value for each subject is below 0.05 indicating statistical significance.
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