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Abstract

We explore the problem of imitation learning (IL) in the context of mean-field
games (MFGs), where the goal is to imitate the behavior of a population of agents
following a Nash equilibrium policy according to some unknown payoff function.
IL in MFGs presents new challenges compared to single-agent IL, particularly
when both the reward function and the transition kernel depend on the population
distribution. In this paper, departing from the existing literature on IL for MFGs, we
introduce a new solution concept called the Nash imitation gap. Then we show that
when only the reward depends on the population distribution, IL in MFGs can be
reduced to single-agent IL with similar guarantees. However, when the dynamics is
population-dependent, we provide a novel upper-bound that suggests IL is harder in
this setting. To address this issue, we propose a new adversarial formulation where
the reinforcement learning problem is replaced by a mean-field control (MFC)
problem, suggesting progress in IL within MFGs may have to build upon MFC.

1 Introduction

Imitation learning (IL) is a popular framework involving an apprentice agent who learns to imitate the
behavior of an expert agent by observing its actions and transitions. In the context of mean-field games
(MFGs), IL is used to learn a policy that imitates the behavior of a population of infinitely-many expert
agents that are following a Nash equilibrium policy, according to some unknown payoff function.
Mean-field games are an approximation introduced to simplify the analysis of games with a large
(but finite) number of identical players, where we can look at the interaction between a representative
infinitesimal player and a term capturing the population’s behavior. The MFG framework enables
to scale to an infinite number of agents, where both the reward and the transition are population-
dependent. The aim is to learn effective policies that can effectively learn and imitate the behavior
of a large population of agents, which is a crucial problem in many real-world applications, such as
traffic management [12, 30, 31], crowd control [11, 1], and financial markets [6, 5].

IL in MFGs presents new challenges compared to single-agent IL, as both the (unknown) reward
function and the transition kernel can depend on the population distribution. Furthermore, algorithms
will depend on whether we can only observe the trajectories drawn from the Nash Equilibrium (NE)
or if we can access the MFG itself, either driven by the expert population or the imitating one.

The main question we address is whether IL in MFGs is actually harder than IL in single-agent
settings and if we can use single-agent techniques to solve IL in the MFGs framework.

Although there exist IL algorithms for MFGs in the literature, none comes with a characterization of
the quality of the learnt imitation policy. So as to compare algorithms on a rational basis, we provide
an extension of the concept of imitation gap to this setting and study it. Our contributions are:
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•We provide a commented review of the existing literature on IL for MFGs. Notably, we will explain
that they essentially amount to a reduction to classic IL, and explain the underlying possible issues.

•We introduce a new solution concept for IL in MFGs called Nash imitation gap, which is a strict
generalization of the classic imitation gap and that we think may be more widely applicable to
Multi-agent Reinforcement Learning (MARL).

• In light of this new criterion, we first study the setting where only the reward depends on the
population’s distribution, while the dynamics does not. This setting was largely studied in the past
few years [16, 4, 1, 14, 22], and we show that in this case IL in MFGs reduces to single-agent IL with
similar guarantees for Behavioral Cloning (BC) and Adversarial Imitation (ADV) type of algorithms.

• Then, we provide a similar analysis in the more general setting where the dynamics depends on the
population’s distribution. In this case, we provide for BC and ADV approaches upper-bounds that
are exponential in the horizon, suggesting that IL is harder in this setting. On an abstract way, all
previous works of the existing literature correspond to this setting.

• Due to these negative results, we introduce a new proxy to the Nash imitation gap, for which we
can derive a quadratic upper bound on the horizon. Then, we discuss how a practical algorithm could
be designed with an adversarial learning viewpoint. The idea behind it is to use an approach similar
to adversarial IL, where the underlying RL problem is replaced by a Mean-Field Control (MFC)
problem. We leave the design and experimentation of practical algorithms for future works, but
this suggests that making progress on IL in MFGs may have to build upon MFC. We also provide a
numerical illustration empirically supporting our claims in the appendix.

2 Background

2.1 Mean-field Games

Intuitively, an MFG corresponds to the limit of an N -player game when N tends towards infinity.
We focus on the finite-horizon setting, in discrete time, and with finite state and action spaces.
Mathematically, the MFG is defined by a tupleM = (S,A, P, r,H, ρ0) where S is a finite state
space,A is a finite action space, P : S ×A×∆S → ∆S is a transition kernel, r : S ×A×∆S → R
is a reward function, H is a finite horizon and ρ0 ∈ ∆S is a distribution over initial states. The first
and second inputs of P and r represent respectively the individual player’s state and action, while the
third input represents the distribution of the population. This allows the model to capture interactions
or mean field type. We denote [H − 1] = {0, . . . ,H − 1}. Since the problem is set in finite time
horizon, we consider non-stationary stochastic policies of the form π = (π0, . . . , πH−1) where for
each n ∈ [H − 1], πn : S → ∆A. This means that, at time n, a representative player whose state is
sn ∈ S picks an action according to πn(sn). We will also view πn as a function from S ×A to [0, 1]
and use the notation πn(a|sn) to denote the probability to pick action a according to πn(sn). We
also introduce the set of population-independent non-stationary rewards uniformly bound by 1, that
will be useful later,R = {r : S ×A× [H − 1]→ [−1, 1]}.
When a player is at state s and uses action a while the population distribution is ρ, it gets the
reward r(s, a, ρ). In a finite-player game, ρ would be replaced by the empirical distribution of the
other players’ states. These players would be influenced by the player under consideration, leading
to complex interactions. However, the influence of a single player on the population distribution
becomes smaller as the number of players increases. In the limit, we can expect that each player has
no influence on the distribution. We will use interchangeably the terms “agent” and “player”.

The MFG framework allows us to formalize this idea. So the problem faced by a single representative
player is a Markov Decision Process (MDP), in which the distribution is fixed: Given a mean field
sequence ρ = (ρn)n∈[H−1], the player wants to find a policy π maximizing the value function V
defined by:

V (π, ρ) = E

[
H−1∑
n=0

r(Sn, An, ρn)

]
where S0 is distributed according to the initial state distribution ρ0, An ∼ πn(Sn), and Sn+1 ∼
P (Sn, An, ρn). The resulting policy is called a best response to the mean field ρ. We will sometime
write Vr(π, ρ) to make explicit to reward of the value function.
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Definition 1 (Best response). A policy π is a best response to ρ if: V (π, ρ) = maxπ′ V (π′, ρ).

Intuitively, ρ is a Nash equilibrium if it is the distribution sequence obtained when all the players
use a best response policy against ρ. To formalize this idea, we introduce the notion of population
distribution sequence induced by a policy, that does influence the transition kernel.

Definition 2 (Population distribution sequence). We denote by ρ(π) the state-distribution sequence
induced by the population following policy π, which is defined as:

ρ
(π)
0 (s) = ρ0(s), s ∈ S

ρ
(π)
n+1(s′) =

∑
s

ρ(π)
n (s)

∑
a

πn(a|s)P (s′|s, a, ρ(π)
n ), (n, s′) ∈ [H − 1]× S.

The state-action distribution sequence, denoted by µ(π), is defined as:

µ(π)
n (s, a) = πn(a|s)ρ(π)

n (s), (n, s, a) ∈ [H − 1]× S ×A.

We can now give a formal definition of Nash equilibrium.1

Definition 3 (Nash equilibrium). A policy π is called a Nash equilibrium policy if it is a best response
against ρπ, i.e., π is a maximizer of π′ 7→ V (π′, ρπ). The distribution sequence ρπ induced by a
Nash equilibrium policy π is called a Nash equilibrium mean field sequence.

The value function can be written without expectation by introducing the state and state-action
distributions for a single agent, which does not influence the transition kernel (only the population
does, it is a core reason for considering the mean-field limit).
Definition 4 (Single-agent distribution sequence). Consider an agent using policy π′ who evolves
among a population using policy π. We denote by ρ(π)π′ the state-distribution sequence of this single
agent, which is defined by:

ρ
(π)π′

0 (s) = ρ0(s), s ∈ S
ρ

(π)π′

n+1 (s′) =
∑
s

ρ(π)π′

n (s)
∑
a

π′n(a|s)P (s′|s, a, ρ(π)
n ), (n, s′) ∈ [H − 1]× S.

The state-action distribution sequence is defined as:

µ(π)π′

n (s, a) = π′n(a|s)ρ(π)π′

n (s), (n, s, a) ∈ [H − 1]× S ×A.

From these definitions we directly have that ρ(π)π = ρ(π) and µ(π)π = µ(π). Furthermore, for two
policies π and π′, V (π′, ρ(π)) =

∑H−1
n=0

∑
s,a µ

(π)π′

n (s, a)r(s, a, ρ
(π)
n ).

Definition 5 (Exploitability). The exploitability of a policy π quantifies the gain for a representative
player to replace its policy by a best response:

E(π) = max
π′

V (π′, ρ(π))− V (π, ρ(π)).

A Nash equilibrium policy can be defined equivalently as a policy such that its exploitability is 0.

Finding a Nash Equilibrium policy is different from trying to maximize the value function, which
can be interpreted as a social optimum. This problem is sometimes referred to as mean field control
problem (MFC) because it can be interpreted as an optimal control for an MDP where the state is
augmented with the distribution.

Definition 6 (Social optimum). A policy π is socially optimal if V (π, ρπ) = maxπ′ V (π′, ρπ
′
).

In general the Nash equilibrium and the social optimum do not coincide, i.e., the MFG policy and
the MFC solution can be different. In other words, if π is an MFG solution, then we might have
V (π, ρπ) < maxπ′ V (π′, ρπ

′
), and if π is an MFC policy, then we might have E(π) 6= 0.

In this work, we will frequently make two common assumptions (e.g., [2, Asm. 1], or [34, Asm. 1]).

1We will sometimes omit the term “Nash” and simply write “equilibrium” when the context is clear.
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Assumption 1. The reward function r and the transition kernel P are Lipschitz continuous w.r.t. the
population distribution and have corresponding Lipschitz constants Lr and LP . In particular, for
any state-action pair (s, a) it holds for any state distributions ρ, ρ′ ∈ ∆S that

|r(s, a, ρ)− r(s, a, ρ′)| ≤ Lr‖ρ− ρ′‖1.
‖P (·|s, a, ρ)− P (·|s, a, ρ′)‖1 ≤ LP ‖ρ− ρ′‖1.

These assumptions mean that the reward and the transitions depend on the mean field in a smooth
way. For example, r(s, a, ρ) = −crρ(s) + r̃(s, a) satisfies the assumption with Lr = cr. A reward
of this form penalizes the agent for being in a crowded state. In particular, these assumptions imply
that r and P are continuous with respect to the distribution and since S and A are finite sets and we
consider a discrete-time, finite horizon MFG, these assumptions are sufficient to ensure existence of a
Nash equilibrium, see e.g. [10, Proposition 1].

Note that these assumptions do not assume that Lr or LP need to be small. However, we will
consider separately the case LP = 0, which has received attention in the MFG literature and which
corresponds to situations where the mean-field interactions occur through the reward only. Note that
when LP = Lr = 0, then there are no interactions so the Nash equilibrium condition becomes trivial
and the problem reduces to a single agent MDP. We will write the value function as V (π).

2.2 Classic imitation learning

The single-agent setting is a special case of the above, with LP = Lr = 0. In this case, the Imitation
Learning (IL) problem has been extensively studied [20]. In IL we assume that we observe state-action
trajectories generated by an expert who is using an optimal policy πE , i.e., πE ∈ argmaxV (π). We
do not know πE , V , r nor P . The goal is to learn a policy, denoted by πA, which performs as well as
the expert policy πE according to the unknown reward: V (πA) = V (πE) = maxπ′ V (π′).

Given the imitation policy πA, the imitation gap is a non-negative quantity defined by V (πE)−V (πA)
[29]. The goal is to learn a policy πA whose imitation gap is as close to 0 as possible. However, when
we do not know the model, this quantity cannot be minimized directly. For this reason, different
methods were introduced in literature. Here we focus on the following two prominent methods:
Behavioral Cloning (BC) [24] and adversarial IL such as Generative Adversarial IL (GAIL) [18].

For simplicity, we will denote ρE = ρ(πE)πE , µE = µ(πE)πE , ρA = ρ(πA)πA , and µA = µ(πA)πA .
When the dynamics does not depend on the population (LP = 0), we will write ρπ = ρ(πany)π,
µπ = µ(πany)π , as the population driven by πany has no effect on the transition kernel.

Behavioral Cloning. In this work, we frame BC as minimizing the expected `1-distance between
the action probability distributions of the expert and the imitation policy, where the expectation is
over the expert state occupancy. Although in practice it consists in a reverse KL-divergence, or
equivalently as the maximum likelihood estimation in supervised learning, here we consider the
`1-norm distance (or scaled total variation), which is more convenient for the analysis. However,
the analysis could be adapted to this maximum likelihood estimation with minor changes thanks to
Pinsker’s inequality. In the finite-horizon case, one obtains a bound on quantities of the form:

εBCn := Es∼ρEn [‖πAn (s)− πEn (s)‖1], n ∈ {0, . . . ,H − 1}.

That is, we solve one BC problem per time-step, from data generated by an expert. The single-agent
imitation-learning gap is bounded by O

(
εBCH2

)
, where εBC = maxn∈{0,...,H−1} ε

BC
n [26]. We

will retrieve this result as a special case of our analysis.

Adversarial Imitation Learning. Using adversarial-like approaches [18, 13] we control a distance
or divergence between the state-action occupancy measures of the expert and the imitation policy. In
the single-agent IL setting this divergence can be expressed as:

εADVn := ‖µEn − µAn ‖1 , n ∈ {0, . . . ,H − 1}. (1)

Similar IL quantities are extensively studied in the single-agent case, leading to algorithms minimizing
a divergence or distance such as Generative Adversarial Imitation Learning [18] or IQ-learn [13]. If
we control the state-action occupancy measure errors, then we get a single-agent imitation-learning
gap of order O

(
εADVH

)
, where εADV = maxn∈[0,...,H−1] ε

ADV , gaining an H factor compared to
the BC bound [32].
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To make the link to adversarial approaches, controlling the terms of Eq. (1) can be achieved through
the following equivalent formulation, based on the Integral Probability Metric (IPM) formulation of
the total variation (see Appx. A for a detailed derivation and additional discussions):

min
π

H−1∑
n=0

‖µEn − µπn‖1 = max
f∈R

min
π

(Vf (πE)− Vf (π)), (2)

with R defined in Sec. 2.1 (non-stationary population-independent rewards functions uniformly
bounded by 1). This form is similar to classic adversarial imitation approach, learning both a reward
function and a policy, the inner problem being a reinforcement learning (RL) problem. Previous work
usually consider an f -divergence [15, 19] between state-action occupation measures, which leads to
different min-max problems. However, in this paper, we will focus on the `1-distance, that we think
is a meaningful and practical abstraction of adversarial approaches. Our results could be extended to
other settings by using tools like the Pinsker inequality.

Remark 1. Remember that in the single-agent case (same as when we have LP = Lr = 0) the
transition dynamics and the reward function do not depend on the population distribution. In the
mean-field game, on the other hand, the transition dynamics and the reward function can depend on
the population distribution. For this reason, we need to consider different quantities to be controlled.
We will see more about it in the next section.

3 Related works

As a first contribution, we provide a commented review of the literature focusing on the fundamentals
of the different approaches, their pros and their cons.

To the best of our knowledge, the first work addressing the IL problem in MFGs is [33]. The authors
consider a discrete-time MFG over a complete graph, and they propose a reduction from MFGs to
finite-horizon MDP (with a population-augmented state) and then use single-agent IL algorithms
on the new MDP. In the reduction, the new reward function is computed in the following way:
r(ρ, π) =

∑
s ρ(s)

∑
a π(a|s)r(s, a, ρ), considering that the state is the population distribution ρ

and the actions are the possible policies π. Using this reduction, the authors implicitly assume that
the observed expert is solving an MFC problem, i.e. she is looking for a socially optimal policy
(see Def. 6). However, in general, this does not actually coincide with a Nash Equilibrium policy
(see Def. 3). Then, the reduction works only for cooperative MFGs, but it is prone to biased reward
inference in non-cooperative environments.

The first work enlightening this issue is [8]. The authors consider a discounted finite-horizon MFG
and propose a novel method called Mean Field IRL (MFIRL). They reframe the problem as finding a
reward function that makes the expert policy πE the best response with respect to the expert population
distribution ρE , i.e., find a population-dependent r such that V (πE , ρE) ∈ argmaxπ V (π, ρE). To
solve this problem they use a max-margin approach similar to [25] in the single-agent case. In fact,
fixing the population distribution ρE , the MFG is reduced to an MDP, and the imitation problem is
reduced to single-agent IL. However, since they do not have access to the actual population distribution
ρE , they need to estimate it from samples. In this way, the authors do not have any actual theoretical
guarantee on the performances of the recovered policy, since it depends on the estimation of ρE .

Recently, [9] proposed a novel approach reusing ideas from adversarial learning [18] and max-
imum entropy [36]. The authors assume they have access to an expert optimizing a mean-
field-regularized Nash-equilibrium, i.e., the value-function has an additional regularization term:
V (π′, ρπ) =

∑H−1
n=0

∑
s

{
H(π′(·|s)) +

∑
a µ

(π)π′

n (s, a)r(s, a, ρ
(π)
n )
}

, withH the Shannon entropy.
This term guarantees that the MFG has a unique equilibrium solution, and only one best response
policy. Then, they assume to have access to the population distribution ρE , or to be able to estimate
this population distribution from samples. Fixing the population distribution, the MFG problem
reduces to the single-agent setting, which allows applying GAIL [18] or maximum entropy IRL to
learn an approximate policy πA. This leads to two main problems. (i) We are actually estimating ρE
from samples, trying to find a policy which gives us the true ρE ; this circulating reasoning leads to
many estimation errors. (ii) From an abstract viewpoint, the final theoretical guarantee we can hope
to have for the recovered policy πA would approximately be ‖µ(πE)πA − µ(πE)πE‖1 (in practice
for a different distance or divergence, but involving the same occupancy measures), which may not
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be sufficient as we will show in Sec. 4.2. We will see that the upper-bound for this case has an
exponential dependency on the horizon.

In [35], the authors assume observing an MFG where the agents are acting according to a correlated
equilibrium. The authors justify the study of a correlated equilibrium by some applications where
we can have access to some correlation device (e.g., traffic network equilibrium induced from the
public routing recommendations). Similar to [9], the authors of this work reuse ideas from adversarial
learning [18] to recover a policy observing a correlated equilibrium policy. As in [9] they fix the
population distribution to be the expert one and then apply single-agent GAIL to the problem. Then,
although the solution concept is different, this approach faces similar problems as in [9], where
instead the authors considered to observe an expert following a Nash Equilibrium policy. We will
focus on experts achieving a Nash equilibrium. Extending our results (see Sec. 4) to more general
equilibria such as coarse correlated ones is an interesting future research direction.

Notice also that all GAIL-like approaches discussed above learn an intermediate population-dependent
reward function. This is complicated (as the population is a distribution over the state space,
generally difficult to represent compactly), and in fact superfluous in their setting. Indeed, as all these
approaches assume that the interaction is done with the MFG driven by the expert population (or a
given approximation of it), it is sufficient to consider an intermediate population-independent but
non-stationary reward. This will appears clearly in the IPM formulations we propose in Sec. 4.

4 Nash imitation gap and imitation in MFGs

We consider the imitation learning problem in MFGs. Similar to single-agent IL, we observe the
interactions between an expert and a fixed MFG environment, for which we do not know the reward
function r nor the transition kernel P . We only observe samples coming from an expert policy
denoted by πE , which we assume to be a Nash equilibrium policy, i.e., E(πE) = 0. In single-agent
IL the goal is clear: Find a policy πA to minimize the imitation gap maxπ V (π)− V (πA). However,
in MFG, the goal is less clear. Previous works focused on solving IL for a single agent in a population
that stays at equilibrium, but this is not relevant for many applications, in which the population might
use the learnt policy. The learnt policy should thus not only be good at the individual level, but it
should also be an equilibrium policy. As a first contribution, we propose a natural formulation for
studying the performance of imitation learning in MFG, called Nash imitation gap:
Definition 7. The Nash imitation gap (NIG) of a policy πA is defined as:

E(πA) = max
π′∈Π

V (π′, ρ(πA))− V (πA, ρ(πA)).

Therefore, the NIG is simply defined as being the exploitability of the considered policy. The NIG has
many interesting and useful properties. (i) If it is zero, the recovered policy πA is a Nash equilibrium
policy. (ii) It is a generalization of the single-agent imitation gap (see above and Section 2.2), which
is recovered as a special case when LP = Lr = 0.

As for the single-agent imitation gap, we cannot optimize it directly, since we do not know the reward
function, but instead we can envision proxys, such as reducing the distance between the recovered
policy πA and the expert policy πE (BC-like) or their occupancy measures (GAIL-like) as in the
classic IL setting (see Sec. 2.2). In this section, we first discuss the imitation learning problem when
the dynamics does not depend on the population, i.e. LP = 0, a common setting largely explored
in the last years [22, 23]. Then, we present our results for the general setting when the dynamics
depends on the population, i.e. when LP > 0.

For what follows, in addition to the Lipschitz assumption (Asm. 1), we will also assume that the
unknown reward function r for which the expert πE is a Nash equilibrium is uniformly bounded
when the population is the expert one.
Assumption 2. The unknown reward r satisfies

max
s,a
|r(s, a, ρ(πE))| ≤ rmax.

4.1 Population-independent dynamics: a reduction to classic imitation

We start by analyzing a simpler but commonly used setting (e.g., see [23] in the context of reinforce-
ment learning methods, or [16, 4, 1] in the context of the analysis of discrete or continuous space
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MFGs), where the dynamics does not depend on the population. Here the MFG interaction is without
reward and it is only the (unknown) reward function that depends on the population. This setting is
equivalent to observing an interaction between an expert and an MDP, since the state-distribution
does not depend on the population, i.e., ρ(π)π′ = ρπ

′
.

Behavioral Cloning. The behavioral cloning setting is the same as the single agent setting (see Sec.
2.2), i.e, we control:

εBC
n := Es∼ρEn [‖πAn (s)− πEn (s)‖1], n ∈ {0, . . . ,H − 1}, (3)

where πE is the expert policy and πA the imitation policy. Under the assumption of the BC-type
error, we give the following bound on the Nash imitation gap (proof in Appx. B).
Theorem 1. Let εBC = maxn∈{0,...,H−1} ε

BC
n . If LP = 0, the Nash imitation gap satisfies

E(πA) ≤ H2(rmax + 2Lr)ε
BC .

Theorem 1 shows that when LP = 0 we recover the single-agent imitation learning bound. Perhaps
surprisingly, the simple BC approach was not previously considered for MFG, to the best of our
knowledge.

Adversarial learning. In the adversarial setting, similar to the single-agent case (see Sec. 2.2) we
control a distance or divergence between occupancy measures. More precisely, we consider the
following distance between occupancy measures:

εADV
n := ‖µπAn − µπ

E

n ‖1, n ∈ {0, . . . ,H − 1}.

It is important to recall that in this setting, the dynamics do not depend on the population, thus
µ(π)π′′ = µ(π′)π′′ for every triplet of policies (π, π′, π′′).

Since in this case the dynamics do not depend on the population distribution, the same IPM approach
(see Eq. (2)) of single-agent imitation-learning also works in this context. Then we can practically
solve the MFG IL problem using GAIL-like approaches [18, 15, 19, 13].

We now provide a novel bound on the Nash imitation gap (proof in Appx. B).
Theorem 2. Let εADV = maxn∈{0,...,H−1} ε

ADV
n . If LP = 0, the Nash imitation gap satisfies

E(πA) ≤ (2Lr + rmax)HεADV.

In contrast to the quadratic horizon dependence in Theorem 1, we derive here a linear horizon
dependence. Furthermore, the bound in Theorem 2 is almost the same (similarly to the BC case) as in
the single-agent IL problem. In fact, it recovers the bound of [32] by setting Lr = 0.

Discussion. When LP = 0 interacting with the MFG without reward amounts to interact with and
MDP without reward, so from a practical aspect any classic IL approach could be used, including
Dagger-like approaches [27] that we do not analyse here. Our upper bounds show that when
the dynamics is independent of the population, IL for MFG has similar guarantees as in single-
agent imitation learning. In fact, our results suggest that a population-dependent unkown reward
function affects the IL policy performance very moderately (through the Lr constant). However,
new challenges may arise if we also want to recover the reward function, as in the case of Inverse
Reinforcement Learning. We leave this interesting research direction for future work.

4.2 Population-dependent dynamics

When the dynamics of the MFG depend on the population, i.e., LP > 0, then the previous results do
not apply anymore. In this section, we present results on MFGs with population-dependent dynamics,
for the same proxys introduced above (BC and adversarial).

Behavioral Cloning. The BC proxy to the NIG is the same as in Equation (3). In this case, however,
the bound we get is no longer comparable to the classic IL setting (proof in Appx. B).
Theorem 3. Let εBC = maxn∈{0,...,H−1} ε

BC
n . If LP > 0, the Nash imitation gap satisfies:

E(πA) ≤
(
H2rmax + 2(1 + LP )H

Lr + rmax

L2
P

)
εBC.
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We observe that when the dynamics depend on the population, the dependence on the horizon is
no longer quadratic but exponential. From a technical viewpoint, this comes from the dependency
of the transition kernel to the population. A worse dependency makes sense intuitively. In the classic
IL setting, an error on policies will amplify at the occupancy measure level (drift phenomenon in
imitation learning). Here, this problem is even more amplified by the fact that the transition kernel
that defines the occupancy measure itself depends on the related population, amplifying even more
the imitation error. Sec. 5 provides some empirical evidence that IL in MFGs has an exponential
dependence on the horizon for BC as LP increases.

Although we cannot claim our result is tight, this suggests that in MFGs we cannot hope to use BC to
obtain a good imitation policy πA, but we need to control the divergence between the state-action
occupancy induced by πA and the one induced by πE .

Adversarial learning. In contrast to the population-independent case, the quantity to control in this
setting is not trivial. In fact, it depends on the MFG interaction assumption. We can assume to have
the possibility to interact with only the MFG or with the MFG driven by ρE . These two kind of
interactions lead us to consider two different errors. We start by considering the error we would like
to minimize if we can interact with the MFG driven by the expert population ρE . Assuming access to
this MFG, the IL problem reduces to doing classic IL in an MDP without reward and with transition
distribution P (·|s, a, ρπE ). The error is defined as follows:

εvanilla-ADV
n := ‖µ(πE)πA

n − µ(πE)πE

n ‖1, n ∈ {0, . . . ,H − 1}.
This assumption was implicitly made in all previous works (see Sec. 3), where the authors assume to
fix the expert distribution ρE and then solve the IL problem. However, assuming to have access to
the expert distribution may not be reasonable in practice, and due to this in [9, 8] the authors replace
the expert population distribution ρE with its approximation from sampling ρ̂E , in order to learn
µ(πE)πA . In reality, however, we seek to learn µ(πE)πA and then ρE , which is the ultimate goal of
the problem. This circular reasoning leads to not easily having theoretical guarantees for this setting.

In this case, for obtaining an adversarial formulation, we can use a similar approach as the one for the
non-population dependent dynamics, Eq. (2), providing (details in Appx. A):

min
π

H−1∑
n=0

‖µ(πE)πE

n − µ(πE)π
n ‖1 = max

f∈R
min
π

(Vf (πE , ρ(πE))− Vf (π, ρ(πE))).

We can observe that the inner problem is again an RL problem (for the MDP induced by ρ(πE)), and
in practice any single-agent adversarial approach could be applied to solve for a similar proxy (related
to a different min-max problem).

We provide a bound for this approach (proof in Appx. B).
Theorem 4. Let εvanilla-ADV = maxn=[0,...,H−1] ε

vanilla-ADV
n . If LP > 0 the NE imitation gap satisfies:

E(πA) ≤ rmaxHε
vanilla-ADV + 2(1 + LP )H

rmax + Lr
LP

εvanilla-ADV.

Therefore, in this case, if in practice we can apply GAIL-like approaches to the MDP with transition
distribution P (·|s, a, ρE), we have an exponential dependency in the horizon. Interestingly this is
close to the quantity that previous works [9, 8] tried to control. Although we do not know if this
bound is tight, reasonably controlling this quantity can lead to weak theoretical guarantees. Sec. 5
provides empirical evidences that, when H and LP are large enough, vanilla-ADV exponential
depends on the horizon like BC.

4.3 Population-dependent dynamics: a new efficient proxy

Although the vanilla-ADV error is a reasonable quantity to control, another interesting proxy consists
in considering the occupancy measures induced when the population is the considered policy (and
not always the expert one):

εMFC-ADV
n := ‖µ(πA)πA

n − µ(πE)πE

n ‖1, n ∈ {0, . . . ,H − 1}.
To control this quantity, we do not need to have access to the expert population (except through data),
we can directly interact with the MFG, driven by what we are learning. As we explained in Sec. 4.1,

8
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Figure 1: For each of the curves in Fig. 1, each one for a specific value of L, of H , and one kind of
error (BC, vanilla-ADV and MFC-ADV), we consider the points (NIGk, εk) making the curve, and
compute the value maxk( NIGk

εk
) as an empirical upper-bound for the specific value of L, H and kind

of error. Then, for each value of L and each kind of error, we plot this empirical upper-bound as a
function of the horizon H , with a log-scale on the y-axis.

if LP = 0 then this quantity is the same as the vanilla-ADV error. Before presenting and discussing
an adversarial formulation (that will explain the naming choice for the error), we provide a novel
bound for this quantity (proof in Appx. B):

Theorem 5. Let εMFC-ADV = maxn∈{0,...,H−1} ε
MFC-ADV
n . If LP > 0, the Nash imitation gap satisfies:

E(πA) ≤ (2Lr + rmax)HεMFC-ADV + 3LP rmaxH
2εMFC-ADV.

This gives us a significant improvement compared to the BC case and the vanilla-ADV error. Indeed,
the dependency to the horizon is now quadratic and not anymore exponential. Comparing this result
with classic imitation learning we have worse dependency on H, since in the classic setting is only
linear (we can recover this dependency when LP = 0). However, as explained before, the fact that
the transition kernel does depend on the population indeed intuitively implies a larger amplification
of errors. Sec. 5 provides empirical evidences that this approach is better than the two previous ones,
with much less influence of H and LP .

Now, we provide an adversarial formulation, to get a sense of what a practical algorithm could look
like. Using again an IPM argument, we have that (details in Appx. A)

min
π

H−1∑
n=0

‖µ(πE)πE

n − µ(π)π
n ‖1 = min

π
max
f∈R

(Vf (πE , ρ(πE))− Vf (π, ρ(π))).

Notice that it is not obvious if we can switch the min and the max here, due to the underlying set
of policy-induced occupancy measures being not necessarily convex (due to the dependency of the
dynamics on the population). Assuming we can, we still learn an intermediate population-independent
non-stationary reward, but now the underlying control problem is no longer RL, it is an MFC problem,
as it implies studying maxπ Vf (π, ρ(π)), where the population does depend on the optimized policy.
This suggests that in practice one could start from a classic adversarial IL approach, and replace the un-
derlying RL algorithm by an inner MFC algorithm (e.g. [28, 7, 21, 17, 3]). We leave the design and im-
plementation of such a practical algorithm for future work, which may be more complex than a straight
replacement of the control part (notably, many MFC approaches learn a population-dependent policy).
However, this overall suggests that making progress on IL for MFGs may have to build upon MFC.

5 Simulation

In order to provide some empirical evidences of the insights given by our analysis (influence of the
horizon and the dependency of the dynamics to the population on the various considered proxys to
the Nash imitation gap), we introduce the “Attractor MFG” (see more details about it in Appendix C).
This is a 2-state and 2-action MFG with initial distribution satisfying ρ0(s0) = 1, with horizon H
and with Lipschitz parameter L. The reward only depends on the state (not on the distribution nor the

9



action) and satisfies for all a ∈ A, ρ ∈ ∆S ,

r(s0, a, ρ) = 0 and r(s1, a, ρ) = −1.

In the state s1, any choice of actions leads deterministically to s1, the transition kernel satisfies for all
a ∈ A, ρ ∈ ∆S ,

P (s1|s1, a, ρ) = 1.

In the state s0, the action a0 leads deterministically to s1, while action a0 leads stochastically to one
of the two states: the higher the fraction of the population in s1, the higher the chance to transit to s1

after choosing a0:

P (s1|s0, a1, ρ) = 1 and P (s1|s0, a0, ρ) = min{1, Lρ(s1)}.
Therefore, the state s1 is an attractor, hence the chosen name for the MFG.

The experiment consists in computing the errors εvanilla-ADV
n , εBC

n and εBC
n for various values of

L = {0.01, 0.05, 0.1, 0.5} and H = {3, 25, 50, 75, 100} and we show the NIG as a function of the
mentioned errors. From Fig. 1, we can observe an exponential dependency of the horizon for both
BC and vanilla-ADV when L increases, while this does not happen for MFC-ADV. This experiments
demonstrate empirically what our theoretical upper bound shows, supporting the insights of our
analysis. This suggests that a practical algorithm for IL in MFGs needs to minimize the MFC-ADV
error (see Section 4.2). In Appx. C we provide more experimental results.

6 Conclusion

In this paper, we have studied the recent question of imitation learning in mean-field games. We
have reviewed the few previous works tackling this problem and provided a critical discussion on
the proposed approach. We then have introduced the new solution concept of Nash imitation gap to
quantify the quality of imitation. In the simpler case of a population-independent dynamics, we have
shown that the problem basically reduces to single-agent imitation learning, and that abstractions
of the canonical BC and adversarial approaches come with a similar performance guarantee. In
the harder population-dependent case, we have provided upper-bounds that are exponential in the
horizon, for both BC and adversarial IL, the latter being the approach adopted in previous work. We
also introduce a new proxy that amounts to control different occupancy measures, not solely driven
by the expert population but by the policy-induced population. From a practical viewpoint, it only
implies interacting with the MFG (without access to the expert population for driving the dynamics),
and from a theoretical viewpoint it enjoys a much better quadratic dependency to the horizon. The
associated adversarial formulation suggests that classic adversarial IL approaches could be adapted
by replacing the inner RL loop by an MFC one.

This works open a number of interesting research questions. Our last result suggests a simple
modification of existing adversarial approaches, but in practice it may be more difficult than just
replacing the control part, and could call for additional research in MFC and MFGs. Maybe also
that controlling other kinds of occupancy measures, or even different quantities related to the policy
and dynamics, may lead to even better guarantees, ideally recovering the linear dependency to the
horizon of the single-agent case. We provided upper-bounds, but there is no known associated
lower-bound in this setting, which is another interesting research direction. We focused on experts
achieving a Nash equilibrium, and extending our work to different kind of equilibria is another
possible direction. We focused on imitating the expert, not on recovering the underlying optimized
reward (inverse RL). Doing so may require a different approach, as our adversarial formulations all
rely on population-independent rewards (which is convenient from a practical viewpoint, whenever
one just wants to recover the policy). We also plan to work on the extension of Nash imitation gap to
other kinds of games.
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A More details on IPMs

In this section, we provide a detailed derivation and additional discussions of the adversarial viewpoint
of the minimization of the `1-distance between occupancy measures. Generally speaking, for a finite
set X and ∆X the associated simplex, we can express the `1-norm between probability distributions
(their total variation) as an integral probability metric (IPM). For any p, q ∈ ∆X , we have

‖p− q‖1 = sup
f :X→[−1,1]

(Ex∼p[f(x)]− Ex∼q[f(x)]).

This will be the building block for framing an adversarial formulation of imitation learning, and
making links to classic approaches such as GAIL, even if they consider usually a different framework
(single agent with γ-discounted infinite horizon).

A.1 Classic imitation setting

First, we consider the classic IL setting depicted in Sec. 2.2. Let f : S × A × [H − 1] → R be a
(non-stationary) reward, we recall that the value function can be written as

Vf (π) =
∑
s,a

µπn(s, a)fπn (s, a).

We claimed that adversarial IL can be framed as minimizing for all time step n the distance ‖µEn−µAn ‖.
To see this, for a policy π with associated sequence of occupancy measures µπ0 , . . . , µ

π
H−1, define

µ̃π =
1

H

(
µπ0 . . . µπH−1

)
∈ ∆S×A×[H−1].

Recall the setR defined in Sec. 2.1,R = {S × A× [H − 1]→ [−1, 1]}. Using the IPM viewpoint,
we can write

‖µ̃E − µ̃π‖1 = max
f∈R

(Es,a∼µ̃En [fn(s, a)]− Es,a∼µ̃πn [fn(s, a)])

= max
f∈R

1

H
(
∑
s,a

µEn (s, a)fn(s, a)−
∑
s,a

µπn(s, a)fn(s, a))

= max
f∈R

1

H
(Vf (πE)− Vf (π)).

13



Therefore, we can frame the imitation learning problem as finding a non-stationary policy πA ∈
argminπ ‖µ̃E − µ̃π‖1, which amounts to solve

min
π

H−1∑
n=0

‖µEn − µπn‖1 = min
π
H‖µ̃E − µ̃π‖1

= min
π

max
f∈R

(Vf (πE)− Vf (π))

= max
f∈R

min
π

(Vf (πE)− Vf (π)),

where the last equation holds because the saddle-point objective is linear in both f and µ̃π. This is
the result claimed in Sec. 2.2.

This is reminiscent of the classic adversarial approaches of the literature, with the inner problem
consisting in solving a (non-stationary here) RL problem. There are important differences: the usual
framework is γ-discounted infinite horizon, and as far as we know no practical approach is based
on the IPM of the total variation. Rather, many of these adversarial approaches can be framed as
minimizing an f -divergence between occupancy measures [15, 19], for example GAIL minimize an
entropy-regularized Jensen-Shannon divergence [18]. We think that considering the total variation for
our analysis and exposition is a practical and meaningful abstraction: it allows providing an analysis,
and it could be an inspiration for deriving practical algorithms by applying a similar recipe.

A.2 MFG adversarial imitation when LP = 0

When LP = 0, the transition kernel of the MFG does not depend on the population. The reward
does, but from the imitating agent viewpoint, there is an expert policy to imitate and an MDP without
reward (the MFG without reward) to interact with. In other words, the minimization of the distance
can be framed exactly as in the previous section:

min
π

H−1∑
n=0

‖µEn − µπn‖1 = max
f∈R

min
π

(Vf (πE)− Vf (π)).

So, no matter whether the expert policy is at a Nash equilibrium in an MFG or not, from the imitating
agent this can be framed as a reduction to classical single agent imitation learning, with the exactly
same guarantee.

A.3 MFG adversarial imitation when LP > 0

First, consider the adversarial imitation approach studied in Sec. 4.2, that is we assume to control
‖µ(πE)πE

n − µ(πE)πA

n ‖1. In essence, this means that we fix the population to be the expert one and
ask a representative agent to imitate the expert policy. However, if we fix the population, the MFG
without reward reduces to an MDP without reward, and we are again in the same case. We have

‖µ̃(πE)πE − µ̃(πE)π‖1 = max
f∈R

(E
s,a∼µ̃(πE)πE

n
[fn(s, a)]− E

s,a∼µ̃(πE)π
n

[fn(s, a)])

= max
f∈R

1

H
(
∑
s,a

µ(πE)πE

n (s, a)fn(s, a)−
∑
s,a

µ(πE)π
n (s, a)fn(s, a))

= max
f∈R

1

H
(Vf (πE , ρ(πE))− Vf (π, ρ(πE))).

From this, as before we can deduce that

min
π

H−1∑
n=0

‖µ(πE)πE

n − µ(πE)π
n ‖1 = max

f∈R
min
π

(Vf (πE , ρ(πE))− Vf (π, ρ(πE))).

The population being fixed to the expert one in both value functions, this is again a reduction to
classic imitation, and the dual variable is a non-stationary reward that does not need to depend on
the population. In other words, the inner problem is again a (non-stationary) RL problem. However,
as discussed in Sec. 4.2, this does not come with encouraging theoretical guarantees, due to the
exponential dependency on the horizon.

14



Eventually, let us consider the case of Sec. 4.3, that is, we assume to control ‖µ(πE)πE

n − µ(πA)πA

n ‖1.
Here, we no longer have a reduction to classic adversarial IL, because the two occupancy measures
depends on different populations, but we can still obtain an adversarial formulation using the same
IPM viewpoint. We have

‖µ̃(πE)πE − µ̃(π)π‖1 = max
f∈R

(E
s,a∼µ̃(πE)πE

n
[fn(s, a)]− E

s,a∼µ̃(π)π
n

[fn(s, a)])

= max
f∈R

1

H
(
∑
s,a

µ(πE)πE

n (s, a)fn(s, a)−
∑
s,a

µ(π)π
n (s, a)fn(s, a))

= max
f∈R

1

H
(Vf (πE , ρ(πE))− Vf (π, ρ(π))).

From this, as before we can deduce that

min
π

H−1∑
n=0

‖µ(πE)πE

n − µ(π)π
n ‖1 = min

π
max
f∈R

(Vf (πE , ρ(πE))− Vf (π, ρ(π))).

Notice that here, it is not obvious to know if we can switch the min and the max. Indeed, for this to
hold, we need the set of policy-induced occupancy measures to be a convex set (in addition to the
linearity of the value in both the reward and the occupancy measure). Whenever the dynamics does
not depend on the population, this is true, this set is even a polytope. When the dynamics depends on
the population, it is less clear, and ensuring the convexity of the underlying set may require additional
assumptions on the transition kernel. We leave this interesting question for future work. For now, we
assume that we can switch the min and the max, even if heuristically.

In this case, the underlying control problem is no longer an RL problem, but an MFC problem,
as it implies solving for maxπ Vf (π, ρ(π)), with again the reward being non-stationary, but still
population-independent. This suggests that for obtaining such an adversarial IL approach for MFGs,
one could start from an existing adversarial approach for the classic setting (for example, GAIL), and
replace the underlying RL optimization problem by an MFC optimization problem. We leave the
development of a more practical algorithm for future work, and it would probably call for more than
just plugging an MFC algorithm in GAIL, but this suggests that making progress in IL for MFGs
may have to build upon MFC.

B Proofs of stated theoretical results

In this section we report the proof of the theorems written in the paper. The main idea of the proof is
to decompose the exploitability error.

B.1 Decomposition of the exploitability

In this subsection we provide the decomposition of the Nash imitation gap, that is the exploitability.
For now, we do not make any assumption on how the policy πA is obtained; it can be any policy. Our
goal is to decompose:

E(πA) = max
π′

V (π′, ρA)− V (πA, ρA),

where we recall that we write ρA as a shorthand for ρ(πA)πA , and similarly for other quantities (see
Sec. 2.2). Then, proving our main results will amount to bound each term of the decomposition,
depending on the setting (LP = 0 or LP > 0) and the kind of considered error.

Instead of bounding the exploitability, we bound the value difference for any policy π′ (the bound on
the exploitability is a simple corollary by maximizing over π′).
Lemma 1. Under Asm. 1 and 2, for any policies πA and π′, we have

|V (π′, ρA)− V (πA, ρA)| ≤ 2Lr

H−1∑
n=0

‖ρAn − ρEn ‖1

+ rmax

(
H−1∑
n=0

‖µ(πE)πE

n − µ(πE)πA

n ‖1 +

H−1∑
n=0

‖ρ(πA)π′

n − ρ(πE)π′

n ‖1 +

H−1∑
n=0

‖ρ(πA)πA

n − ρ(πE)πA

n ‖1
)
.
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Proof. We start by decomposing the value difference:

V (π′, ρA)− V (πA, ρA) = V (π′, ρA)− V (πE , ρE)︸ ︷︷ ︸
A

+V (πE , ρE)− V (πA, ρA)︸ ︷︷ ︸
B

.

The idea is to study the distance between the value function with the quantity of interest, that is the
Nash equilibrium policy πE .

Term A. We decompose the term A again, summing and subtracting V (π′, ρE):

A = V (π′, ρA)− V (πE , ρE)

= V (π′, ρA)− V (π′, ρE)︸ ︷︷ ︸
A1

+V (π′, ρE)− V (πE , ρE)︸ ︷︷ ︸
A2

.

The termA2 can be interpreted as the gain we have using a different policy fixing the Nash equilibrium
distribution ρE . Since (πE , ρE) is a Nash equilibrium by assumption, then E(πE) = 0 and soA2 ≤ 0.
Then, we need to study only the term A1. Using Lemma 2 (see Appx. B.4) we have:

|V (π′, ρA)− V (π′, ρE)| ≤ Lr
H−1∑
n=0

‖ρAn − ρEn ‖1 + rmax

H−1∑
n=0

‖ρ(πA)π′

n − ρ(πE)π′

n ‖1

Therefore, we have a bound for the term A:

|A| ≤ Lr
H−1∑
n=0

‖ρAn − ρEn ‖1 + rmax

H−1∑
n=0

‖ρ(πA)π′

n − ρ(πE)π′

n ‖1.

Term B. We decompose the term B in the following way:

B = V (πE , ρE)− V (πA, ρA)

≤ V (πE , ρE)− V (πA, ρE)︸ ︷︷ ︸
B1

+V (πA, ρE)− V (πA, ρA)︸ ︷︷ ︸
B2

.

We start by bounding the term B1 (the positiveness of B1 comes from πE being a Nash equilibrium):

0 ≤ B1 = V (πE , ρE)− V (πA, ρE)

=

H−1∑
n=0

∑
s,a

(
µ(πE)πE

n (s, a)r(s, a, ρE)− µ(πA)πE

n (s, a)r(s, a, ρE)
)

=

H−1∑
n=0

∑
s,a

((
µ(πE)πE

n (s, a)− µ(πA)πE

n (s, a)
)
r(s, a, ρE)

)

≤ rmax

H−1∑
n=0

∑
s,a

∣∣∣µ(πE)πE

n (s, a)− µ(πA)πE

n (s, a)
∣∣∣ (using Asm. 2)

= rmax

H−1∑
n=0

‖µ(πE)πE

n − µ(πA)πE

n ‖1.

For the term B2 we can use again Lemma 2:

|V (πA, ρE)− V (πA, ρA)| ≤ Lr
H−1∑
n=0

‖ρEn − ρAn ‖1 + rmax

H−1∑
n=0

‖ρ(πE)πA − ρ(πA)πA‖1.

Then, putting things together:

|B| ≤ rmax

H−1∑
n=0

‖µ(πE)πE

n − µ(πA)πE

n ‖1 + Lr

H−1∑
n=0

‖ρEn − ρAn ‖1 + rmax

H−1∑
n=0

‖ρ(πE)πA − ρ(πA)πA‖1.
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Final bound. Applying the triangle inequality on the absolute value of the initial decomposition
and injecting the bounds of |A| and |B|, we obtain the stated result:

|V (π′, ρA)− V (πA, ρA)| ≤ 2Lr

H−1∑
n=0

‖ρAn − ρEn ‖1

+ rmax

(
H−1∑
n=0

‖µ(πE)πE

n − µ(πE)πA

n ‖1 +

H−1∑
n=0

‖ρ(πA)π′

n − ρ(πE)π′

n ‖1 +

H−1∑
n=0

‖ρ(πA)πA

n − ρ(πE)πA

n ‖1
)
.

Notice that whenever LP = 0, two terms of the above bound cancel out,
∑H−1
n=0 ‖ρ

(πA)π′

n −
ρ

(πE)π′

n ‖1 = 0 and
∑H−1
n=0 ‖ρ

(πA)πA

n − ρ
(πE)πA

n ‖1 = 0, as the occupancy measure does not de-
pend on the population. This will be useful in the next section.

B.2 Proofs for the case LP = 0

In this section we analyze the case in which the transition model is independent from the population
distribution. As explained above, with the terms canceling out, the value difference is bounded as:

|V (π′, ρA)− V (πA, ρA)| ≤ 2Lr

H−1∑
n=0

‖ρAn − ρEn ‖1︸ ︷︷ ︸
T1

+rmax(

H−1∑
n=0

‖µ(πE)πE

n − µ(πE)πA

n ‖1︸ ︷︷ ︸
T2

).

We analyze now the two errors considered: the one from Behavioral Cloning and the adversarial one.

Behavioral Cloning. Recall the definition of the term εBC
n and the stated result.

εBCn := Es∼ρEn
[
‖πAn (s)− πEn (s)‖1

]
.

Theorem 1. Let εBC = maxn∈{0,...,H−1} ε
BC
n . If LP = 0, the Nash imitation gap satisfies

E(πA) ≤ H2(rmax + 2Lr)ε
BC .

Proof. Both terms T1 and T2 can be bounded using Lemma 3 in Appx. B.4 which connects the `1
distance between the two policies with the state-action distribution sequence, giving the stated result
as a corollary. For the term T1, to apply the lemma, it may be worth emphasizing that when LP = 0,
we have that ‖ρAn − ρEn ‖1 = ‖ρ(πA)πA

n − ρ(πE)πE

n ‖1 = ‖ρ(πE)πA

n − ρ(πE)πE

n ‖1.

Adversarial learning. Recall the definition of the term εADV
n and the stated result.

εADV
n := ‖µπAn − µπ

E

n ‖1, n ∈ {0, . . . ,H − 1}.

Theorem 2. Let εADV = maxn∈{0,...,H−1} ε
ADV
n . If LP = 0, the Nash imitation gap satisfies

E(πA) ≤ (2Lr + rmax)HεADV.

Proof. We start by bounding the term T1.

‖ρAn − ρEn ‖1 =
∑
s

|ρAn (s)− ρEn (s)|

=
∑
s

|
∑
a

µAn (s, a)− µEn (s, a)|

≤
∑
s,a

|µAn (s, a)− µEn (s, a)| = ‖µEn − µAn ‖1 ≤ εADV,
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and thus:
H−1∑
n=0

‖ρAn − ρEn ‖1 ≤ HεADV.

The second term, T2, is bounded by HεADV by definition of εADV. Then putting things together we
recover the stated result.

B.3 Proofs for the case LP > 0

We report in this section the results for the more general case in which the transition dynamics
depends on the population. We recall the bound on the value difference given by Lemma 1:

|V (π′, ρE)− V (πE , ρE)| ≤ 2Lr

H−1∑
n=0

‖ρAn − ρEn ‖1︸ ︷︷ ︸
T1

+rmax

(H−1∑
n=0

‖µ(πE)πE

n − µ(πE)πA

n ‖1︸ ︷︷ ︸
T2

+

H−1∑
n=0

‖ρ(πA)π′

n − ρ(πE)π′

n ‖1︸ ︷︷ ︸
T3

+

H−1∑
n=0

‖ρ(πA)πA

n − ρ(πE)πA

n ‖1︸ ︷︷ ︸
T4

)
.

Behavioral cloning. Recall the definition of the term εBC
n and the stated result.

εBC
n := Es∼ρEn

[
‖πAn (s)− πEn (s)‖1

]
.

Theorem 3. Let εBC = maxn∈{0,...,H−1} ε
BC
n . If LP > 0, the Nash imitation gap satisfies:

E(πA) ≤
(
H2rmax + 2(1 + LP )H

Lr + rmax

L2
P

)
εBC.

Proof. We start by bounding the term T1. Now, the two sequences of involved occupancy measures
differ by their underlying policy, as for the case LP = 0, but also by their underlying dynamics,
driven by different populations. The bound of the term T1 is given by Lemma 4 in Appx. B.4:

T1 =

H−1∑
n=0

‖ρAn − ρEn ‖1 ≤
(1 + LP )H

L2
P

εBC.

Next, we consider the term T2. The two sequences of involved occupancy measures differ by their
underlying policies, but they share the same dynamics, driven by the expert population. Therefore, as
for the case LP = 0, we can apply Lemma 3 (see Appx. B.4), and obtain

T2 =

H−1∑
n=0

‖µ(πE)πE

n − µ(πE)πA

n ‖1 ≤ H2εBC.

Eventually, we consider the terms T3 and T4. They have in common that the two sequences of
involved occupancy measures differ by their underlying dynamics (driven by different populations),
but have the same underlying policy. Both terms can be bounded as a direct corollary of Lemma 5 in
Appx. B.4, by instantiating this common policy. The resulting bounds are:

T3 =

H−1∑
n=0

‖ρ(πA)π′

n − ρ(πE)π′

n ‖1 ≤
(1 + LP )H

L2
P

εBC,

T4 =

H−1∑
n=0

‖ρ(πA)πA

n − ρ(πE)πA

n ‖1 ≤
(1 + LP )H

L2
P

εBC.

Putting everything together we obtain the stated bound (noticing that the bound does not depend on
the policy π′, so a bound on the value difference readily gives a bound on the exploitability of πA,
that is the Nash imitation gap).
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Vanilla-ADV. Recall the definition of the term εvanilla-ADV
n and the stated result.

εvanilla-ADV
n := ‖µ(πE)πE

n − µ(πE)πA

n ‖1 ∀n ∈ [0, . . . ,H − 1].

Theorem 4. Let εvanilla-ADV = maxn=[0,...,H−1] ε
vanilla-ADV
n . If LP > 0 the NE imitation gap satisfies:

E(πA) ≤ rmaxHε
vanilla-ADV + 2(1 + LP )H

rmax + Lr
LP

εvanilla-ADV.

Proof. We start by bounding the term T1. We have that:

‖ρAn − ρEn ‖1 =
∑
s

|
∑
a

µ(πE)πE

n (s, a)− µ(πA)πA

n (s, a)|

≤ ‖µ(πE)πE

n − µ(πE)πA

n ‖1︸ ︷︷ ︸
≤εvanilla-ADV by def.

+ ‖µ(πE)πA

n − µ(πA)πA

n ‖1︸ ︷︷ ︸
=‖ρ(π

E)πA
n −ρ(π

A)πA
n ‖1 (same policy)

≤ εvanilla-ADV + ‖ρ(πE)πA

n − ρ(πA)πA

n ‖. (4)
From Eq. (8), an intermediate result of the proof of Lemma 5, we have the following inequality, for
any policy π:

‖ρ(πA)π
n+1 − ρ(πE)π

n+1 ‖1 ≤ LP ‖ρAn − ρEn ‖+ ‖ρ(πA)π
n − ρ(πE)π

n ‖1.
Instantiating this inequality with π = πA and injecting Eq. (4), we obtain

‖ρ(πA)πA

n+1 − ρ(πE)πA

n+1 ‖1 ≤ LP ‖ρAn − ρEn ‖+ ‖ρ(πA)πA

n − ρ(πE)πA

n ‖1
≤ LP (εvanilla-ADV + ‖ρ(πE)πA

n − ρ(πA)πA

n ‖) + ‖ρ(πA)πA

n − ρ(πE)πA

n ‖1
= LP ε

vanilla-ADV + (1 + LP )‖ρ(πA)πA

n − ρ(πE)πA

n ‖1

≤ LP εvanilla-ADV
n∑
k=0

(1 + LP )k

= LP ε
vanilla-ADV (1 + LP )n+1 − 1

LP

= εvanilla-ADV((1 + LP )n+1 − 1).

Next, we can inject back this last inequality in Eq. (4) to get a bound on ‖ρAn − ρEn ‖1, and then sum
to obtain the bound on T1.
‖ρAn − ρEn ‖1 ≤ εvanilla-ADV(1 + LP )n (5)

and thus T1 =

H−1∑
n=0

‖ρAn − ρEn ‖1 ≤
(1 + LP )H − 1

LP
εvanilla-ADV ≤ (1 + LP )H

LP
εvanilla-ADV.

The term T2 is directly bounded by Hεvanilla-ADV, by definition of εvanilla-ADV.

Eventually, we need to bound the terms T3 and T4, implying occupancy measures for different
populations (thus dynamics) but the same policy. We start again from Eq. (8) from the proof of
Lemma 5, for an arbitrary policy π, and inject the bound we just obtained on ‖ρAn − ρEn ‖1 (see
Eq. (5)):

‖ρ(πA)π
n+1 − ρ(πE)π

n+1 ‖1 ≤ LP ‖ρAn − ρEn ‖+ ‖ρ(πA)π
n − ρ(πE)π

n ‖1
≤ LP εvanilla-ADV(1 + LP )n + ‖ρ(πA)π

n − ρ(πE)π
n ‖1

≤ εvanilla-ADVLP

n∑
k=1

(1 + LP )k

≤ εvanilla-ADV(1 + LP )n+1.

Summing over time we obtain (as the bound does not depend on the common policy π)

T3, T4 ≤
(1 + LP )H

LP
εvanilla-ADV.

Putting everything together we recover the final bound.
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MFC-ADV Recall the definition of the term εMFC-ADV
n and the stated result.

εMFC-ADV
n = ‖µ(πE)πE

n − µ(πA)πA

n ‖1 ∀n ∈ [0, . . . ,H − 1].

Theorem 5. Let εMFC-ADV = maxn∈{0,...,H−1} ε
MFC-ADV
n . If LP > 0, the Nash imitation gap satisfies:

E(πA) ≤ (2Lr + rmax)HεMFC-ADV + 3LP rmaxH
2εMFC-ADV.

Proof. The term T1 is easily bounded by HεMFC−ADV . Indeed, we have

‖ρAn − ρEn ‖1 =
∑
s

|ρAn (s)− ρEn (s)|

=
∑
s

|
∑
a

(µ(πE)πE

n (s, a)− µ(πA)πA

n (s, a))|

≤
∑
s,a

|µ(πE)πE

n (s, a)− µ(πA)πA

n (s, a)| = ‖µ(πE)πE

n − µ(πA)πA

n ‖1

≤ εMFC−ADV ,

then by summing over time steps:

T1 =

H−1∑
n=0

‖ρAn − ρEn ‖1 ≤ HεMFC−ADV .

We now focus on the terms T3 and T4. Starting again from Eq. (8), the intermediate result of the
proof of Lemma 5, for an arbitrary policy π, we have:

‖ρ(A)π
n+1 − ρ

(E)π
n+1 ‖1 ≤ LP ‖ρAn − ρEn ‖+ ‖ρ(A)π

n − ρ(E)π
n ‖1.

Then, using the definition of εMFC-ADV and by induction

‖ρ(A)π
n+1 − ρ

(E)π
n+1 ‖1 ≤ LP εMFC-ADV + ‖ρ(A)π

n − ρ(E)π
n ‖1 ≤ (n+ 1)LP ε

MFC-ADV. (6)

This being true for any policy π, we obtain the bounds on T3 and T4 by summing:

T3 =

H−1∑
n=0

‖ρ(πA)π′

n − ρ(πE)π′

n ‖1 ≤ H2LP ε
MFC-ADV,

T4 =

H−1∑
n=0

‖ρ(πA)πA

n − ρ(πE)πA

n ‖1 ≤ H2LP ε
MFC-ADV.

Eventually, we bound the remaining term T2. We have that

‖µ(πE)πE

n − µ(πE)πA

n ‖ = ‖µ(πE)πE

n − µ(πA)πA

n + µ(πA)πA

n − µ(πE)πA

n ‖1
≤ ‖µ(πE)πE

n − µ(πA)πA

n ‖1︸ ︷︷ ︸
≤εMFC-ADV by def.

+ ‖µ(πA)πA

n − µ(πE)πA

n ‖1︸ ︷︷ ︸
≤nLP εMFC-ADV by Eq. (6) and same policy

≤ εMFC-ADV + nLP ε
MFC-ADV.

Then, summing over time, we obtain

T2 =

H−1∑
n=0

‖µ(πE)πE

n − µ(πE)πA

n ‖1 ≤ HεMFC-ADV +H2LP ε
MFC-ADV.

Putting all the terms together we recover the stated bound.
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B.4 Auxiliary lemmas

In this section we report some auxiliary lemmas used in the proofs.

The first lemma bounds the value difference for a common policy but different populations.

Lemma 2. For every three policies π1, π2, π3 and the associated population distributions ρ(π1), ρ(π2),
we have under Asm. 1 and writing here rmax = maxs,a |r(s, a, ρ(π2))|:

|V (π3, ρ(π1))− V (π3, ρ(π2))| ≤ Lr
H−1∑
n=0

‖ρ(π1)
n − ρ(π2)

n ‖1 + rmax

H−1∑
n=0

‖ρ(π1)π3

n − ρ(π2)π3

n ‖1.

Remark 2. Notice that π1 and π2 play symmetric roles, and that we’ll only call this result with
π2 = πE , hence Asm. 2.

Proof. In the proof, to lighten notations, we write ρ1 = ρ(π1) and ρ2 = ρ(π2). We start by decompos-
ing the value difference as follows, by starting from the definition of the value, adding and subtracting
the term µ

(π1)π3

n (s, a)r(s, a, ρ2
n), and using the triangle inequality:

|V (π3, ρ1)− V (π3, ρ2)|

=

∣∣∣∣∣
H−1∑
n=0

∑
s,a

(
µ(π1)π3

n (s, a)r(s, a, ρ1
n)− µ(π2)π3

n (s, a)r(s, a, ρ2
n)
)∣∣∣∣∣

=

∣∣∣∣∣
H−1∑
n=0

∑
s,a

(
µ(π1)π3

n (s, a)(r(s, a, ρ1
n)− r(s, a, ρ2

n)) + (µ(π1)π3

n (s, a)− µ(π2)π3

n (s, a))r(s, a, ρ2
n)
)∣∣∣∣∣

≤
H−1∑
n=0

∑
s,a

∣∣∣µ(π1)π3

n (s, a)(r(s, a, ρ1
n)− r(s, a, ρ2

n))
∣∣∣+

H−1∑
n=0

∑
s,a

∣∣∣(µ(π1)π3

n (s, a)− µ(π2)π3

n (s, a))r(s, a, ρ2
n)
∣∣∣ .

We have two terms in the previous bound, and we upper-bound each of them. For the first one:
H−1∑
n=0

∑
s,a

∣∣∣µ(π1)π3

n (s, a)(r(s, a, ρ1
n)− r(s, a, ρ2

n))
∣∣∣ =

H−1∑
n=0

∑
s,a

µ(π1)π3

n (s, a)|(r(s, a, ρ1
n)− r(s, a, ρ2

n))|

≤
H−1∑
n=0

∑
s,a

µ(π1)π3

n (s, a)Lr‖ρ1
n − ρ2

n‖1

= Lr

H−1∑
n=0

‖ρ1
n − ρ2

n‖1,

where the inequality is due to the Lipschitz assumption (Asm. 1).

For the second term to be bounded, we have:
H−1∑
n=0

∑
s,a

∣∣∣(µ(π1)π3

n (s, a)− µ(π2)π3

n (s, a))r(s, a, ρ2
n)
∣∣∣ ≤ rmax

H−1∑
n=0

∑
s,a

|µ(π1)π3

n (s, a)− µ(π2)π3

n (s, a)|

= rmax

H−1∑
n=0

∑
s,a

π3
n(a|s)|ρ(π1)π3

n (s)− ρ(π2)π3

n (s)|

= rmax

H−1∑
n=0

‖ρ(π1)π3

n − ρ(π2)π3

n ‖1.
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The first line relies on the assumption that the reward is uniformly bounded the second line is by
definition of the joint occupancy measure, and the last line due to the probabilities summing to 1.

Putting things together, we obtain the stated bound.

The next lemma provides intermediate bounds for the BC error when the dynamics is solely driven
by the expert population, which also applies when LP = 0 (as the dependency of the dynamics to the
population disappear).
Lemma 3. Recall that εBC = max0≤n≤H−1 Es∼ρE [‖πEn (·|s)− πAn (·|s)‖1]. We have that:
H−1∑
n=0

‖ρ(πE)πE

n − ρ(πE)πA

n ‖1 ≤ H2εBC and
H−1∑
n=0

‖µ(πE)πE

n − µ(πE)πA

n ‖1 ≤ H2εBC.

Proof. We start by working on the sequence of state occupancy measures. We proceed by induction.
When n = 0, the two distributions are identical. For n ≥ 0, assume that ‖ρ(πE)πE

n − ρ(πE)πA

n ‖1 ≤
nεBC. Then,

‖ρ(πE)πE

n+1 − ρ(πE)πA

n+1 ‖1
=
∑
s

|ρ(πE)πE

n+1 (s)− ρ(πE)πA

n+1 (s)|

=
∑
s

|
∑
x,a

ρ(πE)πE

n (x)πEn (a|x)P (s|x, a, ρE)− ρ(πE)πA

n (x)πAn (a|x)P (s|x, a, ρE)| (by def.)

≤
∑
x,a

|ρ(πE)πE

n (x)πEn (a|x)− ρ(πE)πA

n (x)πAn (a|x)|
∑
s

P (s|x, a, ρE)︸ ︷︷ ︸
=1

=
∑
x,a

|ρ(πE)πE

n (x)πEn (a|x)− ρ(πE)πE

n (x)πAn (a|x) + ρ(πE)πE

n (x)πAn (a|x)− ρ(πE)πA

n (x)πAn (a|x)|

≤
∑
x

ρ(πE)πE

n (x)
∑
a

|πEn (a|x)− πAn (a|x)|+
∑
x

|ρ(πE)πE

n (x)− ρ(πE)πA

n (x)|
∑
a

πAn (a|x)︸ ︷︷ ︸
=1

=Ex∼ρEn
[
‖πEn (·|x)− πAn (·|x)‖1

]
+ ‖ρ(πE)πE

n − ρ(πE)πA

n ‖1
≤εBC + ‖ρ(πE)πE

n − ρ(πE)πA

n ‖1
≤(n+ 1)εBC.

Then, summing over time provides the stated result:
H−1∑
n=0

‖ρ(πE)πE

n − ρ(πE)πA

n ‖1 ≤ εBC
H−1∑
n=0

n ≤ H2εBC.

Building upon the previous result, we now work on the sequence of state-action occupancy measures.

‖µ(πE)πE

n − µ(πE)πA

n ‖1
=
∑
s,a

|µ(πE)πE

n (s, a)− µ(πE)πA

n (s, a)|

=
∑
s,a

|ρ(πE)πE

n (s)πE(a|s)− ρ(πE)πA

n (s)πA(a|s)|

=
∑
s,a

|ρ(πE)πE

n (s)πE(a|s)− ρ(πE)πE

n (s)πA(a|s) + ρ(πE)πE

n (s)πA(a|s)− ρ(πE)πA

n (s)πA(a|s)|

≤ Es∼ρEn [‖πEn (·|s)− πAn (·|s)‖1] + ‖ρ(πE)πE

n − ρ(πE)πA

n ‖1
≤ εBC + nεBC = (n+ 1)εBC.
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From this, by summing over time, we obtain the same stated bound.

The next technical lemma considers the propagation of errors when bounding a term involving a
sequence of occupancy measures relying on both different policies and different populations (so
different dynamics).
Lemma 4. Recall that εBC = max0≤n≤H−1 Es∼ρE [‖πEn (·|s)−πAn (·|s)‖1] and assume that LP > 0.
We have that:

H−1∑
n=0

‖ρAn − ρEn ‖1 ≤
(1 + LP )H

L2
P

εBC.

Proof. We will bound the term ‖ρAn+1 − ρEn+1‖1. The idea is to make use of the definition of the
occupancy measure to make appear both ρAn and ρEn , to add and subtract various terms (namely
ρEn (x)πAn (a|x)P (s|x, a, ρAn ) and ρEn (x)πEn (a|x)P (s|x, a, ρAn )), to use the triangle inequality, and
then to bound each of the resulting terms.

‖ρAn+1 − ρEn+1‖1 =
∑
s

|ρAn+1(s)− ρEn+1(s)|

=
∑
s

|
∑
x,a

ρAn (x)πAn (a|x)P (s|x, a, ρAn )− ρEn (x)πEn (a|x)P (s|x, a, ρEn )|

≤
∑
s,a,x

|ρAn (x)πAn (a|x)P (s|x, a, ρAn )− ρEn (x)πAn (a|x)P (s|x, a, ρAn )|

+
∑
s,a,x

|ρEn (x)πAn (a|x)P (s|x, a, ρAn )− ρEn (x)πEn (a|x)P (s|x, a, ρAn )|

+
∑
s,a,x

|ρEn (x)πEn (a|x)P (s|x, a, ρAn )− ρEn (x)πEn (a|x)P (s|x, a, ρEn )|

=
∑
x

∑
s,a

πAn (a|x)P (s|x, a, ρAn )|ρAn (x)− ρEn (x)|︸ ︷︷ ︸
=‖ρAn−ρEn ‖1

+
∑
x,a

ρEn (x)|πEn (a|x)− πAn (a|x)|︸ ︷︷ ︸
=Ex∼ρE [‖πEn (·|x)−πAn (·|x)‖1]≤εBC

∑
s

P (s|x, a, ρAn )︸ ︷︷ ︸
=1

+
∑
x,a

ρEn (x)πEn (a|x)
∑
s

|P (s|x, a, ρAn )− P (s|x, a, ρEn )|︸ ︷︷ ︸
≤LP ‖ρAn−ρEn ‖1 by Asm. 1

≤ (1 + LP )‖ρAn − ρEn ‖1 + εBC.

By direct induction, we obtain

‖ρAn+1 − ρEn+1‖1 ≤ εBC
n∑
k=0

(1 + LP )k.

Notice that if LP = 0, we retrieve the result in the proof of Lemma 3, that is ‖ρAn+1 − ρEn+1‖1 ≤
(n+ 1)εBC. If LP > 0, this simplifies to

‖ρAn+1 − ρEn+1‖1 ≤ εBC (1 + LP )n+1 − 1

LP
. (7)

Summing over time, we obtain the stated result,
H−1∑
n=0

‖ρAn+1 − ρEn+1‖1 ≤
(1 + LP )H

L2
P

εBC.
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The last technical lemma we provide considers the case when the involved sequences of occupancy
measures have the same (arbitrary) policy but different populations (thus different dynamics).
Lemma 5. Recall that εBC = max0≤n≤H−1 Es∼ρE [‖πEn (·|s)−πAn (·|s)‖1] and assume that LP > 0.
Let π be an arbitrary policy. We have:

H−1∑
n=0

‖ρ(A)π
n − ρ(E)π

n ‖1 ≤
(1 + LP )H

L2
P

εBC.

Proof. The proof follows a similar idea as in the proof of Lemma 4. We make use of the definition of
occupancy measure to make appear the measures at the previous time step, we add and subtract a
term (namely ρ(πA)π

n (x)P (s|x, a, ρEn ) here) and use the triangle inequality, to eventually bound each
of the resulting terms.

‖ρ(πA)π
n+1 − ρ(πE)π

n+1 ‖1 =
∑
s

|ρ(πA)π
n+1 (s)− ρ(πE)π

n+1 (s)|

=
∑
s

|
∑
x,a

ρ(πA)π
n (x)πn(a|x)P (s|x, a, ρAn )− ρ(πE)π

n (x)πn(a|x)P (s|x, a, ρEn )|

≤
∑
s,a,x

πn(a|x)|ρ(πA)π
n (x)P (s|x, a, ρAn )− ρ(πE)π

n (x)P (s|x, a, ρEn )|

≤
∑
s,a,x

πn(a|x)|ρ(πA)π
n (x)P (s|x, a, ρAn )− ρ(πA)π

n (x)P (s|x, a, ρEn )|

+
∑
s,a,x

πn(a|x)|ρ(πA)π
n (x)P (s|x, a, ρEn )− ρ(πE)π

n (x)P (s|x, a, ρEn )|

=
∑
a,x

ρ(πA)π
n (x)πn(a|x)

∑
s

|P (s|x, a, ρAn )− P (s|x, a, ρEn )|︸ ︷︷ ︸
≤LP ‖ρAn−ρEn ‖1 by Asm. 1

+
∑
x

∑
s,a

πn(a|x)P (s|x, a, ρEn )|ρ(πA)π
n (x)− ρ(πE)π

n (x)|︸ ︷︷ ︸
=‖ρ(π

A)π
n −ρ(π

E)π
n ‖1

,

so ‖ρ(πA)π
n+1 − ρ(πE)π

n+1 ‖1 ≤ LP ‖ρAn − ρEn ‖1 + ‖ρ(πA)π
n − ρ(πE)π

n ‖1. (8)

If LP = 0, this readily implies that ‖ρ(A)π
n − ρ(E)π

n ‖1 ≤ ‖ρ(A)π
0 − ρ(E)π

0 ‖1 = 0, which is obviously
the correct result (if the dynamics does not depend on the population, then the occupancy measures
are the same, the underlying policy being the same).

Now consider the case of interest, LP > 0. From Eq. (7) of the proof of Lemma 4, we know that

‖ρAn − ρEn ‖1 ≤ εBC (1 + LP )n

LP
.

Injecting this into Eq. (8), we have

‖ρ(πA)π
n+1 − ρ(πE)π

n+1 ‖1 ≤ εBC(1 + LP )n + ‖ρ(πA)π
n − ρ(πE)π

n ‖1.
By direct induction we obtain

‖ρ(πA)π
n+1 − ρ(πE)π

n+1 ‖1 ≤ εBC
n∑
k=0

(1 + LP )k ≤ εBC (1 + LP )n+1

LP
,

and summing over time we obtain the stated result:
H−1∑
n=0

‖ρ(A)π
n − ρ(E)π

n ‖1 ≤ εBC (1 + LP )H

L2
P

.
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C Numerical illustration

s0

s1

a0

a0 a1

a1
w.p. 1−min{1, Lρ (s1)}

w.p. min{1, Lρ (s1)}
r(s1) = −1

r(s0) = 0

Figure 2: The “attractor” mean-field game.

In order to provide some empirical evidences of the insights given by our analysis (influence of the
horizon and the dependency of the dynamics to the population on the various considered proxys to
the Nash imitation gap), we introduce the “Attractor MFG” depicted in Fig. 2.

This is a 2-state and 2-action MFG with initial distribution satisfying ρ0(s0) = 1, with horizon H
and with Lipschitz parameter L. The reward only depends on the state (not on the distribution nor the
action) and satisfies for all a ∈ A, ρ ∈ ∆S ,

r(s0, a, ρ) = 0 and r(s1, a, ρ) = −1.

In the state s1, any choice of actions leads deterministically to s1, the transition kernel satisfies for all
a ∈ A, ρ ∈ ∆S ,

P (s1|s1, a, ρ) = 1.

In the state s0, the action a0 leads deterministically to s1, while action a0 leads stochastically to one
of the two states: the higher the fraction of the population in s1, the higher the chance to transit to s1

after choosing a0:

P (s1|s0, a1, ρ) = 1 and P (s1|s0, a0, ρ) = min{1, Lρ(s1)}.
Therefore, the state s1 is an attractor, hence the chosen name for the MFG.

Any policy choosing action a0 in state s0 for every timestep is a Nash equilibrium. Denoting by πE
such a policy, its value is V (πE , ρE) = 0 (it is also a social equilibrium). The associated population
obviously satisfies ρEn (s0) = 1 for all time steps n = [0, . . . ,H]. We can also bound the Nash
imitation gap, as any policy choosing action a1 at timestep 0 in s0 (and any action afterwards) will
lead to the lowest possible value, that is for any policy π,

E(π) ≤ H − 1.

The Nash equilibrium being stationary, we consider the policy πα being parameterized by the single
scalar parameter α ∈ [0, 1], defined as (recall that the action selection on s1 has no influence):

πα(a1|s0) = α.

So, πα=0 is a Nash equilibrium, and πα=1 is a worst-case policy (of value −(H − 1)). For such a
policy, we directly get the BC error as

εBC
n (πα) = Es∼ρE [‖παn(·|s)− πEn (·|s)‖1] = ‖παn(·|s0)− πEn (·|s0)‖1 = 2α.

We can also easily compute the occupancy measures of interest by induction (it is sufficient to do so
in the state s1, as there are only two states):

ρ
(E)πα

0 (s1) = 0, ρ
(E)πα

n+1 (s1) = ρ(E)πα

n (s1) + (1− ρ(E)πα

n (s1))α,

ρ
(πα)
0 (s1) = 0, ρ

(πα)
n+1 (s1) = ρ(πα)

n (s1) + (1− ρ(πα)
n (s1))(α+ (1− α) min{1, Lρ(πα)

n (s1)}).
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From this, we can easily get the related errors,

εvanilla-ADV
n (πα) = ‖µ(E)

n − µ(E)πα

n ‖1 = 2(α+ ρ(E)πα

n (s1)(1− α)),

εMFC-ADV
n (πα) = ‖µ(E)

n − µ(πα)
n ‖1 = 2(α+ ρ(πα)

n (s1)(1− α)).

With the above quantity, we also directly have the Nash imitation gap,

E(πα) =

H−1∑
n=0

ρ(πα)
n (s1).

From this, we can also compute the maximum errors εBC(πα), εvanilla-ADV(πα) and εMFC-ADV(πα).

The numerical illustration we propose consists in computing these quantities for a grid of values of
α, for various values of L ∈ {0.01, 0.1, 0.5, 1, 2} and of H ∈ {3, 25, 50, 75, 100}, and showing the
NIG as a function of respectively εBC, εvanilla-ADV and εMFC-ADV, for the considered parameterized
policies. The results are provided in Fig. 3.

We observe the following:

• NIG has a worse dependency to the BC errors than to the other ones. When either L or H
increases, this dependency worsens, in the sense that smaller values of εBC are required for
ensuring a given NIG.

• Vanilla-ADV and MFC-ADV behave similarly for small L and H (recall also that they are
the same quantity for L = 0). However, whenever L or H increases, the dependency of
the NIG to εvanilla-ADV worsens. Indeed, whenever L and/or H are large enough, one can
observe than vanilla-ADV behaves more like BC than like MFC-ADV.

• MFC-ADV is also influenced by the values of L and H , but much less, and is always the
best approach.

Overall, this supports the insights from our analysis. In particular MFC-ADV is better than
vanilla-ADV, which itself is better than BC. When L and H are small enough, vanilla-ADV and
MFC-ADV behave similarly, and when L and/or H are large enough, vanilla-ADV behaves more
closely to BC. Overall, this suggests that a practical IL approach for MFGs should take into account
the fact that the dynamics does depend on the population, and this may build upon MFC as suggested
in the main paper.
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Figure 3: Nash imitation gap as a function of the considered maximum errors (εBC, εvanilla-ADV and
εMFC-ADV) in the attractor MFG, for various values of L (column-wise) and H (row-wise).
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