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Abstract

Discrete diffusion models are a class of generative models that construct sequences
by progressively denoising samples from a categorical noise distribution. In life
science setting, such as molecular strings (SMILES) and other biological sequence
design settings, these models have emerged as a promising alternative to autoregres-
sive architectures, presenting an opportunity to enforce sequence-level constraints,
a capability that existing left-to-right sequence design cannot natively provide. This
paper capitalizes on this opportunity by introducing Constrained Discrete Diffusion
(CDD), a novel integration of differentiable constraint optimization within the diffu-
sion process to ensure adherence to biosafety policies and design properties during
generation. Unlike conventional generators that often rely on post-hoc filtering or
model retraining for controllable generation, CDD directly imposes constraints into
the discrete diffusion sampling process, resulting in a training-free and effective
approach. Experiments in property adherence molecular design, toxicity-bounded
generation, and novelty enforcement demonstrate that CDD achieves zero con-
straint violations in a diverse array of tasks outperforming auto-regressive and
existing discrete diffusion approaches.

1 Introduction

Many scientific problems admit a natural representation as the generation of a discrete sequence
from a finite alphabet. Examples range from molecular SMILES strings to linearized chemical
procedures [1, 2]. While discrete sequence foundation models and related sequence transformers
have recently accelerated discovery by proposing candidate sequences with desirable attributes,
their autoregressive sampling mechanism produces tokens sequentially, hindering the ability to
provide a native mechanism to ensure constrained feasibility. When these constraints are not satisfied,
the generated outputs may be unreliable and ineffective in real-world applications. For example,
an invalid atom in a SMILES string can render a synthesized compound meaningless or even
dangerous; similarly an overlooked volume unit in an autonomous laboratory protocol can trigger
unsafe reactions.

To limit such risks, bio-generative models are often deployed with a variety of guardrails. These
include soft alignment through property based finetuning, rejection sampling, or heuristic post-
processing such as SMILES sanitization [3, 4]. However, these methods do not offer provable
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compliance or guarantees, as they reduce but do not provably eliminate the generation of outputs that
violate property adherence or bio-safety thresholds [5]. This is exacerbated by the auto-regressive
nature of common generative models, which generate sequences one token at a time, making it
difficult to enforce constraints at the sequence level.

In contrast, discrete diffusion models offer a compelling alternative generative mechanism [6–9]. They
refine a fully corrupted sequence by iteratively denoising the entire sample, and have shown strong
performance across a variety of tasks, molecular design, program synthesis, and text generation [7,
10, 11]. Since each step exposes a global view of the partial sequence, it creates a natural opportunity
to impose sequence-level structure. This work introduces Constrained Discrete Diffusion (CDD),
a framework that capitalizes on this property by coupling discrete diffusion with a differentiable
projection operator.
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Figure 1: Synthetic accessibility property enforce-
ment via projection operator PC.

Given a corrupted sequence at a particular
diffusion step, the projection searches for a
new candidate that stays close to the model’s
current score distribution, preserves entropy-
based diversity, and simultaneously satisfies
all user-defined constraints before the next de-
noising update. Because the introduced pro-
jection acts only at sampling time, the method
is training-free and needs neither model re-
training nor post hoc filtering. Its stochastic
formulation also preserves the generative di-
versity, which is crucial for exploratory scien-
tific design, as will be shown in the empirical
analysis.

Specifically, CDD is evaluated on three representative molecular generation use cases: (i) property
adherence for molecular sequence generation, (ii) safety-driven toxic sequence prevention, and (iii)
guaranteeing molecular novelty. The experimental results demonstrate zero threshold violations for
property adherence and up to a 203.4% increase in novel molecule generation.

Contributions. This paper provides the following contributions:

1. It introduces Constrained Discrete Diffusion (CDD), a novel framework that integrates discrete dif-
fusion models with a differentiable projection operator, enforcing global sequence-level constraints
directly within the diffusion sampling process.

2. It formulates this projection operator by solving a Lagrangian dual program at each denoising
step, making the constrained optimization tractable and effective for guiding sequence generation.

3. Through three extensive experiments, we demonstrate that CDD achieves state-of-the-art constraint
adherence (zero violations across all settings) while preserving high sample quality in terms of
validity, novelty, and property adherence.

2 Related Work

Recent efforts in controllable sequence generation have largely focused on constrained decoding,
where the output is dynamically restricted to adhere to predetermined syntactic or grammatical
rules. Approaches in this area modify the decoding process to prune the vocabulary, ensuring that
only tokens compliant with a formal grammar are considered [12], or employ external modules
to filter outputs when direct access to the model’s logits is limited [13]. Other methods have also
adapted beam search to encourage the presence or absence of specific tokens [14, 15]. Although these
techniques effectively guide the generation process, they depend on augmented sampling heuristics
which encourage, but frequently fail to provide, satisfaction of even simple constraint sets [16]. In
biological sequence generation, structure can be enforced by constraining the representation itself.
For molecules, for example, Junction Tree VAE decomposes molecules into valid substructures to
improve validity and synthesizability [17]. However, such approaches typically require domain-
specific encoders/decoders and still provide no formal guarantee that downstream property or safety
thresholds are always satisfied.

2



[Mask]

[Mask] [Mask]

C

C
C

O

O
O

C O

Toxic X Non-Toxic 

CC12 1C32 CC12 1C32 CC12 1C32

Figure 2: Illustration of CDD’s projection step embedded throughout the sampling process.

More recently, several gradient-based sampling frameworks have been proposed to impose constraints
on token sequences [18]. Building on this approach, Amini et al. [19] improve generation quality
via structured Hamiltonian Monte Carlo. However, these methods lack mechanisms for enforcing
hard constraints, and are limited to soft attribute control. Guided discrete diffusion methods for
protein design, for example, Protein Design with Guided Discrete Diffusion [4] applies conditional
guidance during sampling to steer sequences toward desired structural or functional targets and [8]
introduces classifier-free and classifier-based guidance have been adapted to discrete diffusion for
property steering. Compared to these guidance methods, our presented method solves a different
mathematical problem and has a different behavior and guarantees.

We compare against these methods directly, and show that while these methods can shift output
distributions, they fail to reliably enforce structural or semantic constraints.

3 Preliminaries: Discrete Diffusion Models

While diffusion models were originally developed for continuous data, they have recently been
extended to discrete domains, enabling non-autoregressive generation [7, 9, 20, 21]. In contrast to
autoregressive models which predict tokens one by one, discrete diffusion methods generate entire
sequences in parallel by first corrupting sequences through a forward noising process and then
iteratively reconstructing them with a learned reverse process. This is a key enabler recognized by
this work, which exploits this modus operandi to impose global constraints while simultaneously
maintaining high fidelity.

Let x0 = (x1
0, . . . ,x

L
0 ) denote an input sequence of size L, where each token xi

0 ∈ V is represented
as a one-hot vector over a vocabulary V of N distinct tokens. In discrete diffusion models, the forward
process produces, at time t ∈ [0, T ], a sequence of values xt ∈ VL that parametrizes probability
distributions for each token xi

t in the sequence. We denote the corresponding sequence of predicted
tokens by x⋆

t = argmax(xt) where the argmax operator is applied to every member xi
t of the

sequence xt. The diffusion process specifies a forward transition, defined as:

q(xt | x0) = Cat
(
xt;αtx0 + (1− αt) ν

)
, (1)

where αt is a schedule that decreases over time, Cat(·; p) is the categorical distribution over prob-
ability vector p ∈ ∆N , and ν is a fixed reference distribution that specifies the type of corruption
applied to each token. For example, Uniform Diffusion Language Models (UDLM) [8], uses ν as the
uniform distribution over the vocabulary. This instantiation allows tokens to be re-perturbed in later
time steps.

In the reverse process, xT is initialized from ν. For each position i in the sequence, while xi
t = ν, the

denoiser parameterizes the transitions to clean data, x0, and the probability of xi
t = ν is discounted

as t → 0. Once xt ̸= ν, the probability vector transitions into a one-hot vector, concentrating all
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weight exclusively on the predicted token.

q(xs | xt,x0) =

Cat
(
xs;xt

)
, if xt ̸= ν,

Cat
(
xs;

(1−αs) ν+(αs−αt)xθ(xt,t)
1−αt

)
, if xt = ν.

(2)

Equation (2) formalizes this reverse process parameterization, where xθ(xt, t) denotes the trained
denoiser and s is the subsequent timestep in the continuous time reverse process and 0 ≤ s < t ≤ T .

4 Constrained Discrete Diffusion (CDD)

Projected diffusion sampling. We begin by introducing a perspective of the discrete diffusion
reverse process that motivates our approach. Prior work has shown that continuous score-based
diffusion sampling processes can be framed as an sequential optimization procedure [22]. Score-
based parameterizations enable this framing as the model learns to predict the gradients of the data
density function, xθ(xt, t) ≈ ∇ log qt(xt | x0) through Score Matching, and these gradients can
then be applied to optimize xt to the data distribution qt(xt). This is typically conducted through a
Langevin dynamics algorithms [23], which is used either directly [24] or through predictor-corrector
Euler-discretizations [25]. In both cases, a series of M steps of Langevin dynamics are taken for a
fixed distribution qt(xt):

x′
t(ℓ)

update (ℓ)←−−−−− xt(ℓ) + γt∇xt(ℓ)
log qt(xt(ℓ)|x0) +

√
2γtϵ (for ℓ = 1 . . .M), (3)

where γt is the step size, ϵ is added noise, and log qt(xt) is the density function of the learned
distribution at time step t. Note that while annealing is used to improve convergence, it is applied
only after every M iterations. At that point, the sample is updated (xt(M) → xt−1(1)) and the model
transitions to the next distribution, qt−1(xt−1 | x0), however, the step size and the distribution
qt(xt | x0) remain stationary throughout these M iterations.

Discrete diffusion models can leverage a discrete generalization of the score function, referred to as
the Concrete score, to approximate the gradient of the probability density function [7, 9, 26]. Concrete
Score Matching provides an approach mirroring continuous Score Matching in that the estimated
gradients of the probability density function are used to guide the sample to high density regions
of the target distribution. While not always explicitly framed as Concrete Score Matching [9, 26],
the denoiser often implicitly models the score function, as supported by theoretical results in [7]
demonstrating its equivalence in simplified formulations (∇ log qt(xt | x0) ≈ ⟨xθ(xt, t),y⟩ ∀y =
1, . . . , N , in this case). This enables the use of Langevin-based samplers for discrete diffusion, as
commonly employed, e.g., in [26].

Effectively, under some regularity conditions, Langevin dynamics will converge towards a stationary
point. As shown by Xu et al., Langevin dynamics acts as an “almost-minimizer” on the optimized
function, which in this case will be the negative probability density function, converging within a
fixed bound of the optimum. Hence, for each series of steps with a stationary density function, within
this fixed bound, the sampling procedure can be framed as the optimization problem,

minimize
xt

1∑
t=T

− log qt(xt|x0) s.t. xt ∈ C. (4)

Here, Equation (4) extends the representation from an unconstrained optimization problem to a
constrained version by introducing a constraint set C. However, while iteratively applying the
denoiser enables sampling from the posterior distribution, it does not natively incorporate externally
defined constraints, or even implicit ones, given the stochastic nature of the process. Previous work
for continuous modalities has proposed enforcing xt ∈ C by applying a Euclidean projection after
each denoising step [22], which is natural for continuous modalities that fall in a real space, but this
is misaligned when applied to discrete diffusion which operates over a probability simplex xt ∈ ∆N .

To address this, we introduce a projection operator that minimizes the Kullback-Leibler (KL) diver-
gence between the projected and original probability distributions, as opposed to a Euclidean distance
metric. Given the model’s predicted probabilities, the projection is defined as:

xs = xt(ℓ+1) = PC

(
x′
t(ℓ)

) def
= argmin

y
DKL

(
x′
t(ℓ)∥y

)
s.t. argmax(y) ∈ C. (5)
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The integration of this projection operator ensures that xs is the “nearest sample” that falls within the
feasible subdistribution according to a distance metric defined over probability distributions. This
ensures the denoising trajectory remains within the allowable set when C is convex, enabling effective
navigation along its boundary or interior toward an optimal solution (illustrated in Figure 2). Next, we
show how this projection operator can be formulated as a subproblem within the sampling procedure
and efficiently solved using gradient-based methods. Moreover, while convergence guarantees are
available for convex constraint sets, as discussed below, Section 5 demonstrates how this technique
can effectively handles highly non-linear constraints, including toxicity mitigation and molecular
generation, achieving zero violations across all cases.

Importantly, while state transitions are imposed on the token probability distributions, constraint
satisfaction is evaluated on the decoded sequence. Indeed, the constraints are formulated such that the
argmax of the projected sequence y (referred to as y⋆), must satisfy sentence level criteria y⋆ ∈ C.3
However, this use of a non-differentiable argmax operation also poses challenges to the resolution
of the projection, which relies on gradient-based optimization.

Differentiable projection. To address the non-differentiability of the argmax function, we apply
a Gumbel-Softmax relaxation ϕ̃, which approximates discrete token probabilities with continuous
values [28] as

ϕ̃(xi
t)(v) =

exp
(

logxi
t(v)+ξv

Tsample

)
∑N

v′=1 exp
(

logxi
t(v

′)+ξv′
Tsample

) , (6)

where xi
t(v) is the probability of token v in the vocabulary, ξv is drawn from the Gumbel(0, 1)1

distribution for token v, and Tsample > 0 is the temperature parameter controlling the smoothness of
the output. This enables gradient propagation during the projection step, while closely approximating
the discrete argmax operation.

Augmented Lagrangian projection. Consider a generic constraint on a sequence x defined via
a measurable property given by a function gi(x). For instance, gi(·) : RL×N→R+ might evaluate
molecular synthetic accessibility (see Section 5.1) or even evaluate molecular structural properties
(see Section 5.2), or even serve as a black-box function computed by an external routine, as in our
molecular novelty sequence generation application 5.3). To guide the projection operations, we
require a measure of constraint violation that can later inform the parametrization of our projection
update rule; for ease of presentation, we express the constraint in the form gi(x) < τi, where τi ≥ 0
represents an acceptable threshold that must not be exceeded. To quantify by how much a given
sequence violates the constraint, we define

∆gi(ϕ̃(xt)) = max
(
0, gi(ϕ̃(xt))− τi

)
,

where g = (g1, . . . , gm) can be treated as series of functions corresponding to a series of thresholds
τ = (τ1, . . . , τm), and ∆g = (∆g1, . . . ,∆gm) is defined in analogously quantifying m constraints.

In practice, ∆g is non-linear, and, thus, to implement Equation (5), we adopt an augmented La-
grangian approach [29]. In augmented Lagrangian methods, the problem constraints are incorporated
into the objective of a minimizer via Lagrange multipliers λ and a quadratic penalty term µ. Let x′

t
be the probability distribution after the denoising step at diffusion time t. We introduce a projected
distribution y, which is iteratively updated to reduce the constraint violations (measured by the score
∆g) while remaining close (in KL-divergence) to x′

t. Concretely the augmented Lagrangian dual
function is defined as:

LALM(y,x′
t;λ, µ) = DKL (x

′
t∥y) +

m∑
i=1

λi∆gi(ϕ̃(y)) +
µi

2
∆gi(ϕ̃(y))

2

where λ = (λ1, . . . , λm) is a non-negative Lagrange multiplier and µ = (µ1, . . . , µm) is a non-
negative quadratic penalty term. When using a Lagrangian function, the primal optimization problem
becomes

argmin
y
LALM(y,x′

t;λ, µ),

3We assume a greedy decoding scheme as is standard to current discrete diffusion generation models.
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and is a lower bound of the original projection operator (5) by weak duality [29]. To obtain the
strongest Lagrangian relaxation of the projection, the Lagrangian dual can be used to find the best
Lagrangian multipliers λ and penalty terms µ, i.e.,

argmax
λ,µ

(
argmin

y

(
LALM(y,x′

t;λ, µ)
))

. (7)

In practice, the Lagrangian dual is a strong approximation of the original problem (our projection
into the constraint space).

Algorithm 1: Augmented Lagrangian
Init: λ, µ, η, α, δ;
Input: probability distribution x′

t
y ← x′

t;
while ∆g(y∗) < δ do

for j ← 1 to max_inner_iter do
LKL ← DKL(x

′
t∥y)

Lviol ←
∑m

i=1 λi∆gi(ϕ̃(y)) +
µi

2 ∆gi(ϕ̃(y))
2

LALM ← LKL + Lviol
y ← y − η∇yLALM

λ← λ+ µ∆g(y∗)
µ← min(αµ, µmax)

xs ← y;
Output: xs

The optimization of (7) proceeds iteratively, fol-
lowing a gradient-based update on y while dy-
namically adjusting the Lagrange multiplier λ
and penalty coefficient µ. Specifically, we per-
form the following updates [30]:

y ← y − η∇yLALM(y,x′
t;λ, µ) (8a)

λ← λ+ µ∆g(y⋆), (8b)
µ← min(αµ, µmax), (8c)

where η is the gradient step size, α > 1 is a
scaling factor that progressively increases µ over
iterations, and µmax is an upper bound on the
penalty term. These updates drive y as close as
possible to satisfy ∆g(ϕ̃(y⋆)) ≤ τ while also
ensuring it remains close to the original denoised
distribution x′

t. Pseudocode is provided for our
implementation in Algorithm 1.

As shown in the next section, there is a high degree of flexibility in how these constraints can be
implemented. For instance, they can be implemented as surrogate models (e.g., a classifier) that can
be used to provide a continuous score, allowing for smooth gradient-base updates, as shown above.

Theoretical justification. The next result shows that the constrained reverse diffusion process
converges to samples within the feasible region C while also keeping their distribution close to the data
manifold, thus ensuring that the generated samples are both valid and realistic. Let DKL(xt,C) =
infy∈C DKL(y∥xt) denote the KL divergence from xt to the set C.
Theorem 4.1 (Convergence of CDD). Let C be non-empty and β-prox-regular in the sense of [31,
Def. 13.27], and the score network satisfy ∥∇xt log qt(xt)∥ ≤ G (a standard consequence of the
bounded-data domain after normalization). Then, for positive step sizes γt,≤ 1

2G2 β, the following
inequality holds for the distance to the feasible set C:

DKL(x
′
s,C) ≤ (1− αt)DKL(x

′
t,C) + α2

t+1G
2, (non-asymptotic feasibility)

where αt is proportional to the discrete Langevin step size γt and G bounds the score norm.

Theorem 4.1 shows that the distance to the feasible set C decreases at a rate of 1− αt at each step
(up to an additive α2

tG
2 noise). This implies ε-feasibility after O(α−1

min) steps, with αmin ∝ mint γt,
and a cumulative KL drift withinO(

∑
t αt). The theorem assumes β-prox-regularity, which provides

a relaxation of typical convexity assumptions, and implies that for each viable point and normal
direction, small perturbations still project uniquely and smoothly back to C. Theorem proofs are
provided in Appendix B.

5 Experiments

To empirically demonstrate the advantage provided by CDD, we compare our method against
similarly sized autoregressive and diffusion-based generative models. Specifically, we benchmark
our performance on constrained sequence generation against discrete diffusion baselines MDLM
and UDLM [7, 8] and a similarly sized standard transformer based auto regressive model. As
demonstrated by [7] UDLM outperforms MDLM [8] for sequence generation tasks with smaller
vocabulary sizes. Consequently, we use UDLM as the base discrete diffusion model and for each
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Molecules (Synthetic Accessibility)

Model Valid Novel QED Viol (%)
[↑] [↑] [↑] τ=3.0 τ=3.5 τ=4.0 τ=4.5

AR 1023 0 0.46 91.6 78.4 62.3 42.0
ARFUDGE γ=7 925 6 0.48 11.1 9.8 9.6 9.2
MDLM 596 20 0.45 85.9 73.7 61.1 44.0
MDLMD-CFG γ=3 772 3 0.41 87.8 73.9 54.2 22.5
MDLMD-CBG γ=3 436 14 0.37 50.5 48.6 46.1 44.7
UDLM 895 21 0.47 89.4 88.0 58.1 37.8
UDLMD-CFG γ=5 850 18 0.47 80.6 58.6 35.9 13.9
UDLMD-CBG γ=10 896 28 0.47 90.1 77.8 58.6 37.7
CDDτ=3.0 (Ours) 353 36 0.63 0.0 0.0 0.0 0.0
CDDτ=3.5 (Ours) 863 22 0.62 – 0.0 0.0 0.0
CDDτ=4.0 (Ours) 936 31 0.61 – – 0.0 0.0
CDDτ=4.5 (Ours) 938 33 0.58 – – – 0.0

Figure 3: Left: Results for synthetic accessibility constrained molecule generation constraints. QED
and constraint violations are reported for only valid molecules, and novel molecules must be valid
and have no violation (τ ≤ 3.0). Right: Synthetic Accessibility score distributions for CDD versus
competing baselines.

application, CDD uses configurations as described in [7] unless otherwise specified. Additional
experiment details are available in Appendix A.

In this section we show the ability of CDD to impose constraints on a scientific task, specifically in
the domain of molecular generation. In this experiment we generate SMILES strings [1], a linear
representation of a molecule’s structure with a vocabulary consisting of a limited vocabulary and
a grammar dictating molecular validity. Recent advances in generative modeling have enabled the
design of molecular sequences by leveraging techniques from natural language processing. Despite
their impressive ability to optimize for specific chemical properties, these models often generate
molecules that fall short of practical requirements, either by producing compounds that are difficult to
synthesize or by closely mimicking existing structures. Furthermore, generated molecules often fail
to maximize qualitative properties such as drug-likeness (QED) [32] that are critical to the practicality
of the generations and used as a qualitative metric for the experiments discussed in this section.

We target three constraint applications:

1. Synthetic accessibility,which ensures that generated molecules can be synthesized in a laboratory
setting [33].

2. Toxicity, which prohibits specific structural properties indicative of chemical toxicity or instability.
3. Novelty, which guarantees that the generated molecules are not already present in training datasets.

Across these regimes, CDD achieves zero constraint violations while maintaining high validity
and QED, and substantially increases the fraction of novel molecules under equivalent guidance
conditions. For each constraint, we implement a dedicated projection operator, described in A, that
imposes hard limits on the generation process, resulting in final outputs that adhere precisely to our
desired standards of synthetic accessibility or novelty.

5.1 Synthetic accessibility constraints.

Synthetic accessibility is commonly assessed using black-box, non-differentiable functions. To enable
gradient-based optimization, we train a surrogate model on the QM9 dataset [34], where training
labels are derived from RDKit’s synthetic accessibility score [35]. This allows us to approximate a
differentiable function g(·) for synthetic accessibility. While our molecular generation framework
employs this surrogate model to optimize for synthetic accessibility during training, the actual
assessment of accessibility violations is conducted by a separate, black-box external model. This
external evaluation rigorously measures the degree to which generated molecules comply with the
synthetic accessibility criteria, using a series of thresholds (τ = 3.0, 3.5, 4.0, and 4.5).

For the discrete diffusion baselines, we adapt the guidance mechanisms provided by [8] for QED
by retraining on synthetic accessibility labels for Classifier-Based Guidance (CBG) and Classifier-
Free Guidance (CFG). A similar adaptation is applied for the autoregressive baselines employing
FUDGE guidance [16]. The results, summarized in Figure 3 (left), confirm that CDD achieves
perfect compliance across all thresholds. This 0% violation rate is achieved, all while generating a
competitive number of valid molecules and exhibiting the highest drug-likeness scores.
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Molecules (Novelty)
Model Valid & Novel QED Viol (%)

No Guidance
AR 11 0.41 98.93
MDLM 271 0.45 54.53
UDLM 345 0.46 61.45
CDD (Ours) 511 0.45 0.00

CFG
ARD-CFG γ = 3

† 79 0.60 91.61
MDLMD-CFG γ = 3

† 96 0.60 69.82
UDLMD-CFG γ = 5

† 64 0.62 93.69
CDDD-CFG γ = 5 (Ours) 251 0.60 0.00

CBG
ARFUDGE γ = 7

† 53 0.61 94.28
MDLMD-CBG γ = 3

† 117 0.58 72.08
UDLMD-CBG γ = 10

† 64 0.61 93.59
CDDD-CBG γ = 10 (Ours) 355 0.59 0.00

Novelty Projection

Figure 4: Left: Results for novelty projection with and without QED guidance. Violation represents
percentage of valid, but not novel molecule generations. QED is reported for only novel molecules.
Results denoted with † are as reported by Schiff et al. [8]. Bold and underlined values mark the best
and second-best, respectively. Right: Projection illustration for a novelty application example.

5.2 Toxicity constraints
Model Valid & Novel QED Three-membered heterocycles (Viol %)
AR 11 0.41 9.3
MDLM 271 0.45 22.2
UDLM 345 0.46 16.9
CDD 351 0.47 0.0

Table 1: Violation rates for three-membered heterocycles.

While the previous application instan-
tiates CDD with surrogate, differen-
tiable objectives here we show that
CDD seamlessly extends to hard, non-differentiable structural rules specified by cheminformat-
ics tooling, specifically substructure matching. For this application we prohibit the generation of
molecules with three-membered heterocycles structures, as these are highly strained which makes
them reactive and prone to ring opening. In medicinal chemistry this reactivity is linked to genotoxic
liabilities and chemical instability and, contributing to off-target covalent binding [36]. At each
reverse step, an external black box verifier [35] flags three-membered heterocycle substructures that
are present in the molecules. If flagged, CDD solves a minimal-perturbation projection back to the
feasible set, so constraints are enforced during sampling with empirical zero-violation guarantees, no
retraining and no post-hoc rejection. This makes CDD attractive for safety-critical bio-generative
settings: it is training-free and tool-agnostic as it works with black-box structure checkers, opening a
line of applications where structural safety policies are enforced exactly rather than probabilistically.
CDD attains zero violations on this constraint in addition to the highest Valid and Novel molecular
generation amount as observed in Table 1.

5.3 Novelty constraints.

Novelty in molecule generation refers to the model’s ability to produce new chemical structures
that were not explicitly contained in its training set. In the context of generative modeling for drug
design or other chemistry applications, novelty is often an important objective for the reasons of
chemical space exploration and practical relevance. In this experiment, we generate SMILES strings
constraining all valid generations to be novel. The novelty constraint is enforced at every denoising
step. If the current candidate sequence already exists in an external database, a projection operator
minimally perturbs its token-probability vector to yield an unseen molecule, thereby approximating
a gradient step through the otherwise non-differentiable novelty indicator. Specifically, the novelty
projection operator is a best-first traversal of the token-probability space: each token flip incurs a
cost equal to its probability gap from the argmax, a priority queue retrieves the lowest-cost unseen
sequence, and we then renormalize and cache it to prevent duplication. As it selects the sequence with
the minimal cumulative flip cost, our distance metric over sequences, the procedure is mathematically
equivalent to projecting the distribution onto the set of novel sequences. Repeating this operation
throughout the diffusion trajectory guarantees that only new compounds are emitted while preserving
the exploratory capacity of the discrete diffusion model.
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We compare against baselines with no QED guidance alongside CFG and CBG QED guidance [8]
to evaluate the impact of our novelty constraint. The results are shown in the right side of Figure 4.
The CBG setting yields a 203.4% increase in novel molecule generation, while the CFG setting
shows a 161.4% increase. Even without guidance, the method still produces 48.1% more novel
molecules, with only a minimal reduction in the QED score. These results are significant because
they demonstrate that CDD can effectively generate novel molecules while maintaining a high QED
score, which is crucial for many scientific tasks.

6 Conclusion

In this paper we presented Constrained Discrete Diffusion (CDD), a novel method for imposing both
structured and unstructured constraints during sequence generation. CDD relies on the adoption
of discrete diffusion models which enable the consideration of entire sequences when imposing
constraints during the generation process. Offering a key departure from current paradigms for
controllable sequence generation, CDD integrates differentiable optimization methods into the
diffusion reverse process. This integration, governed by a rigorous mathematical optimization
framework, provides precise control for discrete sequence generation. The method is empirically
validated on (i) molecular property adherence, (ii) toxic structural prohibition, and (iii) novelty,
reporting state-of-the-art results for controllable generation in both terms of constraint adherence and
quality metrics.
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A Experimental Details

A.1 Molecular Generation

Training Dataset. For our molecule generation experiments, we utilize the QM9 dataset [34], as
used by Schiff et al. [8]. This dataset comprises approximately 133,885 small organic molecules,
each encoded as a SMILES string [1], which compactly represents the molecular structure through a
sequence of characters. The SMILES representation facilitates discrete modeling by enabling the
treatment of molecular generation as a sequence prediction task, making it particularly amenable to
discrete diffusion approaches. By leveraging QM9, we can rigorously evaluate the performance of
our generative models on tasks that require both the preservation of chemical validity and the precise
control of molecular properties, aligning with established protocols in the literature.

A.1.1 Synthetic Accessibility Constraints

Surrogate Model. We train our surrogate model on the QM9 dataset [34] but manually label the
training data with with RDKIT’s synthetic accessibility score [35]. We finetune GPT2 (124M) to act
as this surrogate model and directly output a score s ∈ [0, 10].

FUDGE Implementation. For this setting, we follow the FUDGE implementation provided by [8].
However, while their guidance is trained on QED scores, labeling samples from the QM9 dataset
with these scores, we adapt it to label the training data with RDKIT’s computation of the synthetic
accessibility scores.

Diffusion Guidance Implementation. Similar to the implementation of FUDGE, we adapt the
guidance mechanisms provided by [8] for QED by retraining on synthetic accessibility labels.
Otherwise, our implementation mirrors their approach for QED guidance.

ALM Implementation. For the ALM projection, we initialize using the following hyperparameters:
λinit = 0.0, µinit = 1.0, µmax = 1000, outer_itermax = 1000, inner_itermax = 100, η = 1.0.

A.1.2 Toxicity Constraints

Toxicity-Structure Projection Operator. Three-membered heterocycles are highly strained and
reactive and are associated with instability and adverse liabilities [36]. We detect this via RDKit
substructure matching, which is also used for validity checks. When a candidate is flagged, a
projection operator proposes the least-cost structural edit that removes the observed structure while
staying close to the model’s score distribution: (i) ring expansion (insert one atom to yield a 4-/5-
membered ring); else (ii) ring opening (break one ring bond to linearize the fragment); else (iii)
excision and reconnection (remove the ring and reconnect substituents). After each edit, the molecule
is sanitized and re-validated.

A.1.3 Novelty Constraints

Novelty Projection Operator. In order to project the molecule sequences into a novel set, we apply
a best-first search (BFS) at the probability distribution level. We begin by defining a flip cost for
forcing a token to become the new argmax; this cost is the difference between the current top token’s
probability and the candidate token’s probability, or zero if the candidate is already top-ranked. To
find a novel sequence at minimal total flip cost, we start with an empty sequence and expand it
position by position, accumulating flip costs in a priority queue. Once a full sequence is constructed,
we decode it and check if it is absent from our existing dataset. If it is indeed novel, we finalize
the sequence, shift the probability distribution so that each selected token becomes the definitive
argmax, and insert the resulting sequence into the dataset to prevent re-generation. This procedure
systematically maintains high-likelihood sequences while avoiding those already present, terminating
for each sample as soon as it finds a suitable novel result before proceeding to the next sample.

FUDGE Implementation. For this application, we similarly follow the FUDGE implementation
and configuration in [8] for QED guidance.
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Diffusion Guidance Implementation. We use classifier based guidance and classifier free guidance
for QED as implemented in [8].

B Missing Proofs

Proof of Theorem 4.1

Proof. We begin by proving this bound holds for projected diffusion methods operating in the image
space:

DKL(x
′
s,C) ≤ (1− αt)DKL(x

′
t,C) + α2

t+1G
2, (9)

For ease of notation, we will denote subsequent timestep in terms of an arbitrary t, such that
xt−1 = xs and the subsequent timestep after that is denoted xt−2, etc.

Consider that at each iteration of the denoising process, projected diffusion methods can be split into
two steps:

1. Gradient Step: x′
t = xt + γt∇xt

log qt(xt)︸ ︷︷ ︸
st

2. Projection Step: xt−1 = PC(x
′
t)

These steps are sequentially applied in the reverse process to sample from a constrained subdistribu-
tion.

xt →
x′

t︷ ︸︸ ︷
xt + γtst → PC(x

′
t) = xt−1 →

x′
t−1︷ ︸︸ ︷

xt−1 + γt−1st−1 → PC(x
′
t−1) = xt−2 . . .

By construction, xt−1 = PC(x
′
t) ∈ C. Next, let us define the projection distance to C as:

f(x) = DKL(x,C) = DKL (x∥PC(x))

Since C is β-prox regular, by definition the following hold:

• f is differentiable outside C (in a neighborhood)

• ∇f(x) = 2(x− PC(x))

• ∇f is L-Lipshitz with L = 2
β

The standard “descent lemma” (or smoothness inequality) for L-smooth functions applies:

Lemma B.1. ∀x,y in the neighborhood of C:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2 = f(x) + 2⟨x− PC(x),y − x⟩+ 1

β
∥y − x∥2

Applying this lemma, let us use x = x′
t−1 and y = x′

t. Noting that PC(x
′
t) = xt−1, we get:

DKL(x
′
t,C) ≤ DKL(x

′
t−1,C)︸ ︷︷ ︸

Term A

+2 ⟨x′
t−1 − xt−2,x

′
t − x′

t−1⟩︸ ︷︷ ︸
Term B

+
1

β
∥x′

t − x′
t−1∥2︸ ︷︷ ︸

Term C

(⋆)
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Decomposing Term B. First, consider that since the step size is decreasing γt ≥ γt−1:

x′
t−1 − xt−2 ≤ (xt−1 − xt−2) + γt−1st−1

≤ (xt−1 − xt−2) + γtst−1

By the same rationale,

x′
t − x′

t−1 ≤ (xt − xt−1) + γt(st − st−1). (Definition B.1)

Proof of non-expansiveness of the projection operator. Next, we prove the non-expansiveness of the
projection operator:

∥xt − xt−1∥ ≤ 2 γt+1G
2 (L+)

Given xt = PC(x
′
t+1) and xt−1 = PC(x

′
t),

∥xt − xt−1∥ = ∥PC(x
′
t+1)− PC(x

′
t)∥ ≤ ∥xt+1 − xt∥

since projections onto closed prox-regular sets are L-Lipshitz.

Now:

x′
t+1 = xt+1 + γt+1st+1;

x′
t = xt + γtst;

x′
t+1 − x′

t = (xt+1 − xt) + (γt+1st+1 − γtst). (Definition B.2)

Making the projection residual,

xt+1 − xt = xt+1 − PC(x
′
t+1)

orthogonal to the target space at xt (and any vector of the form st+1− st). Thus, since ∥st∥ ≤ G ∀t:

∥x′
t+1 − x′

t∥2 = ∥γt+1st+1∥2 + ∥γtst∥ ≤ (γ2
t+1 + γ2

t )G
2

Taking the square root:

∥x′
t+1 − x′

t∥ ≤
√

γ2
t+1 + γ2

tG

Since γt+1 ≥ γt:

∥x′
t+1 − x′

t∥ ≤
√
2γt+1G

< 2γt+1G

Finally, by applying Definition (B.1), ∥xt+1 − xt∥ ≤ ∥x′
t+1 − x′

t∥, and thus:

∥xt+1 − xt∥ ≤ 2γt+1G

Now, prox-regularity gives:

⟨x′
t−1 − xt−2,x

′
t − x′

t−1⟩ ≤ β∥xt − xt−1∥2

≤ 4βγ2
t+1G

2 (Bound B.1)

where the Bound B.1 is derived by applying (L+).

Since C in β-prox regular, for any point u near C and v ∈ C:

⟨u− PC(u), v − PC(u)⟩ ≤ β∥v − PC(u)∥2

Above, we substitute:

u = x′
t = xt + γtst

v = xt

PC(u) = xt−1
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Now, expanding the inner product:

⟨x′
t−1 − xt−2,x

′
t − x′

t−1⟩ = ⟨x′
t−1 − xt−2, (xt + γtst)− (xt−1 + γt−1st−1)⟩

≤ ⟨x′
t−1 − xt−2, (xt − xt−1) + γt(st − st−1)⟩

≤ ⟨x′
t−1 − xt−2, (xt − xt−1)⟩+ ⟨x′

t−1 − xt−2, γt(st − st−1)⟩

and since ∥st∥ ≤ G ∀t: ⟨st+1, st⟩ ≤ ∥st+1∥∥st∥ ≤ G2 so ⟨st−1, st⟩ − ∥st+1∥2 ≤ G2, and:

⟨x′
t−1 − xt−2, γt(st − st−1)⟩ ≤ γ2

tG
2 (Bound B.2)

By applying Definition (B.2):

⟨x′
t−1 − xt−2,x

′
t − x′

t−1⟩ = ⟨x′
t−1 − xt−2, (xt − xt) + (γtst − γt−1st−1)⟩

≤ ⟨x′
t−1 − xt−2, (xt − xt−1)⟩

Therefore, by applying Bound (B.1) to the previous inequality and Bound (B.2) directly, Term B is
upper bounded by:

2 ⟨x′
t−1 − xt−2,x

′
t − x′

t−1⟩ ≤ 8βγ2
t+1G

2 + 2γ2
tG

2 (Bound B.3)

Decomposing Term C. Next, we derive a bound on Term C in Eq. (⋆). As already shown,

∥x′
t − x′

t−1∥ ≤ 4γtG,

given:

x′
t − x′

t−1 ≤ (xt − xt−1)︸ ︷︷ ︸
≤2γt+1G

+ γt(st − st−1)︸ ︷︷ ︸
≤2G

≤ 4γt+1G

Thus,

1

β
∥x′

t − x′
t−1∥2 ≤

16

β
γ2
t+1G

2 (Bound C.1)

Combining bounds (B.3) and (C.1) into (⋆), and recalling that γt+1 ≥ γt:

DKL(x
′
t,C) ≤ DKL(x

′
t−1,C)︸ ︷︷ ︸
d

+(8β + 2 +
16

β
)︸ ︷︷ ︸

K

γ2
t+1G

2

Now, we rewrite Term A, which for ease of notation we will refer to as d:

d = (1− 2βγt+1)d+ 2βγt+1d

Thus:

DKL(x
′
t,C) ≤ d− 2βγt+1d+ 2βγt+1d+Kγ2

t+1G
2

= (1− 2βγt+1)d+
[
2βγt+1d+Kγ2

t+1G
2
]

Next, through Young’s inequality, we simplify this expression further.

Theorem B.2. (Young’s Inequality) ∀u, v ≥ 0, ϵ > 0:

uv ≤ u2

2ϵ
+

ϵv2

2
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If we choose u =
√
2βγt+1d, v =

√
Kγt+1G, and ϵ = 2βd

kγt+1G2 , then

uv =
√
2βγt+1d×

√
Kγt+1G

=
√
2Kγ

3
4
t+1Gd

Applying Young’s Inequality:

uv ≤ u2

2ϵ
+

ϵv2

2

=
2βγt+1d

2( 2βd
Kγt+1G2 )

+
ϵv2

2

=
Kγ2

t+1G
2

2
+

ϵv2

2

=
Kγ2

t+1G
2

2
+

(
1

2
× 2βd

Kγt+1G2
×Kγ2

t+1G
2

)
=

Kγ2
t+1G

2

2
+ βγt+1d

Thus,
√
2Kγ

3
4
t+1Gd ≤

Kγ2
t+1G

2

2
+ βγt+1d

Finally, taken altogether:

2βγt+1d+Kγ2
t+1G

2 ≤ βγt+1d+

(
Kγ2

t+1G
2

2
+ βγt+1d

)
= 2βγt+1d+

K

2
γ2
t+1G

2

Since γt+1 ≤ β
2G2 , then

K

2
γ2
t+1G

2 ≤ 1

2

(
8β + 2 +

16

β

)
β2

4G2
= O(β3)

which is bounded by γ2
t+1G

2 for all β ≥ 0.

Thus,
2βγt+1d+Kγ2

t+1G
2 ≤ 2βγt+1d+ γ2

t+1G
2.

By substitution we obtain:

DKL(x
′
t,C) ≤ (1− 2βγt+1)DKL(x

′
t−1,C) + γ2

t+1G
2︸ ︷︷ ︸

O(β3)

Finally, we reparameterize this, such that αt = 2βγt, implying γt =
αt

2β . Plugging this in, we get:

DKL(x
′
t,C) ≤ (1− αt)DKL(x

′
t−1,C) + γ2

t+1G
2

≤ (1− αt)DKL(x
′
t−1,C) + α2

t+1G
2

and thus,

DKL(x
′
t,C) ≤ (1− αt)DKL(x

′
t−1,C) + α2

t+1G
2
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