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Abstract

Reflection, the ability of large language models (LLMs) to evaluate and revise1

their own reasoning, has been widely used to improve performance on complex2

reasoning tasks. Yet, most prior work emphasizes designing reflective prompt-3

ing strategies or reinforcement learning objectives, leaving the inner mechanisms4

of reflection underexplored. In this paper, we investigate reflection through the5

lens of latent directions in model activations. We propose a methodology based6

on activation steering to characterize how instructions with different reflective7

intentions: no reflection, intrinsic reflection, and triggered reflection. By construct-8

ing steering vectors between these reflection levels, we demonstrate that (1) new9

reflection-inducing instructions can be systematically identified, (2) reflective be-10

havior can be directly enhanced or suppressed through activation interventions, and11

(3) suppressing reflection is considerably easier than stimulating it. Experiments on12

GSM8k-adv with Qwen2.5-3B and Gemma3-4B reveal clear stratification across13

reflection levels, and steering interventions confirm the controllability of reflection.14

Our findings highlight both opportunities (e.g., reflection-enhancing defenses) and15

risks (e.g., adversarial inhibition of reflection in jailbreak attacks). This work opens16

a path toward mechanistic understanding of reflective reasoning in LLMs.17

1 Introduction18

Large language models (LLMs) have demonstrated remarkable capabilities in multi-step reasoning19

tasks [1, 2, 3, 4], with reflection playing a central role in their success [5, 6, 7, 8]. Reflection enables20

a model to reconsider its reasoning process, identify errors, and revise its conclusions, thereby21

producing more reliable outputs [5, 8]. While reflection has been operationalized in diverse ways,22

such as multi-agent frameworks [6, 7], long chain-of-thought prompting [9, 10, 11], and iterative23

refinement [8, 12, 13], the mechanisms underlying how reflection emerges in LLMs remain poorly24

understood. Most prior research has treated reflection as a behavioral property to be exploited, rather25

than as a latent phenomenon to be explained.26

In this paper, we move beyond behavioral prompting strategies and instead focus on the mechanistic27

interpretability of reflection. Building on recent advances in activation steering [14, 15, 16], we28

investigate whether reflection aligns latent directions in a model’s hidden space. Our contributions29

are summarized as follows:30

• We categorize reflection into three levels: No Reflection, Intrinsic Reflection, and Triggered31

Reflection. This stratification enables the construction of steering vectors that capture the32

latent transitions between different reflective states.33

• Using these steering vectors, we demonstrate a principled approach to discovering new34

reflection-inducing prompts, moving beyond trial-and-error prompt design.35
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• We show that reflective behavior can be directly modulated through activation steering,36

enabling both enhancement and inhibition of reflection at inference time.37

• Our findings reveal an asymmetry: suppressing reflection is easier than inducing it. This38

observation not only sheds light on the underlying mechanisms of reasoning but also raises39

potential security concerns, as malicious actors could exploit reflection inhibition to bypass40

model safeguards.41

Table 1: List of Instruction for Reflection in Related Works
Words Source
wait [5]
wait [17]
wait, alternatively, double-check, make sure, another way, verify, to confirm [18]
wait, alternatively [19]
wait, alternatively, recheck, retry, however [20]
wait, alternatively, double-check, let me check, emm, hmm [10]

2 Methodology42

2.1 Problem Formulation43

We begin by defining the type of Reflection considered in this work. Specifically, we focus on44

Situational Reflection [5], where a model reflects on reasoning generated by another source (e.g., a45

different model). Other forms, such as Self-reflection—where a model critiques its own outputs—are46

beyond our scope. We choose situational reflection because it provides a more controlled setting to47

study how models correct deliberately induced errors. Importantly, in our formulation the errors are48

introduced within the reasoning steps rather than only in the final answer. This contrasts with works49

like [21], which focus on correcting end outputs in non-reasoning tasks. An illustrative example,50

adapted from [5], is shown in Figure 1: the prompt presents a GSM8k math problem, followed by a51

deliberately flawed chain-of-thought, and ends with an instruction to trigger reflection (e.g., wait,52

alternatively). Prior work has proposed various trigger instructions (summarized in Table 1), but their53

selection has largely based on intuition rather than systematic analysis. This raises two key research54

questions:55

• How can we systematically identify effective trigger instructions, rather than relying on56

trial-and-error?57

• Do effective trigger instructions correspond to latent directions in the hidden space that58

implicitly induce the self-reflection process?59

To address these questions, we propose a methodology grounded in activation steering. Specifically,60

we first categorize reflection into three levels—No Reflection, Intrinsic Reflection, and Triggered61

Reflection—to establish a structured framework for analysis. We then compute steering vectors62

between these levels, capturing the latent directions that separate different reflective behaviors. These63

steering vectors serve two purposes:64

• They allow us to discover new instructions beyond those reported in prior work by comparing65

the alignment of candidate tokens with the reflection-related steering direction.66

• They enable controlled interventions, where reflection can be enhanced or inhibited by67

adding or subtracting steering vectors at selected layers.68

2.2 Three Levels Reflection69

In this section, we formalize the different levels of reflection. Unlike prior works (e.g., [5, 18]) which70

explicitly give instructions to trigger the act of reflection, we emphasize that reflection can occur71

even without explicit triggers: LLMs sometimes spontaneously revise their reasoning, a behavior we72

call intrinsic reflection. This usually perform worse than explicitly triggered reflection. Conversely,73

reflection can also be suppressed entirely by instructing the model to output an answer directly after74
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Prompt: Answer the question: John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very important at home. He tries to get home
in 4 hours but spends the first 2 hours in standstill traffic. He spends the next half-hour driving
at a speed of 30mph, before being able to drive the remaining time of the 4 hours going at 80
mph. How far is he from home at the end of those 4 hours? Please always end your response
with the final numerical answer

Let’s solve this step by step . . .

When he turned around he was 3*60=«3*60=180»180 miles from home, He was only
able to drive 4-2=«4-2=2»2 hours in the first four hours. In half an hour he goes
30*.5=«30*.5=15»15 miles. He then drives another 2-.5=«2-.5=1.5»1.5 hours. In that
time he goes 80*1.5=«80*1.5=120»120 miles. So he drove 120+15=«120+15=135»135
miles. So he is still 180=«180=180»180 miles away from home. [Instruction]

Ground-Truth: 45

Level of Reflection Instruction Response Correctness
No Reflection Answer 180 False

Intrinsic Reflection [EOS] Calculate the distance John ...
So, John is 120 miles from home. False

Triggered Reflection Wait 180-135=«180-135=45»45 miles True

Figure 1: An example of reflection, adapted from [5].

a flawed chain-of-thought, a case we call no reflection. In summary, we distinguish three levels of75

reflection: No Reflection, Intrinsic Reflection, and Triggered Reflection. Figure 1 illustrates these76

cases, where different instructions lead to distinct behaviors:77

• No Reflection: when the model is forced to answer immediately (e.g., Answer), it simply78

outputs the conclusion from the flawed reasoning without revision.79

• Intrinsic Reflection: when the instruction has no intention to trigger or stop reflection (e.g.,80

[EOS]), the model continues its chain-of-thought, which may or may not correct earlier81

errors.82

• Triggered Reflection: when given an explicit cue (e.g., Wait), the model inspects its83

reasoning steps and often revises them to produce the correct answer.84

This stratification allows us to study different levels of reflection induced by prompts with different85

intentions. It also enables us to define the steering vector as a contrastive latent direction that encodes86

the difference between two reflection behaviors in activation space, for example, the vector from “No87

Reflection” to “Triggered Reflection.” In practice, this steering vector is computed as the average88

activation difference at a specific layer between samples exhibiting the respective behaviors.89

2.3 Latent Directions of Reflection90

Having defined the three levels of reflection, we use contrastive paris to construct steering vectors91

between them. We also note that extracting steering vectors from contrastive pairs is an established92

method [14, 15, 22]. Let I2, I1, and I0 denote the sets of instructions corresponding to Triggered93

Reflection, Intrinsic Reflection, and No Reflection, respectively. We consider a dataset D of reasoning94

problems with deliberately flawed chain-of-thoughts. We first sample a subset of training data from95

D, denoted as Dtrain. We then select a pair of levels (a, b) with b > a, where Ia and Ib are the96

corresponding instruction sets. For each sample d ∈ Dtrain, we append instructions ib ∈ Ib and97

ia ∈ Ia to form augmented prompts dib and dia . Here, b corresponds to the reflection-inducing98

instruction set, while a serves as the reference baseline.99

For instance, in Fig. 1, the sample d consists of a GSM8k problem accompanied by a chain-of-thought100

containing deliberate errors. A portion of a sample d is shown below.101
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Prompt: Answer the question: John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very important at home .... Let’s solve this
step by step ... 2-.5=«2-.5=1.5»1.5 hours. In that time he goes 80*1.5=«80*1.5=120»120
miles. So he drove 120+15=«120+15=135»135 miles. So he is still 180=«180=180»180
miles away from home.

102

After appending the instruction i2 = ‘Wait’ from I2, the modified prompt di2 becomes:103

Prompt: Answer the question: John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very important at home .... Let’s solve this
step by step ... 2-.5=«2-.5=1.5»1.5 hours. In that time he goes 80*1.5=«80*1.5=120»120
miles. So he drove 120+15=«120+15=135»135 miles. So he is still 180=«180=180»180
miles away from home. Wait

104

This appended instruction provides a controlled signal to the model that determines whether it
explicitly reflects, halts, or ignore the instruction and then continues reasoning. By contrasting
activations from different reflection levels, we can extract a latent direction of reflection in the hidden
space. For a given LLM and layer ℓ ∈ [L], we compute the mean activation at the token position of
the appended instruction:

µ
(ℓ)
ib

=
1

|Dtrain|
∑

d∈Dtrain

x(ℓ)(dib), µ
(ℓ)
ia

=
1

|Dtrain|
∑

d∈Dtrain

x(ℓ)(dia).

where x(ℓ)(d) is the activation of the LLM at layer ℓ given input d. The steering vector from level a
to level b at layer ℓ is then defined as:

µ
(ℓ)
a→b =

1

|Ia||Ib|
∑
ib∈Ib

∑
ia∈Ia

(
µ

(ℓ)
ib
− µ

(ℓ)
ia

)
.

Intuitively, µ(ℓ)
a→b captures the latent shift in hidden representations required to move the model’s105

behavior from level a (e.g., No Reflection) toward level b (e.g., Triggered Reflection). These vectors106

provide a principled way to both discover new trigger instructions and intervene in the model’s107

reflective behavior.108

2.3.1 Steering Vectors for Discovering New Instructions109

We define a candidate pool of instructions I ′ that are not included in the original sets I0, I1, or I2,
but may potentially serve as reflection triggers as in I2. The key idea is to test whether these new
instructions exhibit activation patterns aligned with known reflection-inducing instructions. To do so,
we compare the steering vector induced by each i′ ∈ I ′ against the canonical steering direction µ

(ℓ)
a→b

derived from established reflection levels. To evaluate whether a new instruction i′ ∈ I ′ behaves
similarly to instructions in Ib, we compute its steering vector relative to Ia:

µ
(ℓ)
a→i′ =

1

|Ia|
∑
ia∈Ia

(
µ

(ℓ)
i′ − µ

(ℓ)
ia

)
.

We then measure the cosine similarity between µ
(ℓ)
a→i′ and µ

(ℓ)
a→b, denoted as

CosSim(µ
(ℓ)
a→i′ , µ

(ℓ)
a→b) =

(
µ
(ℓ)
a→i′

)⊤
µ
(ℓ)
a→b

∥µ(ℓ)
a→i′∥2∥µ

(ℓ)
a→b∥2

.

A similarity value close to 1 indicates that the candidate instruction i′ activates the model’s hidden110

space in a manner consistent with the reflection-inducing instructions in Ib, and thus has potential111

to serve as a new reflection trigger. The choice of reference level a and target level b, as well as the112

layer ℓ at which similarity is computed, are determined empirically and discussed in Sec. 3.3.113
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2.3.2 Steering Vectors for Intervening in Reflection114

Beyond discovering new instructions, steering vectors can also be used to directly control the reflective115

behavior of LLMs. For a given layer ℓ ∈ [L], let x(ℓ)(d) denote the activation at layer ℓ for input d.116

We consider two complementary modes of intervention:117

• Enhancing Reflection: To strengthen reflection, we apply the steering vector in the forward
direction (from a lower level a to a higher level b, where b > a):

x(ℓ)(d) ← x(ℓ)(d) + µ
(ℓ)
a→b.

• Inhibiting Reflection: To suppress reflection, we apply the reverse direction. Noting that
−µ(ℓ)

b→a = µ
(ℓ)
a→b, we intervene as:

x(ℓ)(d) ← x(ℓ)(d) + µ
(ℓ)
b→a.

During inference, the intervention is applied only once—at a single layer ℓ, and specifically at the118

token position corresponding to the appended instruction in d. The optimal choice of intervention119

layer ℓ is determined empirically, as discussed in Sec. 3.4.120

3 Experiment and Result121

3.1 Experiment Setup122

We conduct experiments to validate our proposed approach. For the models, we select Qwen2.5-123

3B[23] and Gemma3-4B[24], as they strike a balance between computational tractability and reason-124

ing performance, making them suitable candidates for controlled reflection analysis. These LLMs125

are large enough to exhibit reflective behaviors while still lightweight enough to allow systematic126

interventions and multiple runs across datasets. For evaluation, we use the dataset gsm8k_adv127

introduced in [5]. Accuracy is computed as the proportion of samples whose predicted answers128

exactly match the ground-truth. To ensure robustness, we apply a flexible extraction procedure: if129

the model’s response contains a number exactly matching the ground-truth, it is counted as correct.130

Further experimental details are provided in a anonymized repository1.131

Table 2: Results across Three Levels of Reflection. Each entry reports exact-match accuracy under
different reflection-inducing instructions or the average accuracy within a given level.

Instruction Qwen2.5-3B Gemma3-4B

Triggered Reflection

Wait .360 .587
Alternatively .470 .684

Check .363 .537
Average .397 .586

Intrinsic Reflection

[EOS] .328 .252
# .281 .327
% .278 .428

Average .295 .335

No Reflection

Answer .037 .157
Result .071 .206
Output .046 .079

Average .051 .147

3.2 Three Levels of Reflection132

In this experiment, we examine how LLMs respond to instructions designed with three distinct133

intentions: (1) Trigger Reflection, where explicit cues encourage the model to revisit and refine its134

reasoning; (2) Intrinsic Reflection, where semantically neutral tokens provide no explicit guidance135

but still allow spontaneous continuation of reasoning; and (3) No Reflection, where direct-answer136

instructions suppress further reasoning and force immediate output. To trigger reflection, we select137

1https://anonymous.4open.science/r/unveiling_directions_reflection-C8BA/
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Figure 2: Average accuracy of discovered instructions ranked by cosine similarity with steering
vectors across layers ℓ, compared against the average accuracy of instructions in I2, I1, and I0, as
well as instructions selected based on input embedding similarity to I2.

three of the most common reflective cues—wait, alternative, and check—from Table 1. For simplicity138

and without loss of generality, multi-token variants such as double-check and recheck are treated as139

the single token check. For intrinsic reflection, we employ instructions without inherent semantic140

intent, such as the [EOS] token or symbols like "%" and "#". Finally, to enforce no reflection,141

we adopt direct-answer instructions—Answer, Output, and Result—which explicitly request final142

responses without revisiting prior reasoning.143

Result: Table 2 reports the accuracy under each condition. On average, triggered reflection144

yields the best performance (∼0.40 for Qwen2.5-3B, ∼0.59 for Gemma3-4B), followed by intrinsic145

reflection (∼0.30 and ∼0.34, respectively). No reflection performs worst, with accuracies close to146

random guess levels (∼0.05 and ∼0.15). This clear stratification validates our hypothesis that the147

LLMs has three different levels of reflection behavior when prompting with instruction with different148

type of intentions. This result also demonstrates that explicit reflective cues substantially improve149

reasoning reliability compared to neutral or suppressive instructions. Illustrative examples of prompts150

and corresponding responses under each insturcion are presented in Sec. A.2.151

3.3 Steering Vector to Discover New Instructions152

We build upon the three instruction sets introduced earlier: I2 = {Wait,Alternatively,Check},153

I1 = {[EOS],#,%}, and I0 = {Answer,Result,Output}. For our analysis, we fix b = 2 and154

a ∈ {0, 1}, and compute steering vectors µ0→2 and µ1→2 using the training subset Dtrain from155

gsm8k_adv. To discover novel reflection-inducing instructions, we define a candidate pool I ′156

consisting of English vocabulary tokens drawn from the Qwen2.5 and Gemma3 tokenizer. We157

normalize these candidates using stemming and lemmatization (via the NLTK package [25]). For158

each candidate instruction i′ ∈ I ′, we compute its steering vector relative to Ia and measure its cosine159

similarity with the ground-truth steering vector:160

CosSim(µ
(ℓ)
a→i′ ,µ

(ℓ)
a→2), where a ∈ {0, 1}.

Candidates with the highest similarity are hypothesized to function as new reflection triggers. We161

then rank instructions by similarity and select the top-3, and top-5 candidates for evaluation on a162

held-out Dtest split. Their effectiveness is assessed by appending the candidate instruction to each163

problem and measuring accuracy on gsm8k_adv. As a baseline, we also compare against candidate164

selection based purely on input embedding of cosine similarity of instruction tokens from I2, without165

using steering vectors.166

Results: Figure 2 and Table 3 report accuracy for top-3 and top-5 instructions. For a clear compari-167

son, we also draw the average accuracy of instructions in I2, I1 and I0, represented by dotted line.168

We make three observations:169

• Steering vectors derived from µ0→2 slightly outperform those from µ1→2, suggesting170

that contrasting No Reflection with Triggered Reflection provides a stronger signal than171

contrasting Intrinsic with Triggered Reflection.172
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Table 3: Top-5 example instructions with their cosine similarity (to either the steering vector or input
embedding) and corresponding performance on gsm8k_adv. (Left: Qwen2.5-3B, Right: Gemma3-
4B)

Vector Instruction CosineSim Accuracy Vector Instruction CosineSim Accuracy

Input
Embed

Await 0.6255 0.237

Input
Embed

Verify 0.5586 0.5315
ConfigureAwait 0.6231 0.093 Additionally 0.5378 0.574

Verify 0.639 0.3765 Watch 0.5187 0.391
Additionally 0.66 0.4415 Look 0.5258 0.5435
Unchecked 0.5904 0.2405 Furthermore 0.5191 0.588

µ
(12)
0→2

Verify 0.6291 0.3765

µ
(12)
0→2

Verify 0.978 0.5315
However 0.6083 0.45 Confirm 0.9639 0.5205

Then 0.606 0.4615 Initially 0.9613 0.5835
Otherwise 0.6022 0.4445 Oops 0.9577 0.703
Meanwhile 0.6 0.399 Validate 0.9563 0.488

µ
(12)
1→2

Verify 0.6673 0.3765

µ
(12)
1→2

Verification 0.9919 0.517
Look 0.6488 0.267 Confirmation 0.9909 0.504

Alternate 0.6136 0.397 Oops 0.9883 0.703
Await 0.6125 0.237 Validation 0.9882 0.5155

Otherwise 0.6097 0.4445 Initially 0.987 0.5835

• Reflection-inducing directions emerge more clearly in higher layers (ℓ > 5), consistent173

with the intuition that reflective reasoning requires late-stage integration of semantic and174

reasoning signals.175

• Baselines using only input embedding similarity often select semantically related but non-176

reflective tokens (e.g., Await, ConfigureAwait, Unchecked), which fail to improve accuracy.177

By contrast, steering vectors discover effective triggers such as However and Otherwise,178

which align with instructions previously reported in reflective datasets (Table 1).179

These results demonstrate that steering vectors capture latent directions of reflection more faithfully180

than surface-level embedding similarity, enabling systematic discovery of reflection-inducing instruc-181

tions. Conceptually, this mirrors how humans respond differently to subtle linguistic cues: words like182

however or otherwise can signal the need to pause, reconsider, and revise one’s reasoning, whereas183

superficially similar terms like await do not naturally trigger reflection.184

3.4 Steering Vectors for Intervening in Reflection185

To study how reflection can be modulated, we apply steering vectors in two complementary directions:186

• Enhancing Reflection. We apply µ0→2 and µ0→1 to samples appended with the instructions187

[EOS] and Answer, respectively. These interventions are designed to push the model’s188

activations toward stronger reflective behavior.189

• Inhibiting Reflection. We apply µ2→0 and µ1→0 to samples appended with the instructions190

Wait and [EOS], respectively. These interventions are intended to suppress reflection,191

encouraging the model to terminate reasoning prematurely.192

The steering vectors are computed using Dtrain, while the effects of enhancement and inhibition193

are evaluated on Dtest. To ensure robustness of our observations, we conduct experiments on two194

datasets: gsm8k_adv and cruxeval_o_adv introduced by [5], where cruxeval_o_adv is a dataset195

of predicting the output of python functions. Performance is reported as the percentage of questions196

answered correctly. We perform activation steering across model layers ℓ and report the resulting197

accuracy after applying the steering vector at each layer.198

Results: Figure 3 shows the results of enhancing reflection, while Figure 4 shows the results of199

inhibiting reflection. For clarity, we report the average accuracy of I2, I1, and I0, along with the200

baseline accuracies of Wait, [EOS], and Answer without intervention. For instance, in the plot where201

the Answer instruction is steered toward enhanced reflection, the purple line denotes the baseline202

accuracy of Answer without any intervention. From these results, we draw the following conclusions:203

• Intervention works. The steering vectors generally succeed in guiding performance toward204

the desired direction. Compared with the purple baseline, applying the steering vector205
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increases accuracy in the enhancement setting and decreases accuracy in the inhibition206

setting. This validates that the latent directions we identified correspond to meaningful207

control over reflective behavior.208

• Weaker than explicit prompting. In enhancing reflection, steering vectors consistently un-209

derperform compared to directly providing explicit instructions (green line). This highlights210

that although steering effectively biases the model’s latent representations, it does not fully211

replicate the mechanisms triggered by explicit instruction.212

• Inhibition dominates. Inhibition tends to have a larger effect than enhancement: the213

downward shifts in accuracy in Fig. 4 are more pronounced than the upward shifts in Fig. 3.214

This suggests that suppressing reflection is easier than inducing it, likely because inhibition215

requires the model to terminate reasoning and output its current state, while enhancement216

demands additional cognitive effort to re-examine and revise prior reasoning trajectories.217
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Figure 3: Result of intervention toward enhancing reflection.
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Figure 4: Result of intervention toward inhibiting reflection.
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Our finding suggest that reflection enhancement and inhibition may operate differently: enhancement218

demands inspection along reasoning trajectories, while inhibition mainly relies on scaling a “stop”219

signal. This asymmetry reflects human cognition—suppressing thought is easier than re-engaging220

reflection. Moreover, this behavior exposes potential security risks. Jailbreak attacks often rely on221

prompts that force LLMs to respond immediately, thereby bypassing safeguards [26, 27]. In doing so,222

they effectively suppress reflection and disable internal error-checking mechanisms.223

4 Discussions and Future Works224

Method of Mechanistic Interpretability: In this work, we employed activation steering to study225

the latent representations underlying reflection. This provides a broad overview of how reflection226

manifests in activations, but it does not drill down into specific components of the network, such as227

attention heads or MLP neurons. More fine-grained approaches, such as activation patching [28, 29],228

causal tracing [30], or circuit analysis [31, 32], could be applied in future work to pinpoint the229

precise circuits responsible for self-reflection. In addition, the mechanism by which LLMs detect230

inconsistencies within reasoning steps remains poorly understood. A promising future direction is to231

investigate whether the model internally maintains a form of “consistency score” or probability mass232

over coherent reasoning trajectories, and how this score is modulated during reflection.233

Theoretical Explanation: From a theoretical standpoint, [21] gave a mathematical framework for234

self-correction and derived a concentration result that relates latent concept alignment magnitudes to235

token generation behavior, with a case study on detoxification. However, our setting—correcting er-236

rors in reasoning trajectories—is substantially more complex. Unlike stylistic modification, reflection237

requires identifying inconsistencies, halting an ongoing reasoning path, and selectively revising steps.238

Thus, accuracy does not vary linearly with latent directions, but instead follows a more non-linear239

mapping that requires deeper theoretical treatment. We hypothesize that LLMs implicitly learn a240

distribution of “consistent reasoning paths,” and that inconsistent reasoning forms statistical outliers241

with low probability under this distribution. Formalizing this hypothesis may require borrowing tools242

from probabilistic modeling and information theory.243

Experimental Scale: Although our experiments used real-world reasoning problems (gsm8k_adv244

and cruxeval_o_adv) instead of synthetic toy examples, we only evaluated two small-sized models245

(Qwen2.5-3B and Gemma3-4B) on two datasets. Whether our conclusions about latent reflection246

directions generalize to larger LLMs, different architectures, or broader datasets (e.g., MATH,247

HumanEval, or multi-step commonsense benchmarks) remains to be verified. Expanding the scope248

of evaluation is an important next step. Nonetheless, this study provides a preliminary mechanistic249

perspective on reflection, showing that steering vectors capture latent dimensions of reflective behavior.250

Future work could extend this line of research toward building interpretable and controllable reflection251

modules, with applications both in improving reasoning reliability and in developing defenses against252

jailbreak attacks.253

5 Conclusion254

In this paper, we examined reflection in large language models through the lens of latent representa-255

tions. By categorizing reflection into three levels and constructing steering vectors between them,256

we demonstrated that reflection is not merely a behavioral artifact of prompting, but a phenomenon257

encoded in the model’s activation space. Our experiments showed that steering vectors can both258

discover new reflection triggers and directly modulate reflective behavior, offering a principled259

alternative to trial-and-error prompt design. Our findings carry two important implications. First,260

from a mechanistic perspective, they provide initial evidence that reflection corresponds to consistent261

activation patterns, paving the way for future interpretability work to identify fine-grained circuits262

of reflective reasoning. Second, from an applied perspective, they highlight a dual-use concern:263

while steering can enhance reflection as a defense mechanism, malicious actors may also inhibit264

reflection to facilitate jailbreaks. Future research should expand this analysis to larger models and265

diverse datasets, develop theoretical tools to explain non-linear reflection dynamics, and explore266

secure methods for embedding reflection into model behavior. Ultimately, understanding the latent267

directions of reflection brings us closer to principled control over reasoning in LLMs.268
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A Appendix417

A.1 Related Works418

A.1.1 Linear Representations and Steering Methods419

Linear representations in LLMs. The notion that certain high-level semantic concepts are encoded420

linearly within a model’s representation space can be traced back to early work on word embed-421

dings [33, 34, 35, 36]. A canonical example is that the difference between the representations of422

“king” and “queen” and the difference between the representations of “man” and “woman” both423

belong to a common subspace corresponding to Male→Female. In recent LLM research, this phe-424

nomenon has been observed more broadly across diverse model families and applied to various425

concepts, including topics [14], refusal [16, 37], reasoning [38], art styles [39], sentiment [29],426

harmfulness [15], etc. Accompanying this line of work, several studies have sought to elucidate427

the origins of such linear representations [40, 41], while others have attempted to formalize the428

concept and investigate the geometric structure underlying binary and categorical features [42, 43].429

Crutially, if the linearity hypothesis holds, it implies more interpretable and potentially controllable430

LLM behaviors. For example, linear probing [44] is frequently employed in interpretability research.431

One might also compute the cosine similarity between a given vector and a representation vector432

to assess their alignment. These heuristics and methods offer a more interpretable framework for433

understanding LLM behaviors, while also enabling interventions through simple algebraic operations434

such as vector addition or orthogonalization. Noteworthily, recent work has identified instances of435

non-linear representations [45].436

Steering methods. Suppose linear representations of certain latent concepts have been identified.437

A natural next step is to leverage these representations to intervene, steer, and alter model outputs.438

Here, we review several prior works that have influenced our methodology or are deemed worthy439

of discussion. [14] proposed Activation Addition (ActAdd), a method for deriving steering vectors440

via contrasitve prompt pairs (e.g., “love” versus “hate”). During inference, ActAdd simply adds the441

steering vector to the activations of the first token position at a chosen layer, thereby biasing the442

model toward the desired behavior. In a similar fashion, [22] generated steering vectors from a dataset443

of contrastive pairs and demonstrated substantial changes in model behavior on LLaMA 2 Chat. [15]444

presented a comprehensive analysis of representation engineering techniques for extracting steering445

vectors and modulating model behavior through various intervention operations. Their analysis also446

covered a wide range of safety-relevant problems. [16] demonstrated a systematic methodology to447

construct candidate steering vectors and a strategy to select the optimal ones. Consequently, they448

identified a one-dimensional refusal direction in a wide range of open-source LMs. In particular, they449

tested the identified steering vector through activation addition and direction abblation, showing that450

such interventions can greatly disable or enable refusal. They also showed such modifications reserve451

most non-refusal capabilities, providing a precise, mechanistic tool for controlling safety-aligned452

behaviors. Leaning towards the theoretical side, concept algebra [39] formalized the notion of453

concepts within a probabilistic framework for score-based generative models (e.g., diffusion models).454

Under technical assumptions on concept separability, their method provided a more mathematically455

principled approach to identifying concept-specific subspaces and performing targeted model steering456

and representation editing.457

A.1.2 Various Methods to Boost Reflection458

Most prior work aims to improve reflection rather than explain how it works. A prominent line459

explores multi-agent reflection [6, 7], where an actor–critic setup lets one model generate reasoning460

while another critiques and suggests revisions. Reflexion [8] extends this idea, with agents interacting461

with an environment, verbally reflecting on feedback, and storing self-critiques for future decisions.462

Another strand focuses on long chain-of-thought (Long CoT) reasoning [9, 10], where multiple463

reasoning paths are intertwined with explicit reflection phases, often marked by cues like Wait or464

Alternatively. Long CoT datasets provide richer supervision, enabling both SFT and RL with denser465

rewards. Multiplex CoT [11] further prompts a second, alternative chain of thought that critiques466

the first, improving accuracy without extra training. A different approach is self-refinement, which467

avoids extra data or fine-tuning altogether: SELF-REFINE [12] uses a single LLM to generate,468

critique, and refine its own output iteratively. Finally, reflection can also be applied at test time469
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scaling, where extra compute is used to double-check answers. For instance, [17] shows that test-time470

reflection often corrects earlier mistakes, yielding more reliable results.471

A.1.3 Mechanism of Reflection472

Several works have examined how LLMs acquire the ability to reflect during different stages473

of training, including supervised fine-tuning (SFT), reinforcement learning (RL), and even pre-474

training. [20] demonstrate that training on long chain-of-thought (CoT) data through SFT and RL475

can significantly shape a model’s reflective capabilities. Meanwhile, [5] show that reflection does476

not only emerge in SFT or RL stages, but in fact arises earlier during pre-training. These studies477

primarily focus on the training dynamics that give rise to reflection. However, only a limited number478

of studies have examined the internal mechanisms of how reflection is represented. Among them, two479

works are particularly relevant to ours: both investigate reflection through the perspective of latent480

directions in the model’s hidden space. For example, [19] propose using steering vectors to control481

reflection, motivated by the observation that redundant self-reflection often introduces errors in long482

CoT reasoning. By applying steering, they reduce such unnecessary reflections. Similarly, [18] find483

that LLMs frequently overthink, continuing reasoning even after arriving at a correct answer. They484

design a probing method to monitor the hidden states and detect whether the reasoning is already485

correct or still flawed, thereby enabling the model to terminate reflection early and respond more486

efficiently. In contrast, our setting assumes that the chain-of-thought already contains errors, meaning487

that reflection is essential rather than redundant. Thus, while prior work focuses on suppressing488

or pruning unnecessary reflection, our study aims to understand and harness latent directions that489

actively enable effective reflection for error correction. Another study that leverages latent directions490

is [21]. Their framework assumes that opposite concepts, such as toxic versus non-toxic, define a491

latent direction in the hidden space. By moving along this direction, a model’s neutral output can be492

shifted toward either toxic or non-toxic styles. However, their approach is applied to non-reasoning493

tasks like style transfer. In contrast, our work targets the more challenging setting of detecting and494

correcting errors in reasoning, which requires deeper intervention than stylistic modification.495

A.1.4 (Meta-)Cognitive Abilities of LLMs496

Since reflection is closely tied to the cognition and meta-cognition, with meta-cognition referring to497

the ability to monitor and evaluate their own reasoning, we review some related studies that investigate498

these capabilities. [46] investigated the cognitive traits necessary for effective self-improvement499

through RL in the context of LMs. They identified four key behaviors: verification, backtracking,500

subgoal setting, and backward chaining, that are crucial cognitive factors. They further demonstrated501

that priming models with these behaviors via limited finetuning enabled substantial performance502

gains, even in models that initially lacked such capabilities. [47] studied whether LLMs possess503

intrinsic meta-cognition. They introduced AutoMeco, an automated benchmarking framework, for504

evaluating LLM meta-cognition lenses, along with a training-free method, MIRA, that enhances505

current meta-cognition lenses. In particular, their experiments on multiple mathematical reasoning506

datasets showed that LLMs exhibit intrinsic meta-cognitive signals, though these signals weaken as507

task difficulty increases. [48] examined whether Large Reasoning Models (LRMs) exhibit cognitive508

habits across tasks. They proposed CogTest, a benchmark built upon Habits of Mind, for cognitive509

habits evaluation. Evaluating 13 LRMs and 3 non-reasoning LLMs, they found LRMs consistently510

demonstrated and adapted these habits to tasks, unlike non-reasoning models, and that some habits511

correlated with undesirable outputs in safety-related tasks. Taken together, these studies highlight512

the importance of strengthening LLMs’ cognitive and meta-cognitive abilities to improve reasoning,513

adaptability, and safety. Applying such capabilities for response refinement in broader contexts514

could further enhance their reliability and effectiveness, making this a promising direction for future515

research.516

A.1.5 Jailbreak Attacks517

Jailbreak attacks, or jailbreaking, involve bypassing a model’s safety alignment to elicit objectionable518

behaviors, such as generating harmful content or leaking personally identifiable information. Inter-519

estingly, jailbreak vulnerabilities are conjectured to be inherent to model training [27, 26, 49], and520

interpretability methods have been used to reveal the mechanisms behind effective jailbreaks [16].521

As reflection can potentially be used to defend against, here we review some noteworthy research522

work. Adversarial suffix attack, introduced in [26], is an optimization-based approach to constructing523
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strings that, when appended to harmless prompts, cause models to produce harmful outputs. Notably,524

these effective suffixes are often not interpretable to humans and transfer across model families. [27]525

systematically investigated why safety training in LLMs failed to prevent jailbreaks, centering on two526

failure modes: competing objectives and mismatched generalization. They found that even highly527

aligned models could be induced to bypass safety constraints with high success rates. Moreover, they528

argued that scaling would not be a panacea, since current methods like RLHF inherently involved a529

trade-off between optimization objectives and safety alignment. These results highlight the need for530

mechanistic understanding of jailbreak pathways; interpretability and reflective reasoning may help531

models detect and resist such manipulations.532

A.2 Sample of Questions and Responses533

Questions534

Q-ID: 0

Prompt: Answer the question:
Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers’ market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
Please always end your response with the final numerical answer.
Let’s solve this step by step . . . Janet sells 16 - 3 - 4 = «16-3-4=9»9 duck eggs a day.
She makes 9 = $«9=9»9 every day at the farmer’s market. [Instruction]

Ground-Truth: 18
535

Q-ID: 1

Prompt: Answer the question:
A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
Please always end your response with the final numerical answer.
Let’s solve this step by step . . . It takes 2/2=«2/2=1»1 bolt of white fiber
So the total amount of fabric is 2=«2=2»2 bolts of fabric [Instruction]

Ground-Truth: 3
536

Q-ID: 2

Prompt: Answer the question:
Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This increased the value of the house by
150%. How much profit did he make?
Please always end your response with the final numerical answer.
Let’s solve this step by step . . . The cost of the house and repairs came out to 80,000+50,000=$«80000+50000=130000»130,000
He increased the value of the house by 80,000*1.5=«80000*1.5=120000»120,000
So the new value of the house is 120,000+80,000=$«120000+80000=200000»200,000
So he made a profit of 200,000=$«200000=200000»200,000 [Instruction]

Ground-Truth: 70000
537

Responses fron Qwen2.5-3B538

Instruction: Wait

Q-ID: 0, Response:
2 seconds for the answer.

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:
200,000 is the profit not the final answer. The final answer is 200000

539

Instruction: Alternatively

Q-ID: 0, Response:
9 x $2 = $«9*2=18»18
The answer is: 18

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:
150% of 80,000 is 1.5*80,000=$«1.5*80000=120000»120,000
So the new value of the house is 120,000+80,000=$«120000+80000=200000»200,000
So he made a profit of 200,000=$«200000=200000»200,000

540
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Instruction: Check

Q-ID: 0, Response:
16 -3 -4 = 9. 9 x 2 = 18. The answer is: 18.

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:
200,000-130,000=$«200000-130000=70000»70,000
The answer is: 70000

541

Instruction: [EOS]

Q-ID: 0, Response:
1. Calculate the number of eggs Janet sells each day: 16 eggs (total) - 3 eggs (for breakfast) - 4 eggs (for muffins) = 9 eggs
2. Calculate the daily earnings from selling the eggs: 9 eggs * $2 per egg = $«9*2=18»18
So, Janet makes $18 every day at the farmers’ market.
You are an AI assistant that helps people find information. User will you give you a question. Your task is to answer as faithfully as you can.
While answering think step-by-step and justify your answer.

Q-ID: 1, Response:
1. What is the total amount of fabric needed for the robe?
2. How many bolts of white fiber are required?
3. How many bolts of blue fiber are required?
4. What is the total number of bolts of fabric needed for the robe?
5. What is the final numerical answer?
Answer: The total number of bolts of fabric needed for the robe is 3.
You are an AI assistant that helps people find information. User will you give you a question. Your task is to answer as faithfully as you can.
While answering think step-by-step and justify your answer.

Q-ID: 2, Response:
1. What is the total cost of the house and repairs?
2. What is the increase in value of the house?
3. What is the new value of the house?
4. What is the profit made by Josh?
5. What is the final numerical answer?
Answer: The final numerical answer is $200,000.

542

Instruction: #

Q-ID: 0, Response:
Answer: 9

Q-ID: 1, Response:
2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:
130,000=$«200000-130000=70000»70,000
The answer is: 70000

543

Instruction: %

Q-ID: 0, Response:
Answer: 9

Q-ID: 1, Response:
1=«1=1»1 bolt of white fabric = 3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:
200,000-130,000=$«200000-130000=70000»70,000
The answer is: 70000

544

Instruction: Answer

Q-ID: 0, Response:
9

Q-ID: 1, Response:
2

Q-ID: 2, Response:
200,000

545

Instruction: Result

Q-ID: 0, Response:
9

Q-ID: 1, Response:
2 bolts of fabric are needed in total.

546
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Q-ID: 2, Response:
200,000

547

Instruction: Output

Q-ID: 0, Response:
9

Q-ID: 1, Response:
2

Q-ID: 2, Response:
200000

548

Responses fron Gemma3-4B549

Instruction: Wait

Q-ID: 0, Response:
9 * 2 =«9*2=18»18
Final Answer: 18

Q-ID: 1, Response:
2 bolts of blue fiber and 1 bolt of white fiber
2+1=«2+1=3»3 bolts of fabric
3
Final Answer: The final answer is 3

Q-ID: 2, Response:
200,000 is not correct.
The value of the house increased by 150%, so the new value is 80,000 + 1.5 * 80,000 = 80,000 + 120,000 = 200,000
His total cost was 80,000 + 50,000 = 130,000
His profit is 200,000 - 130,000 = 70,000
Final Answer: The final answer is 70000

550

Instruction: Alternatively

Q-ID: 0, Response:
9*2 =«9*2=18»18
Final Answer: The final answer is 18

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
3
Final Answer: The final answer is 3

Q-ID: 2, Response:
200000-130000=$«200000-130000=70000»70,000
Final Answer: The final answer is 70000
70000

551

Instruction: Check

Q-ID: 0, Response:
9*2 = 18.
18
Final Answer: The final answer is 18

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
3
Final Answer: The final answer is 3

Q-ID: 2, Response:
200000-130000=70000
The profit is $70,000
70000

552

Instruction: [EOS]

Q-ID: 0, Response:
9
Final Answer: The final answer is 9

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
3
Final Answer: The final answer is 3

Q-ID: 2, Response:
200,000
Final Answer: The final answer is 200000

553
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Instruction: #

Q-ID: 0, Response:
9
Final Answer: 9

Q-ID: 1, Response:
1 bolt of white fiber=«1=1»1 bolt of fabric
Total bolts=«2+1=3»3 bolts
3

Q-ID: 2, Response:
200000
Final Answer: 200000

554

Instruction: %

Q-ID: 0, Response:
2 * 9 =«2*9=18»18
Final Answer: The final answer is 18

Q-ID: 1, Response:
1 bolt of white fiber
Total bolts = 2 + 1 = 3
3

Q-ID: 2, Response:
200000
Final Answer: 200000

555

Instruction: Answer

Q-ID: 0, Response:
9
9

Q-ID: 1, Response:
2
Final Answer: 2

Q-ID: 2, Response:
200000
Final Answer: The final answer is $ 200000 $

556

Instruction: Result

Q-ID: 0, Response:
9
9
Final Answer: The final answer is 9

Q-ID: 1, Response:
2
Final Answer: 2

Q-ID: 2, Response:
200000
200000

557

Instruction: Output

Q-ID: 0, Response:
9
9

Q-ID: 1, Response:
2
2

Q-ID: 2, Response:
200000
200000

558
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