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Abstract

Reflection, the ability of large language models (LLMs) to evaluate and revise
their own reasoning, has been widely used to improve performance on complex
reasoning tasks. Yet, most prior works emphasizes designing reflective prompt-
ing strategies or reinforcement learning objectives, leaving the inner mechanisms
of reflection underexplored. In this paper, we investigate reflection through the
lens of latent directions in model activations. We propose a methodology based
on activation steering to characterize how instructions with different reflective
intentions: no reflection, intrinsic reflection, and triggered reflection. By con-
structing steering vectors between these reflection levels, we demonstrate that (1)
new reflection-inducing instructions can be systematically identified, (2) reflective
behavior can be directly enhanced or suppressed through activation interventions,
and (3) suppressing reflection is considerably easier than stimulating it. Experi-
ments on GSM8k-adv and Cruxeval-o-adv with Qwen2.5-3B and Gemma3-4B-IT
reveal clear stratification across reflection levels, and steering interventions confirm
the controllability of reflection. Our findings highlight both opportunities (e.g.,
reflection-enhancing defenses) and risks (e.g., adversarial inhibition of reflection in
jailbreak attacks). This work opens a path toward mechanistic understanding of
reflective reasoning in LLMs.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in multi-step reasoning
tasks [} 2} 13} 4], with reflection playing a central role in their success [5} 6} 7, [8]]. Reflection enables
a model to reconsider its reasoning process, identify errors, and revise its conclusions, thereby
producing more reliable outputs [5, 8]. While reflection has been operationalized in diverse ways,
such as multi-agent frameworks [6l [7], long chain-of-thought prompting [9} |10} [11]], and iterative
refinement [8, |12} [13]], the mechanisms underlying how reflection emerges in LLMs remain poorly
understood. Most prior research has treated reflection as a behavioral property to be exploited, rather
than as a latent phenomenon to be explained. A detailed literature study is presented in Appendix [A.T]
In this paper, we move beyond behavioral prompting strategies and instead focus on the mechanistic
interpretability of reflection. Building on recent advances in activation steering [[14} [15} [16], we
investigate whether reflection aligns latent directions in a model’s hidden space. Our contributions
are summarized as follows:

» We categorize reflection into three levels: No Reflection, Intrinsic Reflection, and Triggered
Reflection. This stratification enables the construction of steering vectors that capture the
latent transitions between different reflective states.
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» Using these steering vectors, we demonstrate a principled approach to discovering new
reflection-inducing prompts, moving beyond trial-and-error prompt design.

* We show that reflective behavior can be directly modulated through activation steering,
enabling both enhancement and inhibition of reflection at inference time.

* Our findings reveal an asymmetry: suppressing reflection is easier than inducing it. This
observation not only sheds light on the underlying mechanisms of reasoning but also raises
potential security concerns, as malicious actors could exploit reflection inhibition to bypass
model safeguards.

Table 1: List of Instruction for Reflection in Related Works

Words Source
wait 150
wait 7]
wait, alternatively, double-check, make sure, another way, verify, to confirm | [18]
wait, alternatively [19]
wait, alternatively, recheck, retry, however 1201
wait, alternatively, double-check, let me check, emm, hmm [10]

2 Methodology

2.1 Problem Formulation

We begin by defining the type of Reflection considered in this work. Specifically, we focus on
Situational Reflection [J5]], where a model reflects on reasoning generated by another source (e.g., a
different model). Other forms, such as Self-reflection—where a model critiques its own outputs—are
beyond our scope. We choose situational reflection because it provides a more controlled setting to
study how models correct deliberately induced errors. Importantly, in our formulation the errors are
introduced within the reasoning steps rather than only in the final answer. This contrasts with works
like [21]], which focus on correcting end outputs in non-reasoning tasks. An illustrative example,
adapted from [J5], is shown in Figure|l} the prompt presents a GSM8k math problem, followed by a
deliberately flawed chain-of-thought, and ends with an instruction to trigger reflection (e.g., wait,
alternatively). Prior work has proposed various trigger instructions (summarized in Table[I]), but their
selection has largely based on intuition rather than systematic analysis. This raises two key research
questions:

* How can we systematically identify effective trigger instructions, rather than relying on
trial-and-error?

* Do effective trigger instructions correspond to latent directions in the hidden space that
implicitly induce the self-reflection process?

To address these questions, we propose a methodology grounded in activation steering. Specifically,
we first categorize reflection into three levels—No Reflection, Intrinsic Reflection, and Triggered
Reflection—to establish a structured framework for analysis. We then compute steering vectors
between these levels, capturing the latent directions that separate different reflective behaviors. These
steering vectors serve two purposes:

* They allow us to discover new instructions beyond those reported in prior work by comparing
the alignment of candidate tokens with the reflection-related steering direction.

* They enable controlled interventions, where reflection can be enhanced or inhibited by
adding or subtracting steering vectors at selected layers.

2.2 Three Levels Reflection

In this section, we formalize the different levels of reflection. Unlike prior works (e.g., [S}[18]]) which
explicitly give instructions to trigger the act of reflection, we emphasize that reflection can occur
even without explicit triggers: LLMs sometimes spontaneously revise their reasoning, a behavior we



Prompt: Answer the question: John drives for 3 hours at a speed of 60 mph and then turns around because he
realizes he forgot something very important at home. He tries to get home in 4 hours but spends the first 2
hours in standstill traffic. He spends the next half-hour driving at a speed of 30mph, before being able to drive
the remaining time of the 4 hours going at 80 mph. How far is he from home at the end of those 4 hours?
Please always end your response with the final numerical answer

Let’s solve this step by step ...
When he turned around he was 3*60=«3*60=180»180 miles from home, He was only able to drive 4-2=«4-
2=2»2 hours in the first four hours. In half an hour he goes 30*.5=«30%*.5=15»15 miles. He then drives

another 2-.5=«2-.5=1.5»1.5 hours. In that time he goes 80*1.5=«80%1.5=120»120 miles. So he drove
120+15=«120+15=135»135 miles. So he is still 180=«180=180»180 miles away from home. [Instruction]

Ground-Truth: 45

Level of Reflection | Instruction | Response Correctness
No Reflection Answer 180 False
Intrinsic Reflection [EOS] Calculate the distance ... , 120 miles from home. | False
Triggered Reflection | Wait 180-135=«180-135=45»45 miles True

Figure 1: An example of reflection, adapted from [3]].

call intrinsic reflection. This usually perform worse than explicitly triggered reflection. Conversely,
reflection can also be suppressed entirely by instructing the model to output an answer directly after
a flawed chain-of-thought, a case we call no reflection. In summary, we distinguish three levels of
reflection: No Reflection, Intrinsic Reflection, and Triggered Reflection. Figure [I]illustrates these
cases, where different instructions lead to distinct behaviors:

* No Reflection: when the model is forced to answer immediately (e.g., Answer), it simply
outputs the conclusion from the flawed reasoning without revision.

* Intrinsic Reflection: when the instruction has no intention to trigger or stop reflection (e.g.,
[EOS]), the model continues its chain-of-thought, which may or may not correct earlier
eITors.

» Triggered Reflection: when given an explicit cue (e.g., Wair), the model inspects its
reasoning steps and often revises them to produce the correct answer.

This stratification allows us to study different levels of reflection induced by prompts with different
intentions. It also enables us to define the steering vector as a contrastive latent direction that encodes
the difference between two reflection behaviors in activation space, for example, the vector from “No
Reflection” to “Triggered Reflection.” In practice, this steering vector is computed as the average
activation difference at a specific layer between samples exhibiting the respective behaviors.

2.3 Latent Directions of Reflection

Having defined the three levels of reflection, we use contrastive pairs to construct steering vectors
between them. We also note that extracting steering vectors from contrastive pairs is an established
method [14, 15 22]]. Let I3, I, and I denote the sets of instructions corresponding to Triggered
Reflection, Intrinsic Reflection, and No Reflection, respectively. We consider a dataset D of reasoning
problems with deliberately flawed chain-of-thoughts. We first sample a subset of training data from
D, denoted as Dyyqin. We then select a pair of levels (a,b) with b > a, where I, and I}, are the
corresponding instruction sets. For each sample d € Dy,.q;,, We append instructions ¢, € I and
iq € I, to form augmented prompts d;, and d;,. Here, b corresponds to the reflection-inducing
instruction set, while a serves as the reference baseline. For instance, in Fig. |1} the sample d consists
of a GSM8k problem accompanied by a chain-of-thought containing deliberate errors. A portion of a
sample d is shown below.

Prompt: Answer the question: John drives for 3 hours at a speed of 60 mph and then turns around because he
realizes he forgot something very important at home .... Let’s solve this step by step ... 2-.5=«2-.5=1.5»1.5
hours. In that time he goes 80*1.5=«80%1.5=120»120 miles. So he drove 120+15=«120+15=135»135 miles.
So he is still 180=«180=180»180 miles away from home.




After appending the instruction i = ‘Wait’ from I, the modified prompt d;, becomes:

Prompt: Answer the question: John drives for 3 hours at a speed of 60 mph and then turns around because he
realizes he forgot something very important at home .... Let’s solve this step by step ... 2-.5=«2-.5=1.5»1.5
hours. In that time he goes 80*1.5=«80%1.5=120»120 miles. So he drove 120+15=«120+15=135»135 miles.
So he is still 180=«180=180»180 miles away from home. Wait

This appended instruction provides a controlled signal to the model that determines whether it
explicitly reflects, halts, or ignore the instruction and then continues reasoning. By contrasting
activations from different reflection levels, we can extract a latent direction of reflection in the hidden
space. For a given LLM and layer ¢ € [L], we compute the mean activation at the token position of
the appended instruction:
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where x()(d) is the activation of the LLM at layer ¢ given input d. In our work, x(©) (d) is defined
as the output of the ¢-th attention block, computed by adding the MLP output (following the /-th
attention layer) to the residual stream. The steering vector from level a to level b at layer £ is then

defined as:
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Intuitively, ufflb captures the latent shift in hidden representations required to move the model’s

behavior from level a (e.g., No Reflection) toward level b (e.g., Triggered Reflection). These vectors
provide a principled way to both discover new trigger instructions and intervene in the model’s
reflective behavior.

2.3.1 Steering Vectors for Discovering New Instructions

We define a candidate pool of instructions I’ that are not included in the original sets Iy, I, or I,
but may potentially serve as reflection triggers as in I». The key idea is to test whether these new

instructions exhibit activation patterns aligned with known reflection-inducing instructions. To do so,

we compare the steering vector induced by each i’ € I’ against the canonical steering d1rect1on ,u( Lb

derived from established reflection levels. To evaluate whether a new instruction ¢’ € I’ behaves
similarly to instructions in [, we compute its steering vector relative to ,:
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We then measure the cosine similarity between p and p,, ", denoted as

. 14
CosSim(u, i, 1) =

A similarity value close to 1 indicates that the candidate instruction i’ activates the model’s hidden
space in a manner consistent with the reflection-inducing instructions in I, and thus has potential
to serve as a new reflection trigger. The choice of reference level a and target level b, as well as the
layer ¢ at which similarity is computed, are determined empirically and discussed in Sec.

2.3.2 Steering Vectors for Intervening in Reflection

Beyond discovering new instructions, steering vectors can also be used to directly control the reflective
behavior of LLMs. For a given layer ¢ € [L], let x(*)(d) denote the activation at layer ¢ for input d.
We consider two complementary modes of intervention:

* Enhancing Reflection: To strengthen reflection, we apply the steering vector in the forward
direction (from a lower level a to a higher level b): x()(d) + x(d) + u(a



* Inhibiting Reflection: To suppress reflection, we apply the reverse direction. Noting that
—ul(f_))a = ugﬁ)b, we intervene as: x(9)(d) « x)(d) + ul(f_))a.
During inference, the intervention is applied only once—at a single layer ¢, and specifically at the
token position corresponding to the appended instruction in d. The optimal choice of intervention
layer £ is determined empirically, as discussed in Sec.

3 Experiment and Result

3.1 Experiment Setup

We conduct experiments to validate our proposed approach. For the models, we select Qwen2.5-
3B [23]] and Gemma3-4B-IT [24], as they strike a balance between computational tractability and
reasoning performance. These LLMs are large enough to exhibit reflective behaviors while still
lightweight enough to allow systematic interventions and multiple runs across datasets. For evaluation,
we use the dataset gsm8k_adv and cruxeval_o_adv introduced in [3]. Accuracy is computed as the
proportion of samples whose predicted answers exactly match the ground-truth. To ensure robustness,
we apply a flexible extraction procedure: if the model’s response contains a number exactly matchin

the ground-truth, it is counted as correct. Further experimental details are provided in a repository{ﬁ

Table 2: Results across three levels of reflection. Each entry reports exact-match accuracy under
different reflection-inducing instructions or the average accuracy within a given level.

Instructi Qwen2.5-3B Gemma3-4B-IT Qwen2.5-3B Gemma3-4B-IT

nstruction gsm8k_adv gsm8k_adv cruxeval_o_adv cruxeval_o_adv
Wait .360 .587 .090 212
. . Alternatively 470 .684 .076 270
Triggered Reflection Check 363 537 030 258
Average .397 .586 .065 247
[EOS] .328 252 .046 .038
Intrinsic Reflection d 281 327 040 216
% 278 428 .034 114
Average 295 .335 .040 133
Answer .037 157 .002 .052
No Reflection Result 071 .206 .028 .058
¢ Output 046 079 022 044
Average .051 .147 .017 051

3.2 Three Levels of Reflection

In this experiment, we examine how LLMs respond to instructions designed with three distinct
intentions: (1) Trigger Reflection, where explicit cues encourage the model to revisit and refine its
reasoning; (2) Intrinsic Reflection, where semantically neutral tokens provide no explicit guidance
but still allow spontaneous continuation of reasoning; and (3) No Reflection, where direct-answer
instructions suppress further reasoning and force immediate output. To trigger reflection, we select
three of the most common reflective cues—wait, alternative, and check—from Tablem For simplicity
and without loss of generality, multi-token variants such as double-check and recheck are treated as
the single token check. For intrinsic reflection, we employ instructions without inherent semantic
intent, such as the [EOS] token or symbols like "%" and "#". Finally, to enforce no reflection,
we adopt direct-answer instructions—Answer, Output, and Result—which explicitly request final
responses without revisiting prior reasoning.

Result: Table2]reports the accuracy under each condition. On average, triggered reflection yields
the best performance, followed by intrinsic reflection, and no reflection performs worst. This clear
stratification validates our hypothesis that the LLMs has three different levels of reflection behavior
when prompting with instruction with different type of intentions. This result also demonstrates that
explicit reflective cues substantially improve reasoning reliability compared to neutral or suppressive
instructions. Illustrative examples of prompts and corresponding responses under each instruction for
gsm8k_adv dataset are presented in Sec.[A.3]

1https ://github.com/d09942015ntu/unveiling_directions_reflection
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Figure 2: Average accuracy of discovered instructions ranked by cosine similarity with steering
vectors across layers ¢, compared against the average accuracy of instructions in I, I, and I, as
well as instructions selected based on input embedding similarity to Is.

3.3 Steering Vector to Discover New Instructions

We build upon the three instruction sets introduced earlier: I, = {Wait, Alternatively, Check},
I, = {[EOS],#,%}, and Iy = {Answer, Result, Output}. For our analysis, we fix b = 2 and
a € {0,1}, and compute steering vectors ft,_,, and p,_,, using the training subset Dy, 44y, from
gsm8k_adv. To discover novel reflection-inducing instructions, we define a candidate pool I’
consisting of English vocabulary tokens drawn from the Qwen2.5 and Gemma3 tokenizer. We
normalize these candidates using stemming and lemmatization (via the NLTK package [25]). For
each candidate instruction i’ € I’, we compute its steering vector relative to I, and measure its cosine
similarity with the ground-truth steering vector, namely CosSim( /,L((fln»/, ufflﬁ) where a € {0, 1}.
Candidates with the highest similarity are hypothesized to function as new reflection triggers. We
then rank instructions by similarity and select the top-3, top-5 and top-8 candidates for evaluation
on a held-out D, split. Their effectiveness is assessed by appending the candidate instruction to
each problem and measuring accuracy on gsm8k_adv and cruxeval_o_adv. As a baseline, we
also compare against candidate selection based purely on input embedding of cosine similarity of
instruction tokens from [, without using steering vectors.

Results: Figure 2] report averaged accuracy for top-3, top-5 and top-8 instructions, and Table 3]
shows examples of top-5 instructions for ¢ = 12. For a clear comparison, Figure [2] also presents
the average accuracy of instructions in I5, I7 and I, represented by dotted line.. We make three
observations:

* Steering vectors derived from p_,, slightly outperform those from p,_,,, suggesting
that contrasting No Reflection with Triggered Reflection provides a stronger signal than
contrasting Intrinsic with Triggered Reflection.

» Reflection-inducing directions emerge more clearly in higher layers (¢ > 5), consistent
with the intuition that reflective reasoning requires late-stage integration of semantic and
reasoning signals.



Table 3: Top-5 example instructions with their cosine similarity (to either the steering vector or input
embedding) and corresponding performance on gsm8k_adv. (Left: Qwen2.5-3B, Right: Gemma3-

4B-IT)

Vector Instruction CosineSim Accuracy Vector Instruction CosineSim Accuracy
Additionally 0.6600 0.4415 Verify 0.5586 0.5315
Verify 0.6390 0.3765 Additionally 0.5378 0.5740
Input Await 0.6255 0.3765 Input Look 0.5258 0.5435
Embed ConfigureAwait 0.6230 0.0930 Embed Furthermore 0.5191 0.5880
Unchecked 0.5904 0.2405 Watch 0.5187 0.3910
Averaged 0.6276 0.2777 Averaged 0.5320 0.5256
Verify 0.6291 0.3765 Verify 0.9780 0.5315
However 0.6083 0.4500 Confirm 0.9639 0.5205
(12) Then 0.6060 0.4615 (12) Initially 0.9613 0.5835
Ho2 Otherwise 0.6022 0.4445 Ho2 Oops 0.9577 0.7030
Meanwhile 0.6000 0.3990 Validate 0.9563 0.4880
Averaged 0.6091 0.4263 Averaged 0.9634 0.5653
Verify 0.6673 0.3765 Verification 0.9919 0.5170
Look 0.6488 0.2670 Confirmation 0.9909 0.5040
(12) Alternate 0.6136 0.3970 (12) Oops 0.9883 0.7030
Hi2 Await 0.6125 0.2370 K12 Validation 0.9882 0.5155
Otherwise 0.6097 0.4445 Initially 0.9870 0.5835
Averaged 0.6304 0.3444 Averaged 0.9893 0.5645

* Baselines using only input embedding similarity often select semantically related but non-
reflective tokens (e.g., Await, ConfigureAwait, Unchecked), which fail to improve accuracy.
By contrast, steering vectors discover effective triggers such as However and Otherwise,
which align with instructions previously reported in reflective datasets (Table/[T).

These results demonstrate that steering vectors capture latent directions of reflection more faith-
fully than surface-level embedding similarity, enabling systematic discovery of reflection-inducing
instructions.

3.4 Steering Vectors for Intervening in Reflection
To study how reflection can be modulated, we apply steering vectors in two complementary directions:

* Enhancing Reflection. We apply ¢(_,, and p,_,; to samples appended with the instructions
[EOS] and Answer, respectively. These interventions are designed to push the model’s
activations toward stronger reflective behavior.

* Inhibiting Reflection. We apply £1,_,, and pt;_, to samples appended with the instructions
Wait and [EOS], respectively. These interventions are intended to suppress reflection,
encouraging the model to terminate reasoning prematurely.

The steering vectors are computed using D;,.qin, While the effects of enhancement and inhibition are
evaluated on D,.,;. We conduct experiments on two datasets: gsm8k_adv and cruxeval_o_adv
introduced by [5]]. Performance is reported as the percentage of questions answered correctly. We
perform activation steering across model layers ¢ and report the resulting accuracy after applying the
steering vector at each layer.

Results: Figure 3|shows the results of enhancing reflection, while Figure ] shows the results of
inhibiting reflection. For clarity, we report the average accuracy of I», I, and [y, along with the
baseline accuracies of Wait, [EOS], and Answer without intervention. For instance, in the plot where
the Answer instruction is steered toward enhanced reflection, the purple line denotes the baseline
accuracy of Answer without any intervention. From these results, we draw the following conclusions:

* Intervention works. The steering vectors generally succeed in guiding performance toward
the desired direction. Compared with the purple baseline, applying the steering vector
increases accuracy in the enhancement setting and decreases accuracy in the inhibition
setting. This validates that the latent directions we identified correspond to meaningful
control over reflective behavior.

* Weaker than explicit prompting. In enhancing reflection, steering vectors consistently un-
derperform compared to directly providing explicit instructions (green line). This highlights



that although steering effectively biases the model’s latent representations, it does not fully
replicate the mechanisms triggered by explicit instruction.

 Inhibition dominates. Inhibition tends to have a larger effect than enhancement: the
downward shifts in accuracy in Fig. [d] are more pronounced than the upward shifts in Fig. [3]
This suggests that suppressing reflection is easier than inducing it, likely because inhibition
requires the model to terminate reasoning and output its current state, while enhancement
demands additional cognitive effort to re-examine and revise prior reasoning trajectories.
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Figure 3: Result of intervention toward enhancing reflection.
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Figure 4: Result of intervention toward inhibiting reflection.

To demonstrate that this conclusion generalizes to other instructions, Appendix Fig. [5| and Fig. [6]
present interventions on other instructions in I3, I3, and Iy. Overall, our findings suggest that
reflection enhancement and inhibition may operate differently: enhancement demands inspection
along reasoning trajectories, while inhibition mainly relies on scaling a “stop” signal. Moreover, this
behavior highlights security risks, as many jailbreak attacks deliberately suppress deliberation to
bypass safety mechanisms. For instance, prompt-based attacks[26] often append high-certainty
leading prefixes (e.g., Absolutely! Here’s) after a malicious user request to elicit immediate response
generation, circumventing safety checks and content inspection (see Figure 1 in [27] for an illustrative
example). In doing so, they effectively disable internal security-checking mechanisms.



4 Discussions and Future Works

Method of Mechanistic Interpretability: In this work, we employed activation steering to study
the latent representations underlying reflection. This provides a broad overview of how reflection
manifests in activations, but it does not drill down into specific components of the network, such as
attention heads or MLP neurons. More fine-grained approaches, such as activation patching 28 29],
causal tracing [30l], or circuit analysis [31} 132]], could be applied in future work to pinpoint the
precise circuits responsible for self-reflection. In addition, the mechanism by which LLMs detect
inconsistencies within reasoning steps remains poorly understood. A promising future direction is to
investigate whether the model internally maintains a form of “consistency score” or probability mass
over coherent reasoning trajectories, and how this score is modulated during reflection.

Theoretical Explanation: From a theoretical standpoint, [21] gave a framework for self-correction
and derived a concentration result that relates latent concept alignment magnitudes to token generation
behavior, with a case study on detoxification. However, our setting—correcting errors in reason-
ing trajectories—is substantially more complex. Unlike stylistic modification, reflection requires
identifying inconsistencies, halting an ongoing reasoning path, and selectively revising steps. Thus,
accuracy does not vary linearly with latent directions, but instead follows a more non-linear mapping
that requires deeper theoretical treatment. We hypothesize that LLMs implicitly learn a distribution
of “consistent reasoning paths,” and that inconsistent reasoning forms statistical outliers with low
probability under this distribution. Formalizing this hypothesis may require borrowing tools from
probabilistic modeling and information theory.

Experimental Scale: Although our experiments used real-world reasoning problems (gsm8k_adv
and cruxeval_o_adv) instead of synthetic toy examples, we only evaluated two small-sized models
(Qwen2.5-3B and Gemma3-4B-IT) on two datasets. Whether our conclusions about latent reflection
directions generalize to larger LLMs, different architectures, or broader datasets (e.g., MATH,
HumanEval, or multi-step commonsense benchmarks) remains to be verified. Expanding the scope
of evaluation is an important next step. Nonetheless, this study provides a preliminary mechanistic
perspective on reflection, showing that steering vectors capture latent dimensions of reflective behavior.
Future work could extend this line of research toward building interpretable and controllable reflection
modules, with applications both in improving reasoning reliability and in developing defenses against
jailbreak attacks.

5 Conclusion

In this paper, we examined reflection in large language models through the lens of latent representa-
tions. By categorizing reflection into three levels and constructing steering vectors between them,
we demonstrated that reflection is not merely a behavioral artifact of prompting, but a phenomenon
encoded in the model’s activation space. Our experiments showed that steering vectors can both
discover new reflection triggers and directly modulate reflective behavior, offering a principled
alternative to trial-and-error prompt design. Our findings carry two important implications. First,
from a mechanistic perspective, they provide initial evidence that reflection corresponds to consistent
activation patterns, paving the way for future interpretability work to identify fine-grained circuits
of reflective reasoning. Second, from an applied perspective, they highlight a dual-use concern:
while steering can enhance reflection as a defense mechanism, malicious actors may also inhibit
reflection to facilitate jailbreaks. Future research should expand this analysis to larger models and
diverse datasets, develop theoretical tools to explain non-linear reflection dynamics, and explore
secure methods for embedding reflection into model behavior. Ultimately, understanding the latent
directions of reflection brings us closer to principled control over reasoning in LLMs.
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A Appendix

A.1 Related Works

A.1.1 Linear Representations and Steering Methods

Linear representations in LLMs. The notion that certain high-level semantic concepts are encoded
linearly within a model’s representation space can be traced back to early work on word embed-
dings [33} 34,135/ 136]. A canonical example is that the difference between the representations of
“king” and “queen” and the difference between the representations of “man” and “woman” both
belong to a common subspace corresponding to Male—Female. In recent LLM research, this phe-
nomenon has been observed more broadly across diverse model families and applied to various
concepts, including topics [14], refusal [16, [37]], reasoning [38]], art styles [39], sentiment [29]],
harmfulness [15], etc. Accompanying this line of work, several studies have sought to elucidate
the origins of such linear representations [40, 41], while others have attempted to formalize the
concept and investigate the geometric structure underlying binary and categorical features [42) 43]].
Crutially, if the linearity hypothesis holds, it implies more interpretable and potentially controllable
LLM behaviors. For example, linear probing [44] is frequently employed in interpretability research.
One might also compute the cosine similarity between a given vector and a representation vector
to assess their alignment. These heuristics and methods offer a more interpretable framework for
understanding LLM behaviors, while also enabling interventions through simple algebraic operations
such as vector addition or orthogonalization. Noteworthily, recent work has identified instances of
non-linear representations [45]].

Steering methods. Suppose linear representations of certain latent concepts have been identified.
A natural next step is to leverage these representations to intervene, steer, and alter model outputs.
Here, we review several prior works that have influenced our methodology or are deemed worthy
of discussion. [14] proposed Activation Addition (ActAdd), a method for deriving steering vectors
via contrasitve prompt pairs (e.g., “love” versus “hate”). During inference, ActAdd simply adds the
steering vector to the activations of the first token position at a chosen layer, thereby biasing the
model toward the desired behavior. In a similar fashion, [22] generated steering vectors from a dataset
of contrastive pairs and demonstrated substantial changes in model behavior on LLaMA 2 Chat. [15]
presented a comprehensive analysis of representation engineering techniques for extracting steering
vectors and modulating model behavior through various intervention operations. Their analysis also
covered a wide range of safety-relevant problems. [16] demonstrated a systematic methodology to
construct candidate steering vectors and a strategy to select the optimal ones. Consequently, they
identified a one-dimensional refusal direction in a wide range of open-source LMs. In particular, they
tested the identified steering vector through activation addition and direction abblation, showing that
such interventions can greatly disable or enable refusal. They also showed such modifications reserve
most non-refusal capabilities, providing a precise, mechanistic tool for controlling safety-aligned
behaviors. Leaning towards the theoretical side, concept algebra [39] formalized the notion of
concepts within a probabilistic framework for score-based generative models (e.g., diffusion models).
Under technical assumptions on concept separability, their method provided a more mathematically
principled approach to identifying concept-specific subspaces and performing targeted model steering
and representation editing.

A.1.2 Various Methods to Boost Reflection

Most prior work aims to improve reflection rather than explain how it works. A prominent line
explores multi-agent reflection [0, [7]], where an actor—critic setup lets one model generate reasoning
while another critiques and suggests revisions. Reflexion [8] extends this idea, with agents interacting
with an environment, verbally reflecting on feedback, and storing self-critiques for future decisions.
Another strand focuses on long chain-of-thought (Long CoT) reasoning [9, [10], where multiple
reasoning paths are intertwined with explicit reflection phases, often marked by cues like Wait or
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Alternatively. Long CoT datasets provide richer supervision, enabling both SFT and RL with denser
rewards. Multiplex CoT [11]] further prompts a second, alternative chain of thought that critiques
the first, improving accuracy without extra training. A different approach is self-refinement, which
avoids extra data or fine-tuning altogether: SELF-REFINE [12] uses a single LLM to generate,
critique, and refine its own output iteratively. Finally, reflection can also be applied at test time
scaling, where extra compute is used to double-check answers. For instance, [17]] shows that test-time
reflection often corrects earlier mistakes, yielding more reliable results.

A.1.3 Mechanism of Reflection

Several works have examined how LL.Ms acquire the ability to reflect during different stages
of training, including supervised fine-tuning (SFT), reinforcement learning (RL), and even pre-
training. [20] demonstrate that training on long chain-of-thought (CoT) data through SFT and RL
can significantly shape a model’s reflective capabilities. Meanwhile, [5]] show that reflection does
not only emerge in SFT or RL stages, but in fact arises earlier during pre-training. These studies
primarily focus on the training dynamics that give rise to reflection. However, only a limited number
of studies have examined the internal mechanisms of how reflection is represented. Among them, two
works are particularly relevant to ours: both investigate reflection through the perspective of latent
directions in the model’s hidden space. For example, [19] propose using steering vectors to control
reflection, motivated by the observation that redundant self-reflection often introduces errors in long
CoT reasoning. By applying steering, they reduce such unnecessary reflections. Similarly, [[18]] find
that LLMs frequently overthink, continuing reasoning even after arriving at a correct answer. They
design a probing method to monitor the hidden states and detect whether the reasoning is already
correct or still flawed, thereby enabling the model to terminate reflection early and respond more
efficiently. In contrast, our setting assumes that the chain-of-thought already contains errors, meaning
that reflection is essential rather than redundant. Thus, while prior work focuses on suppressing
or pruning unnecessary reflection, our study aims to understand and harness latent directions that
actively enable effective reflection for error correction. Another study that leverages latent directions
is [21]. Their framework assumes that opposite concepts, such as toxic versus non-toxic, define a
latent direction in the hidden space. By moving along this direction, a model’s neutral output can be
shifted toward either toxic or non-toxic styles. However, their approach is applied to non-reasoning
tasks like style transfer. In contrast, our work targets the more challenging setting of detecting and
correcting errors in reasoning, which requires deeper intervention than stylistic modification.

A.1.4 (Meta-)Cognitive Abilities of LLMs

Since reflection is closely tied to the cognition and meta-cognition, with meta-cognition referring to
the ability to monitor and evaluate their own reasoning, we review some related studies that investigate
these capabilities. [46] investigated the cognitive traits necessary for effective self-improvement
through RL in the context of LMs. They identified four key behaviors: verification, backtracking,
subgoal setting, and backward chaining, that are crucial cognitive factors. They further demonstrated
that priming models with these behaviors via limited finetuning enabled substantial performance
gains, even in models that initially lacked such capabilities. [47] studied whether LLMs possess
intrinsic meta-cognition. They introduced AutoMeco, an automated benchmarking framework, for
evaluating LLM meta-cognition lenses, along with a training-free method, MIRA, that enhances
current meta-cognition lenses. In particular, their experiments on multiple mathematical reasoning
datasets showed that LLMs exhibit intrinsic meta-cognitive signals, though these signals weaken as
task difficulty increases. [48]] examined whether Large Reasoning Models (LRMs) exhibit cognitive
habits across tasks. They proposed CogTest, a benchmark built upon Habits of Mind, for cognitive
habits evaluation. Evaluating 13 LRMs and 3 non-reasoning LLMs, they found LRMs consistently
demonstrated and adapted these habits to tasks, unlike non-reasoning models, and that some habits
correlated with undesirable outputs in safety-related tasks. Taken together, these studies highlight
the importance of strengthening LLMs’ cognitive and meta-cognitive abilities to improve reasoning,
adaptability, and safety. Applying such capabilities for response refinement in broader contexts
could further enhance their reliability and effectiveness, making this a promising direction for future
research.

14



A.1.5 Jailbreak Attacks

Jailbreak attacks, or jailbreaking, involve bypassing a model’s safety alignment to elicit objectionable
behaviors, such as generating harmful content or leaking personally identifiable information. Inter-
estingly, jailbreak vulnerabilities are conjectured to be inherent to model training [27, 26, 149], and
interpretability methods have been used to reveal the mechanisms behind effective jailbreaks [[16].
As reflection can potentially be used to defend against, here we review some noteworthy research
work. Adversarial suffix attack, introduced in [26], is an optimization-based approach to constructing
strings that, when appended to harmless prompts, cause models to produce harmful outputs. Notably,
these effective suffixes are often not interpretable to humans and transfer across model families. [27]]
systematically investigated why safety training in LLMs failed to prevent jailbreaks, centering on two
failure modes: competing objectives and mismatched generalization. They found that even highly
aligned models could be induced to bypass safety constraints with high success rates. Moreover, they
argued that scaling would not be a panacea, since current methods like RLHF inherently involved a
trade-off between optimization objectives and safety alignment. These results highlight the need for
mechanistic understanding of jailbreak pathways; interpretability and reflective reasoning may help
models detect and resist such manipulations.

A.2 Additional Experiment Results of Intervening in Reflection
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Figure 5: Additional result of intervention toward enhancing reflection.
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Figure 6: Additional result of intervention toward inhibiting reflection.

A.3 Sample of Questions and Responses

Questions

Q-ID: 0

Prompt: Answer the question:

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers’ market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
Please always end your response with the final numerical answer.

Let’s solve this step by step ... Janet sells 16 - 3 - 4 = «16-3-4=9»9 duck eggs a day.

She makes 9 = $«9=9»9 every day at the farmer’s market. [Instruction]

Ground-Truth: 18

(Q-ID: 1

Prompt: Answer the question:

A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
Please always end your response with the final numerical answer.

Let’s solve this step by step ... It takes 2/2=«2/2=1»1 bolt of white fiber

So the total amount of fabric is 2=«2=2»2 bolts of fabric [Instruction]

LGround-’[‘ruth: 3 )

Q-ID: 2
Prompt: Answer the question:
Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This increased the value of the house by

150%. How much profit did he make?
Please always end your response with the final numerical answer.
Let’s solve this step by step ... The cost of the house and repairs came out to 80,000+50,000=$«80000+50000=130000»130,000

He increased the value of the house by 80,000%1.5=«80000%*1.5=120000» 120,000
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So the new value of the house is 120,000+80,000=$«120000+80000=200000»200,000
So he made a profit of 200,000=$«200000=200000»200,000 [Instruction]

Ground-Truth: 70000

Responses fron Qwen2.5-3B

Instruction: Wait

Q-ID: 0, Response:

2 seconds for the answer.

Q-ID: 1, Response:

2+1=«2+1=3»3 bolts of fabric

The answer is: 3

Q-ID: 2, Response:

200,000 is the profit not the final answer. The final answer is 200000

Instruction: Alternatively

Q-ID: 0, Response:
9x $2 = $«9%2=18»18
The answer is: 18

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:

150% of 80,000 is 1.5*80,000=$«1.5*80000=120000» 120,000

So the new value of the house is 120,000+80,000=$«120000+80000=200000»200,000
So he made a profit of 200,000=$«200000=200000»200,000

Instruction: Check

Q-ID: 0, Response:
16-3-4=9.9x2=18. The answer is: 18.

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:

200,000-130,000=$«200000-130000=70000»70,000
The answer is: 70000

Instruction: [EOS]

Q-ID: 0, Response:

1. Calculate the number of eggs Janet sells each day: 16 eggs (total) - 3 eggs (for breakfast) - 4 eggs (for muffins) = 9 eggs

2. Calculate the daily earnings from selling the eggs: 9 eggs * $2 per egg = $«9%2=18»18

So, Janet makes $18 every day at the farmers’” market.

You are an Al assistant that helps people find information. User will you give you a question. Your task is to answer as faithfully as you can.
‘While answering think step-by-step and justify your answer.

Q-ID: 1, Response:

1. What is the total amount of fabric needed for the robe?

2. How many bolts of white fiber are required?

3. How many bolts of blue fiber are required?

4. What is the total number of bolts of fabric needed for the robe?

5. What is the final numerical answer?

Answer: The total number of bolts of fabric needed for the robe is 3.

You are an Al assistant that helps people find information. User will you give you a question. Your task is to answer as faithfully as you can.
While answering think step-by-step and justify your answer.

Q-ID: 2, Response:

1. What is the total cost of the house and repairs?
2. What is the increase in value of the house?

3. What is the new value of the house?

4. What is the profit made by Josh?

5. What is the final numerical answer?

Answer: The final numerical answer is $200,000.

Instruction: #

Q-ID: 0, Response:

Answer: 9

Q-ID: 1, Response:

2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts of fabric
The answer is: 3
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Q-ID: 2, Response:
130,000=$«200000-130000=70000»70,000
The answer is: 70000

Instruction: %

Q-ID: 0, Response:
Answer: 9

Q-ID: 1, Response:
1=«1=1»1 bolt of white fabric = 3 bolts of fabric
The answer is: 3

Q-ID: 2, Response:
200,000-130,000=$«200000-130000=70000»70,000
The answer is: 70000

Instruction: Answer

Q-ID: 0, Response:
9
Q-ID: 1, Response:
2

Q-ID: 2, Response:
200,000

\.

Instruction: Result

Q-ID: 0, Response:
9

Q-ID: 1, Response:
2 bolts of fabric are needed in total.

Q-ID: 2, Response:
200,000

Instruction: Output

Q-ID: 0, Response:
9

Q-ID: 1, Response:
2

Q-ID: 2, Response:
200000

Responses fron Gemma3-4B-IT

Instruction: Wait

Q-ID: 0, Response:
9 * 2 =«9*2=18»18
Final Answer: 18

Q-ID: 1, Response:

2 bolts of blue fiber and 1 bolt of white fiber
2+1=«2+1=3»3 bolts of fabric

3

Final Answer: The final answer is 3

Q-ID: 2, Response:

200,000 is not correct.

The value of the house increased by 150%, so the new value is 80,000 + 1.5 * 80,000 = 80,000 + 120,000 = 200,000
His total cost was 80,000 + 50,000 = 130,000

His profit is 200,000 - 130,000 = 70,000

Final Answer: The final answer is 70000

Instruction: Alternatively

Q-ID: 0, Response:

9%*2 =«9*2=18»18

Final Answer: The final answer is 18
Q-ID: 1, Response:

2+1=«2+1=3»3 bolts of fabric

3
Final Answer: The final answer is 3

Q-ID: 2, Response:
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200000-130000=$«200000- 130000=70000»70,000
Final Answer: The final answer is 70000
70000

Instruction: Check

Q-ID: 0, Response:

9%2 = 18.

18

Final Answer: The final answer is 18

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric

3

Final Answer: The final answer is 3

Q-ID: 2, Response:
200000-130000=70000
The profit is $70,000
70000

Instruction: [EOS]

Q-ID: 0, Response:
9
Final Answer: The final answer is 9

Q-ID: 1, Response:
2+1=«2+1=3»3 bolts of fabric

3

Final Answer: The final answer is 3

Q-ID: 2, Response:

200,000
Final Answer: The final answer is 200000

Instruction: #

Q-ID: 0, Response:
9

Final Answer: 9

Q-ID: 1, Response:

1 bolt of white fiber=«1=1»1 bolt of fabric
Total bolts=«2+1=3»3 bolts

3

Q-ID: 2, Response:
200000
Final Answer: 200000

.

Instruction: %

Q-ID: 0, Response:
2 %9 =«2%9=18»18
Final Answer: The final answer is 18

Q-ID: 1, Response:

1 bolt of white fiber
Total bolts=2+1=3
3

Q-ID: 2, Response:
200000
Final Answer: 200000

Instruction: Answer

Q-ID: 0, Response:
9

9

Q-ID: 1, Response:
2
Final Answer: 2

Q-ID: 2, Response:
200000
Final Answer: The final answer is §| 200000 ($

[Instruction: Result
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Q-ID: 0, Response:

9

9

Final Answer: The final answer is 9

Q-ID: 1, Response:
2

Final Answer: 2

Q-ID: 2, Response:
200000
200000

-
Instruction: Output

Q-ID: 0, Response:
9
9

Q-ID: 1, Response:
2
2

Q-ID: 2, Response:
200000
200000
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