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Abstract

Group Relative Policy Optimization (GRPO) fine-tuning has demonstrated signif-
icant enhancements in reasoning tasks. However, it often relies on high quality
labeled dataset, which is typically difficult to obtain. To address this challenge, we
introduce Noise-Aware Dual-Reward Optimization (NaDRO) to effectively en-
hances the training of Large Language Models (LLMs) under noisy or ambiguous
supervision. NaDRO operates through two key components: (1) Preference-based
Outcome Reward (POR),which makes a principled bias-variance tradeoff, re-
ducing training variance by learning from robust preference rankings instead of
overfitting to single-best estimates; and (2) Context Perception Reward (CPR)
mechanism, which ensures that LLMs conduct necessary qualitative assessment
of the current problem state to foster deeper situational understanding prior to
decision-making. To validate our approach in a realistic decision-making testbed,
we model classic combinatorial optimization problems like the Traveling Salesman
Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) as Markov De-
cision Processes, generating training data via cost-limited exploration. Our results
demonstrate that the fine-tuned Qwen 7B and Llama 3-8B models achieve statisti-
cally robust performance, significantly outperforming leading LLLM baselines and
standard fine-tuning methods on these complex benchmarks. Code is released at
https://github.com/microsoft/HeurAgenix/tree/NaDRO.
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Figure 1: Training LLMs with NaDRO: Leveraging Noisy MCTS Data through Preference-based
Outcome Reward (POR) (see Section [211[) and Context Perception Reward (CPR) (see Section [Z;Z[)
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1 Introduction

Large Language Models (LLMs) exhibit considerable promise in complex reasoning [1-4] but
encounter notable challenges in long-horizon decision making tasks [5,16]. This challenge stems
from a fundamental ambiguity inherent [7] in such tasks: often, there is no single optimal action,
and even if one exists, its true long-term value is nearly impossible to perfectly evaluate with finite
computational resources. This reality creates a critical mismatch for existing fine-tuning techniques
like Group Relative Policy Optimization (GRPO) [8]]. Applying such methods directly to these
ambiguous, imperfect reward signals leads to training instability and suboptimal performance [9]].

To address this, we propose Noise-Aware Dual-Reward Optimization (NaDRO), a method enabling
LLMs to learn effectively from noisy data [10]], particularly within offline training paradigms such as
GRPO [8]. NaDRO is founded upon two core mechanisms:

* Preference-based Outcome Reward (POR): This component makes a principled bias-
variance tradeoff. Instead of overfitting to a single, high-variance ‘optimal action’, it reduces
training variance by learning from the more stable preference rankings of multiple candidate
actions [11} 12} [10].

¢ Context Perception Reward (CPR): As a process reward, CPR incentivizes LLMs to
accurately assess key qualitative features of the current problem state prior to reasoning and
action selection. This provides a dense and immediate training signal [13[14], counteracting
the sparse, delayed rewards common in long-horizon tasks and mitigating the risk of "reward
hacking".

To evaluate NaDRO'’s ability to handle noisy data in complex, long-horizon tasks, we model classic
combinatorial optimization problems, such as the Traveling Salesman Problem (TSP) and the Ca-
pacitated Vehicle Routing Problem (CVRP), as Markov Decision Processes. In this setup, the LLM
learns to act as a meta-controller, dynamically selecting heuristic algorithms. By generating training
data via Monte Carlo Tree Search (MCTS), we effectively simulate the noisy and imperfect data
conditions prevalent in specialized real-world domains. Our extensive experiments robustly show
that small-sized models like Qwen 7B [15] and Llama 3-8B [[16], when fine-tuned with NaDRO,
significantly surpass the performance of leading LLMs, including GPT-40 and DeepSeek R1, on
these demanding decision-making tasks.

Our primary contributions are:

1. A Novel Paradigm for Noise-Robust LLM Training: NaDRO offers a new methodology
for LLMs to effectively utilize large-scale, noisy exploration data in complex decision-
making task, reducing reliance on perfectly labeled data.

2. Synergistic Noise Reduction via Dual Rewards: NaDRO, through POR and CPR, synergis-
tically optimizes learning signals from both outcome preference and intermediate reasoning
process, enhancing learning efficiency and decision reliability in noisy environments.

3. Superior Empirical Performance: We demonstrate that moderately-sized LLMs like
Qwen 7B and Llama 3-8B, when trained with NaDRO, can outperform learning LLMs on
challenging TSP and CVRP tasks.

4. Broad Generalization Potential: This research offers significant insights for applying and
training LLMs in other complex decision-making domains characterized by difficult data
acquisition, high labeling costs, or inherent data noise.

2 Related Work

2.1 LLM Fine-Tuning for Reasoning and Decision-Making

Fine-tuning strategies are crucial for adapting LLMs to specialized reasoning tasks. Methods such
as Reinforcement Learning from Human Feedback (RLHF) [12, 11} [17] and Direct Preference
Optimization (DPO) [18] have advanced model alignment. Concurrently, Group Relative Policy
Optimization (GRPO) [8]] leverages comparisons among multiple responses for logical reasoning
tasks. This paradigm is increasingly applied to learning heuristic meta-policies [3]] for sequential
decision-making [19], where LLMs now act as meta-controllers. A persistent challenge across these



approaches is their reliance on high-quality reward signals, as performance degrades on the noisy data
common in long-horizon tasks. Parallel to fine-tuning, alternative post-training approaches [20-22]
also aim to enhance LLM capabilities.

2.2 Test-Time Scaling Method

Complementary to training-time improvements, Test-Time Scaling (TTS) [23] is an inference-time
strategy that enhances performance by exploring multiple candidate solutions [24} [25]. While
NaDRO focuses on improving the underlying policy quality during training, TTS can be applied
during inference to further refine the final output by leveraging additional computation.

3 Preliminaries

MDP Formulation We model the task of dynamic heuristic selection as a Markov Decision Process
(MDP). Within this framework, an LLM acts as a meta-controller policy, 7(a¢|s;), that maps the
current problem state s, to a heuristic action a; from a predefined discrete set A. Applying the action
transitions the environment to a new state s;;. The objective is to learn a policy that optimizes the
quality of the final solution after a sequence of H decisions.

Data Generation and Inherent Noise To train the LLM policy, we require state-action value
pairs as supervisory signals. We employ Monte Carlo Tree Search (MCTS) to explore the decision
space from any given state s; and generate an estimated value, Q(st, a;), for each candidate action
a;. However, due to computational constraints and the credit assignment problem inherent in long-
horizon tasks, these ()-values are fundamentally noisy and imperfect approximations of an action’s
true long-term utility. A critical observation, empirically validated in Figure [2] is that while the
absolute scores from MCTS are unreliable, their relative rankings preserve a much more robust
signal. The results show that a policy constrained to select actions from the top 30% of MCTS
evaluated scores significantly outperforms a random policy and achieves near optimal performance.
This finding strongly suggests that an effective learning paradigm should focus on leveraging these
robust preference signals rather than attempting to directly regress the noisy, absolute action values.
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Figure 2: Preference learning effectiveness on noisy data in rd100 task. The y-axis represents the
optimality gap of the final solution. The optimal action policy always selects the action with the
highest MCTS score, while the other policies sample from either the top 30% of actions or all actions
at each step.

4 Methodology

The GRPO algorithm, which is a Reinforcement Learning with Verifiable Rewards (RLVR) paradigm,
is fundamentally challenged when applied to complex decision-making tasks. Unlike domains with
clear, ground-truth answers such as mathematics, these tasks often lack a single correct action,



problem probe]: tsp ] Probe response Output

state probe]: partially visited | CPR

[
<reasoning> <thinking> ' 4 X - — H : . :
= € : + | [algorithm type probe]: exploration ' reward H nearest_insertion
: . P Y for 1| [cost probe]: low cost : ;
reasoning> </thinking> |} gformat [cost probe] ] A
answer> <answer> reward | | <reasoning> '

Predict

. ... || Given the current state, with 63 unvisited nodes remaining . . . it is crucial | | Probe response Output
</answer> </answer> 1 | to expand the current path. 3 . .
|| From the historical decision data, the insertion heuristic has been ] i exploration | @ 3 opt
777777777777777777777777777777777 | consistently used . .. suggesting that {here could be belfer nodes (o inserl |1 - :
CoTTTTmTTTATTTIIIIIIIIITITITTT \ | based on the current tour. 1 °
' . X B I | We still have 63 unvisited nodes, an exploration algorithm is necessary to |1 (, — — — — — — — — — — — )
i Given the current state, with 63 unvi- | tinue th T AT 3 / Noisy Score 1
. .. 9 Ce ¢ € C L1 0] our ... )

: sited nodes remaining . . . : : continue the construction he tour 1 | |
4 ! Janguage | | </reasoning : | 5 5. ]
' 1 reward 1§ | <answer> {POR | o1 |
] Giv3n t@e current stat€, with 63 unvi- |; ! | selected heuristic: nearest_insertion ireward | | 1 +1
: #1€d n0d€s remdining . . . : o ] nearest_insertion |
: </answer> \ = ]

Figure 3: Schematic of Reward Components for LLM Training with NaDRO, detailing Format
Reward [8]], Language Consistency Reward [26], and the operational mechanisms of the novel POR
and CPR.

and any feasible evaluation of action quality is inherently noisy. Directly applying the standard
GRPO approach to reward the highest value is therefore prone to training instability. To address this
mismatch, we introduce NaDRO framework to enhance the learning process through its two core
contributions: redesigning the outcome reward to learn from robust preference rankings (POR) and
supplementing it with a process reward for ambiguous outcomes (CPR). This dual-reward mechanism
is complemented by standard auxiliary signals, such as format rewards [8] and language consistency
rewards [26].

4.1 Preference-based Outcome Reward (POR): Learning from Ordered Noisy Signals

To stabilize learning from noisy MCTS values, we introduce the POR method to partition the ranked
action space using a hyperparameter k£ € (0, 1) into a positive set A} (top k%) and a negative set
A_. An action’s reward is then linearly scaled based on its rank ¢ within action space A:
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This design is grounded in the bias-variance tradeoff. A standard Top-1 approach uses a high-variance
learning target (a sharp Dirac delta function, 6(a = a*)) that, while unbiased in expectation, jumps
erratically between batches and destabilizes training. POR replaces this with a softer target over the
positive set, U(a|A4.), which significantly reduces training variance. This is achieved by introducing
a minor bias, as the positive set A serves as a robust proxy for the true optimal actions a*. This
principled tradeoff prioritizes learning stability over unbiasedness, a necessary adaptation when
dealing with inherently ambiguous or noisy evaluations.

Furthermore, the selection of the hyperparameter & is also itself principled. We derive its optimal
value by maximizing a value separability term, defined as the expected value gap between the positive
and negative action sets. We formalize this objective as:
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By modeling the relative action values based on MCTS, we can compute an estimate for J (k) for

any given partition. The theoretically optimal partition is therefore found by solving for k* =

arg max J(k). As demonstrated in Section this theoretical optimum aligns remarkably well with
k

our empirical findings, reinforcing the principled design of our framework.



4.2 Context Perception Reward (CPR): Unearthing Richer Process Rewards

Dependence exclusively on outcome rewards encounters significant challenges. Especially in complex
long-horizon decision tasks, a valid reasoning process or accurate qualitative perception of the
problem’s present state typically underpins effective decision-making. To address this, we introduce
the CPR mechanism, designed to guide and evaluate the LLMSs’ pre-decision cognitive process
and process-level rewards. Crucially, CPR provides a dense, immediate, and outcome independent
learning signal, which helps mitigate the severe credit assignment problem and prevents the model
from "reward hacking" by focusing on the reasoning process.

Specifically, the CPR mechanism requires the model, prior to its standard reasoning, to first conduct
qualitative evaluations of key contextual dimensions, including problem type, problem state, current
cost and other relevant features. The model must clearly output its assessment of these dimensions.
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Figure 4: Impact of the CPR mechanism in rectifying qualitative judgment errors during LLM
inference. The illustration shows how CPR guides the LLM towards accurate contextual assessments,
mitigating errors that might otherwise go uncorrected.

As illustrated in Figure 4] even if the final decision happens to be correct or good, the model should
not receive the full reward if it failed to establish a correct understanding of the state. To quantify the
quality of the cognitive process, we define a CPR reward function for each state s;:
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Here, j corresponds the context perception dimensions, 7 ; denotes the model’s response for the j-th
contextual dimension at state s;, and y;‘y j is the ground-truth label, which can be easily annotated due
to its qualitative nature. We employed a rule-based method for annotation, details can be found in
Appendix [Bl Reward weights assigned to correct and incorrect answers are denoted by rj+ andr;,
respectively.

Through the CPR mechanism, the LLMs are incentivize to learn how to accurately perceive and
interpret the current state features of the problem. Rcpr provides a learning signal that is independent
of the final outcome, more immediate, and more stable.

S Experiments

The NaDRO framework is developed to enhance LLM fine-tuning for a wide array of long-horizon
decision-making tasks. To empirically evaluate its effectiveness and demonstrate its capabilities,
this study primarily focuses on heuristic algorithm selection in the context of TSP. Furthermore,
to illustrate the generalizability of our method, we also present experiments conducted on CVRP,
details can be found in Appendix[A] The core objectives of these evaluations are to rigorously assess
NaDRO'’s ability to leverage MCTS data for robust policy learning and to benchmark its performance.



5.1 Experimental Settings
5.1.1 Tasks and Datasets

The primary task for LLMs is to act as a meta-controller, dynamically selecting the most appropriate
heuristic algorithm at each decision step to progressively construct or improve solutions for TSP and
CVRP instances.

* TSP: We randomly selected a diverse set of 10 instances from the well-known TSPLIB
benchmark library to evaluate our method. These instances were chosen to cover a range of
sizes and complexities, ensuring that the evaluation captures both scalability and robustness
to diverse structural patterns.

* CVRP: We selected instances 1 through 10 from the Golden dataset for CVRP. These
instances are particularly challenging, characterized by a large number of customers (n)
ranging from 200 to 480 and vehicle fleet sizes (K) varying between 5 and 16. Detailed
results can be found in Appendix [A]

For each instance, a decision sequence consists of H steps, equal to N /7., Where N is number of
nodes, 1.,y 1s the running times of the heuristics selected at each step. At each step ¢, LLMs observe
the current state s; and selects an action a; from a predefined action space (the full state space and
action space are described in Appendix [E|and[F).

5.1.2 Models and Baselines

We employed the Qwen2.5-7B-Instruct-1M [15] and Llama-3.1-8B-Instruct [16] as base LLMs
for fine-tuning with our NaDRO method. To demonstrate its efficacy, we compared the performance
of NaDRO-Qwen 7B and NaDRO-Llama 3-8B against several baselines, inlcuding GPT-40 [27]],
OpenAl 03, Deepseek-R1 [26]; Mainstream heuristic and meta-heuristic methods like OR-Tools,
LKH [28], GLS [29], ACO [30], EoH [31], ReEvo [32] are also compared.

5.1.3 Training Data Generation

Training data in the form of (s, {a;, Q(s¢,a;)} X4 ) pairs were generated using MCTS. For each
state encountered during a training instance generation process, MCTS was run for 1000 iterations to
evaluate the set of N4 candidate heuristic actions. The default policy for MCTS rollouts was random
heuristic selection. This process inherently produces noisy () values due to the limited search budget,
as discussed in Section[3

5.1.4 Fine-tuning and Implementation Details

All models were fine-tuned using the GRPO algorithm. For NaDRO-Qwen 7B, NaDRO-Llama 3-8B
and the GRPO baseline, fine-tuning was performed with number of generations set to 12. Details of
the fine-tuning experiments can ref to Appendix [D] Experiments were performed on a cluster with
NVIDIA A100 and NVIDIA A6000 GPUs, leveraging the Unsloth framework [33]] for optimized
training efficiency. A typical fine-tuning run for our primary models took approximately 32 hours.
Comprehensive fine-tuning procedures are further detailed in Appendices[C|and [D]

5.2 Main Empirical Results on TSP

To evaluate the efficacy of our proposed NaDRO method, we conducted extensive experiments on
Traveling Salesman Problem. The comparative results, presented in Table [T} demonstrate the clear
superiority and statistical robustness of the NaDRO framework.



Table 1: Comparative optimality gap (%) on TSP instances, sorted by problem size. Results for
NaDRO-Qwen 7B and NaDRO-LIlama 3-8B are generated using our proposed NaDRO mechanism.
For baselines, the performance of ReEvo [32] and EoH [31] is based on their original code imple-
mentations.

Method pr76 gro6 rd100 ch130 pris2 ul59 brgl80 gr202 tsp225 a280
Traditional Solvers

LKH 0.00+00 000+£00 000400 0.00+00 000+00 000£00 000£00 0004+00 001+£00 0.01+00
OR-Tools 258+0.0 3.114+00 393+0.0 051+00 292+00 3.144+00 051+00 512400 5.13 £ 0.0 6.32+£0.0
Metaheuristics

GLS 1.05+04 1.654+08 748+23 532+21 282+09 422+14 358+25 544+£03 374+12 283+17
EoH + GLS 131403  1.344+04 385+12 564+24 273+£07 407+06 435+23 331+1.1 2.56 + 0.1 4.04 £ 0.6
ACO 926+ 1.1 12584+26 17.124+29 889+14 470+£1.6 928+15 343+£24 1043+£27 971+21 1778 £ 1.3
ReEvo + GLS 186 £0.6 237+12 6.70 £2.1 50419 288+16 399+15 411+23 580+£07 473 £ 1.6 392+0.5
ReEvo + ACO 771+01 666+14 912+09 585+14 787+05 552+01 391+23 829+14 699+29 1591+21
LLM-based Approaches

GPT-40 099+07 155+03 218407 3.19+03 129406 248407 470+06 423+12 578+£06 7.11+1.1
GPT-03 037+03 053+04 044 +05 286+02 028+02 0.68+03 267+03 3.79+05 5.11£0.6 371 £ 04
Deepseek-R1 0.69 £ 0.3 1.04£0.2 1.18£04 227+08 086+02 183+05 294+05 3.88+05 647 £09 14.10 £ 0.7
Qwen 7B 233+04 3.89+04 398+1.1 445+03 131+£02 329+05 586+19 1538+33 1042+19 883+14
GRPO on Qwen 7B 1.23+02 197+02 2434+02 229403 1.04+01 257+04 542403 14.68+04 11.14+£03 7.33+04
Llama 8B 1.79+02 447408 384+05 486+05 207+04 351+04 7394+08 1343+1.1 992+ 1.3 921 +£12
GRPO on Llama 8B 0.67 £0.1 239+ 0.5 212+08 391+07 089+02 208+£05 522405 1133407 733+£1.1 8.10 + 0.6

NaDRO-Llama(Ours) 0.31 £0.1  0.28 £0.1 070+02 219+03 037+£01 094+02 217+03 241+£05 489+08 622+04
NaDRO-Qwen(Ours) 0.63+02 016+02 011+01 1.80+£02 022+01 138+03 008+01 229+03 3.76+05 531+£07

The results in Table[T]demonstrate the clear superiority of our NaDRO framework. Our NaDRO-tuned
models consistently and significantly outperform other LLM-based approaches, including larger
models like GPT-40, and are highly competitive with established metaheuristics. The most critical
insight comes from the direct comparison against standard GRPO fine-tuning on identical base models
(Qwen 7B and Llama 3-8B). This comparison reveals decisive performance gains (for instance on the
gr202, the optimality gap is reduced from 14.68% with standard GRPO to just 2.29% with NaDRO)
that are directly attributable to our novel reward architecture, not merely the act of fine-tuning.
Furthermore, the low standard deviations across multiple runs confirm that these improvements are
statistically robust. While a specialized solver like LKH defines the performance ceiling, NaDRO’s
ability to guide a general-purpose LLM to surpass many strong metaheuristics highlights its practical
efficacy for tackling complex combinatorial optimization problems.

5.3 Correctness Reward Dynamics and Robustness

To validate the robustness and practical applicability of the NaDRO framework, we analyzed the
training dynamics of the answer correctness reward across different configurations. This analysis
dissects the framework’s sensitivity to the POR cutoff parameter k and its resilience under extreme
data corruption.
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Figure 5: Correctness reward dynamics during training on the pr152 instance. The y-axis represents
the smoothed correctness reward for the CPR mechanism which is scaled by a factor of 102,



The training dynamics presented in Figure [5] offer critical insights into the NaDRO framework.
Compared to the GRPO baseline, the introduction of POR (GRPO+POR) yields a modest improve-
ment; however, being fundamentally outcome-oriented, its learning dynamic remains limited. The
introduction of the CPR mechanism yields a significant performance improvement, as seen in all
NaDRO configurations, which rapidly achieve and maintain a high level of correctness, forming a
distinct and vastly superior performance cluster.

Additionally, within the top cluster, the performance curves for a wide range of POR cutoff values (k
from 0.1 to 0.7) are tightly grouped, confirming that NaDRO is not sensitive to this hyperparameter.
And the framework’s resilience is powerfully demonstrated by the NaDRO(Randomized) curve, which
simulates a 10% chance of catastrophic data corruption at each step. Even under this severe noise
condition, the model’s ability remains almost unimpaired. This underscores NaDRO’s exceptional
resilience and its suitability for training on the highly imperfect data found in real-world scenarios.

The empirical observation that performance peaks around k£ = 0.7 is not coincidental but is a direct
consequence of the task’s inherent value structure, which we can analyze theoretically. This data-
driven insight allows us to make a principled bias-variance tradeoff. As discussed in Section {1}
choosing a larger k intentionally introduces a bias towards a broader set of positive actions. This
specific bias, guided by the training data, stabilizes the learning process by reducing variance.

To formalize this, we analyze the value distribution across action ranks. For our TSP task (N4 = 15),
we define the value decrease for a given state s as the difference between the action value at rank
i+ 1and rank i: AC;(s) = Es[Qi+1(s) — Q:(s)]. The Contribution Ratio for each rank transition,
visualized in Figure[6] is then the expectation of the softmax-normalized cost increases over the entire
dataset D:

_ exp(AC;(s))
Di = Egn — )
7 M T exp(AC (s))

This value, p;, represents the average relative magnitude of the performance drop occurring between
rank ¢ and ¢ + 1, normalized across all transitions. Figure[6| visualizes these average ratios.
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Figure 6: Average Contribution Ratios Across Rank Transitions (TSP Task). Each bar represents the
average percentage of the total value gap attributable to the drop between adjacent ranks.

Figure [6] reveals a highly non-uniform value distribution specific to our TSP task dataset: the
performance drop-off between the worst-ranked actions is far more significant than the differences
among the top-ranked ones. For instance, the transition from rank 14 to 15 alone accounts for over
33% of the total gap. This particular distribution suggests that, for this task, prioritizing the avoidance
of the worst actions is critical. By applying this relative value model to our Value Separability
function J(k), we can calculate the expected separability for every possible cutoff, as shown in Table



Table 2: Optimal Cutoff Determination via Value Separability Analysis

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14
k/N 4 (%) 6.7 13.3 20.0 26.7 333 40.0 46.7 53.3 60.0 66.7 73.3 80.0 86.7 93.3
J(k) 0.3486 0.3809 0.3957 0.4071 0.4173 04280 0.4398 0.4550 0.4847 0.5106 0.5284 0.5262 0.4901 0.3953

The utility function J (k) reaches its maximum at k = 11, corresponding to an optimal positive set
ratio of 11/15 ~ 73.3%. This theoretical result provides a strong justification for our empirical
finding that performance peaks around k£ = 0.7.

5.4 Training Stability: Loss and Variance Analysis

Beyond final task performance, a critical indicator of a robust training framework is the stability of
its optimization process. To provide empirical support for the theoretical motivations presented in
Sectiond] we analyzed the training dynamics of our framework, focusing on two key metrics: reward
variance and training loss. These analyses reveal how NaDRO’s dual-reward mechanism fosters a
more stable and effective learning process compared to baseline methods.
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NaDRO(ours) 12! NaDRO(ours)
GRPO+POR GRPO+POR
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(a) Reward variance dynamics (b) Training loss dynamics

Figure 7: Training stability analysis. (a) The variance of the total reward signal over training steps.
The NaDRO framework demonstrates significantly lower and more stable reward variance compared
to the volatile baseline GRPO. (b) Training loss dynamics. The baseline GRPO’s loss rapidly
collapses to a near-zero value, indicative of "reward hacking," while NaDRO maintains a healthier,
actively fluctuating loss. The y-axis values are scaled by a factor of 10~*

Our analysis of these dynamics, presented in Figure[7] First, Figure [7(a) shows that the NaDRO
framework significantly reduces reward variance compared to the standard GRPO baseline. This
result provides direct empirical validation for the core theoretical principle behind POR (discussed in
Section4.T)), by rewarding a preference subset our method generates a more stable learning signal,
which is fundamental for effective learning in noisy environments.

Furthermore, the training loss curves in Figure [7(b) offer a critical insight into the quality of the
learning process. The standard GRPO model’s loss quickly drops to a near-zero value and stagnates, a
classic symptom of "reward hacking" where the model exploits the reward function without learning
a robust strategy. In stark contrast, the NaDRO model maintains a healthier, actively fluctuating loss.
This dynamic, paired with its high final reward, proves that the model remains meaningfully engaged
in learning rather than collapsing into a trivial solution. Together, these findings demonstrate that
NaDRO not only achieves superior results but does so via a more stable and principled optimization
process.

5.5 Ablation Studies

To dissect the individual contributions of NaDRO’s key components and to evaluate the interaction
with TTS, we conducted a series of ablation studies. In our experiments, TTS refers to a strategy
where the model performs additional inference time computations to explore multiple candidate
solutions before committing to a final output. The "TTS Level" reported in Table [3] quantifies the
extent of this search effort.



Table 3: Ablation Study: Impact of NaDRO Components and Test-Time Search on the pr152 TSP
instance (Optimality Gap %)

TTS Level Qwen 7B (Base) GRPO Baseline GRPO + POR NaDRO (Full, Ours)

0 1833+ 1.2 1157+ 14 6.74 £ 1.1 317+ 1.1
1 5.83 £0.9 4.66 £ 1.8 354£0.8 1.74 £ 0.7
2 3.62+03 3.86 £0.5 2.64£03 1.77£0.2
4 1.69 £ 0.3 2.14£03 1.79 £ 0.2 148 £0.2
10 1.31 £0.2 1.04 £0.1 0.87 £0.2 0.22 £0.1
20 0.88 £0.1 0.87 £0.2 0.63 £0.1 0.16 £0.1
30 0.32 £0.1 0.41 £0.1 0.14 £ 0.1 0.04 £ 0.1

The ablation results in Table [3] validate NaDRO’s component-wise benefits and reveal a powerful
synergy with test-time search (TTS). The TTS=0 results, which reflect pure policy quality, are
particularly revealing: adding POR nearly halves the optimality gap of the GRPO baseline (from
11.57% to 6.74%), and the full NaDRO framework halves it again to 3.17%, underscoring the critical
impact of CPR. This superior base policy then creates a powerful synergy with TTS. While all
configurations benefit from increased search, NaDRO’s advantage widens as the TTS level increases,
achieving a near optimal gap of just 0.04% at TTS=30.

6 Conclusion

To address the challenge of training LLMs for complex long-horizon decision-making with noisy data,
this paper introduces NaDRO. By bridging preference-based and process-based rewards, NaDRO
contributes to the broader goal of building LLM agents that are both robust to imperfect supervision
and aligned with human-like reasoning processes. Extensive experiments demonstrate that NaDRO
enables moderately-sized LLMs (Qwen 7B and Llama 8B), trained on MCTS-generated noisy data,
to significantly outperform LLMs. These findings underscore NaDRO’s strong empirical performance
and its efficacy in fostering robust learning from imperfect data, offering a promising pathway towards
more capable and data-efficient LLM agents for complex real-world decision-making.

7 Limitation and Broader Impact

Limitations NaDRO’s Context Perception Reward (CPR) currently relies on manually defined
qualitative features and rule-based annotations. This dependency may limit its direct applicability to
new domains requiring significant feature engineering and domain expertise. Future work should
explore methods for automatically discovering or learning these crucial contextual features to enhance
the framework’s generality.

Broader Impact By enabling LLMs to learn more effectively from imperfect data, NaDRO can
make advanced Al decision-making tools more practical for real-world applications (e.g., logistics,
operations research) where perfectly clean data is scarce. This could improve efficiency and resource
allocation.
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A Generalization Results on CYRP

To further assess the generalizability and robustness of our NaDRO framework, we extended our
evaluation to the Capacitated Vehicle Routing Problem (CVRP). We utilized instances 1 through 10
from the challenging Golden dataset, which are characterized by large numbers of customers (200
to 480) and varying fleet sizes. These instances are particularly suitable for testing performance in
large-scale, intricate decision-making scenarios. Performance is evaluated based on the optimality
gap, where lower values indicate better results.

Table 4: Comparative Optimality Gap %) on Capacitated Vehicle Routing Problem instances from
the Golden dataset. Results for NaDRO-Qwen 7B are generated using NaDRO. Methodologies for
baseline models are analogous to those in the TSP evaluation.

Method Golden_1 2 3 4 5 6 7 8 9 10
Traditional Solvers

OR-Tools 2.94 1.77 873 12.17 3.0 10.56 7.19 799 247 049
Metaheuristics

ACO 14.19 2723 22.68 2896 21.0 1599 2896 2238 87.04 98.05
ReEvo + ACO 7.57 1545 19.68 23.09 13.84 17.24 1746 16.71 N/A* N/A*
LLM-based Approaches

GPT-40 19.53 12.65 2329 3146 28.89 193 30.88 3442 2850 29.31
GPT-03 20.49 15.17 18.19 22.67 2542 16.67 29.62 27.82 22.11 33.39
Deepseek-R1 20.44 21.33 184 25.16 2555 182 3232 3036 2331 31.25
Qwen 7B 33.31 30.66 42.12 46.65 2629 496 53.66 51.65 29.18 36.79
GRPO on Qwen 7B 27.18 27.08 33.35 43.77 2329 4251 4894 30.64 29.83 36.20

NaDRO-Qwen 7B(Ours) 7.49 9.71 16.61 23.00 1836 1821 20.64 16.13 18.85 24.82

For simplicity, the prefix "Golden_" is omitted from the task names, as all tasks are from the Golden dataset.
*N/A indicates that the method was unable to complete the run within the limited resources.

In the more complex CVRP domain (results in Table d)), NaDRO-Qwen 7B demonstrated strong
performance and excellent adaptability, further validating the generalizability and effectiveness of the
NaDRO framework. Compared to other large language models, NaDRO-Qwen 7B held a significant
advantage. Its dual-reward mechanism proved particularly effective within CVRP’s intricate decision
spaces, leading to performance gains over its own baselines (Qwen 7B and GRPO-tuned Qwen 7B)
that even surpassed those observed in TSP. Furthermore, when facing traditional metaheuristics,
NaDRO-Qwen 7B not only exhibited competitive or even superior performance but, particularly
noteworthy, it successfully obtained high-quality solutions on some very large-scale instances where
certain specialized meta-heuristics failed due to resource limitations, highlighting the practical value
of NaDRO-enhanced LLMs in tackling such challenging problems.

B CPR Annotation

The Context Perception Reward (CPR) mechanism, introduced in Section @ incentivizes the LLM
to accurately assess key qualitative features of the current problem state before making a decision.
Ground-truth labels (y; ;) for these features are generally straightforward to annotate using rule-based
methods. In our work, the annotated qualitative features include: problem type, state type, algorithm
type, and cost type.

This appendix details the rule-based annotation scheme for one specific feature: the assessment of the
current solution’s cost situation. This label helps the LLM understand if the current partial solution’s
cost is relatively low, high, or normal compared to a baseline. The process is as follows:

1. Calculate Reference Cost (C'ostgreedy): For each problem instance, we first compute a
reference cost by constructing a full solution using a simple greedy heuristic. The total cost
of this greedy solution serves as a baseline.

2. Calculate Current State Cost (C'ostcyrrent): At each decision step ¢, we calculate the average
path cost of the partial solution constructed so far in state s;.

3. Assign Label based on Thresholds: We compare C'ostcyrrent t0 Costgreedy t0 assign one
of three labels:
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(1) "High Cost": if Costeyrrent 2> 1.15 X C'ostgreedy-
(2) "Low Cost": if Costeyrrent < 0.80 x Costgreedy-
(3) "Normal Cost": otherwise (0.80 X C'0ostgreedy < COSteyrrent < 1.15 X Costgreedy)-

4. Apply Conditional Activation: This cost assessment is only performed after the solution
construction has progressed beyond an initial phase (specifically, when more than 10% of
the path is constructed in our implementation). Evaluating costs too early can be misleading.
Before this threshold, the label might be considered "not applicable."

This rule-based method provides an objective and easily computable signal for the CPR. Similar
transparent methodologies are used for annotating the other qualitative dimensions, ensuring the
practical applicability of the CPR mechanism.

C Training Pipeline

This section details the offline training pipeline used to fine-tune the Large Language Model (LLM)
with our proposed Noise-Aware Dual-Reward Optimization (NaDRO) framework, leveraging Group
Relative Policy Optimization (GRPO). The core training loop, as shown in Algorithm[I] fine-tunes
the initial LLM parameters 6y over Mepochs-

Algorithm 1 NaDRO Offline Training Algorithm

Require: Offline dataset Do fiine = {(sk, Q(sk, ), y,’;’_)}]k\’zl; Initial LLM parameters 6; GRPO
hyperparameters(Ng, Mecpochs, Bsize); Reward coefficients (wpor, WoPR, WAuz)-
Ensure: Optimized LLM parameters 6.
1: Initialize LLM policy network 7y with parameters 6.
2: forepoche =1,..., Mcpochs do

3: Sample a batch of indices Kpqtcn corresponding to data points in D frine.
4: Initialize preference data set for this batch Pygser, < 0.

5 for each index k € Kpqtcn, do

6: Retrieve state si, MCTS evaluations Qprors(Sk, -), and CPR labels Y. from Doy prine.
7 Initialize response group Groupy, < (.

8 for response index j = 1,..., Ng do

9 @ 0y ~mollse)
10: Rg())R — CalculatePOR(ag), Qureors(sk,-))
11 RY)p, + CaleulateCPR (9", 5 )
12: REXZI — CalculateAuxRewards(yA,(j ), afcj ))
13: R ¢ wPoRRE) g + weprRG by + waua RS,
14: Add ((Q,(f), ag))7 Rglal’k) to Groupy,.

15: Py, + FormGRPOPreferences(Groupy)

16: Poaten < Poaten U P.

17: 0 + UpdatePolicyWithGRPO(0, Pystch)

18: return 6.

D Detailed Parameter Setting

This section outlines the key hyperparameters and configuration settings employed during the fine-
tuning of the Qwen2.5-7B-Instruct model using our NaDRO framework with the Group Relative
Policy Optimization (GRPO) method. These settings were largely managed via the ‘GRPOConfig*
class from the TRL (Transformer Reinforcement Learning) library, leveraging Unsloth for efficient
training.

The primary parameters are detailed in Table[5]
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E

Table 5: Key Hyperparameters and Configuration Settings for NaDRO Training.

Category Parameter Value
Model Config. Max. Sequence Length 3584
LoRA Rank () 32
Optimization Optimizer Paged AdamW (8-bit)
Learning Rate 1x10¢
Adam (3 0.9
Adam f, 0.99
Weight Decay 0.1
LR Scheduler Cosine
Warmup Ratio 0.1
Max. Gradient Norm 0.1
Training Setup Mixed Precision BF16 /FP16
Epochs 1
Max. Steps Disabled
GRPO Config. Inference Backend vLLM
Generations (N¢) 12

Max. Prompt Length 2048 tokens

Logging & Saving Checkpoint Save Steps 250
Logging Steps 5

State Space

E.1 State Space for TSP

1.

Task Definition, Operational Guidelines, and Output Format

Problem Description: A clear definition of the primary task and its core objectives.

General Interaction Rules: Instructions on LLM interaction, such as the naming convention for
invoking heuristic algorithms.

Termination Strategy: An outline of the general conditions for concluding the solution process.

Decision Output Format: Precise structured format for the LLM’s responses, detailing how to
present its reasoning (<reasoning>...</reasoning>) and chosen action (<answer>...</answer>),
including differentiation between selecting a heuristic and signaling termination.

2.

Global Problem Instance Characteristics (Static Data)

Node Count: Total number of cities/nodes in the problem.

Average Distance: Average distance between all pairs of cities.

Minimum Distance: The shortest distance between any pair of cities.

Maximum Distance: The longest distance between any pair of cities.
Distance Standard Deviation: Standard deviation of all pairwise distances.
Node Density: A measure related to the spatial distribution of nodes.

Centroid: Identifier or coordinates of a central node or point.

2.

Dynamic Solution State (Current Progress Metrics)

Visited Nodes: Number of nodes currently included in the tour.
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* Unvisited Nodes: Number of nodes not yet included in the tour.

* Current Total Cost: The total length of the current partial or complete tour.

* Last Edge Cost: The cost of the most recently added edge or incurred by the last operation.

* Current Path Length: Number of edges or segments in the current tour.

* Remaining Nodes: Equivalent to "Unvisited Nodes," indicating nodes yet to be incorporated.

* Average Edge Cost: Average cost of edges in the current partial tour.

* Edge Cost Standard Deviation: Standard deviation of edge costs in the current partial tour.

* Solution Validity: A flag indicating whether the current partial solution adheres to problem
constraints (e.g., 1 for valid).

* Minimum Remaining Edge Cost: An estimated minimum cost related to connecting remaining
nodes.

* Maximum Remaining Edge Cost: An estimated maximum cost related to connecting remaining
nodes.

3. Historical Context (Recent Decision Trajectory)

To provide the LLM with a short-term memory of its recent actions and their consequences, the
prompt includes a summary of the immediately preceding decision rounds. For each round in this
history, the following information is typically provided:

* Heuristic: The name of the heuristic algorithm selected in that round.

* Parameters: Any hyperparameters used for the selected heuristic.

* Delta of Visited Node: The change in the number of visited nodes resulting from that round’s
action.

* Delta of Current Cost: The change in the total solution cost due to that round’s action.

E.2 State Space for CVRP

1. Task Definition, Operational Guidelines, and Output Format
* Problem Description: Defines the task and its objective.

* Decision Output Format: Specifies the precise structured format for the LLM’s response, includ-
ing the qualitative cards, the reasoning section (<reasoning>...</reasoning>), and the answer block
(<answer>...</answer>). The answer block can contain up to three ranked heuristic choices or a
*#*Stop*** command if no further improvement is deemed possible under specific conditions.

2. Global Problem Instance Characteristics (Static Data)

* node_num: Total number of nodes.

* vehicle_num: Number of available vehicles in the fleet.

* capacity: Capacity of each vehicle.

* depot: Identifier of the depot node.

* average_demand: Average demand across all customer nodes.
* demand_variance: Variance of customer demands.

* average_distance: Average travel distance between nodes.
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* max_distance: Maximum distance between any two nodes.
* min_distance: Minimum distance between any two nodes.
* distance_variance: Variance of inter-node distances.

* vehicle_capacity_utilization: An aggregate measure of how vehicle capacities are typically
utilized.

* node_to_vehicle_ratio: Ratio of customer nodes to vehicles.

3. Dynamic Solution State (Current Progress Metrics)

* visited_num: Total number of unique customer nodes visited/serviced.

* unvisited_num: Number of customer nodes not yet serviced.

* total_current_cost: Sum of costs of all current vehicle routes.

* average_route_length: Average number of customers per active route.

* max_route_length: Maximum number of customers in any single route.

* min_route_length: Minimum number of customers in any single route.

* std_dev_route_length: Standard deviation of route lengths.

* average_route_cost: Average cost per route.

* total_demand_served: Sum of demands of all visited customers.

* average_vehicle_load: Average load carried by active vehicles.

* average_remaining_vehicle_capacity: Average unused capacity across active vehicles.
* average_unvisited_node_demand: Average demand of nodes not yet serviced.
* total_remaining_demand: Total demand of all unvisited nodes.

* solution_validity: Boolean flag indicating if the current solution adheres to all constraints.

4. Historical Context (Recent Decision Trajectory)

* Heuristic: The name of the heuristic algorithm selected.

* Delta of Visited Node Num: Change in the number of newly serviced customer nodes.
* Delta of Current Cost: Change in the total routing cost.

* Delta of Fulfilled Demands: Change in the total demand satisfied.

F Action Space
The action space available to the LLM for the TSP and CVRP.

F.1 Action Space for TSP

20pt ()
* Description: Swaps two non-adjacent edges to untangle the tour.
» Advantages: Simple; effectively reduces cost.

» Disadvantages: Prone to local optima; slower for large-scale problems.
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¢ Parameters: N/A

random()

* Description: Randomly appends an unvisited node to the current solution.
* Advantages: Fast and straightforward for constructing an initial solution.
» Disadvantages: Unpredictable; often produces suboptimal results.

e Parameters: N/A

greedy_algorithm()

* Description: Extends the tour by always choosing the shortest available edge.
* Advantages: Quickly generates a low-cost initial solution.

» Disadvantages: Greedy choices may lead to local minima.

* Parameters: N/A

nearest_neighbor ()

* Description: Selects the nearest unvisited node from the current node.

* Advantages: Low computational cost and simplicity.

» Disadvantages: Sensitive to the starting point; may yield inconsistent global results.

¢ Parameters: N/A

3opt OO

* Description: Reconnects three segments for deeper local optimization.

* Advantages: More powerful than 2-opt for further improvements.

» Disadvantages: Higher computational cost; diminishing returns if overused.

¢ Parameters: N/A

farthest_insertion()

* Description: Inserts the farthest unvisited node with minimal cost increase.

» Advantages: Helps construct a balanced initial tour.

» Disadvantages: May result in suboptimal local insertions; sensitive to node distribution.

¢ Parameters: N/A

nearest_insertion()
* Description: Inserts the closest unvisited node at the optimal position.

» Advantages: Controls cost during expansion.
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» Disadvantages: Local decisions might limit global optimality.

¢ Parameters: N/A

simulated_annealing()

* Description: Randomly swaps nodes and accepts changes based on a temperature criterion.
* Advantages: Escapes local optima; ideal for fine-tuning.

» Disadvantages: Requires careful parameter tuning; can be slow and computationally heavy.

¢ Parameters: N/A

random_pairwise_insertion()

* Description: Inserts two randomly selected unvisited nodes with minimal cost increase.
* Advantages: Increases solution diversity and helps overcome local optima.

* Disadvantages: Inconsistent performance; optimality is not guaranteed.

e Parameters: N/A

k_nearest_neighbors_insertion(k: int = 1)

* Description: Chooses the best among the k nearest unvisited nodes for insertion.
* Parameter: k: int (default: 1) - Number of nearest neighbors to consider.

* Advantages: Balances exploration and exploitation.

» Disadvantages: The choice of k is critical; poor selection can lead to suboptimal results.

random_successive_insertion()

* Description: Randomly inserts an unvisited node at the position with minimal cost increase.
* Advantages: Merges randomness with cost efficiency; versatile for multiple stages.

» Disadvantages: Results can vary significantly between runs.

¢ Parameters: N/A

cheapest_insertion()
* Description: Inserts the unvisited node that causes the smallest cost increase at its best position.
* Advantages: Minimizes incremental cost; ideal for cost-sensitive scenarios.

* Disadvantages: Greedy approach may get trapped in local minima; computationally intensive for
large instances.

¢ Parameters: N/A
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insertion_heuristics(insertion_strategy: str = ’cheapest’)

* Description: A flexible insertion heuristic that supports ’cheapest’, *farthest’, and "nearest’ inser-
tion strategies.

* Parameter: insertion_strategy: str (default: ’cheapest’) - Defines the insertion logic.
* Advantages: Flexible and adaptable to different phases of the solution process.

* Disadvantages: Effectiveness depends heavily on the chosen strategy; poor selection can hurt
overall solution quality.

greedy_randomized_adaptive_search_procedure_grasp(alpha: float = 0.3)

* Description: Combines greedy randomized construction with local search. A restricted candidate
list (RCL) is formed based on parameter alpha, from which an element is randomly selected.

* Parameter: alpha: float (default: 0.3) - Controls the greediness/randomness of the construc-
tion phase.

* Advantages: Enhances solution diversity and can lead to better global optimality, especially in
large-scale problems.

» Disadvantages: Sensitive to the alpha parameter; can be computationally intensive.

ant_colony()

* Description: Uses pheromone levels and heuristic desirability to probabilistically select the next
node, updating pheromones via evaporation and deposit.

* Advantages: Dynamically balances exploration and exploitation.

» Disadvantages: Requires complex parameter tuning; risk of premature convergence and high
computational cost.

¢ Parameters: N/A

F.2 Action Space for CVRP

node_shift_between_routes()

* Description: Attempts to move a node from its current position in one route to a different position
in another route if the move reduces the total distance and respects capacity constraints.

* Advantages: Can improve existing solutions by exploring inter-route moves; helps escape some
local optima.

» Disadvantages: Higher computational cost due to checking many potential moves; it’s a local
search operator and may not find the global optimum.

¢ Parameters: N/A

three_opt ()

* Description: Operates within a single route by removing three edges and reconnecting the resulting
six endpoints in one of several possible ways to decrease the route’s length.

» Advantages: More powerful than 2-opt, capable of untangling more complex route crossings.

* Disadvantages: Significantly higher computational complexity than 2-opt; operates only intra-
route, cannot exchange nodes between routes.
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¢ Parameters: N/A

two_opt_0554()

* Description: Operates within a single route by selecting two non-adjacent edges, removing them,
and reconnecting the endpoints to reverse the segment between them, if this reduces the route
length.

* Advantages: Simple and effective local search for improving individual route quality; reduces tour
length by eliminating edge crossings.

» Disadvantages: Prone to local optima; only performs intra-route improvements.

¢ Parameters: N/A

farthest_insertion()

* Description: Starts with the unvisited node farthest from the depot and inserts it into the position
in an existing route that causes the minimum cost increase, respecting capacity constraints.

* Advantages: Often produces better initial solutions than nearest neighbor or random insertion;
considers global positioning to some extent.

» Disadvantages: Slightly higher computational cost than simpler insertions; the farthest node isn’t
always the best starting point.

e Parameters: N/A

greedy_f4c4()

* Description: Iteratively adds the closest unvisited node to the end of the current vehicle’s route.

* Advantages: Simple to implement; fast for generating an initial solution.

* Disadvantages: Prone to local optima due to myopic choices; often results in poor solution quality.

¢ Parameters: N/A

min_cost_insertion()

* Description: Iteratively selects an unvisited node and inserts it into the position that minimizes the
increase in total route cost, respecting capacity.

* Advantages: Balances construction speed and solution quality; generally better than simple greedy
or random methods.

* Disadvantages: Computationally more intensive as it evaluates many insertion points per node.

e Parameters: N/A

nearest_neighbor ()

* Description: For each vehicle, starting from the depot or the last visited node, adds the nearest
unvisited node that satisfies capacity constraints, until no more nodes can be added or all nodes are
visited.

* Advantages: Simple, intuitive, and fast.
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» Disadvantages: Very susceptible to local optima; solution quality highly dependent on the starting
point and node distribution.

¢ Parameters: N/A

petal_algorithm()

* Description: Sorts nodes based on their polar angle relative to the depot, attempts to form feasible
single-node "petal" routes, and assigns these petals to vehicles if capacity allows.

» Advantages: Considers geographic clustering; can sometimes produce intuitive route structures.

* Disadvantages: Relatively complex; angle-based sorting isn’t always optimal; effectiveness
depends on node distribution.

e Parameters: N/A

random()

* Description: Randomly selects an unvisited node and appends it to the end of a randomly chosen
vehicle’s route, provided capacity constraints are met.

* Advantages: Extremely simple and fast; useful for generating diverse starting points for other
algorithms.

* Disadvantages: Solution quality is highly variable and generally poor; doesn’t perform any cost
optimization.

e Parameters: N/A

saving_algorithm()

* Description: Calculates the cost savings achieved by merging pairs of routes. It iteratively merges
the pair with the highest savings, subject to capacity constraints.

* Advantages: Classic and often effective construction heuristic; usually fast and provides good
quality initial solutions.

* Disadvantages: Greedy nature can lead to suboptimal final solutions; sensitive to distance matrix
accuracy.

e Parameters: N/A

variable_neighborhood_search()

* Description: Intended as a Variable Neighborhood Search (VNS) metaheuristic, which systemati-
cally explores different neighborhood structures to escape local optima. However, the provided
code implements a simple best-insertion heuristic: It finds the best position to insert any unvisited
node into any existing route based on minimizing insertion cost.

* Advantages: Identifies the single most cost-effective node insertion available.

» Disadvantages: Very limited scope, essentially a single step of a Min-Cost Insertion heuristic;
does not implement the broader VNS strategy of changing neighborhoods.

¢ Parameters: N/A
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state the paper’s main contributions,
including the proposed NaDRO framework with its dual-reward (POR and CPR) strategy for
robust LLM training on noisy data, and its demonstrated empirical superiority on complex
TSP and CVRP tasks. These claims are substantiated by the methodology detailed in Section
4 and the comprehensive experimental results, including ablations, presented in Section 5

(e.g., Tables[I} 4] and[3).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations of the current work within the Limitation
and Broader Impact part, refer to Section [/| These include the primary focus on MCTS-
generated noise characteristics and the manual definition of qualitative features for the
Context Perception Reward (CPR) mechanism, suggesting areas for future refinement.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides theoretical justification for the Preference-based Outcome
Reward (POR) mechanism. Section 4.1 introduces the concept of maximizing a "Value
Separability" objective function J(k) (Equation 2) to determine the optimal cutoff k, based on
a principled bias-variance tradeoff. Section 5.3 and Table 2 further develop this by modeling
the relative action value distribution (Equation 4), theoretically deriving an optimal k-value
that aligns with empirical results. All assumptions (e.g., MCTS value modeling) and
derivations are presented within the paper.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides extensive details to support reproducibility. This includes:
(1) A full description of the NaDRO methodology (Section 4, Algorithm 1 in Appendix
C). (2) The MCTS-based data generation process (Section 3, Section 5.1.3). (3) Sources
for all public datasets (TSPLIB, Golden in Section 5.1.1). (4) Comprehensive details on
state/action spaces (Appendix E, F), CPR annotation rules (Appendix B), and all training
hyperparameters (Appendix D). (5) The release of the code, as stated in the abstract.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides a GitHub link to the code in the abstract. The repository
includes scripts to implement the NaDRO framework and reproduce the main experiments
(as shown in Tables 1, 3, and 4). The datasets used are from public benchmarks (TSPLIB,
Golden), and instructions for generating the training data are provided in the paper (Section
5.1.3) and the code repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive details on the experimental setup. Section
5.1 describes the tasks (TSP, CVRP), datasets (TSPLIB, Golden), and base models (Qwen,
Llama). Section 5.1.3 and 5.1.4 detail the MCTS-based data generation and fine-tuning
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process. Crucially, Appendix D (Table 5) specifies all necessary hyperparameters (e.g.,
learning rate, optimizer, LORA rank, sequence length), while Appendices E and F define
the exact state and action spaces. Appendix B details the rules for CPR annotation, ensuring
all components are specified for reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports statistical variance (standard deviation) across multiple
experimental runs for all main results, as presented in Table 1, Table 3, and Table 4. This
information allows for the assessment of statistical significance and robustness of the
findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on compute resources. Section 5.1.4
specifies the hardware used (a cluster with NVIDIA A100 and NVIDIA A6000 GPUs) and
the typical execution time (approximately 32 hours for a fine-tuning run). Further details on
the training procedure and hyperparameters are available in Appendix C (Training Pipeline)
and Appendix D (Parameter Setting).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research presented in this paper has been conducted in full conformity with
the NeurIPS Code of Ethics. We have prioritized transparency in our methods and findings,
and aimed to ensure the reproducibility of our work through detailed documentation, clear
experimental procedures, and the provision of code.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper primarily highlights the positive implications of NaDRO, such as
enabling more efficient solutions for complex optimization problems like TSP and CVRP,
which can contribute to resource savings. A dedicated discussion of potential negative
societal impacts is not explicitly included in the current version, as the work is presented as
a foundational methodological advancement for robust LLM training.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work introduces NaDRO, a training methodology, and applies it to fine-
tune existing pre-trained language models (Qwen2.5-7B-Instruct, Llama-3.1-8B-Instruct)
for the specific task of heuristic selection in combinatorial optimization. The code and
any derived models are specialized for this narrow, non-generative application and do not
inherently possess a high risk for misuse in the sense of generating harmful content or
disinformation, unlike general-purpose language or image generators. The base pre-trained
models are governed by the release policies and safeguards of their original creators. Our
released artifacts (code and MCTS-generated training data for CO) do not include scraped
PII or sensitive user data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets utilized in this paper, including base large language models
(e.g., Qwen2.5-7B-Instruct, Llama-3.1-8B-Instruct), benchmark datasets (TSPLIB, Golden
dataset), and baseline algorithms or software (e.g., LKH, OR-Tools, specific metaheuristic
implementations like ReEvo, EoH), are properly credited via citations throughout the
manuscript, particularly in Section 5.1 and the captions of experimental tables. We have
endeavored to respect all applicable licenses and terms of use, and further details regarding
significant third-party assets are provided in our supplementary material and code repository
documentation.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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14.

15.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The primary new assets introduced are the code implementation of the NaDRO
framework and the MCTS-generated training data. As stated in the abstract, the code is
released via a Github repository. This repository includes scripts for data generation and
experiment reproduction. The paper itself provides extensive documentation for these assets,
including the training algorithm (Appendix C), detailed hyperparameters (Appendix D), the
exact state/action space definitions (Appendix E, F), and data annotation rules (Appendix
B). This documentation is provided alongside the assets to ensure reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research presented in this paper does not involve crowdsourcing or any
direct research with human subjects. All training data is generated through Monte Carlo
Tree Search (MCTS) simulations on established benchmarks, and evaluations are based on
automated performance metrics.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve human subjects or crowdsourcing. The training
data is generated via Monte Carlo Tree Search (MCTS) simulations on established com-
binatorial optimization benchmarks (TSPLIB and Golden datasets), and the experimental
evaluation relies on automated performance metrics on these problem instances.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The use of Large Language Models (LLMs) is a fundamental and core com-
ponent of this research, as the paper introduces NaDRO, a novel framework specifically
designed for training LLMs. The paper extensively describes which LL.Ms are used (e.g.,
Qwen2.5-7B-Instruct, Llama-3.1-8B-Instruct), how they are fine-tuned with the NaDRO
methodology to act as heuristic selectors, and how their performance is evaluated. This is
detailed throughout the manuscript, particularly in the Methodology (Section 4), Experi-
ments (Section 5), and various appendices covering model parameters, state/action spaces,
and the training pipeline.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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