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Abstract

The amount of data available for training foundation
models is far greater than our amount of compute. In many
domains, this will likely always be the case. Further, not all
data is equally valuable for learning, and the learning value
of data changes over the course of training. To optimize
learning in this setting, several active data selection meth-
ods have been proposed; however, they either incur signif-
icant additional computational costs or offer limited per-
formance benefits. We propose Gradient Informed Selec-
tion Training (GIST), an active data selection method that
selects a core subset of examples from mini-batches based
on their gradient alignment with a small, fixed holdout set
taken from the training set. At each training step, GIST
computes per-example gradients and selects only those that
are most aligned with the holdout gradient, thereby guid-
ing model updates toward better generalization. On the
large, noisy web-scraped image dataset Clothing-1M, GIST
trains in 3x faster wall clock time, using 6x fewer steps, and
achieves 4% higher final accuracy than RHO-LOSS and
uniform data selection.

1. Introduction

Modern machine learning models are growing at an un-
precedented rate in both size and capability. Foundation
models such as CLIP [25] and GPT [3] demonstrate that
scaling model size and dataset size can significantly im-
prove generalization across diverse tasks. In particular,
we focus on vision model training, where the signal-to-
noise ratio in data is often lower than in text or structured
domains. Real-world vision datasets, such as those col-
lected for applications like autonomous driving, frequently
suffer from label noise, occlusions, near-duplicate frames,
and other imperfections that are harder to clean at scale
[11, 19, 34]. These challenges make vision tasks especially
sensitive to the quality and selection of training data.

Large models can sometimes compensate by learning
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Figure 1. Acceleration in training for large-scale noisy datasets
(Clothing-1M). GIST trains in 6x fewer steps and achieves at least
4% accuracy gain across all other baselines (RHO-LOSS, random
selection, gradient coherence).

from vast amounts of data, but this strategy comes at sub-
stantial computational cost and can slow convergence or de-
grade final performance. Selectively focusing on higher-
quality or more informative examples offers a promising
way to address this inefficiency.

It is well understood that not all training examples con-
tribute equally to learning. Techniques such as curriculum
learning, where examples are presented in a progression
from easy to difficult [2], emphasize the role of the order
and quality of training data. However, in practice, the im-
provements achievable through curriculum learning are lim-
ited, both in terms of final accuracy and the practical diffi-
culty of properly ranking samples and pacing their introduc-
tion during training [27].

This motivates a shift toward active data selection, which
offers a more adaptive approach to prioritizing examples.



Recent methods such as RHO-LOSS [20] and InfoBatch
[24] have shown that focusing on valuable examples during
training can accelerate convergence and improve general-
ization, particularly in noisy settings. However, we hypoth-
esize that current methods still fall short of realizing the full
potential of active selection. Our goal is to push closer to
this upper bound and quantitatively demonstrate that a bet-
ter “curriculum” exists—specifically, that there is a more
effective way to prioritize data to enhance model learning.

In this work, we provide the following contributions:

• We propose an active data selection approach, Gradi-
ent Informed Selection Training (GIST), designed to
identify and prioritize the most valuable training exam-
ples based on gradient information. Through experiments
on noisy datasets such as Clothing1M [32], we show that
even in the presence of significant label noise, a better
training curriculum exists. Our method outperforms prior
state-of-the-art methods (i.e. RHO-LOSS), demonstrat-
ing that a substantial performance gap still remains be-
tween current selection strategies and the optimal subset
selection.

• We analyze the performance of data selection methods
across a range of selection fractions, defined as the pro-
portion of examples chosen from each large batch to form
the smaller training batch. We find that GIST outper-
forms RHO-LOSS at all selection fractions greater than
0.3. At 0.6 GIST trains in 3x faster wall clock time, using
6x fewer steps, and reaches 4% higher final accuracy.

2. Related Work

2.1. Data Selection Approaches
Curriculum learning is one of the earliest structured data
selection strategies. First introduced by Bengio et al. [2],
it involves presenting training examples in a progression
from easy to difficult, mimicking the way humans learn.
This staged exposure has been shown to accelerate conver-
gence, improve generalization, and enhance model robust-
ness across various domains including vision and language
[14, 22, 31, 35, 36].

Data subset selection refers to methods aimed at identi-
fying smaller, representative subsets of a larger dataset to
reduce computational cost while retaining performance. It
differs from data cleaning, which primarily removes or cor-
rects erroneous and mislabeled samples [23, 26] and active
data selection, which dynamically adjusts the training data
based on feedback during training. Subset selection empha-
sizes the representativeness of the chosen samples, often
trading off exploration (diversity of samples) against ex-
ploitation (selecting samples closely aligned with the cur-
rent model’s needs), a balance extensively studied within
reinforcement learning paradigms [28].

There have been significant advances in data subset se-

lection methods [6, 13, 15, 21, 30]. More recently, research
has shifted toward active data selection, where the train-
ing set is dynamically filtered or prioritized based on model
feedback [7, 9, 17, 20, 24, 33]. The Reducible Holdout Loss
(RHO-LOSS), proposed by Mindermann et al. [20], priori-
tizes examples with high reducible loss: those whose errors
can still be improved with further training. This is done
through a teacher-student framework: the teacher estimates
the irreducible loss of each sample, while the student up-
dates on the most promising ones. RHO-LOSS has been
shown to increase training efficiency and improve general-
ization, and has been extended to large-scale multimodal
training in recent work [29]. In this work, we propose a
simpler, one-network method for active data selection as
opposed to Rho-LOSS’s two model teacher-student frame-
work.

2.2. Gradient-Based Methods
Gradient-based data selection approaches aim to retain only
those examples whose gradient contributions are most rep-
resentative or beneficial [16, 18]. Grad-Match, introduced
by Killamsetty et al., selects subsets of training data by
minimizing the difference between the full-batch gradient
and that computed on a subset [16]. The method identifies
a small group of samples whose average gradient closely
matches that of the complete dataset, enabling reduced
computational overhead while maintaining strong perfor-
mance.

Gradient coherence, proposed by Chatterjee and Zielin-
ski [4, 5], measures the alignment between gradients of in-
dividual samples during training. High coherence means
that examples push the model in similar directions, which
should more strongly support generalization; low coher-
ence, by contrast, signals conflicting dataset features lead-
ing to overfitting. In this work, we also experiment with us-
ing coherence to actively select examples that collectively
steer the model towards having robust learning dynamics
during training.

3. Gradient Informed Selection Training
(GIST)

The success of methods such as RHO-LOSS [20] demon-
strates prioritizing training examples expected to yield the
highest learning gain can significantly improve model per-
formance, especially in noisy or complex datasets. Yet, cur-
rent strategies fall short of the performance upper bound
achievable if we could always train on the most beneficial
examples. This work asks: can we design a method that
more effectively identifies high-value training samples to
move closer to this ideal?

To approach the theoretical ideal of training on the most
informative examples, we propose using a small, fixed hold-
out set drawn from the training distribution as a stable proxy



for the test set. Our method selects training examples whose
gradients are best aligned with the average gradient from
this holdout set. This alignment encourages model updates
that generalize better, without relying on any information
from the test set.

Figure 2 provides visual intuition: rather than relying on
test set gradients (which are unavailable during training),
GIST selects training examples based on how closely their
gradients align with the direction of a holdout set gradient.
Because the holdout set is never directly used for updates,
it encourages generalization without overfitting. By curat-
ing this holdout set (e.g., selecting clean or non-ambiguous
examples) we can further steer learning toward robustness.
While this may risk excluding some long-tail but correct
datapoints, we find in practice that the trade-off improves
both training efficiency and resilience to label noise. Ad-
ditionally, we observe that using only last-layer gradients
for similarity comparison retains model performance while
significantly reducing computational overhead. See Algo-
rithm 1 for the formal procedure and Figure 3 for a visual
overview.

Figure 2. Visual intuition for GIST. Each blue arrow represents
the gradient direction, projected into 2 dimensions, for individual
training examples within a large batch (superbatch). We expect
the resultant selected subbatch average gradient (represented by
the green arrow) of training examples to better approximate the
ideal gradient, compared to the gradient computed across the en-
tire superbatch.

4. Evaluation on Clothing-1M

We evaluated GIST and existing baselines on the Clothing-1
Million dataset, chosen for its noisy real-world challenges.
It’s the most widely accepted benchmark for image recog-
nition with noisy labels [1].

We choose the following baselines to benchmark against:
• Random: A simple baseline where subbatches are se-

lected uniformly at random from each superbatch. This
serves as a lower-bound reference for selection-based
methods.

• RHO-LOSS: A teacher-student framework that priori-
tizes examples with high reducible loss—those for which
the model is still expected to improve [20]. It has shown
state-of-the-art results in noisy settings at low selection
fractions, making it a strong baseline on Clothing1M.

Algorithm 1 Gradient Informed Selection Training (GIST)

Require: Small holdout set Dho (class-balanced, ≪ total
training size), batch size nb, superbatch size nB > nb,
learning rate η

1: Initialize model parameters θ0 and time step t = 0
2: for t = 0, 1, 2, . . . do
3: Sample a minibatch D(t)

ho ⊂ Dho
4: HOLDOUTGRAD ← last-layer gradient of

L(D(t)
ho ; θ

t)
5: Randomly sample a superbatch Bt of size nB

6: for each (xi, yi) in Bt do
7: TRAINGRAD[i] ← last-layer gradient of L(yi |

xi; θ
t)

8: SIMILARITY[i] ←
cos

(
TRAINGRAD[i], HOLDOUTGRAD

)
9: end for

10: bt ← top-nb examples in Bt with highest
SIMILARITY

11: gt ← minibatch gradient on bt using parameters θt

12: θt+1 ← θt − ηgt
13: end for

Figure 3. Overview of GIST.

• Coherence: A gradient-based ablation of GIST that re-
moves the holdout set and instead aligns individual gra-
dients with the average gradient of the current super-
batch. This method selects examples whose gradients
have the highest cosine similarity to the superbatch gra-
dient, thereby prioritizing coherence within the current
training batch rather than generalization to an external
validation set.

4.1. Experiment Results
We define the selection fraction as the proportion of data
selected from the superbatch to form the subbatch used for



training. We evaluate all selection fractions from 0.10 to
1.0, in increments of 0.10. Results are shown in Figure 1 for
a selection fraction of 0.60. We verify that accuracy gains
outweigh additional computational overhead from GIST in
Figure 4. We also report the accuracies and speedup for
each of these methods at all selection fractions in Figure 5.
Full experiment details can be found in Appendix A.
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Figure 4. Comparison of classification accuracy versus training
compute cost (clock time) on Clothing-1M at a 0.60 selection
fraction. GIST achieves higher accuracy than baseline methods
RHO-LOSS and Standard Training (batch size = selected subbatch
size of other methods) when computational cost is held constant
across methods.

GIST outperforms all baselines across all selection frac-
tions greater than 0.3, demonstrating its effectiveness in
identifying high-value training examples. Meanwhile,
RHO-LOSS only outperforms at selection fractions 0.1 and
0.2. Our method surpasses all baselines by up to 4% with a
training speedup of up to 6x.

5. Conclusion

In this work, we introduced Gradient Informed Selection
Training (GIST), a method for active data selection that
leverages a small holdout set to guide training via gradi-
ent alignment. We demonstrated that aligning per-example
gradients from each training superbatch with the holdout
set gradient leads to strong selection of training samples,
outperforming baselines such as RHO-LOSS, Coherence,
and Random selection. Our method shows strong results on
both noisy datasets like Clothing1M and does so without
requiring teacher models, auxiliary objectives or heuristics.
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Figure 5. Top: Max test accuracy achieved across selection frac-
tions; Middle: Difference in accuracy between GIST/RHO-LOSS
and random; Bottom: Training speedup across selection fractions.
Computed by dividing the step at which random selection achieves
max accuracy by the step at which the alternative method exceeds
that accuracy. Speedup is 0 if it never achieves a greater max ac-
curacy (marked by no-fill points).

6. Discussion and Future Work
One promising application of GIST is learning in privacy-
sensitive settings. In scenarios where a confidential or copy-
righted dataset cannot be used directly for training (due to
legal, ethical, or security constraints) GIST enables indi-
rect training by selecting subbatches of general training data
that approximate the gradient directions of the confidential
set. Since the model never directly optimizes over the pri-
vate data nor stores any of its examples or labels, this ap-
proach could satisfy certain compliance requirements while
enabling more generalizable learning. Potential applica-
tions include medical diagnosis, governmental applications,
and federated learning, where privacy-preserving training is
crucial.

Another avenue for future research is improving the
quality of the holdout set. While we currently use a small
random subset, future work could explore construction of
the holdout set using dataset distillation or optimized pro-
cesses. Additionally, adaptive holdout sets that evolve
during training may allow GIST to better capture shifting
model uncertainties over time.
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A. Appendix
A.1. Clothing-1M Experiment Details
All models are pretrained on ImageNet, following the setup
in RHO-LOSS [20], and then fine-tuned on Clothing-1M
for a total of 6 effective training epochs. We define one
effective epoch as processing a number of samples equal to
the full dataset size. For example, with a subset selection
fraction of 0.10, each training pass sees (updates weights
on) only 10% of the data, so 60 such passes are needed to
match the sample count of 6 full epochs. For the holdout
set, we randomly split out 200 images per class (2800 total),
which is 0.28% of the entire training set size.

A.2. Models
We use the ViT-Small architecture [8] for all experiments,
as it offers a balance between performance and efficiency.
Moreover, unlike architectures that include BatchNorm lay-
ers [12] (e.g., ResNets [10]), ViTs enable gradient averag-
ing without batch-dependent side effects, which is impor-
tant for our selection strategy. For the RHO-LOSS experi-
ments, we use a smaller ViT-Tiny model as the teacher.

A.3. Hyperparameters
All models are trained using the AdamW optimizer with β1

= 0.9, β2 = 0.999, weight decay = 0.05, eps = 1e-8, learning
rate = 0.001. For all experiments, we use a batch size of
320, following the RHO-LOSS setup for reproducubility.
We finetuned all weights, not just the final layer.
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