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ABSTRACT

Infant pose and shape estimation is essential for applications in childcare, develop-
mental monitoring, and medical diagnosis. However, existing methods and datasets
are largely designed for adults, and direct transfer to infants fails due to substantial
differences in body proportions, articulation limits, and frequent self-occlusion.
To address this gap, we introduce InfantNet, the largest real-image infant dataset
to date, comprising 108,902 RGB images of infants aged 6-18 months. Each
image is annotated with 2D keypoints, and a curated subset of 11,642 images
additionally includes 3D pose and shape annotations with full SMIL parameters.
We use an iterative annotation pipeline to ensure high fidelity across both 2D and
3D labels. InfantNet establishes a large-scale, comprehensive benchmark for infant
2D keypoint detection and 3D pose-and-shape recovery. Baseline experiments
demonstrate that state-of-the-art adult pose estimators do not generalize well to
infants, whereas fine-tuning on InfantNet yields a consistent improvement. The
gains are even more pronounced for 3D pose and shape estimation. By releasing
the InfantNet dataset and benchmark, we provide a vital resource for advancing
infant pose analysis and related healthcare applications.

1 INTRODUCTION

Estimating the pose and shape of the human body is a foundational task in computer vision, with
broad applications in action recognition, human-computer interaction, and healthcare (Kanazawa
et al., 2018; Kolotouros et al., 2019; Pavlakos et al., 2019; Nachman et al., 2024; Lupolt et al.,
2025). Over the past decades, human pose and shape estimation algorithms have achieved remarkable
progress. However, existing methods and datasets predominantly focus on adult subjects, whose
body morphology and movement patterns differ significantly from those of infants. Directly applying
adult-trained models to infants results in poor performance due to substantial domain gaps, including
differences in body proportions, limited articulation, and frequent self-occlusion typical of infant
behavior. These limitations significantly hinder the deployment of such models in infant-related
applications, despite their critical importance in areas such as developmental monitoring, childcare,
and early medical diagnosis.

A major obstacle to advancing infant-specific pose estimation algorithms is the lack of large-scale,
high-quality annotated datasets tailored to infants. Infant datasets typically contain only a few
thousand images (Hesse et al., 2018a; Huang et al., 2021; Dechemi et al., 2021), in contrast to adult
datasets such as 3DPW(von Marcard et al., 2018) and Human3.6M(Ionescu et al., 2014), which
comprise over 51,000 and 3.6 million images, respectively. Existing datasets are either limited in
scale, synthetic in nature, or focused primarily on 2D pose estimation with sparse annotations (Hesse
et al., 2018a; Huang et al., 2021; Dechemi et al., 2021), making them inadequate for training or
evaluating state-of-the-art 2D and 3D human modeling methods (Xu et al., 2022; Goel et al., 2023).

To address this gap, we introduce InfantNet, a large-scale dataset specifically designed for infant
pose and shape estimation. Comprising more than 100K high-resolution RGB images of infants
mainly aged 6 to 18 months, InfantNet includes accurate annotations of 17 anatomically consistent
2D keypoints. A carefully curated subset of 11,642 images further includes 3D pose and shape
annotations by SMIL (Hesse et al., 2018b) parameters, enabling future research for 3D infant shape
and pose estimation. We adopt a robust iterative annotation pipeline that combines human supervision
with optimization-based refinement to ensure high-quality labels in 2D. We further validate 3D
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Figure 1: Sample SMIL fitting results from the proposed InfantNet dataset. Our dataset contains a
wide range of shapes and poses of infants with high-quality 2D and 3D annotations.

SMIL (Hesse et al., 2018b) pose-and-shape parameters by predicting the resulting meshes from
multiple viewpoints. Examples of images and 3D pose and shape annotations are shown in Figure 1.

Our comprehensive benchmark shows that existing state-of-the-art adult pose estimators generalize
poorly to infants. In contrast, fine-tuning on InfantNet yields a substantial boost in performance
across key metrics such as Average Precision. We further adapt parametric 3D human models and
learning frameworks to the infant domain, narrowing the gap between infant and adult modeling
accuracy. By training 3D human pose and shape estimation models on our infant dataset, we are able
to achieve performance comparable to training on much larger adult datasets with precise 3D ground
truth.

By releasing InfantNet along with standardized evaluation protocols and baseline models, we aim
to catalyze future research in infant-centric vision tasks. We believe our work constitutes a critical
step toward enabling scalable, robust, and accurate infant pose and shape analysis in naturalistic
environments, with implications for early developmental assessment, clinical monitoring, and beyond.
In summary, the main contributions of our paper are:

• We introduce InfantNet, a large-scale dataset specifically designed for infant pose and shape
estimation. It comprises 108,902 RGB images of infants with high-quality 2D keypoint
annotations. A curated subset of 11,642 images further includes 3D ground truth pose and
shape parameters, enabling comprehensive evaluation of both 2D and 3D methods.

• We develop an end-to-end SMIL-based pipeline for infant 3D pose and shape estimation. To
our knowledge, this is the first attempt to directly regress SMIL parameters from images with
neural networks. We generate pseudo ground-truth labels via optimization-based SMIL fitting,
followed by manual verification and filtering to ensure high-quality supervision. A modified
human 3D pose and shape regression network is then trained on our InfantNet, yielding
end-to-end models specialized for infant SMIL parameter estimation.

• We analyze the generalization gap of adult pose and shape estimators on infant data. Fine-tuning
2D keypoint detectors on InfantNet yields clear performance gains, highlighting the need for
domain adaptation. Training end-to-end SMIL-based 3D pose and shape models on InfantNet
further achieves performance comparable to adult benchmarks.

• We set up a benchmark on InfantNet using state-of-the-art human pose estimation algorithms.
By releasing data, code, and evaluation protocols, we hope to provide a foundation and standard
for future research in infant pose and shape estimation.
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Dataset Syn/Real # Images Keypoints Segmentation 3D Annotations
MINI-RGBD (Hesse et al., 2018a) Synthetic 12,000 Yes No Only depth
SyRIP (Huang et al., 2021) Syn+Real 1,700 Yes No No
InfantNet (ours) Real 108,902 Yes Yes Yes

Table 1: Comparison of InfantNet with existing open-source infant keypoint datasets. InfantNet
contains over 100,000 real-world infant images with high-quality keypoint annotations, significantly
surpassing existing datasets in both scale and quality. In addition, we provide segmentation masks
and bounding boxes for all images, along with a curated subset annotated with 3D SMIL parameters.

2 RELATED WORK

In this section, we discuss existing infant datasets and related pose and shape estimation algorithms.

2.1 INFANT DATASETS

Human pose and shape estimation has benefited enormously from large-scale adult datasets such as
Human3.6M (Ionescu et al., 2014), MPII (Andriluka et al., 2014), and AMASS (Mahmood et al.,
2019). In contrast, infant datasets remain scarce due to ethical, logistical, and technical challenges in
capturing infant motion in naturalistic environments. Early efforts include BabyPose (Migliorelli
et al., 2020), which provides 16 depth videos from NICU settings with 12-joint annotations, and the
dataset from (Groos et al., 2022), focusing on supine infants with limited poses. BabyNet (Dechemi
et al., 2021) targets activity classification without fine-grained pose labels. MINI-RGBD (Hesse
et al., 2018a) offers synthetic depth sequences of 12 infant models, while SyRIP (Huang et al.,
2021) combines 1,700 synthetic and real images with sparse 2D keypoints. These datasets are
small, often synthetic or modality-specific, and lack segmentation masks or 3D ground truth. Our
proposed InfantNet addresses these limitations by providing real infant RGB images with high-
quality 2D keypoints, segmentation masks, bounding boxes, and 3D pose and shape annotations.
Table 1 compares InfantNet with prior datasets, showing its unique scale, diversity, and multimodal
supervision, which together enable robust evaluation and training of infant-specific models.

2.2 INFANT POSE AND SHAPE ESTIMATION

2D infant pose estimation initially applied general-purpose models such as OpenPose (Cao et al.,
2019), HRNet (Sun et al., 2019), and AlphaPose (Fang et al., 2022), but these perform poorly due to
infants’ distinct proportions, articulation limits, and frequent self-occlusion (Sciortino et al., 2017).
Later work fine-tuned these CNN-based estimators on small infant datasets (Groos et al., 2022),
reducing error and approaching human inter-rater variability. More recent transformer-based methods,
such as ViTPose (Xu et al., 2022) and AggPose (Cao et al., 2022), improve spatial reasoning in
cluttered settings (Jahn et al., 2025), but require larger, more diverse datasets to avoid overfitting.

In the 3D domain, early infant methods relied on depth sensors for direct joint prediction (Hesse et al.,
2018a) or stereo systems for triangulation (Soualmi et al., 2024), achieving good accuracy in clinical
settings but requiring specialized hardware. The SMIL model (Hesse et al., 2018b) represents a key
step toward parametric modeling of infants: adapting the adult SMPL template (Loper et al., 2015)
with an infant-specific mesh and priors learned from noisy, incomplete RGB-D recordings. While
SMIL enables full-body mesh registration, its reliance on limited and low-quality depth sequences
constrains generalization. Other approaches leverage synthetic renderings (Huang et al., 2021) or
alternative sensors such as pressure mats (Donati et al., 2013; Clever et al., 2020), but these are less
practical in everyday environments.

Despite this progress, the field lacks a large-scale, real-world RGB benchmark with consistent 2D
and 3D annotations. Our InfantNet fills this gap, enabling systematic development and evaluation of
infant pose and shape estimation models that generalize across naturalistic scenarios.

2.3 ADULT POSE AND SHAPE ESTIMATION

3D human pose and shape estimation has been extensively studied through parametric models such as
SMPL (Loper et al., 2015) and its extensions (e.g. SMPL-X (Pavlakos et al., 2019)). Learning-based
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Figure 2: Annotation pipeline of our InfantNet Dataset. Frames from YouTube and HomeVisit
recordings were annotated using a semi-automatic, inspector-guided workflow. For 2D labels, RTMO-
L provided initial keypoints that were refined by annotators with iterative quality control, following
the COCO format. For 3D labels, we applied an optimization-based method to fit SMIL to infant
images, and annotators further filtered the results to ensure accurate pose and shape annotations.

approaches including HMR (Kanazawa et al., 2018), VIBE (Kocabas et al., 2020), PARE (Kocabas
et al., 2021), and 4D-Humans (Goel et al., 2023) directly regress parameters from images or videos,
often with strong temporal consistency. However, these methods are trained on adult datasets and
exhibit poor generalization to infants, whose body proportions, articulation limits, and frequent
occlusions differ significantly. In this work, we adapt such adult regression networks to the infant
domain using InfantNet and SMIL-based annotations.

3 INFANTNET DATASET

In this section, we present the InfantNet dataset and detail the data collection and annotation pro-
cedures. All data collection was conducted under Institutional Review Board (IRB) approval, with
potential risks clearly disclosed to participants during home visits.

3.1 DATA COLLECTION

YouTube data collection. We curated publicly available infant videos from YouTube, capturing
infants in a wide range of poses and body shapes. These raw videos serve as one source of our dataset
and are later processed through annotation and quality filtering.

HomeVisit data collection. We collected multi-view video recordings of infants in daily home
environments. Each session was conducted in the participant’s primary play area, where we deployed
four statically mounted GoPro Hero9 cameras positioned orthogonally at the walls, overlapping
coverage of the scene. To enable accurate SMIL fitting, we conducted rigorous per-session camera
calibration. Intrinsic calibration was performed independently for each camera using a small planar
checkerboard (6×10 squares), tilting and sweeping it to capture lens distortion and intrinsic parameters.
Extrinsic calibration was then performed using a large checkerboard (12×8 squares) simultaneously
visible to all four cameras, allowing estimation of relative poses via multi-view bundle adjustment.
Calibration was repeated both before and after each session to ensure pose stability. Videos were
recorded at 1920×1080 resolution and 60 FPS, yielding over 100,000 time-synchronized RGB frames.
After data collection, we post-process videos from four cameras for video synchronization. Written
consent was obtained from all caregivers.
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Figure 3: Visualization of different annotation stages in our InfantNet Dataset: Original image,
Segmentation mask, Bounding box, and Annotated Body Keypoints.

3.2 DATA ANNOTATION

We annotated all frames extracted from the two sources described above, while ensuring that each
retained frame contained exactly one infant. In total, 206,436 frames were extracted prior to quality
filtering. For the YouTube subset, which consists of 10 videos, we obtained 51,039 frames. Because
these videos are often edited compilations featuring multiple different infants, we discarded frames
containing more than one infant, retaining only single-infant frames for annotation. For the HomeVisit
subset, which includes 15 multi-camera sessions (60 synchronized video streams), we extracted
155,397 frames. Each session involves only one infant, so no additional filtering was required, though
temporal alignment across the four synchronized cameras was enforced. After frame selection, we
carried out 2D body keypoint annotation followed by multi-stage quality control, removing frames
with severe occlusion, motion blur, or other degradations. The resulting high-quality annotations
serve as the ground truth supervision for SMIL fitting and subsequent model training.

To annotate such a large and heterogeneous dataset, we adopted a semi-automatic, inspector-guided
annotation pipeline, inspired by human-in-the-loop strategies in 3D model fitting works such as
Animal3D (Xu et al., 2023). As shown in Figure 2, our annotation workflow consisted of six stages
designed to ensure both efficiency and accuracy.

Initial keypoint estimation. We first employed the RTMO-L model (Lu et al., 2024) from MM-
Pose (Contributors, 2020) to produce pseudo ground truth 2D keypoints for all frames. These
predictions were loaded into CVAT Contributors (2018), where human annotators conducted multi-
step refinement.

Initial filtering and manual correction. Annotators reviewed the RTMO-L (Lu et al., 2024)
predictions in CVAT and removed frames with severe motion blur, camera shake, strong occlusion
(e.g., when the infant is mostly outside the field of view or heavily covered by objects), missing
infants, or subjects older than 16 months. Frames with strong lighting artifacts, such as overexposure
or harsh shadows, were also excluded. Adult skeletons were discarded, and only one infant per
frame was retained. For the remaining frames, if the RTMO-L prediction provided accurate and
anatomically plausible keypoints, the annotation was accepted without modification to maximize
efficiency. Otherwise, annotators manually corrected the predictions to ensure anatomical consistency.
All annotations followed the COCO format with 17 joints: nose, left eye, right eye, left ear, right ear,
left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right hip, left knee,
right knee, left ankle, and right ankle. Each keypoint was tagged as visible, occluded, or not present.

Inspector verification. An inspector reviewed the annotations to ensure consistency and quality.
Frames with annotation errors were returned to annotators with revision feedback.

Iterative refinement. This correction–verification cycle was repeated until the inspector approved all
annotations for each recording session, ensuring convergence to high-quality labels.

Bounding box generation. Once the keypoints were finalized, bounding boxes were generated using
SAM2 (Ravi et al., 2024). Visible keypoints were used to prompt mask generation, and the final
bounding boxes were computed as the minimal rectangles covering both the masks and any occluded
joints, thereby mitigating segmentation errors due to partial occlusion (e.g., infants partially covered
by furniture).
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Subset Viewpoint Info Raw Frames Filtered Frames
YouTube (Train) Varied 44,257 36,185
YouTube (Test) Varied 6,782 3,959
HomeVisit (Train) 4 fixed cameras 123,876 56,968
HomeVisit (Test) 4 fixed cameras 31,521 11,790

Total – 206,436 108,902

Table 2: Summary of dataset composition and frame filtering. The frame count after filtering reflects
the removal of low-quality, irrelevant, or ambiguous samples during annotation.

Final bounding box validation. In the final stage, inspectors performed a second review to verify
the accuracy and tightness of bounding boxes, ensuring annotation completeness and quality.

This staged workflow allowed us to balance scalability and precision, producing high-quality 2D
annotations with explicit human oversight at each critical step. Examples of the 2D annotations in
different stages are shown in Figure 3.

3.3 FITTING SMIL ON INFANT IMAGES

We use an optimization-based method to fit SMIL (Hesse et al., 2018b) on infant images from our
dataset following the FiDIP (Huang et al., 2021) workflow. We optimize the shape parameters β and
pose parameters θ in SMIL by minimizing the total loss:

LSMIL = Ldata + Lpose + Lshape + Lothers. (1)

The data term, Ldata, includes mesh-to-scan Lm2s and scan-to-mesh Ls2m distances. Lpose and Lshape
enforce priors on θ and β, respectively. Lothers contains losses for landmark keypoints alignment
(Llm), table contact (Ltable), temporal smoothness (Lsm), and self-intersections (Lsc).

The registration optimization proceeds in three steps: estimating initial shape from selected frames,
solving per-frame poses with smoothness and data terms, and registering surface meshes via con-
strained deformation. The resulting meshes are validated by multi-view visualization and a 16px
reprojection error threshold. The filtered pose and shape parameters provide high-quality 3D ground-
truth annotations for training end-to-end models.

3.4 DATA SUMMARY

We partition the dataset into training and testing splits while maintaining identity consistency across
videos and sessions. Table 2 reports the statistics of raw frame counts and the final numbers after
annotation-stage filtering.

YouTube Subset. The YouTube subset consists of 10 public videos with diverse environments and
camera conditions. Two videos (3,959 frames) were designated for testing, while the remaining
36,185 frames were assigned to training. The difference between raw and filtered counts reflects the
removal of multi-infant frames and other ineligible samples during annotation.

HomeVisit Subset. The HomeVisit subset contains 15 in-home recording sessions, producing a
total of 155,397 frames. For evaluation, we selected 3 sessions as the testing set, while the remaining
12 sessions were assigned to training. After annotation-stage filtering, the testing set contains 11,790
frames and the training set contains 56,968 frames.

Format and Release. All annotations follow the standard COCO keypoints format (Lin et al.,
2014) and include 17 body keypoints with visibility flags (visible, occluded, not present), as well as
bounding boxes. The dataset will be released publicly to support future research in infant-specific
human pose estimation. Its multi-source, multi-view, and age-diverse composition enables both
robust training and principled benchmarking in this challenging domain.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Direct Inference Fine-tuned
AP AP.5 AP.75 AR AP AP.5 AP.75 AR

Hourglass 256x256 0.8627 0.9558 0.9237 0.8843 0.9263 0.9899 0.9790 0.9395
Hourglass 384x384 0.8739 0.9659 0.9343 0.8927 0.9340 0.9898 0.9789 0.9452
HRFormer-small 256x192 0.8765 0.9653 0.9336 0.8982 0.9314 0.9897 0.9787 0.9436
HRFormer-small 384x288 0.8800 0.9654 0.9430 0.9007 0.9351 0.9897 0.9791 0.9460
HRFormer-base 256x192 0.8824 0.9550 0.9333 0.9026 0.9385 0.9898 0.9792 0.9509
HRFormer-base 384x288 0.8871 0.9638 0.9416 0.9082 0.9401 0.9898 0.9793 0.9527
Res50-256x192 0.8648 0.9662 0.9337 0.8859 0.9273 0.9900 0.9791 0.9404
Res50-384x288 0.8657 0.9658 0.9331 0.8863 0.9303 0.9900 0.9793 0.9416
Res101-256x192 0.8728 0.9656 0.9344 0.8929 0.9318 0.9899 0.9790 0.9437
Res101-384x288 0.8759 0.9650 0.9338 0.8957 0.9351 0.9899 0.9792 0.9478
Res152-256x192 0.8731 0.9556 0.9341 0.8938 0.9331 0.9898 0.9792 0.9457
Res152-384x288 0.8789 0.9646 0.9333 0.8999 0.9387 0.9895 0.9789 0.9490
HRNet-w32 dark 256x192 0.8860 0.9661 0.9348 0.9037 0.9382 0.9898 0.9792 0.9489
HRNet-w32 dark 384x288 0.8874 0.9650 0.9429 0.9064 0.9398 0.9897 0.9792 0.9519
HRNet-w48 dark 256x192 0.8892 0.9656 0.9440 0.9069 0.9416 0.9896 0.9791 0.9528
HRNet-w48 dark 384x288 0.8874 0.9651 0.9432 0.9060 0.9421 0.9898 0.9791 0.9534
HRNet-w32 256x192 0.8804 0.9660 0.9345 0.8995 0.9336 0.9898 0.9788 0.9450
HRNet-w32 384x288 0.8819 0.9653 0.9339 0.9024 0.9364 0.9896 0.9788 0.9482
HRNet-w48 256x192 0.8838 0.9657 0.9341 0.9024 0.9374 0.9898 0.9792 0.9485
HRNet-w48 384x288 0.8837 0.9650 0.9337 0.9039 0.9397 0.9897 0.9790 0.9512
ViTPose-small 256x192 0.8756 0.9656 0.9347 0.8946 0.9336 0.9899 0.9793 0.9443
ViTPose-base 256x192 0.8902 0.9654 0.9448 0.9089 0.9391 0.9897 0.9791 0.9511
ViTPose-large 256x192 0.9002 0.9644 0.9434 0.9199 0.9475 0.9896 0.9791 0.9581
ViTPose-huge 256x192 0.8995 0.9639 0.9430 0.9199 0.9477 0.9895 0.9790 0.9582

Table 3: Comparison of 2D pose estimation models on the InfantNet benchmark under two evaluation
settings: direct inference using COCO-pretrained models (left block) and fine-tuning on InfantNet
(right block). We report Average Precision (AP), AP at IoU thresholds 0.5 (AP.5) and 0.75 (AP.75),
and Average Recall (AR). Fine-tuning consistently improves performance across all architectures,
with ViTPose-huge achieving the best results after adaptation (AP: 0.9477, AR: 0.9582). These
results highlight the importance of domain-specific data for accurate infant pose estimation.

4 EXPERIMENTS

4.1 2D KEYPOINT ESTIMATION

We benchmark a series of widely used 2D human pose estimation models on our proposed infant
dataset to evaluate their ability to transfer across domains. These models were originally designed
and trained for detecting keypoints in adults; here, we investigate whether they can generalize to
detecting keypoints for infants, whose body morphology and movement patterns differ substantially.
This evaluation provides the first set of baselines for infant 2D keypoint estimation in the wild.

Setup. We benchmark 24 models across three architecture families: Transformer-based (ViT-
Pose (Xu et al., 2022), HRFormer (Yuan et al., 2021)), CNN-based (HRNet (Sun et al., 2019), Hour-
glass (Newell et al., 2016)), and CNN variants with DARK post-processing (HRNet-Dark (Zhang
et al., 2020)). All models are implemented in MMPose and initialized from COCO-pretrained weights.
We fine-tune each model for 40 epochs using the MMPose default setting with a learning rate of
1× 10−4. Training and evaluation are conducted on 4 NVIDIA A100-SXM4-40GB GPUs.

Evaluation. Models are fine-tuned on the mixed training set (YouTubeTrain ∪ HomeVisitTrain) and
evaluated on the mixed test set (YouTubeTest ∪ HomeVisitTest). We do not run source-specific evalua-
tions; all numbers are reported on the mixed test split. The split preserves infant identity separation
across sessions. Metrics follow the standard COCO keypoint protocol over 17 keypoints: mean
Average Precision (AP), AP.5, AP.75, and Average Recall (AR). We report results from the checkpoint
that achieve the best validation AP.
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Results. We benchmark a wide range of 2D human pose estimation models on InfantNet, comparing
their performance under two settings: (1) direct inference using COCO-pretrained weights without
adaptation, and (2) fine-tuning the models on our InfantNet training set. Table 3 summarizes the
Average Precision (AP), Average Recall (AR), and their variants across 24 different configurations.

Direct Inference Results. ViTPose-large achieves the highest AP (0.9002), while ViTPose-large and
ViTPose-huge reach the best AR (∼0.9199). This highlights the advantage of transformer-based mod-
els over CNN-based ones on infant data, though their performance remains below that of fine-tuned
counterparts. Among CNN-based models, HRNet-W48 (Sun et al., 2019) and HRFormer-Base (Yuan
et al., 2021) perform competitively, both benefiting from multi-resolution feature aggregation. The
performance gap between small and large variants is consistent across architectures, with larger
models showing greater gains from fine-tuning.

Fine-tuning on InfantNet. Fine-tuning consistently boosts performance across all models. On average,
fine-tuning yields a relative gain of 6.3% in AP and 5.3% in AR compared to direct inference.
The ViTPose-huge model again achieves the highest overall performance (AP: 0.9477, AR: 0.9582)
after fine-tuning. Overall, models with higher input resolution outperform their lower-resolution
counterparts, demonstrating the importance of spatial detail for infant pose estimation.

4.2 3D POSE AND SHAPE ESTIMATION

We further benchmark representative 3D pose and shape estimation models on our proposed infant
dataset to assess their generalizability to infant body models, establishing baselines for 3D infant
pose and shape estimation.

Setup. While there are no baselines explicitly designed for 3D infant pose and shape estimation,
human pose and shape estimation models can be adapted to infants. We benchmark HMR (Kanazawa
et al., 2018) and PARE (Kocabas et al., 2021) from CNN-based architectures, and 4D-Humans (Goel
et al., 2023) based on transformers as baselines for human pose and shape estimation. We train
each model for 100 epochs using 2.5× 10−5 as learning rate for HMR (Kanazawa et al., 2018) and
PARE (Kocabas et al., 2021) on 3 NVIDIA TITAN RTX GPUs, and a learning rate of 2.0× 10−5 for
4D-Humans on 4 NVIDIA A5000 GPUs.

Evaluation. We evaluate models with standard 3D human pose and shape estimation metrics. We
report mean per joint position error (MPJPE) in mm, which measures the absolute error between
predicted and ground-truth 3D joint positions and Procrustes-aligned mean per joint position error
(PA-MPJPE) in mm, which evaluates relative joint configuration error after rigid alignment.

Model & Data Preparation. We train the models with 10,071 frames and evaluate with 1,571
frames. We guide HMR (Kanazawa et al., 2018) and 4D-Humans (Goel et al., 2023) training with
2D and 3D supervisions. For PARE (Kocabas et al., 2021) training, we manually segment all body
mesh vertices into 7 body parts for part-based attention and segmentation mask supervision.

Results. We benchmark 3D human pose and shape estimation models on InfantNet, assessing their
performance under two experimental settings: (1) train and inference using model weights adapted
to SMIL infant body model, and (2) direct inference using pretrained model weights for adult body
model on our InfantNet validation set. Figure 4 presents a visualized comparison of end-to-end
models trained on infant-specific data versus directly inferred using the adult body model on our
dataset. Table 4 summarizes the mean per joint position error (MPJPE) and Procrustes-aligned mean
per joint position error (PA-MPJPE) across 6 different model configurations.

Adult Body Model Results. Direct inference using human pose and shape estimation models yields
lower accuracy compared to results obtained with infant-specific body models, affirming the domain
gap between adult and infant poses and shapes. Among adult-centric models, PARE (Kocabas
et al., 2021) achieves the strongest performance (MPJPE: 364.49 mm, PA-MPJPE: 120.06 mm).
Nevertheless, its accuracy remains considerably lower than when trained with infant body models.

Infant Body Model Results. Adapting the human pose and shape estimation models to the infant-
specific body model SMIL (Hesse et al., 2018b) leads to substantial performance improvement
across all architectures. On average, there is a 78% reduction in MPJPE and 44% reduction in

8
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Figure 4: Visualization of 3D pose and shape estimation model performances. The columns from
left to the input image, direct inference with adult body model and data, and training with infant
body model and data for HMR (Kanazawa et al., 2018), PARE (Kocabas et al., 2021), and 4D-
Humans (Goel et al., 2023), respectively.

Model Adult Body Model Infant Body Model
MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

HMR (Kanazawa et al., 2018) 393.30 124.15 103.36 (↓74%) 58.79 (↓53%)
PARE (Kocabas et al., 2021) 364.49 120.06 83.73 (↓77%) 63.16 (↓47%)
4D-Humans (Goel et al., 2023) 526.62 125.02 84.73 (↓84%) 46.74 (↓63%)

Table 4: Comparison of 3D pose and shape estimation models on the InfantNet benchmark under two
settings: direct inference with adult body models (left) vs. training and inference with infant body
models (right). Metrics: MPJPE and PA-MPJPE (mm). Using infant body models yields consistent
gains across all architectures, underscoring the importance of infant-specific data and models for
accurate 3D estimation.

PA-MPJPE compared to direct inferencing with the adult body model. Our results for estimating 3D
pose and shape parameters using the SMIL (Hesse et al., 2018b) body model for infants are almost as
good as those obtained for adult body model and datasets (e.g., HMR (Kanazawa et al., 2018) on
Human3.6M dataset reports MPJPE of 87.97 mm). Among the models evaluated, 4D-Humans (Goel
et al., 2023) achieves the strongest results (MPJPE: 84.73 mm, PA-MPJPE: 46.74 mm), indicating
that the structure of the vision transformers is more resistant to domain changes.

5 CONCLUSION

We introduce InfantNet, the first large-scale dataset specifically designed for infant pose and shape
estimation, addressing the shortcomings of adult-centric models in this domain. With high-quality
2D keypoint annotations and a curated subset of 3D SMIL parameters, InfantNet enables both
keypoint detection and full-body mesh recovery. Our benchmark shows that models trained on adult
data generalize poorly to infants, while training and fine-tuning on InfantNet leads to substantial
performance improvements. While a limitation is that acquiring 3D annotations is more resource-
intensive than 2D labeling, our iterative fitting pipeline provides a reliable set of high-quality 3D
labels. We are actively expanding the dataset and refining the 3D fitting process to further improve
coverage and accuracy. InfantNet offers promising potential for applications in early developmental
monitoring and rehabilitation, supporting progress in pediatric healthcare and research. To promote
responsible use, considering privacy concerns and potential misuse of sensitive infant data, we mask
facial regions and ensure all data was collected under appropriate consent and oversight. By releasing
the dataset, annotations, and standardized evaluation tools, we hope to accelerate innovation in
infant-focused vision models and foster meaningful impact in both academic and clinical settings.
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A APPENDIX

A.1 USE OF LANGUAGE MODELS

Large language models (LLMs) were employed to assist with grammar refinement, phrasing improve-
ments, and consolidation of text for clarity and readability. All technical content, experiments, results,
and conclusions were developed and validated by the authors, and the scientific substance of the work
was not influenced by LLM usage.
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