
Under review as submission to TMLR

GenCAD: Image-Conditioned Computer-Aided Design Gen-
eration with Transformer-Based Contrastive Representation
and Diffusion Priors

Anonymous authors
Paper under double-blind review

Abstract

The creation of manufacturable and editable 3D shapes through Computer-Aided Design
(CAD) remains a highly manual and time-consuming task, hampered by the complex topol-
ogy of boundary representations of 3D solids and unintuitive design tools. While most work
in the 3D shape generation literature focuses on representations like meshes, voxels, or point
clouds, practical engineering applications demand the modifiability and manufacturability
of CAD models and the ability for multi-modal conditional CAD model generation. This
paper introduces GenCAD, a generative model that employs autoregressive transformers
with contrastive learning framework and latent diffusion models to transform image inputs
into parametric CAD command sequences, resulting in editable 3D shape representations.
Extensive evaluations demonstrate that GenCAD significantly outperforms existing state-of-
the-art methods in terms of the unconditional and conditional generations of CAD models.
Additionally, the contrastive learning framework of GenCAD facilitates the retrieval of CAD
models using image queries from large CAD databases—a critical challenge within the CAD
community. Our results provide a significant step forward in highlighting the potential
of generative models to expedite the entire design-to-production pipeline and seamlessly
integrate different design modalities.

1 INTRODUCTION

</>

<SOL>: Start-Of-Loop

Arc:
 end point: (0.08, -0.07)
 angle: 28.64
 direction: CW

Line:
 end point: (0.52, -0.07)

Arc:
 end point: (0.6, 0.0)
 angle: 28.64
 direction: -1

Extrude:
 sketch plane: (0.0, 0.0, 0.0)
 origin: (-0.36, -0.66, 0.0)
 extrude: 0.18
 op: new_body

<EOS>: End-Of-Sequence

image

GenCAD

CAD program

Geometry
kernel

Boundary representa�on
(B-rep)

Figure 1: GenCAD demonstrates AI-based generative CAD models conditioned on images

Generating 3D shapes is a fundamental part of the engineering design process that morphs the design from
creative intuition to digital 3D shapes. Professional engineers use modern Computer-Aided Design (CAD)
models to digitally represent 3D shapes for applications in automotive, aerospace, manufacturing, medical
devices, consumer products and architectural designs. Engineering design of such 3D solid modeling is a
complex sequential process that requires human expertise and intuition. Since the invention of CAD, most
CAD modeling tasks have been manual and typically go through a long iterative process to finalize a design
with desired requirements. Additionally, modern CAD software is highly non-intuitive for humans and

1

Under review as submission to TMLR

comes with a steep learning curve for most practitioners (Piegl, 2005). Based on the motivations of recent
literature, we argue that some portion of the 3D CAD modeling process can be automated using learning-
based approaches which can offer tremendous acceleration in the design and manufacturing pipeline. An
important first step in this direction is to build generative models that can provide valid and real-world
3D CAD models based on user intuitions. As most of the generative model architectures are proposed for
image or text generation, a carefully designed framework is needed for 3D CAD modeling in engineering
computational design tasks.

Generative models, built upon large neural network architectures, have recently shown impressive perfor-
mance in image and text generation tasks (Ramesh et al., 2021; Razavi et al., 2019; Saharia et al., 2022;
Karras et al., 2019; Rombach et al., 2022). To align the outputs of these generative models with user in-
tentions, they are often conditioned on additional image or text input. Inspired by the success of text and
image modalities, many recent studies have focused on building generative models for 3D representations
such as meshes (Geuzaine & Remacle, 2009; Feng et al., 2019), voxels (Wang et al., 2017), point clouds (Qi
et al., 2017; Qin et al., 2019) and implicit representations (Jun & Nichol, 2023). These applications do not
include CAD modeling tasks that require editable and manufacturable representation of 3D solids. One of
the fundamental challenges in building generative models for CAD is the underlying data structure of the
3D solid model. Since the 1980s, the industry standard in Computer-Aided Design (CAD) has been the
use of boundary representations (B-rep) (Weiler, 1986) that encodes geometry information in the parametric
representation of surfaces, edges, and vertices. Although B-rep is more complex than other types of 3D shape
representations, it offers several benefits. For example, the boundary representation of the 3D solid model is
not resolution-dependent and memory-intensive such as mesh, voxels or point-clouds while also being easier
to render, unlike their counterparts such as implicit representations. Additionally, the existing off-the-shelf
geometry kernels can seamlessly convert a parametric CAD command sequence or a CAD program1 into
a B-rep which makes this representation the de facto industry standard. However, due to the complex
topological relationship between geometric entities, B-rep data structure is not directly suitable as input
for neural network architectures and an intermediate network-friendly representation must be utilized. Few
recent studies have developed CAD datasets that are neural network friendly which makes it feasible to build
powerful generative models for direct generating B-reps or CAD models (Koch et al., 2019; Wu et al., 2021;
Willis et al., 2021; 2022). Most of these approaches utilize one of the following: graph-based representation
of 3D solid models (Jayaraman et al., 2021; Lambourne et al., 2021), a sequential representation of CAD
modeling operations (Xu et al., 2022; Wu et al., 2021), or a specialized variant of the B-rep such as indexed
list data structure (Jayaraman et al., 2022).

Learning to generate the CAD modeling sequence can provide more usefulness than directly learning to
generate a B-rep. We argue that direct B-rep generation is less attractive as it does not encode the underlying
design history. The sequence of solid modeling operations, or CAD program, is critical to modern CAD
software and offers a more flexible and interpretable representation than the direct B-rep. More specifically,
a B-rep model can be thought of as a sequence of parametric CAD commands that can create a 3D solid
shape using an off-the-shelf geometry kernel. Although this representation of 3D CAD is straightforward and
scalable, most available literature focuses on the unconditional generation of CAD programs which is not
aligned with any user input. We argue that these unconditional generative models lack the true potential
of generative CAD models for useful 3D solid modeling tasks. To align the generative CAD models with
user intention, we propose a new type of neural network-based architecture that is conditioned on CAD
images. The idea of image-to-CAD conversion or image-to-technical drawing conversion is of particular
importance to the design community (Dori & Tombre, 1995; Dori & Wenyin, 1999; Nagasamy & Langrana,
1990; Gümeli et al., 2022; Majumdar & Seethalakshmy, 1997). Although several attempts have been made
in the past, most of the approaches use heuristics and are application specific which makes them difficult
to generalize. Our approach is largely motivated by the recent success of text-to-image and image-to-mesh
literature (Alliegro et al., 2023; Tyszkiewicz et al., 2023; Xu et al., 2024a).

Here we focus on the problem of learning to generate CAD programs in terms of parametric command
sequences based on CAD images. We propose a new generative model architecture, generative CAD (Gen-
CAD), that can sequentially generate an entire CAD program aligned with an input CAD-image as shown in

1A sequence of parameterized CAD modeling operations is denoted as a CAD program

2

Under review as submission to TMLR

Image
Encoder

image

Step 2: Contras�ve CAD-Image
Pre-training (CCIP) model

Step 1: Command Sequence
Reconstruc�on (CSR) model

Transformer
Encoder

Transformer
Decoder

Transformer
Encoder

Di�usion Prior

Step 3: CAD Diffusion Prior (CDP) model

Transformer
Decoder

B-rep

Geometry
Kernel

Image
Encoder

Step 4: CAD Decoder model

Figure 2: GenCAD: The proposed framework, GenCAD, consists of four steps: 1) a transformer-based
encoder-decoder architecture is trained autoregressively to learn the latent representation of the vectorized
CAD commands, 2) a contrastive-learning based model is used to learn the joint representation of the latent
space of CAD command sequence and CAD image, 3) image conditional CAD generation can be achieved
by sampling CAD latents from the diffusion model conditioned on image latents, and 4) using the trained
transformer decoder to predict the CAD commands autoregressively. Note that ^ denotes a frozen model
that is not updated during training.

Figure 2. Our main idea is to learn the joint distribution of the latent representation of the CAD command
sequences and the CAD images using a contrastive learning-based approach. Next, we develop a conditional
latent diffusion model as a prior network that can generate CAD latent conditioned on input image latent.
Finally, we present a transformer-based decoder model that can create the CAD program from the input
CAD latent. Note that the final output of GenCAD is not merely a 3D solid model but a CAD program
which is an entire sequence of parameterized CAD commands. This is critical because the CAD command
sequence can be converted to B-rep models or other convenient representations such as mesh, point clouds, or
voxels using any off-the-shelf geometry kernel. This trivial conversion allows GenCAD to be directly useful
in generating conceptual 3D engineering design which has the potential to automate many complex 3D solid
modeling tasks. Another major benefit of GenCAD is its ability to successfully perform image-based CAD
program retrieval tasks, a major challenge in the engineering design community. We show that our frame-
work can utilize the learned joint representation of CAD images and CAD command sequences to retrieve
CAD programs using image input. Our contributions can be summarized as the following:

• We develop a transformer-based autoregressive model for representation learning of CAD sequences and
show that our autoregressive model is more accurate in reconstructing CAD sequences than state-of-the-
art models

• We propose and develop GenCAD–an image conditional generative model for CAD and show that condi-
tional generation of CAD outperforms unconditional models in terms of diversity, fidelity, and statistical
distance

• We show that contrastive learning enables image-based CAD retrieval which is more than 15× accurate
in retrieval when compared to image-to-image search

3

Under review as submission to TMLR

2 RELATED WORK

2.1 CAD as a language modeling problem

The recent success of deep neural networks for language modeling tasks (Brown et al., 2020; Vaswani et al.,
2017) has allowed many domains to formulate language-like problems for specific applications. Although
learning design intent and developing intelligent CAD systems have been topics of interest since the 1990s
(Ault, 1999; Ohsuga, 1989), treating CAD as a language modeling task is a somewhat recent approach.Ganin
et al. (2021) showed that CAD can be converted to a language modeling task by considering protocol buffers
(PB) for describing CAD sketch structures. The authors used PB to describe various sketch entities and
constraints. Extending this idea to 3D is non-trivial due to the requirement of specific protocol buffers for
3D CAD commands. Similarly, another study by Para et al. (2021) focused on developing language-like
problem formulation for CAD sketches that can handle various primitives and constraints. This approach is
also limited to 2D sketches and scalability of the approach to 3D CAD is also non-trivial. Wu et al. (2021)
also focused on converting CAD as a language modeling problem. This approach utilizes the transformer
architecture for sequential 3D CAD generation and develops a simple vocabulary for CAD commands. This
approach is capable of both sketch and 3D operation but a limited number of sketch and 3D operations.
Note that the generative model proposed by Wu et al. (2021) is entirely unconditional and does not allow
any user input during generation.

2.2 Datasets for CAD

Unlike other representations of 3D shapes such as meshes, point clouds, voxels, or implicits, there is a lack
of large-scale datasets for CAD. There are only a few publicly available CAD datasets, among which the
ABC dataset is the largest containing, 1 million CAD models obtained from online public repositories (Koch
et al., 2019). This dataset contains B-reps but does not provide any design histories or labels. Later the
DeepCAD dataset was developed by cleaning the ABC dataset (Wu et al., 2021). DeepCAD dataset provides
design history by parsing each CAD design from the onshape repository. In addition to this, the Fusion 360
dataset provides both design history, assembly, and face segmentation although the dataset is quite small for
learning generalizable models (Willis et al., 2021; 2022; Lambourne et al., 2021). Additionally, the MFCAD
and MFCAD++ datasets provide machining feature recognition data in terms of B-reps (Cao et al., 2020;
Colligan et al., 2022).

2.3 Generative models for CAD

In addition to learning specific tasks directly from B-rep data, recent studies have also developed generative
models by directly synthesizing from B-rep data structure (Xu et al., 2022; Jayaraman et al., 2022; Xu et al.,
2024b). Recent generative approaches mostly focus on utilizing transformer-based architecture for generating
unconditional sketches (Xu et al., 2022; Para et al., 2021) or 3D CAD (Xu et al., 2022; Wu et al., 2021; Xu
et al., 2024b; Jayaraman et al., 2022). In contrast to directly synthesizing the B-rep, the CAD generation
process (CAD program) is of crucial importance due to its potential in the automation of many design tasks.
Most importantly, the parameterized CAD operations or commands contain valuable design history. Wu
et al. (2021) developed DeepCAD, a transformer-based latent generative adversarial network (l-GAN) model,
that can generate unconditional CAD. Most of the generative CAD approaches only consider unconditional
generation or specific data structures such as graph representation from boundary representation of CAD
models. To align CAD model generation with user intention, a conditional input, such as an image, is
needed–unlike the models developed in previous studies. To the best of our knowledge, there has been no
generative model reported in the literature that can provide an entire CAD program from an image input.

3 METHOD

In contrast to the studies discussed in section 2, our main motivation for this work is to develop a learning-
based approach that is scalable and can generate conditional 3D CAD. More specifically, we are interested in

4

Under review as submission to TMLR

Geometry Kernel

Line Line Line Arc Circle Extrude

Figure 3: CAD as a language modeling problem using geometry kernel: Our main idea is based
on the fact that real-world CAD design is sequential and a learning-based approach should capture the
correlation in the sequential design from the large-scale dataset. This sequential approach converts the
CAD problem into a language modeling problem where vector representation of CAD commands, ci ∈ Rd,
are fed into an off-the-shelf geometry modeling kernel to sequentially create the 3D solid geometry such as
Boundary-representation (B-rep). In this toy example, the sequence is as follows: line → line → line → arc
→ circle → extrusion.

creating CAD programs that are conditioned on images. In the following, we describe our main contribution,
a three-step framework, for generating image-conditional CAD models.

3.1 From natural language to CAD language

To represent the CAD program in a neural network-friendly representation, we opt for a natural language-like
representation of a CAD program. The key idea is to represent a CAD model as a sequence of parameterized
CAD commands that can be fed into a standard geometry kernel to create the 3D solid model. The goal of
the parameterization is to allow the CAD command to have a fixed-dimensional vector representation. Each
of the CAD commands is analogous to tokenization in natural language processing (NLP) tasks. Similarly,
the fixed dimensional vector representation of the CAD command can be thought of as the embedding of
a token in NLP tasks. A major difference between the tokenization of words and the tokenization of CAD
commands is that the CAD commands are parameterized where the parameters ensure geometric consistency.
Each CAD command represents the type of CAD operation that is being used and the associated parameters
required to perform this CAD operation. An example of this mechanism is shown in Figure 3 where the
vectorized CAD commands are fed into a geometry kernel to create the 3D solid geometry sequentially. Note
that the type of the CAD operation is discrete and is similar to NLP tokens, but the parameter values are
continuous.

Here we closely follow the CAD command representation criteria proposed by Wu et al. (2021). Specifically,
each CAD command, ci ∈ R17, can be represented as ci = (ti, pi) where ti ∈ R represents the command type
and pi ∈ R16 represents the parameters of each command. Note that each CAD command has a different
number of parameters but they can be converted to a fixed dimensional vector by concatenating additional
parameters and masking the values for unused parameters. Additionally, the parameters are carefully chosen
so that they are sufficient for the geometry kernel to create the geometric entity. The types of CAD tokens
used in this study are described in the following.

Special tokens: We define two special tokens ⟨SOL⟩ and ⟨EOS⟩ to represent the start of a loop of a sketch
and end of sequence respectively. We draw motivation from the NLP literature which also defines special
tokens to represent the start of a sentence or end of a sentence. These special tokens do not require any
parameters and only indicate the state of the CAD geometry.

Sketch token: We define three tokens to represent a sketch; Line token, Circle token, and Arc token. In
a geometry kernel, a line can be generated using only the end point coordinate, (x, y), if the start point is

5

Under review as submission to TMLR

known. As we are generating a CAD sketch sequentially, each sketch command provides us with the starting
position for the next command. A circle can be generated based on the following three parameters; the
center of the circle (x, y) and the radius of the circle, r. Similarly, an arc can be represented by the four
parameters: end point of the arc, (x, y), sweep angle, α and directional flag of the arc, f which represents
either a clockwise or counter-clockwise arc.

Extrusion token: One of the most complex yet widely used operations in CAD is the extrusion command.
Representing extrusion requires keeping track of a sketch plane, extrude direction, and distance. To represent
the current sketch plane we use these six parameters: three for the orientation of the current sketch plane
(θ, ϕ, γ) and three for the origin of the current sketch plane (px, py, pz). Additionally, a scale parameter is
used to represent the scale of the sketch profile s. Extrude distance can be represented by two parameters
(e1, e2) for each side of the sketch. Finally, to sequentially generate the solid, we need to either create a
new solid body or join, cut, and intersect the extruded body from the existing solid body. So, we use a
boolean parameter to indicate the type of operation of the body based on the extrude command. Finally, we
use another parameter to represent whether it is a one-sided or two-sided extrude. As a result, the extrude
command is represented using a total of 10 parameters.

3.2 Dataset

Here we use the DeepCAD dataset (Wu et al., 2021) to train and evaluate all of our models. This dataset
is created based on the ABC dataset which is obtained from the publicly available human CAD designs
from Onshape Inc. (Onshape, 2007). Note that the ABC dataset only contains the B-rep data and does not
provide any design history. The DeepCAD dataset is created by parsing the design history of each CAD
using the Onshape API. As CAD designs are complex and can be difficult to learn for sophisticated 3D
shapes, this dataset is limited to sketch and extrude operations to make it more approachable for neural
network-based models. Thus, this dataset does not contain other CAD operations, such as edge operations
(fillets/chamfers), revolve, and mirror. The sketch operation is also limited to lines, circles, and arcs. After
filtering out the ABC dataset based on these operations, the DeepCAD dataset contains 178, 238 CAD
designs and is the largest CAD dataset with design history. Not all of these designs can render a 3D solid
which makes it difficult to extract CAD images for our purpose. We filter this dataset based on 3D solid
creation using an off-the-shelf geometry kernel, Open Cascade, and end up with a total dataset of 168, 674
CAD models with command sequences. Among these, we use 152, 530 for training, 8515 for validation, and
7629 for testing for all the models reported in this study. For CAD images, we create five different versions
of each CAD model by changing the scale of the solid model in the x, y, and z axes. Each image is grayscale
and has dimensions of 1 × 448 × 448. Note that some of the scaling operations do not create a valid CAD
and we omit those images. We end up with 840, 947 images obtained from the CAD dataset.

3.3 GenCAD: conditional generation of CAD programs

Using the CAD language modeling formulation in section 3.1, we propose Generative CAD (GenCAD), a
four-step framework for conditional CAD program generation. First, we develop an autoregressive trans-
former encoder-decoder model, the Command Sequence Reconstruction (CSR) model, using CAD command
sequences as input to learn the latent representation of the final 3D solid geometry model. Second, we
develop a Contrastive CAD-Image Pretraining (CCIP) model with ResNet-based image encoder and con-
trastive loss to jointly learn the latent representation of the CAD image with the latent representation of
the CAD command sequences from step 1. Third, we develop a CAD diffusion prior (CDP) model that can
generate CAD latents, and optionally take image latents, from step 2, as input. Finally, the CAD latent
samples generated from the CDP model are fed into a transformer-based decoder model that can generate
the entire CAD command sequence autoregressively. To make our approach scalable for large-scale datasets
and models, we utilize the pre-trained CAD encoder from step 1 during the training of the CCIP model
instead of training from scratch. We also use the pre-trained CAD decoder model from step 1 for decoding
the CAD latent from the CDP model. Once, we have the sequence of CAD commands, we can use any
off-the-shelf geometry kernel to obtain the final 3D solid model. By combining these four steps, we show
that our approach can generate valid CADs conditioned on image inputs which is shown in Figure 2.

6

Under review as submission to TMLR

Forward di�usion process

noised latent

Denoising model
Projection

image latent

CAD latent

Ba
tc

hN
or

m

Li
ne

ar

Ac
tiv

at
io

n

D
ro

po
ut

Li
ne

ar

D
ro

po
ut

Head

Ba
tc

hN
or

m

Ac
tiv

at
io

n

Li
ne

ar

Figure 4: CAD Diffusion Prior (CDP): The diffusion prior takes CAD latent as well as optional image
latent as input. The denoising model of the diffusion prior is based on MLP-ResNet architecture proposed
by Gorishniy et al. (2021).

3.3.1 Command Sequence Reconstruction (CSR): Latent representation learning for CAD programs

The first step of our method is to learn an underlying latent representation of the CAD program or the
command sequences. This is analogous to the pre-training of modern large language models (LLM) for
downstream applications. We draw motivation from the recent success of large-scale generative pre-trained
models (GPT) (Brown et al., 2020; Radford et al., 2019) and propose a transformer-based autoregressive
model for learning the CAD commands. The main idea is to predict the next CAD command at each
timestep of the sequence. This autoregressive training is done by observing the previous CAD commands
within the sequence and masking all the future commands at each timestep. We use a standard transformer
encoder and decoder network (Vaswani et al., 2017) with causal masking for both the CAD sequence encoder
and the decoder. As the command parameters contain discrete and continuous values, we opt for learning
the distribution in the latent space instead of the parameter space.

As mentioned in section 3.1, the parameters of each CAD command can be a combination of discrete and
continuous values. To unify these types of parameters, we quantize their values into 256 levels and express
them using 8-bit integers similar to Wu et al. (2021). Next, we organize each command vector onto a
continuous space by adding an embedding layer before the encoder network. The output of the embedding
layer is a dz-dimensional vector which is fed into the transformer encoder. We use dz = 256 for all experiments
reported in this study. The transformer encoder produces a latent representation of the CAD commands,
zCAD,t ∈ Rdz where 1 ≤ t ≤ N and N is the padded sequence length. As our goal is to train a generative
model using the learned representation, we create a single latent vector, zCAD ∈ Rdz , for each sequence
by average pooling the sequence of latent vectors from the CAD encoder output. Constant embeddings are
learned during training to project this latent vector into again a sequence of latent vectors before feeding into
the decoder network. Next, the latent vector, zCAD, goes through the transformer decoder and then another
embedding layer to project the continuous values into the CAD command parameters. The embedding layer
is a combination of both the CAD command embedding and the positional encoding of the sequence. Here we
use the sinusoidal positional encoding from the original transformer implementation (Vaswani et al., 2017).

3.3.2 Contrastive CAD-Image Pre-training (CCIP): Joint representation learning of the CAD
program and CAD-image

As our goal is to develop an image-conditional CAD generative model, the second step of our framework
focuses on learning the joint distribution of the latent space of the CAD images and their corresponding
CAD command sequences. For this purpose, we utilize the trained CAD encoder model from Step 1 to create
CAD latents2. To generate image latents, zimg ∈ Rdz , we use a ResNet-18 based architecture as the image

2CAD latents denote the embedding vectors obtained from encoding the CAD command sequences, whereas image latents
represent the image embeddings obtained from encoding the images

7

Under review as submission to TMLR

encoder. We have experimented with larger ResNet architectures but found ResNet-18 to be sufficient for
our dataset. First, we preprocess the input images by resizing them into 256 × 256 pixels, center cropping
and then normalizing with N (0.5, 0.5). Then the images are passed through four layers with increasing
dimensionality: 64, 128, 256 and 512. Each of these layers contains two blocks of convolutional layers. We
use several dropout layers in each encoder block of the image encoder model. The output of the image
encoder is 512 × 8 × 8 which is projected onto the dz-dimensional space using a linear layer. During training,
we keep the CAD encoder frozen. Note that the training dataset contains several scaled versions of the same
CAD model. This image augmentation helps the model to learn the underlying representation of similar
types of CAD geometries.

3.3.3 CAD Diffusion Prior (CDP): Conditional generative model for CAD

One of the most critical components of our framework is the diffusion prior model that generates CAD
latents conditioned on image latents. In essence, the diffusion prior model is a conditional latent denoising
diffusion probabilistic model (Ho et al., 2020). The forward diffusion process is standard where the CAD
latent, zCAD, is destroyed with Gaussian noise sequentially to create the noised CAD latent, z. During the
denoising process, we concatenate the noised CAD latent, z with image latent, zimage and use a projection
layer before feeding into the denoising model. For the denoising model, we use a ResNet-MLP architecture
similar to Gorishniy et al. (2021) where several blocks of ResNet-MLP blocks are used with a normalization
and linear head as shown in Figure 4. For completeness, we also develop deterministic prior in addition
to the diffusion prior. The deterministic prior is straightforward and deterministically predicts zCAD from
zimage. For this study, we use a simple ResNet-MLP architecture as our deterministic prior model. Note
that the CDP model is a generative model while the deterministic prior model only maps zimage to zCAD
deterministically. The complete architecture of the CDP model is shown in Figure 4.

3.3.4 CAD Decoder model: Generating CAD sequences from latent representations

Finally, we need a decoder model to convert the generated CAD latents from step 3 into CAD command
sequences. To this end, we propose to utilize the pre-trained decoder part of the CSR model from Step 1
instead of training a decoder model from scratch. The use of a pre-trained decoder model is particularly
useful for scaling our approach to large-scale datasets. During inreference time, we would generate zCAD
from the diffusion prior model and feed it to the frozen CAD decoder model to generate the CAD command
sequences c1, . . . , cN .

4 EXPERIMENTS

4.1 Training details

Command Sequence Reconstruction (CSR) model: For both the encoder and the decoder models,
we use the standard transformer encoder and decoder architecture respectively. Each transformer model
consists of four self-attention layers and eight attention heads. The output of the final encoder layer goes
through another tanh layer to create the latent vectors, zCAD. In total, there are 6.72 million trainable
parameters in our model. To train the autoencoder model, we use the following loss:

L =
Nc∑
i=1

ℓ(t̂i, ti) + β

Nc∑
i=1

Np∑
j=1

ℓ(p̂ij , pij), (1)

where Nc is the number of CAD commands, Np is the number of parameters in each CAD command, ti

is the command type and pij is the parameters in each command. Recall that, in this study Nc = 6 and
Np = 16 due to the modeling of the CAD sequence in section 3.1. Here use cross-entropy loss as ℓ(·, ·) in
equation 1 with a weight parameter β that regulates the relative weight of the loss of the command type
and their parameters, respectively. The loss combines the CAD operation type loss and the corresponding
parameter value loss.

8

Under review as submission to TMLR

Contrastive CAD-Image Pre-training (CCIP) model: For the CCIP model, we follow the standard
contrastive learning procedure and use the normalized temperature-scaled cross entropy loss (Chen et al.,
2020). The main idea is to maximize the similarity between a CAD image, I ∈ R1×448×448 and its cor-
responding CAD command sequence {ci}B

i=1 in a given batch of B training data pairs (I, {ci}). Given a
batch of B example pairs, we have 2B data points in total for the contrastive prediction. By considering the
positive pair as the only positive data sample, we consider the rest of the 2(B − 1) samples as negative data
pairs. If the similarity between the data pairs is expressed as cosine similarity, sim(u, v) = uT v/||u||v||,
then the contrastive loss can be defined as the following

ℓi,j = − log exp(sim(zCAD,i, zimage,j)/τ)∑2B
k=1 ⊮[k ̸=i] exp(sim(zCAD,i, zimage,k)/τ)

, (2)

where ⊮[k ̸= 1] ∈ {0, 1} is the indicator function and τ is the temperature parameter. The final contrastive
loss is then calculated as L = 1

2B

∑B
k=1[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)].

For our study, we experiment with two types of image encoders; ResNet-18 and ResNet-35 (He et al., 2016),
while keeping the CAD encoder frozen. In the CCIP model, there are 28.22 million trainable parameters in
total.

CAD Diffusion Prior (CDP) model: Traditionally diffusion models are used for image generation tasks
and thus require a 2D U-net architecture for the denoising process. In our case, the diffusion model is
trained on the vector representation of the latent space. We experiment with two different denoising models
to replace the U-net architecture for this purpose: an MLP-based architecture and an MLP with residual
connections, ResNet-MLP. We find the ResNet-MLP model to be more effective for the denoising model and
use the model for all results reported in this paper.

4.2 Training

The CSR model is trained using a learning rate of 1 × 10−3 and a batch size of 512. We use the Adam
optimizer with a scheduler to warm up the learning rate from zero to 1 × 10−3 for the first 2000 steps.
The CSR model is trained for 1000 epochs. The CCIP is trained using the Adam optimizer with decoupled
weight decay (Loshchilov & Hutter, 2017) with the ReduceLROnPlateau scheduler and an initial learning
rate of 1 × 10−3. The CCIP model is trained for 300 epoch. For the CDP model, both the diffusion and
de-noising process use 500 timesteps in our model. The CDP model is trained for 1 million timesteps with a
fixed learning rate of 1 × 10−5 where the gradient is accumulated every 2 steps. A maximum gradient norm
of 1.0 is also used for training. All models are trained on an 80GB NVIDIA A100 GPU. Additional training
details can be found in the Appendix.

4.3 Evaluation and baselines

4.3.1 Command Sequence Reconstruction (CSR) model:

As our transformer-based CSR model takes the sequence of CAD commands as input, we directly compare
the CSR model against the DeepCAD autoencoder (Wu et al., 2021) to show how autoregressive training
helps in obtaining a more robust latent space. We mainly evaluate the reconstruction performance of each
CAD command sequence in terms of three metrics as proposed by Wu et al. (2021): the mean accuracy of
the CAD command generation µcmd, the mean accuracy of the CAD parameter value generation µparam,
the mean chamfer distance, µCD, and the ratio of invalid shapes IR for the generated CAD against the
ground truth. The mean CAD command generation accuracy and the mean command parameter generation
accuracy for a set of reconstructed CAD models, G, are defined as the following,

µcmd = 1
|G|

|G|∑
k=1

1
Nc

Nc∑
i=1

I[ti = t̂i],

µparam = 1
|G|

|G|∑
k=1

1∑Nc

i=1 I[ti = t̂i]Np

Nc∑
i=1

Np∑
j=1

|pi,j − p̂i,j | < η · I[ti = t̂i],

(3)

9

Under review as submission to TMLR

where I[·] is the indicator function, Nc is the total number of CAD commands in the sequence, ti and t̂i are
ground truth and predicted CAD commands respectively, pi,j and p̂i,j are the ground truth and predicted
jth parameter value of the ith CAD command respectively. As mentioned in section 3.3.1, the parameter
values are quantized into 8-bit integers.

As we cannot directly calculate the chamfer distance from the B-rep data, we convert each 3D solid into a
point cloud using a fixed number of points, 2000 in this case. Once we have the point clouds of both the
reconstructed, G and the ground truth S shapes, we can calculate the chamfer distance, CD. Finally, we can
calculate the mean chamfer distance as the following, µCD = 1

|G|
∑

k∈G CD(k, S). We also evaluate these
metrics with respect to the sequence length of the CAD commands. Intuitively, higher-length sequences
should be more challenging to reconstruct due to the complexity of the CAD commands.

4.3.2 Contrastive CAD-Image Pre-training (CCIP) model:

Due to the lack of existing literature on using a learning-based approach for image conditional CAD program
generation, we evaluate the performance of the proposed CCIP model in terms of image-based CAD
retrieval tasks. This is an important problem in the engineering design domain due to the wide applications
of CAD retrieval from large CAD databases. The retrieval task is formulated as the following: given a CAD-
image, I, the model should identify the CAD program, {ci}, that aligns with this image from a set of nb

CAD programs. Drawing motivation from image-based retrieval literature (Koh et al., 2024), we sample
several batches of CAD examples, nb = 10, 128, 1024, 2048, from the test dataset. Among these nb examples,
we randomly select one sample and utilize its CAD-image as the retrieval input to the CCIP model. Next,
we find the CCIP similarity between the nb × nb examples and pick the CAD example corresponding to the
highest cosine similarity. As a baseline, we compare our methods against the image-to-image search of CAD
models. For this purpose, we utilize a ResNet-18 model with pre-trained ImageNet weights.

4.3.3 CAD Diffusion Prior (CDP) model:

To evaluate the image conditional generation, we compare our method against unconditional generation. For
this purpose, we train an unconditional latent diffusion model from scratch as a baseline generative model.
In addition to the unconditional model, we also compare the CDP model against other two baselines from
literature–the latent GAN (l-GAN) model for CAD program generation Wu et al. (2021) and the SkexGen
model for B-rep generation (Xu et al., 2022). For direct comparison with the baselines, we report the metrics
proposed in Achlioptas et al. (2018) for point-cloud generative models. Specifically, we create two sets of point
clouds: one for ground truth shapes G and one for the generated shapes S. Next, we calculate the following:
Coverage (COV) which measures the diversity of the shapes in G, Minimum matching distance (MMD)
which measures the fidelity of generated shapes, and Jensen-Shannon Divergence (JSD) which calculates
the statistical distance metric between the two distributions. Details of these metrics can be found in the
Appendix.

Finally, we evaluate the image-to-CAD conversion by calculating the FID score of the generated CAD
programs. We create CAD programs from image inputs for the entire test data and extract their latent vectors
as ground truth. Next, we create the CAD latents using conditional, unconditional, and deterministic MLP-
Prior models. If the ground truth embeddings and the generated embeddings have the normal distributions
N (µS , ΣS) and N (µG , ΣG) respectively then the FID score can be calculated as, FID = ||µS − µG ||22 +
tr

(
ΣS + ΣG − 2(ΣSΣG)1/2)

. Intuitively, the FID score calculates how aligned the generated CAD programs
are when compared to the test CAD-images.

5 RESULTS

5.1 CAD sequence reconstruction

We directly compare our autoregressive CSR model with the DeepCAD transformer autoencoder model. As
shown in Table 1, our model outperforms the DeepCAD transformer autoencoder in every metric: mean

10

Under review as submission to TMLR

command accuracy µcmd, mean parameter accuracy µparam, mean chamfer distance µCD, and invalid ratio
IR.

Table 1: Shape encoding performance of the proposed autoregressive encoder-decoder model. Arrows indicate
whether higher is better or lower is better. Bold numbers represent the overall best performance.

Method µcmd(↑) µparam(↑) µCD(↓) IR(↓)
DeepCAD 99.36 97.59 0.783 3.44
GenCAD 99.51 97.78 0.762 3.32

3 17 31 45 59
sequence length

0.90

0.95

1.00

µ
cm

d

GenCAD DeepCAD

3 17 31 45 59
sequence length

0.8

0.9

1.0
µ
pa
ra
m

GenCAD DeepCAD

3 17 31 45 59
sequence length

0.00

0.02

0.04

µ
C
D

GenCAD DeepCAD

Figure 5: Performance of GenCAD-autoencoder corresponding to the length of CAD command sequences

Most importantly, our model is more accurate for higher lengths of CAD command sequences as shown in
Figure 5. We anticipate that the high accuracy for longer sequence lengths is due to the autoregressive
encoding of the latent space. By utilizing autoregressive training, we allow the model to encode more
information about the CAD command sequence. Some qualitative examples of our model are shown in
Figure 6. Our model can reconstruct the CAD programs more accurately for relatively complex shapes when
compared to DeepCAD.

Gr
ou

nd
 tr

ut
h

De
ep

CA
D

Ge
nC

AD

Figure 6: 3D CAD shape encoding performance: We show the qualitative examples against DeepCAD
which also uses a transformer-based model for CAD command reconstruction but does not use autoregressive
training. Our method gives more accurate CAD command prediction for a test dataset that is close to the
ground truth.

5.2 Image-based CAD retrieval

As there are no existing image-based CAD retrieval methods, we compare our model against an image-to-
image similarity metric. Using a pre-trained ResNet-18 architecture, we extract the image latents and find
the cosine similarity between the ground truth and the randomly sampled CAD images. We also provide
random guesses as a simple baseline for comparison. As shown in Table 2, our model outperforms other

11

Under review as submission to TMLR

p = .118 p = .109 p = .103 p = .100 p = .100 p = .100 p = .098 p = .095 p = .090 p = .088

p = .114 p = .108 p = .105 p = .104 p = .101 p = .097 p = .095 p = .094 p = .092 p = .091

p = .118 p = .108 p = .103 p = .101 p = .101 p = .095 p = .093 p = .091 p = .090 p = .100

input image

input image

input image

Figure 7: Image-based CAD retrieval: Qualitative performance of GenCAD-CCIP model is shown in
terms of image-based CAD retrieval task for randomly sampled batches of 10 examples from the test dataset.
The input CAD-image is shown on the left most column and the retrieved CAD programs are shown in the
rest of the columns. We also provide the probability assigned by the CCIP model for each retrieval. The
multimodal latent space helps in the accurate retrieval of CAD programs from input CAD images by assigning
higher probabilities to similar CAD programs and lower probabilities to the rest of the CAD programs.

Table 2: Image-based CAD retrieval performance of GenCAD. nb = 10, 128, 1024 and 2048 are repeated
1000, 10, 3 and 3 times respectively. Arrows indicate whether higher is better or lower is better. Bold
numbers represent the overall best performance.

Method RB=10(↑) RB=128(↑) RB=1024(↑) RB=2048(↑)
random 10.06 ± 0.19 N/A N/A N/A
ResNet-18 (pre-trained) 77.70 ± 0.00 19.26 ± 0.00 5.21 ± 0.45 3.91 ± 0.64
GenCAD 98.49 ± 3.93 91.41 ± 0.6 70.28 ± 0.79 60.77 ± 0.99

baselines by a large margin. Note that our model is most accurate for small batches of CAD programs and
the accuracy drops when the number of CAD programs increases. Our model is also almost 62% accurate in
retrieving CAD programs based on provided input images from a relatively large collection of CAD programs,
i.e., 2048. Overall, the CCIP model is more than 15× accurate in retrieving the correct CAD program when
compared to image-tp-image search. Some qualitative examples of retrieval results are shown in Figure 7
and Figure 8. As the CAD programs are randomly sampled within the batch, a diverse number of shapes are
present which makes the retrieval challenging. It is easy to see that our model provides higher probability
values to the correct CAD program based on the image input. Additionally, similar shapes are assigned
relatively higher probabilities compared to shapes that are different. This is more clearly seen in Figure 8
where we retrieve the top 5 CAD programs from a collection of 2048 CAD programs based on the provided
input image. Our model extracts shapes that are similar to the input image and also provides diversity
within the shape.

5.3 Unconditional CAD generation

As mentioned in section 4.3, we compare our unconditional CAD generation model against the DeepCAD
latent GAN (l-GAN) model and the SkexGen model. Below we provide the performance in terms of coverage
(COV), Maximum Mean Discrepancy (MMD), and Jensen Shannon Divergence (JMD). Our unconditional
model outperforms both the DeepCAD l-GAN model and the SkexGen model in terms of both COV and
MMD metrics as shown in Table 3. A few qualitative examples of generated 3D shapes using the latent
diffusion model are shown in Figure 9. Note that our model can generate complex CAD programs resulting
in realistic 3D shapes.

12

Under review as submission to TMLR

k = 1 k = 2 k = 3 k = 4 k = 5

image retrieved CADs

k = 1 k = 2 k = 3 k = 4 k = 5

image retrieved CADs

Figure 8: Image-based CAD retrieval from large CAD database: Qualitative performance of
GenCAD-CCIP model is shown in terms of image-based retrieval of CAD programs from large database.
Here, we retrieve top-k, where k = 5, CAD programs from the entire test dataset of CAD programs based
on input images. The first column shows the input image and the rest of the columns show retrieved CAD
based on the image. Row three shows that GenCAD can retrieve CAD programs when there are multiple
duplicates of the same CAD program in the database.

Figure 9: GenCAD (unconditional) 3D CAD generation.

5.4 Image conditional CAD generation

Using the trained diffusion prior, our model can predict CAD latents from image latents which are then fed
into the pre-trained CAD decoder to create the CAD program. In Table 3, we show that our conditional
diffusion generative model outperforms DeepCAD l-GAN, SkexGen and also our unconditional diffusion
model in terms of COV, MMD and JSD metrics. Finally, to quantify the alignment of the generated samples
compared to the input images we compare the FID score between the distribution of cad latents for the entire
test data. As DeepCAD is the only available model that generates CAD program, we directly compare our
results against DeepCAD model.

As an additional baseline, we also compare our results against the deterministic-prior model from 4.3.3. Our
results indicate that the conditional diffusion prior model provides the lowest FID score when compared to

Table 3: 3D CAD (B-rep) shape generation performance. Arrows indicate whether higher is better or lower
is better. Bold numbers represent the overall best performance.

Method type COV (↑) MMD (↓) JSD (↓)
DeepCAD (Wu et al., 2021) unconditional 78.13 1.45 3.76
SkexGen (Xu et al., 2022) unconditional 78.17 1.55 4.89
GenCAD unconditional 78.27 1.44 3.94
GenCAD conditional 81.37 1.38 3.49

13

Under review as submission to TMLR

im
ag

e
CA

D
CA

D
im

ag
e

Figure 10: GenCAD (Conditional) 3D CAD generation: Qualitative examples of image-to-CAD
generation capability of GenCAD using the conditional latent diffusion prior model.

0.0 0.2 0.4 0.6 0.8 1.0
FID score

GenCAD
(conditional)

GenCAD
(unconditional)

DeepCAD
(unconditional)

GenCAD
(deterministic-prior)

0.13

0.22

0.87

0.99

Figure 11: FID score of the generated dataset and the corresponding test dataset (lower is better).

the l-GAN, deterministic-prior, and unconditional diffusion model as shown in Figure 11. Note that the
deterministic prior has the highest FID score and the unconditional diffusion model outperforms the l-GAN
model. This result shows that the diffusion prior model can generate CAD programs that are close to the
ground truth distribution. While the l-GAN model can generate unconditional CAD programs, these CAD
models are not well aligned with the test dataset and the latent diffusion model is in-between the prior model
and the l-GAN model. We also provide qualitative examples of our model in Figure 10.

Finally, we show the diversity of our diffusion prior model in Figure 12 where we sample multiple CAD
programs for the same image input. Our model can generate similar CAD programs while providing useful
variation in the parameter space.

6 LIMITATIONS

Although GenCAD shows impressive image-to-CAD performance, there are some limitations to the current
version of this model. The CAD programs used in this study are comparatively simpler than industrial design
tasks. The limited CAD vocabulary used in this study needs to be extended by including more sophisticated

14

Under review as submission to TMLR

image generated CADs image generated CADs

Figure 12: Diversity of generated CAD: Several samples drawn from the latent conditional model of the
GenCAD are shown conditioned on the input image.

CAD tokens such as revolve operation, edge operation (e.g., fillets/chamfers), and other sketch operations.
Additionally, GenCAD cannot guarantee the generation of a valid CAD similar to most of the generative
CAD models reported in other studies. Drawing motivation from recent NLP literature, a step forward
can be the addition of feedback from a CAD verification tool such as a geometry kernel. Building such a
framework is non-trivial and will have the potential to create user-specified CAD programs. Finally, the
images used in this study are mostly isometric and noise-free CAD-images. Future studies should focus on
generating CAD programs from real-world object images with noisy backgrounds and non-isometric views.

7 CONCLUSION

CAD program generation is a challenging task for AI models that have the potential to automate industrial
design pipelines. While unconditional generation of CAD programs has been studied, a more important
problem is to generate grounded CAD programs based on user intention. We provided a first-of-its-kind AI
model, GenCAD, that can generate CAD programs for complex 3D shapes both unconditionally and also
based on image inputs. We argue that the image-aligned CAD program generation has the potential to
be directly utilized for design task acceleration. We also show the application of GenCAD in image-based
CAD program retrieval tasks. In summary, GenCAD solves two long-standing challenges in the 3D CAD
community: it can retrieve a CAD program from large databases using an image and also generate the CAD
program of the image. The current limitation of GenCAD is its dataset which includes relatively simpler
CAD commands. In future studies, we aim to create a more sophisticated and real-world CAD dataset that
can enhance the capabilities of GenCAD.

References
Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and

generative models for 3d point clouds. In International conference on machine learning, pp. 40–49. PMLR,
2018.

Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, and Matthias Nießner. Polydiff: Generating 3d polyg-
onal meshes with diffusion models. arXiv preprint arXiv:2312.11417, 2023.

Holly K Ault. Using geometric constraints to capture design intent. Journal for Geometry and Graphics, 3
(1):39–45, 1999.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Weijuan Cao, Trevor Robinson, Yang Hua, Flavien Boussuge, Andrew R Colligan, and Wanbin Pan. Graph
representation of 3d cad models for machining feature recognition with deep learning. In International
Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
volume 84003, pp. V11AT11A003. American Society of Mechanical Engineers, 2020.

15

Under review as submission to TMLR

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

Andrew R Colligan, Trevor T Robinson, Declan C Nolan, Yang Hua, and Weijuan Cao. Hierarchical cadnet:
Learning from b-reps for machining feature recognition. Computer-Aided Design, 147:103226, 2022.

Dov Dori and Karl Tombre. From engineering drawings to 3d cad models: are we ready now? Computer-
Aided Design, 27(4):243–254, 1995.

Dov Dori and Liu Wenyin. Automated cad conversion with the machine drawing understanding system:
concepts, algorithms, and performance. IEEE Transactions on Systems, Man, and Cybernetics-part A:
systems and humans, 29(4):411–416, 1999.

Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. Meshnet: Mesh neural network for
3d shape representation. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp.
8279–8286, 2019.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided design as
language. Advances in Neural Information Processing Systems, 34:5885–5897, 2021.

Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-
in pre-and post-processing facilities. International journal for numerical methods in engineering, 79(11):
1309–1331, 2009.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models
for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943, 2021.

Can Gümeli, Angela Dai, and Matthias Nießner. Roca: Robust cad model retrieval and alignment from a
single image. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4022–4031, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G Lambourne, Karl DD Willis, Thomas Davies, Hooman
Shayani, and Nigel Morris. Uv-net: Learning from boundary representations. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11703–11712, 2021.

Pradeep Kumar Jayaraman, Joseph G Lambourne, Nishkrit Desai, Karl DD Willis, Aditya Sanghi, and
Nigel JW Morris. Solidgen: An autoregressive model for direct b-rep synthesis. arXiv preprint
arXiv:2203.13944, 2022.

Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4401–4410, 2019.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc
Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geometric deep learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9601–9611,
2019.

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Generating images with multimodal language models.
Advances in Neural Information Processing Systems, 36, 2024.

16

Under review as submission to TMLR

Joseph G Lambourne, Karl DD Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer, and
Hooman Shayani. Brepnet: A topological message passing system for solid models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12773–12782, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Jharna Majumdar and AG Seethalakshmy. A cad model based system for object recognition. Journal of
Intelligent and Robotic Systems, 18:351–365, 1997.

Vijay Nagasamy and Noshir A Langrana. Engineering drawing processing and vectorization system. Com-
puter Vision, Graphics, and Image Processing, 49(3):379–397, 1990.

Setsuo Ohsuga. Toward intelligent cad systems. Computer-aided design, 21(5):315–337, 1989.

Onshape. NVIDIA CUDA Compute Unified Device Architecture Programming Guide. NVIDIA Corporation,
2007.

Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas J Guibas, and Peter Wonka.
Sketchgen: Generating constrained cad sketches. Advances in Neural Information Processing Systems, 34:
5077–5088, 2021.

Les A Piegl. Ten challenges in computer-aided design. Computer-aided design, 37(4):461–470, 2005.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660, 2017.

Can Qin, Haoxuan You, Lichen Wang, C-C Jay Kuo, and Yun Fu. Pointdan: A multi-scale 3d domain
adaption network for point cloud representation. Advances in Neural Information Processing Systems, 32,
2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning, pp.
8821–8831. Pmlr, 2021.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4713–4726, 2022.

Michał J Tyszkiewicz, Pascal Fua, and Eduard Trulls. Gecco: Geometrically-conditioned point diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2128–2138,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn: Octree-based convolutional
neural networks for 3d shape analysis. ACM Transactions On Graphics (TOG), 36(4):1–11, 2017.

17

Under review as submission to TMLR

Kevin J Weiler. Topological structures for geometric modeling (Boundary representation, manifold, radial
edge structure). Rensselaer Polytechnic Institute, 1986.

Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G Lambourne, Armando Solar-Lezama,
and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic cad construction
from human design sequences. ACM Transactions on Graphics (TOG), 40(4):1–24, 2021.

Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele Grandi, Aditya
Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, et al. Joinable: Learning bottom-up
assembly of parametric cad joints. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15849–15860, 2022.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-aided design
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6772–6782,
2021.

Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. Instantmesh: Efficient
3d mesh generation from a single image with sparse-view large reconstruction models. arXiv preprint
arXiv:2404.07191, 2024a.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and Yasutaka
Furukawa. Skexgen: Autoregressive generation of cad construction sequences with disentangled codebooks.
arXiv preprint arXiv:2207.04632, 2022.

Xiang Xu, Joseph G Lambourne, Pradeep Kumar Jayaraman, Zhengqing Wang, Karl DD Willis, and Ya-
sutaka Furukawa. Brepgen: A b-rep generative diffusion model with structured latent geometry. arXiv
preprint arXiv:2401.15563, 2024b.

18

	INTRODUCTION
	RELATED WORK
	CAD as a language modeling problem
	Datasets for CAD
	Generative models for CAD

	METHOD
	From natural language to CAD language
	Dataset
	GenCAD: conditional generation of CAD programs
	Command Sequence Reconstruction (CSR): Latent representation learning for CAD programs
	Contrastive CAD-Image Pre-training (CCIP): Joint representation learning of the CAD program and CAD-image
	CAD Diffusion Prior (CDP): Conditional generative model for CAD
	CAD Decoder model: Generating CAD sequences from latent representations

	EXPERIMENTS
	Training details
	Training
	Evaluation and baselines
	Command Sequence Reconstruction (CSR) model:
	Contrastive CAD-Image Pre-training (CCIP) model:
	CAD Diffusion Prior (CDP) model:

	RESULTS
	CAD sequence reconstruction
	Image-based CAD retrieval
	Unconditional CAD generation
	Image conditional CAD generation

	LIMITATIONS
	CONCLUSION

