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Abstract

We tackle real-world problems with complex structures be-
yond the pixel-based game or simulator. We formulate it as a
few-shot reinforcement learning problem where a task is char-
acterized by a subtask graph that defines a set of subtasks and
their dependencies that are unknown to the agent. Different
from the previous meta-rl methods trying to directly infer the
unstructured task embedding, our multi-task subtask graph
inferencer (MTSGI) first infers the common high-level task
structure in terms of the subtask graph from the training tasks,
and use it as a prior to improve the task inference in testing.
Our experiment results on 2D grid-world and complex web
navigation domains show that the proposed method can learn
and leverage the common underlying structure of the tasks
for faster adaptation to the unseen tasks than various existing
algorithms such as meta reinforcement learning, hierarchical
reinforcement learning, and other heuristic agents.

1 Introduction
Recently, deep reinforcement learning (RL) has shown an
outstanding performance on various domains such as video
games (Mnih et al. 2015; Vinyals et al. 2019) and board
games (Silver et al. 2017). However, most of the successes
of deep RL were focused on a single-task setting where the
agent is allowed to interact with the environment for hundreds
of millions of time steps. In numerous real-world scenarios,
interacting with the environment is expensive or limited, and
the agent is often presented with a novel task that is not
seen during its training time. To overcome this limitation,
many recent works focused on scaling the RL algorithm be-
yond the single-task setting. Recent works on multi-task RL
aim to build a single, contextual policy that can solve mul-
tiple related tasks and generalize to unseen tasks. However,
they require a certain form of task embedding as an extra
input that often fully characterizes the given task (Oh et al.
2017; Andreas, Klein, and Levine 2017; Yu, Zhang, and Xu
2017; Chaplot et al. 2018), or requires a human demonstra-
tion (Huang et al. 2018), which are not readily available in
practice. Meta RL (Finn, Abbeel, and Levine 2017; Duan
et al. 2016) focuses on a more general setting where the agent
should learn about the unseen task purely via interacting with
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the environment without any additional information. How-
ever, such meta-RL algorithms either require a large amount
of experience on the diverse set of tasks or are limited to
a relatively smaller set of simple tasks with a simple task
structure.

On the contrary, real-world problems require the agent to
solve much more complex and compositional tasks without
human supervision. Consider a web-navigating RL agent
given the task of checking out the products from an online
store as shown in Figure 1. The agent can complete the task
by filling out the required web elements with the correct
information such as shipping or payment information, navi-
gating between the web pages, and placing the order. Note
that the task consists of multiple subtasks and the subtasks
have complex dependencies in the form of precondition;
for instance, the agent may proceed to the payment web
page (see Bottom, B) after all the required shipping infor-
mation has been correctly filled in (see Bottom, A), or the
credit card number field will appear after selecting
the credit card as a payment method (see Top, Middle
in Figure 1). Learning to perform such a task can be quite
challenging if the reward is given only after yielding meaning-
ful outcomes (i.e., sparse reward task). This is the problem
scope we focus on in this work: solving and generalizing
to unseen compositional sparse-reward tasks with complex
subtask dependencies without human supervision.

Recent works (Sohn et al. 2019; Xu et al. 2017; Huang
et al. 2018; Liu et al. 2016; Ghazanfari and Taylor 2017)
tackled the compositional tasks by explicitly inferring the
underlying task structure in a graph form. Specifically, the
subtask graph inference (SGI) framework (Sohn et al. 2019)
uses inductive logic programming (ILP) on the agent’s own
experience to infer the task structure in terms of subtask
graph and learns a contextual policy to execute the inferred
task in few-shot RL setting. However, it only meta-learned
the adaptation policy that relates to the efficient exploration,
while the task inference and execution policy learning were
limited to a single task (i.e., both task inference and policy
learning were done from scratch for each task), limiting its
capability of handling large variance in the task structure. We
claim that the inefficient task inference may hinder applying
the SGI framework to a more complex domain such as web
navigation (Shi et al. 2017; Liu et al. 2018) where a task may
have a large number of subtasks and complex dependencies
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Figure 1: An illustration of the train (Top) and test task (Bottom) in our SymWoB domain. Some selected actionable web-elements
(e.g., text fields and buttons) are magnified (dotted arrow and box) for readability. The agent’s goal (green box) is to checkout the
products in unseen test website by interacting with the web elements in a correct order. For example, in train task, the agent
should fill out all the text fields in (Top, A) before clicking the credit card button to transition (gray arrow) to next page.
The high-level checkout processes in different websites have many commonalities while certain details may differ. For example,
in both train and test tasks, the agent should fill out the user information (Top and Bottom, A) before proceeding to the next page
or there exist similar elements (Top and Bottom, C). However, the details may differ; e.g., the train task (Top, A) has a single text
field for full name, while the test task (Bottom, A) has separate text fields for the first and last name, respectively. Also, only the
test website (Bottom, B) requires shipping information since the training website does not ship the product.

between them. We note that humans can navigate an unseen
website by transferring the high-level process learned from
previously seen websites.

Inspired by this, we extend the SGI framework to a multi-
task subtask graph inferencer (MTSGI) that can generalize
the previously learned task structure to the unseen task for
faster adaptation and stronger generalization. Figure 2 out-
lines our method. MTSGI estimates the prior model of the
subtask graphs from the training tasks. When an unseen task
is presented, MTSGI samples the prior that best matches
with the current task, and incorporates the sampled prior
model to improve the latent subtask graph inference, which
in turn improves the performance of the evaluation policy.
We demonstrate results in the 2D grid-world domain and the
web navigation domain that simulates the interaction with 20
actual websites. We compare our method with MSGI (Sohn
et al. 2019) that learns the task hierarchy from scratch for
each task, and two other baselines including hierarchical RL
and a heuristic algorithm. We find that MTSGI significantly
outperforms all other baselines, and the learned prior model
enables more efficient task inference compared to MSGI.

2 Preliminaries
Few-shot Reinforcement Learning A task is defined by
an MDP MG = (S,A,PG,RG) parameterized by a task
parameter G with a set of states S , a set of actions A, transi-
tion dynamics PG, reward functionRG. The goal of K-shot
RL (Duan et al. 2016; Finn, Abbeel, and Levine 2017), is to
efficiently solve a distribution of unseen test tasksMtest by
learning and transferring the common knowledge from the
training tasksMtrain. It is assumed that the training and test
tasks do not overlap (i.e.,Mtrain ∩Mtest = ∅) but share a

certain commonality such that the knowledge learned from
the training tasks may be helpful for learning the test tasks.
For each task MG, the agent is given K steps budget for
interacting with the environment. During meta-training, the
goal of multi-task RL agent is to learn a prior (i.e., slow-
learning) over the training tasks Mtrain. Then, the learned
prior may be exploited during the meta-test to enable faster
adaptation on unseen test tasksMtest. For each task, the agent
faces two phases: an adaptation phase where the agent learns
a task-specific behavior (i.e., fast-learning) for K environ-
ment steps, which often spans over multiple episodes, and a
evaluation phase where the adapted behavior is evaluated. In
the evaluation phase, the agent is not allowed to perform any
form of learning, and agent’s performance on the taskMG

is measured in terms of the return:

RMG
(πφK ) = EπφK ,MG

[∑H
t=1 rt

]
, (1)

where πφK is the policy after K update steps of adaptation,
H is the horizon of evaluation phase, and rt is the reward at
time t in the evaluation phase.

3 Subtask Graph Inference Problem
The subtask graph inference problem (Sohn et al. 2019) is
a few-shot RL problem where a task is parameterized by a
set of subtasks and their dependencies. Formally, a task con-
sists of N subtasks Φ = {Φ1, . . . ,ΦN}, and each subtask
Φi is parameterized by a tuple (Scomp

i, Gic, G
i
r). The goal

state Scomp
i ⊂ S and precondition Gic : S → {0, 1} defines

the condition that a subtask is completed: the current state
should be contained in its goal states (i.e., st ∈ Sicomp) and
the precondition should be satisfied (i.e., Gic(st) = 1). If the
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Figure 2: The overview of our algorithm and the example of agent’s trajectory and the inferred subtask graph. In meta-train
(Left), the adaptation policy πadapt interacts with the environment and collects the trajectory τ . The inductive logic programming
(ILP) module takes as input the trajectory, and infers the task structure in terms of the subtask graph Gτ . The trajectory and the
subtask graph are stored as a prior. In meta-testing (Right), the adaptation policy incorporates the prior trajectory τ p to efficiently
explore the environment, and ILP module infers the subtask graph Gτ from the adaptation trajectory τ . Finally, the evaluation
policy πeval takes as input the prior and inferred subtask graphs (Gp, Gτ ) to solve the test task.

precondition is not satisfied (i.e., Gic(st) = 0), the subtask
cannot be completed and the agent receives no reward even
if the goal state is achieved. The subtask reward function
Gir defines the amount of reward given to the agent when it
completes the subtask i: rt ∼ Gir. We note that the subtasks
{Φ1, . . . ,ΦN} are unknown to the agent. Thus, the agent
should learn to infer the underlying task structure and com-
plete the subtasks in an optimal order while satisfying the
required preconditions.

State In the subtask graph inference problem, it is assumed
that the state input provides the high-level status of the sub-
tasks. Specifically, the state consists of the followings: st =
(obst,xt, et, stepepi,t, stepphase,t). The obst ∈ {0, 1}W×H×C
is a visual observation of the environment. The completion
vector xt ∈ {0, 1}N indicates whether each subtask is com-
plete. The eligibility vector et ∈ {0, 1}N indicates whether
each subtask is eligible (i.e., precondition is satisfied). Fol-
lowing the few-shot RL setting, the agent observes two
scalar-valued time features: the remaining time steps until
the episode termination stepepi,t ∈ R and the remaining time
steps until the phase termination stepphase,t ∈ R.

Options For each subtask Φi, the agent can learn an op-
tion Oi (Sutton, Precup, and Singh 1999) that reaches the
goal state of the subtask. Following (Sohn et al. 2019), such
options are pre-learned individually by maximizing the goal-
reaching reward: rt = I(st ∈ Sicomp). At time step t, we
denote the option taken by the agent as ot and the binary
variable that indicates whether episode is terminated as dt.

4 Method
We propose a novel Multi-Task Subtask Graph Inference
(MTSGI) framework that can perform an efficient inference
of latent task embedding (i.e., subtask graph). The overall
method is outlined in Figure 2. Specifically, in meta-training,
MTSGI models the prior in terms of (1) adaptation trajectory

τ and (2) subtask graph G from the agent’s experience. In
meta-testing, MTSGI samples (1) the prior trajectory τ p for
more efficient exploration in adaptation and (2) the prior
subtask graph Gp for more accurate task inference.

4.1 Multi-task Adaptation Policy

The goal of adaptation policy is to efficiently explore and
gather the information about the task. Intuitively, if the adap-
tation policy completes more diverse subtasks, then it can
provide more data to the task inference module (ILP), which
in turn can more accurately infer the task structure. To this
end, we extend the upper confidence bound (UCB)-based
adaptation policy proposed in Sohn et al. (2019) as follows:

πadapt(o = Oi | s) ∝ exp

ri +
√

2
log
(∑

j n
j
)

ni

 , (2)

where ri is the empirical mean of the reward received after
executing subtask i and ni is the number of times subtask
i has been executed within the current task. Note that the
exploration parameters {ri, ni}Ni=1 can be computed from the
agent’s trajectory. In meta-train, the exploration parameters
are initialized to zero when a new task is sampled. In meta-
test, the exploration parameters are initialized with those of
the sampled prior. Intuitively, this helps the agent visit novel
states that were unseen during meta-training.

4.2 Meta-train: Learning the Prior Subtask
Graph

Let τ be an adaptation trajectory of the agent forK steps. The
goal is to infer the latent subtask graph G for the given train-
ing taskMG ∈ Mtrain, specified by preconditions Gc and
subtask rewards Gr. We find the maximum-likelihood esti-
mate (MLE) of G = (Gc, Gr) that maximizes the likelihood



Algorithm 1: Meta-training: learning the prior

Require: Adaptation policy πadapt

Ensure: Prior set T p

1: T p ← ∅
2: for each taskM∈Mtrain do
3: Rollout adaptation policy:

τ = {st,ot, rt, dt}Kt=1 ∼ πadapt in taskM
4: Infer subtask graph Gτ = arg maxG p(τ |G)
5: πeval = GRProp(Gτ )
6: Evaluate the agent: τ eval ∼ πeval in taskM
7: Update prior T p ← T p ∪ (Gτ , τ)
8: end for

of the adaptation trajectory τ :

ĜMLE = arg max
Gc,Gr

p(τ |Gc, Gr). (3)

Following Sohn et al. (2019), we infer the precondition Gc

and the subtask reward Gr as follows (See Appendix for the
detailed derivation):

ĜMLE
c = arg max

Gc

H∏
t=1

p(et|xt, Gc), (4)

ĜMLE
r = arg max

Gr

H∏
t=1

p(rt|et,ot, Gr). (5)

where et is the eligibility vector, xt is the completion vector,
ot is the option taken, rt is the reward at time step t.

Precondition inference The problem in Equation (4) is
known as the inductive logic programming (ILP) problem
that finds a boolean function that satisfies all the indicator
functions. Specifically, {xt}Ht=1 forms binary vector inputs to
programs, and {eit}Ht=1 forms Boolean-valued outputs of the
i-th program that predicts the eligibility of the i-th subtask.
We use the classification and regression tree (CART) to infer
the precondition function fGc : x→ e for each subtask based
on Gini impurity (Breiman 1984). Intuitively, the constructed
decision tree is the simplest boolean function approximation
for the given input-output pairs {xt, et}. The decision tree is
converted to a logic expression (i.e., precondition) in sum-of-
product (SOP) form to build the subtask graph.

Subtask reward inference To infer the subtask reward
ĜMLE

r in Equation (5), we model the reward for i-th subtask
as a Gaussian distribution: Gir ∼ N (µ̂i, σ̂i). Then, the MLE
of subtask reward is given as the empirical mean and variance
of the rewards received after taking the eligible option Oi in
adaptation phase:

µ̂iMLE = E
[
rt|ot = Oi, eit = 1

]
, (6)

σ̂2
i

MLE = E
[
(rt − µ̂iMLE)2|ot = Oi, eit = 1

]
, (7)

where Oi is the option corresponding to the i-th subtask.
Algorithm 1 outlines the meta-training process.

Algorithm 2: meta-testing: multi-task SGI

Require: Adaptation policy πadapt, prior set T p

1: for each taskM∈Mtest do
2: Sample prior: (Gp, τ p) ∼ p(T p)
3: Rollout adaptation policy:

τ = {st,ot, rt, dt}Kt=1 ∼ πadapt in taskM
4: Infer subtask graph Gτ = arg maxG p(τ |G)
5: πeval(·|τ, τ p) ∝ GRProp(·|Gτ )αGRProp(·|Gp)(1−α)

6: Evaluate the agent: τ eval ∼ πeval in taskM
7: end for

4.3 Evaluation: Graph-reward Propagation
Policy

In both meta-training and meta-testing, the agent’s adapted
behavior is evaluated during the test phase. Following Sohn
et al. (2019), we adopted the graph reward propagation (GR-
Prop) policy as an evaluation policy πeval that takes as input
the inferred subtask graph Ĝ and outputs the subtasks to exe-
cute to maximize the return. Intuitively, the GRProp policy
approximates a subtask graph to a differentiable form such
that we can compute the gradient of return with respect to
the completion vector to measure how much each subtask
is likely to increase the return. Due to space limitations, we
give a detail of the GRProp policy in Appendix. The overall
meta-training process is summarized in Appendix.

4.4 Meta-testing: Multi-task Task Inference
Prior sampling In meta-testing, MTSGI first chooses the
prior task that most resembles the given evaluation task.
Specifically, we define the pair-wise similarity between a
prior taskMprior

G and the evaluation taskMG as follows:

sim
(
MG,Mprior

G

)
= Fβ

(
Φ,Φprior )+ κR

(
τ prior ) , (8)

where Fβ is the F-score with weight parameter β, Φ is
the subtask set ofMG, Φprior is the subtask set ofMprior

G ,
R
(
τ prior

)
is the agent’s empirical performance on the prior

taskMprior
G , and κ is a scalar-valued weight which we used

κ = 1.0 in experiment. Fβ measures how many subtasks
overlap between current and prior tasks in terms of precision
and recall as follows:

Fβ =
(
1 + β2

)
· precision · recall

(β2 · precision ) + recall
, (9)

Precision = |Φ ∩Φprior |/|Φprior |, (10)

Recall = |Φ ∩Φprior |/|Φ|. (11)

We used β = 10 to assign a higher weight to the current task
(i.e., recall) than the prior task (i.e., precision).

Multi-task subtask graph inference Let τ be the adapta-
tion trajectory, and τ p be the sampled prior adaptation trajec-
tory. Then, we model our evaluation policy as follows:

π(o|s, τ, τ p) ' π(o|s,Gτ )απ(o|s,Gp)(1−α). (12)



Due to the limited space, we include the detailed derivation
of Equation (12) in Appendix. Finally, we deploy the GRProp
policy as a contextual policy:

πeval(·|τ, τ p) = GRProp(·|Gτ )αGRProp(·|Gp)(1−α). (13)

Note that Equation (13) is the weighted sum of the logits
of two GRProp policies induced by prior τ p and current ex-
perience τ . We claim that such form of ensemble induces
the positive transfer in compositional tasks. Intuitively, en-
sembling GRProp is taking a union of preconditions since
GRProp assigns a positive logit to task-relevant subtask and
non-positive logit to other subtasks. As motivated in the Intro-
duction, related tasks often share the task-relevant precondi-
tions; thus, taking the union of task-relevant preconditions is
likely to be a positive transfer and improve the generalization.
The pseudo-code of the multi-task subtask graph inference
process is summarized in Algorithm 2.

5 Related Work
Web navigating RL agent Previous work introduced Mini-
WoB (Shi et al. 2017) and MiniWoB++ (Liu et al. 2018)
benchmarks that are manually curated sets of simulated toy
environments for the web navigation problem. They formu-
lated the problem as acting on a page represented as a Doc-
ument Object Model (DOM), a hierarchy of objects in the
page. The agent is trained with human demonstrations and
online episodes in an RL loop. Jia, Kiros, and Ba (2019)
proposed a graph neural network based DOM encoder and
a multi-task formulation of the problem similar to this work.
Gur et al. (2018) introduced a manually-designed curriculum
learning method and an LSTM based DOM encoder. DOM
level representations of web pages pose a significant sim-
to-real gap as simulated websites are considerably smaller
(100s of nodes) compared to noisy real websites (1000s of
nodes). As a result, these models are trained and evaluated
on the same simulated environments which are difficult to
deploy on real websites. Our work formulates the problem
as abstract web navigation on real websites where the ob-
jective is to learn a latent subtask dependency graph similar
to a sitemap of websites. We propose a multi-task training
objective that generalizes from a fixed set of real websites to
unseen websites without any demonstration, illustrating an
agent capable of navigating real websites for the first time.

Meta-reinforcement learning To tackle the few-shot RL
problem, researchers have proposed two broad categories
of meta-RL approaches: RNN- and gradient-based methods.
The RNN-based meta-RL methods (Duan et al. 2016; Wang
et al. 2016; Hochreiter, Younger, and Conwell 2001) encode
the common knowledge of the task into the hidden states
and the parameters of the RNN. The gradient-based meta-RL
methods (Finn, Abbeel, and Levine 2017; Nichol, Achiam,
and Schulman 2018; Gupta et al. 2018; Finn, Xu, and Levine
2018; Kim et al. 2018) encode the task embedding in terms
of the initial policy parameter for fast adaptation through
meta gradient. Existing meta-RL approaches, however, often
require a large amount of environment interaction due to
the long-horizon nature of the few-shot RL tasks. Our work
instead explicitly infers the underlying task parameter in

terms of subtask graph, which can be efficiently inferred
using the inductive logic programming (ILP) method and be
transferred across different, unseen tasks.

More Related Works Please refer to the Appendix for
further discussions about other related works.

6 Experiment
6.1 Domains
Mining Mining (Sohn, Oh, and Lee 2018) is a 2D grid-
world domain inspired by Minecraft game where the agent
receives a reward by picking up raw materials in the world or
crafting items with raw materials. The subtask dependency in
Mining domain comes from the crafting recipe implemented
in the game. Following Sohn, Oh, and Lee (2018), we used
the pre-generated training/testing task splits generated with
four different random seeds. Each split set consists of 3200
training tasks and 440 testing tasks for meta-training and
meta-testing, respectively. We report the performance aver-
aged over the four task split sets.

SymWoB We implement a symbolic version of the check-
out process on the 20 real-world websites such as Amazon,
Converse, and Walmart, etc.

Subtask and option policy. Each actionable web element
(e.g., text field, button drop-down list, and hyperlink) is con-
sidered as a subtask. We assume the agent has pre-learned
the option policies that correctly interact with each element
(e.g., click the button or fill out the text field). Thus, the agent
should learn a policy over the option.

Completion and eligibility. For each subtask, the comple-
tion and eligibility are determined based on the status of the
corresponding web element. For example, the subtask of a
text field is completed if the text field is filled with the correct
information, and the subtask of a confirm credit info
button is eligible if all the required subtasks (i.e., filling out
credit card information) on the webpage are completed. Ex-
ecuting an option will complete the corresponding subtask
only if the subtask is eligible.

Reward function and episode termination. The agent
may receive a non-zero reward only at the end of the episode
(i.e., sparse-reward task). When the episode terminates due
to the time budget, the agent may not receive any reward.
Otherwise, the following two types of subtasks terminate the
episode and give a non-zero reward upon completion:

• Goal subtask refers to the button that completes the order
(See the green boxes in Figure 1). Completing this subtask
gives the agent a +5 reward, and the episode is terminated.

• Distractor subtask does not contribute to solving the
given task but terminates the episode with a -1 reward. It
models the web elements that lead to external web pages
such as Contact Us button in Figure 1.

Transition dynamics. The transition dynamics follow the
dynamics of the actual website. Each website consists of
multiple web pages. The agent may only execute the subtasks
that are currently visible (i.e., on the current web page) and
can navigate to the next web page only after filling out all
the required fields and clicking the continue button. The goal
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Figure 3: The success rate of the compared methods in the test phase in terms of the environment step during the adaptation
phase on SymWoB domain. See Appendix for the results on other tasks.
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Figure 4: The performance of the compared methods in terms
of the adaptation steps averaged over all the tasks in SymWoB
(Left) and Mining (Right) domains.

subtask is present in the last web page; thus, the agent must
learn to navigate through the web pages to solve the task.

For more details about each task, please refer to Appendix.

6.2 Agents
We compared the following algorithms in the experiment.

• MTSGI (Ours): our multi-task SGI agent
• MSGI (Sohn et al. 2019): SGI agent without multi-task

learning
• HRL: an Option (Sutton, Precup, and Singh 1999)-based

proximal policy optimization (PPO) (Schulman et al.
2017) agent with the gated rectifier unit (GRU)

• Random: a heuristic policy that uniform randomly exe-
cutes an eligible subtask

More details on the architectures and the hyperparameters
can be found in Appendix.

Meta-training In SymWoB, for each task chosen for a meta-
testing, we randomly sampled Ntrain tasks among the remain-
ing 19 tasks and used it for meta-training. We used Ntrain = 1
in the experiment (See Figure 8 for the impact of the choice
ofNtrain). For example, we meta-trained our MTSGI on Ama-
zon and meta-tested on Samsung. For Mining, we used the
train/test task split provided in the environment. The RL
agents (e.g., HRL) were individually trained on each test
task; the policy was initialized when a new task is sampled
and trained during the adaptation phase. All the experiments
were repeated with four random seeds, where different train-
ing tasks were sampled for different seeds.

6.3 Result: Few-shot Generalization Performance
Figure 3 and Figure 4 show the few-shot generalization per-
formance of the compared methods on SymWoB and Mining.
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Figure 5: The precision and recall of the subtask graphs
inferred by MTSGI and MSGI on SymWoB and Mining.

In Figure 3, MTSGI achieves more than 80% zero-shot suc-
cess rate (i.e., success rate at x-axis=0) on four out of five
tasks, which is significantly higher than the zero-shot perfor-
mance of MSGI. This indicates that the prior learned from
the training task significantly improves the subtask graph in-
ference and in turn improves the multi-task evaluation policy.
Moreover, our MTSGI can learn a near-optimal policy on all
the tasks after only 1,000 steps of environment interactions,
demonstrating that the proposed multi-task learning scheme
enables fast adaptation. Even though the MSGI agent is learn-
ing each task from scratch, it still outperforms the HRL and
Random agents. This shows that explicitly inferring the un-
derlying task structure and executing the predicted subtask
graph is significantly more effective than learning the policy
from the reward signal (i.e., HRL) on complex compositional
tasks. Given the pre-learned options, HRL agent can slightly
improve the success rate during the adaptation via PPO up-
date. However, training the policy from the sparse reward
requires a large number of interactions especially for the
tasks with many distractors (e.g., Converse and Swarovski).

6.4 Analysis on the Inferred Subtask Graph
We compare the inferred subtask graph with the ground-truth
subtask graph. Figure 6 shows the subtask graph inferred
by MTSGI in Walmart. We can see that MTSGI can ac-
curately infer the subtask graph; the inferred subtask graph
is missing only two preconditions (shown in red color) of
Click Continue Payment subtask.We note that such a
small error in the subtask graph has a negligible effect as
shown in Figure 3: i.e., MTSGI achieves near-optimal perfor-
mance on Walmart after 1,000 steps of adaptation. Figure 5
measures the precision and recall of the inferred precondi-
tion (i.e., the edge of the graph). First, both MTSGI and
MSGI achieve high precision and recall after only a few hun-
dred of adaptation. Also, MTSGI outperforms MSGI in the
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Figure 6: The visualization of the subtask graph inferred by our MTSGI after 1,000 steps of environment interaction on Walmart
domain. Compared to the ground-truth subtask graph (not available to the agent), there was no error in the nodes and only two
missing edges (in red). See Appendix for the progression of the inferred subtask graph with varying adaptation steps.
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Figure 7: Comparison of different exploration strategies for
MTSGI used in adaptation phase for SymWoB and Mining.
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Figure 8: Comparison of different number of priors for
MTSGI on SymWoB and Mining.

early stage of adaptation. This clearly demonstrates that the
MTSGI can perform more accurate task inference due to the
prior learned from the training tasks.

6.5 Ablation Study: Effect of Exploration
Strategy

In this section, we investigate the effect of various exploration
strategies on the performance of MTSGI. We compared the
following three adaptation policies:

• Random: A policy that uniformly randomly executes any
eligible subtask.

• UCB: The UCB policy defined in Equation (2) that aims
to execute the novel subtask. The exploration parameters
are initialized to zero when a new task is sampled.

• MTUCB (Ours): Our multi-task extension of UCB policy.
When a new task is sampled, the exploration parameter is
initialized with those of the sampled prior.

Figure 7 summarizes the result on SymWoB and Mining do-
main, respectively. Using the more sophisticated exploration
policy such as MTSGI+UCB or MTSGI+MTUCB improved
the performance of MTSGI compared to MTSGI+Random,

which was also observed in Sohn et al. (2019). This is be-
cause better exploration helps the adaptation policy collect
more data for logic induction by executing more diverse sub-
tasks. In turn, this results in more accurate subtask graph
inference and better performance. Also, MTSGI+MTUCB
outperforms MTSGI+UCB on both domains. This indicates
that transferring the exploration parameters makes the agent’s
exploration more efficient in meta-testing. Intuitively, the
transferred exploration counts inform the agent which sub-
tasks were under-explored during meta-training, such that
the agent can focus more on exploring those in meta-testing.

6.6 Ablation Study: Effect of the prior set size
MTSGI learns the prior from the training tasks. We investi-
gated how many training tasks are required for MTSGI to
learn a good prior for transfer learning. Figure 8 compares
the performance of MTSGI with the varying number of train-
ing tasks: 1, 3, 10, 19 tasks for SymWoB and 10, 100, 500,
3200 tasks for Mining. The training tasks are randomly sub-
sampled from the entire training set. The result shows that
training on a larger number of tasks generally improves the
performance, but it saturates (e.g., |Mtrain| = 1 for SymWoB
and |Mtrain| = 500 for Mining). Mining generally requires
more number of training tasks than SymWoB because the
agent is required to solve 440 different tasks in Mining while
SymWoB was evaluated on 20 tasks; the agent is required
to capture a wider range of task distribution in Mining than
SymWoB. Also, we note that MTSGI can still adapt much
more efficiently than all other baseline methods even when
only a small number of training tasks are available (e.g., one
task for SymWoB and ten tasks for Mining).

7 Conclusion
We introduce a multi-task RL extension of the subtask graph
inference framework that can quickly adapt to the unseen
tasks by modeling the prior of subtask graph from the training
tasks and transferring it to the test tasks. The empirical results
demonstrate that our MTSGI achieves strong zero-shot and
few-shot generalization performance on 2D grid-world and
complex web navigation domains by transferring the common
knowledge learned in the training tasks to the unseen ones in
terms of subtask graph.

In this work, we have assumed that the subtasks and the cor-
responding options are pre-learned and that the environment



provides a high-level status of each subtask (e.g., whether
the web element is filled in with the correct information). In
future work, our approach may be extended to a more general
setting where the relevant subtask structure is fully learned
from (visual) observations, and the corresponding options
are autonomously discovered.
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Appendix: Fast Inference and Transfer of Compositional Task Structures
for Few-shot Task Generalization

A Derivation of subtask graph inference
Following Sohn et al. (2019), we formulate the problem of inferring the precondition Gc and the subtask reward Gr as a
maximum likelihood estimation (MLE) problem. Let τK = {s1,o1, r1, d1, . . . , sK} be an adaptation trajectory of the adaptation
policy πadapt

θ for K steps in adaptation phase. The goal is to infer the subtask graph G for this task, specified by preconditions Gc

and subtask rewards Gr. Consider a subtask graph G with subtask reward Gr and precondition Gc. The maximum-likelihood
estimate (MLE) of latent variables G, conditioned on the trajectory τH can be written as

ĜMLE = arg max
Gc,Gr

p(τK |Gc, Gr). (14)

The likelihood term can be expanded as

p(τK |Gc, Gr) = p(s1|Gc)

K∏
t=1

πθ (ot|τt) p(st+1|st,ot, Gc)p(rt|st,ot, Gr)p(dt|st,ot) (15)

∝ p(s1|Gc)

K∏
t=1

p(st+1|st,ot, Gc)p(rt|st,ot, Gr), (16)

where we dropped the terms that are independent of G. From the definitions in Subtask Graph Inference Problem section,
precondition Gc defines the mapping x 7→ e, and the subtask reward Gr determines the reward as rt ∼ Gr

i if subtask i is
eligible (i.e., eit = 1) and option Oi is executed at time t. Therefore, we have

ĜMLE = (ĜMLE
c , ĜMLE

r ) =

(
arg max

Gc

K∏
t=1

p(et|xt, Gc), arg max
Gr

K∏
t=1

p(rt|et,ot, Gr)

)
. (17)

Below we explain how to compute the estimate of preconditions ĜMLE
c and subtask rewards ĜMLE

r .

Precondition inference via logic induction From the definition in Subtask Graph Inference Problem section, the mapping
from a preconditionGc and a completion vector x to an eligibility vector e = fGc(x) is a deterministic function (i.e., precondition
function). Therefore, we can rewrite ĜMLE

c in Eq.(17) as:

ĜMLE
c = arg max

Gc

K∏
t=1

I(et = fGc(xt)), (18)

where I(·) is the indicator function. Since the eligibility e is factored, the precondition function fGc
i for each subtask is

inferred independently. This problem of finding a boolean function that satisfies all the indicator functions in Eq.(18) (i.e.,∏K
t=1 I(et = fGc(xt)) = 1) is formulated as an inductive logic programming (ILP) problem (Muggleton 1991). Specifically,
{xt}Kt=1 forms binary vector inputs to programs, and {eit}Kt=1 forms Boolean-valued outputs of the i-th program that denotes
the eligibility of the i-th subtask. We use the classification and regression tree (CART) to infer the precondition function fGc

for each subtask based on Gini impurity (Breiman 1984). Intuitively, the constructed decision tree is the simplest boolean
function approximation for the given input-output pairs {xt, et}. Then, we convert it to a logic expression (i.e., precondition) in
sum-of-product (SOP) form to build the subtask graph.

Subtask reward inference To infer the subtask reward function ĜMLE
r in Eq.(17), we model each component of subtask

reward as a Gaussian distribution Gir ∼ N (µ̂i, σ̂i). Then, µ̂iMLE becomes the empirical mean of the rewards received after taking
the eligible option Oi in the trajectory τK :

ĜMLE,i
r = µ̂iMLE = E

[
rt|ot = Oi, eit = 1

]
=

∑K
t=1 rtI(ot = Oi, eit = 1)∑K
t=1 I(ot = Oi, eit = 1)

. (19)



B Details of GRProp policy
For self-containedness, we repeat the description of GRProp policy in Sohn et al. (2019).

Intuitively, GRProp policy modifies the subtask graph to a differentiable form such that we can compute the gradient of
modified return with respect to the subtask completion vector in order to measure how much each subtask is likely to increase
the modified return. Let xt be a completion vector and Gr be a subtask reward vector (see Subtask Graph Inference Problem
section for definitions). Then, the sum of reward until time-step t is given as:

Ut = Gr
>xt. (20)

We first modify the reward formulation such that it gives a half of subtask reward for satisfying the preconditions and the rest for
executing the subtask to encourage the agent to satisfy the precondition of a subtask with a large reward:

Ût = Gr
>(xt + et)/2. (21)

Let yjAND be the output of j-th AND node. The eligibility vector et can be computed from the subtask graph G and xt as follows:

eit = OR
j∈Childi

(
yjAND

)
, yjAND = AND

k∈Childj

(
x̂j,kt

)
, x̂j,kt = xktw

j,k + NOT(xkt )(1− wj,k), (22)

where wj,k = 0 if there is a NOT connection between j-th node and k-th node, otherwise wj,k = 1. Intuitively, x̂j,kt = 1 when
k-th node does not violate the precondition of j-th node. The logical AND, OR, and NOT operations in Equation (22) are
substituted by the smoothed counterparts as follows:

pi = λorẽ
i + (1− λor)x

i, (23)

ẽi = ÕR
j∈Childi

(
ỹjAND

)
, (24)

ỹjAND = ÃND
k∈Childj

(
x̂j,k

)
, (25)

x̂j,k = wj,kpk + (1− wj,k)ÑOT
(
pk
)
, (26)

where x ∈ Rd is the input completion vector,

ÕR (x) = softmax(worx) · x, (27)

ÃND (x) =
ζ(x, wand)

ζ(||x||, wand)
, (28)

ÑOT (x) = −wnotx, (29)

||x|| = d, ζ(x, β) = 1
β log(1 + exp(βx)) is a soft-plus function, and λor = 0.6, wor = 2, wand = 3, wnot = 2 are the hyper-

parameters of GRProp. Note that we slightly modified the implementation of ÕR and ÃND from sigmoid and hyper-tangent
functions in (Sohn, Oh, and Lee 2018) to softmax and softplus functions for better performance. With the smoothed operations,
the sum of smoothed and modified reward is given as:

Ũt = Gr
>p, (30)

where p = [p1, . . . , pd] and pi is computed from Equation (23). Finally, the graph reward propagation policy is a softmax policy,

π(ot|G,xt) = Softmax
(
T∇xtŨt

)
= Softmax

(
TGr

>(λor∇xt ẽt + (1− λor))
)
, (31)

where we used the softmax temperature T = 40 for Playground and Mining domain, and linearly annealed the temperature
from T = 1 to T = 40 during adaptation phase for SC2LE domain. Intuitively speaking, we act more confidently (i.e., higher
temperature T ) as we collect more data since the inferred subtask graph will become more accurate.



C Derivation of Multi-task subtask graph inference
Let τ be the adaptation trajectory of the current taskMG, and T p = {τ p

1 , . . . , τ
p
|T p|} be the adaptation trajectories of the seen

training tasks.
Then, from Bayesian rule, we have

π(o|s, τ, T p) =
∑
G π(o|s,G)p(G|τ, T p) (32)

∝
∑
G π(o|s,G)p(τ |G, T p)p(G|T p) (33)

=
∑
G π(o|s,G)p(τ |G)p(G|T p) (34)

∝
∑
G π(o|s,G)p(τ |G)p(T p|G)p(G), (35)

where Equation (34) holds because τ and T p are independently observed variables. Since summing over all G is computationally
intractable, we instead approximate it by computing the sample estimates of π. Specifically, we compute the policy π(o|s,G)
at the maximum likelihood estimates (MLE) of G for prior and current tasks, that is Gτ = arg maxG p(τ |G) and Gp =
arg maxG p(T p|G) respectively, and combine them with the weight α:

π(o|s, τ, T p) ' π(o|s,Gτ )απ(o|s,Gp)(1−α). (36)

Finally, we deploy the GRProp policy as a contextual policy:

πeval(·|τ, T p) ' GRProp(·|Gτ )αGRProp(·|Gp)(1−α). (37)

D Pseudo-code of our algorithm
The Algorithm 3 below describes the pseudo-code of the meta-training process of our algorithm.

Algorithm 3: Meta-training: learning the prior

Require: Adaptation policy πadapt

Ensure: Prior set T p

1: T p ← ∅
2: for each taskM∈Mtrain do
3: Rollout adaptation policy:

τ = {st,ot, rt, dt}Kt=1 ∼ πadapt in taskM
4: Infer subtask graph Gτ = arg maxG p(τ |G)
5: πeval = GRProp(Gτ )
6: Evaluate the agent: τ eval ∼ πeval in taskM
7: Update prior T p ← T p ∪ (Gτ , τ)
8: end for



E Extended Related Work
Multi-task reinforcement learning. Multi-task reinforcement learning aims to learn an inductive bias that can be shared and
used across a variety of related RL tasks to improve the task generalization. Early works mostly focused on the transfer learning
oriented approaches (Lazaric 2012; Taylor and Stone 2009) such as instance transfer (Lazaric, Restelli, and Bonarini 2008) or
representation transfer (Konidaris and Barto 2006). However, these algorithms rely heavily on the prior knowledge about the
allowed task differences. Hausman et al. (2018); Pinto and Gupta (2017); Wilson et al. (2007) proposed to train a multi-task
policy with multiple objectives from different tasks. However, the gradients from different tasks may conflict and hurt the
training of other tasks. To avoid gradient conflict, Zhang and Yeung (2014); Chen et al. (2018); Lin et al. (2019) proposed to
explicitly model the task similarity. However, dynamically modulating the loss or the gradient of RL update often results in the
instability in optimization. Our multi-task learning algorithm also takes the transfer learning oriented viewpoint; MTSGI captures
and transfers the task knowledge in terms of the subtask graph. However, our work does not make a strong assumption on the
task distribution. We only assume that the task is parameterized by unknown subtask graph, which subsumes many existing
compositional tasks (e.g., Oh et al. (2017); Andreas, Klein, and Levine (2017); Huang et al. (2018), etc).

Extended - web navigating RL agent. Previous work introduced MiniWoB (Shi et al. 2017) and MiniWoB++ (Liu et al.
2018) benchmarks that are manually curated sets of simulated toy environments for the web navigation problem. They formulated
the problem as acting on a page represented as a Document Object Model (DOM), a hierarchy of objects in the page. The agent
is trained with human demonstrations and online episodes in an RL loop. Jia, Kiros, and Ba (2019) proposed a graph neural
network based DOM encoder and a multi-task formulation of the problem similar to this work. Gur et al. (2018) introduced a
manually-designed curriculum learning method and an LSTM based DOM encoder. DOM level representations of web pages
pose a significant sim-to-real gap as simulated websites are considerably smaller (100s of nodes) compared to noisy real websites
(1000s of nodes). As a result, these models are trained and evaluated on the same simulated environments which is difficult
to deploy on real websites. Our work formulates the problem as abstract web navigation on real websites where the objective
is to learn a latent subtask dependency graph similar to sitemap of websites. We propose a multi-task training objective that
generalizes from a fixed set of real websites to unseen websites without any demonstration, illustrating an agent capable of
navigating real websites for the first time.

Planning Approaches for Compositional Task Previous work has tackled the compositional tasks using the Hierarchical
Task Network (HTN) planning (Sacerdoti 1975b,a; Tate 1977) in a (single) goal-conditioned RL setting. The HTN allows
the agent to reason the tasks at multiple levels of abstraction, when rich knowledge at those abstraction levels are available.
Specifically, HTN models the primitive tasks (or the subtasks in our terminology) by the precondition and the effects, and aim to
find the sequence of actions (or the options in our terminology) that execute each subtasks via planning on the HTN. They aim to
execute a single goal task, often with assumptions of simpler subtask dependency structures (Ghazanfari and Taylor 2017; Liu
et al. 2016) such that the task structure can be constructed from the successful trajectories. Also, they often require expensive
searching to find the solution. In contrast, we tackle a more general and challenging setting, where each subtask gives a reward
(i.e., multi-goal setting) and the goal is to maximize the cumulative sum of reward within an episode. Moreover, we avoid any
expensive searching and propose to use neural network to directly map the task structure into policy. Lastly, we aim to achieve
zero-/few-shot task generalization, which is not achievable with the HTN methods since they require the full specification of the
action models in the testing.



F Additional experiment results

F.1 Full Experiment Results on the performance of the agents on 20 Websites in SymWoB
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Figure 9: Results of the success rate for compared methods in the test phase with respect to the adaptation steps on 20
environments in SymWoB domain.



F.2 Visualization of the multi-task subtask graph inference process
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Figure 10: The subtask graphs inferred by our MTSGI with varying adaptation steps on Walmart domain: 0 steps (Top, Left),
400 steps (Top, Right), and 1000 steps (Bottom).

Figure 10 qualitatively shows how the multi-task subtask graph inference proceeds over the adaptation. In the beginning (Top,
Left), the agent has only prior information and the prior provides a partial information about the subtask graph, which is the
preconditions in the first webpage. As the agent further explores the webpage (Top, Right), the subtask graph gets more accurate,
but due to insufficient exploration, there are many missing preconditions, especially for the subtasks in the last webpage. After
sufficient adaptation (Bottom), our MTSGI can infer quite accurate subtask graph compared to the ground-truth subtask graph
in Figure 11; i.e., only missing two preconditions.

F.3 Full Experiment Results on the qualitative evaluation of the inferred subtask graph
Figures 11-30 qualitatively evaluate the task inference of our MTSGI by comparing the inferred subtask graph and the ground-
truth. It is clear from the figure that the inferred subtask graphs have only a small portion of missing or redundant edges, while
most of the nodes and edges are the same as ground-truth graph.



G Details on SymWoB domain

Subtask Graph Setting
Task Adidas Amazon Apple BestBuy Converse Dick’s eBay Expedia Ikea Lego

#Subtasks 46 31 43 37 42 39 39 36 39 45
#Distractors 8 4 5 6 6 6 5 5 5 6

Episode length 41 27 40 37 43 37 37 40 37 37

Task Lenox Omahasteaks Samsung Sephora Swarovski Target Thriftbooks Todaytix Walgreens Walmart
#Subtasks 45 44 42 49 45 39 43 23 38 46

#Distractors 4 6 6 7 7 6 8 3 7 5
Episode length 41 38 41 45 38 37 33 20 50 43

Table 1: The task configuration of the tasks in SymWoB domain. Each task is parameterized by different subtask graphs, and the
episode length is manually set according to the challengeness of the tasks.

In this paper, we introduce the SymWoB domain, which is a challenging symbolic environment that aims to reflect the
hierarchical and compositional aspects of the checkout processes in the real-world websites. There are total 20 different SymWoB
websites that are symbolic implementations of the actual websites: Adidas, Amazon, Apple, BestBuy, Converse, Dick’s, eBay,
Expedia, Ikea, Lego, Lenox, Omahasteaks, Samsung, Sephora, Swarovski, Target, Thriftbooks, Todaytix, Walgreens,
and Walmart. All of these websites are generated by analyzing the corresponding real websites and reflecting their key aspects
of checkout process. The main goal of each website is to navigate through the web pages within the website by clicking and
filling in the web elements with proper information which leads to the final web page that allows the agent to click on the
Place Order button, which indicates that the agent has successfully finished the task of checking out.

G.1 Implementation detail
In this section, we describe the detailed process of implementing an existing website into a symbolic version. We first fill out the
shopping cart with random products, and we proceed until placing the order on the actual website. During the process, we extract
all the interactable web elements on the webpage. We repeat this for all the websites and form a shared subtask pool where
similar web elements in different websites that have same functionality are mapped to the same subtask in the shared subtask
pool. Then, we extract the precondition relationship between subtasks from the website and form the edges in the subtask graph
accordingly. Finally, we implement the termination condition and the subtask reward to the failure distractor (See Appendix G.3)
and the goal subtasks.

G.2 Comparison of the websites
The agent’s goal on every website is the same, that is placing the checkout order. However, the underlying subtask graphs,
or task structure, of the websites are quite diverse, making the task much more challenging for the agent. Figures 11-30
visualize the ground truth subtask graph of all the websites. One of the major sources of diversity in subtask graphs is in the
various ordering of the web pages. In a typical website’s checkout process, some of the most common web pages include the
shipping, billing, and payment web pages, each of which has a collection of corresponding subtasks. In Figure 11, for example,
the shipping web page is represented by the collection of the subtasks on the left side from Fill Zip to Fill Last and
Click ContinueShipping, and these come before the payment web page that is represented by the subtasks on the right
side from Click Credit to Click ContinuePayment. On the other hand, in Figure 17 and Figure 16, the similar web
pages are either connected in a different ordering, from payment to shipping web page, or placed on the same line side by side.
Since the web pages can vary on how they are ordered, it allows the subtask graphs to have a variety of shapes such as deep and
narrow as in Figure 19 or wide and shallow as in Figure 16. Different shape of the subtask graphs means different precondition
between the tasks, making it non-trivial for the agent to transfer its knowledge about one to the other.

Another major source of diversity is the number of web elements in each web page. Let’s compare the web elements of the
shipping web page in Figure 13 and Figure 14. These are the subtasks that are connected to Click ContinueShipping and
as well as itself. We can see that the two websites do not have the same number of the web elements for the shipping web pages:
the Converse website requires more shipping information to be filled out than the Dick’s website. Such variety in the number of
web elements, or subtasks, allows the subtask graphs of the websites to have diverse preconditions as well.

G.3 Distractor subtasks
In addition to the different task structures among the websites, there are also distractor subtasks in the websites that introduces
challenging components of navigating the real-world websites. There are two different types of distractor subtasks: the one
that terminates the current episode with a negative reward and the another one that has no effect. The former, which we also
call it the failure distractor subtask, represents the web elements that lead the agent to some external web pages like Help
or Terms of Use button. The latter is just called the distractor subtask, where executing the subtask does not contribute
to progressing toward the goal (e.g., Click EditShipping subtask in Converse). Each website has varying number of



distractor subtasks and along with the shallowness of the task structure, the number of distractor subtasks significantly affects the
difficulty of the task.

H Details of the agent implementation
We implement all of our algorithms, including both MTSGI and the baselines, on top of the recently introduced RL framework
called Acme (Hoffman et al. 2020).

H.1 MSGI
Similar to the MTSGI agent, the MSGI agent uses the soft-version of UCB exploration policy as the adaptation policy, instead of
its original hard-version due to a better performance. Furthermore, MSGI also uses inductive logic programming (ILP) in order
to infer the subtask graph of the current task. But unlike the MTSGI agent that learns prior across the tasks through multi-task
learning, the MSGI agent does not exploit the subtask graphs inferred from the previous tasks.

H.2 HRL
The hierarchical RL (HRL) agent is an option-based agent that can execute temporally extended actions. For the Mining domain,
where there is a spatial component in the observation input, we use convolutional neural network (CNN) in order to encode the
spatial information and get concatenated along with the other additional inputs, which are encoded using fully-connected (FC)
networks. The concatenated embedding then gets passed on to GRU, which is followed by two separate heads for value and
policy function outputs.

The details of the HRL architecture for Mining domain are: Conv1(16x1x1-1)-Conv2-(32x3x3-1)-Conv3(64x3x3-1)-
Conv4(32x3x3-1)-Flatten-FC(256)-GRU(512). The HRL architecture for SymWoB domain is almost identical except it replaces
the CNN module with fully-connected layers for processing non-spatial information: FC(64)-FC(64)-FC(50)-FC(50)-GRU(512).
We use ReLU activation function in all the layers.

For training, we use multi-step actor-critic (A2C) in order to train HRL. We use multi-step learning of n = 10, learning rate
0.002, entropy loss weight of 0.01 and critic loss weight of 0.5. We use RMSProp optimizer to train the networks, where its
decay rate is set to 0.99 and epsilon to 0.00001. We also clip the gradient by setting the norm equal to 1.0. Most importantly, the
network parameters of the HRL agent gets reset for every new task since HRL is not a meta-RL agent.
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Figure 11: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Walmart website.
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Figure 12: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Converse website.
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Figure 13: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Dick’s website.
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Figure 14: (Top) The ground-truth and (Bottom) the inferred subtask graphs of BestBuy website.
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Figure 15: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Apple website.
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Figure 16: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Amazon website.
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Figure 17: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Samsung website.
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Figure 18: (Top) The ground-truth and (Bottom) the inferred subtask graphs of eBay website.
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Figure 19: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Ikea website.
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Figure 20: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Target domain.
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Figure 21: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Adidas domain.
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Figure 22: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Expedia domain.
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Figure 23: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Lego domain.
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Figure 24: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Lenox domain.
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Figure 25: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Omahasteaks domain.
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Figure 26: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Sephora domain.
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Figure 27: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Swarovski domain.
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Figure 28: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Thriftbooks domain.
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Figure 29: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Todaytix domain.
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Figure 30: (Top) The ground-truth and (Bottom) the inferred subtask graphs of Walgreens domain.


