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ABSTRACT

On a given dataset, some models perform better than others. Can we examine this
performance w.r.t. different strata of the dataset rather than just focusing on an
aggregate metric (such as accuracy)? Given that noise and corruption are natural
in real-world settings, can we study model failure under such scenarios? For a
particular corruption type, do some classes become more difficult to classify than
others? To answer such fine-grained questions, in this paper, we explore the use of
Item Response Theory (IRT) in computer vision tasks to gain deeper insights into
the behavior of models and datasets, especially under corruption. We show that
incorporating IRT can provide instance-level understanding beyond what classi-
cal metrics (such as accuracy) can provide. Our findings highlight the ability
of IRT to detect changes in the distribution of the dataset when it is perturbed
through corruption, using latent parameters derived from IRT models. These la-
tent parameters can effectively suggest annotation errors, informative images, and
class-level information while highlighting the robustness of different models and
dataset classes under consideration.

1 INTRODUCTION

In the past two decades, remarkable advancements have been made in the field of computer vi-
sion resulting in super-human performance on various well-known benchmarks such as Imagenet
(Russakovsky et al., 2015), CIFAR10/CIFAR100 (Krizhevsky et al., 2009) & MNIST(LeCun et al.,
1995) courtesy of deep learning models, especially with the advent of Vision Transformers (Liu
et al., 2022), (Dosovitskiy et al., 2021). However, studies have shown that classical measures of
progress like accuracy are not reliable as they overestimate the capabilities of the system (Sagawa
et al., 2020; Bras et al., 2020; Menon et al., 2021; Shankar et al., 2021; Patel et al., 2021). One such
study, (Shankar et al., 2021) showed that model accuracy drops due to the inability to generalize to
slightly “harder” images than “easy” ones, which raises the question of whether these models are
uniformly better across all instances. Thus, we argue that an instance-level analysis of evaluation
data becomes necessary, especially in risk-sensitive applications.

In computer vision, researchers have tried to obtain global properties of images, including saliency,
memorability, photo quality, and object importance (Liu et al., 2011; Russakovsky et al., 2015).
Additionally, extrinsic anthropomorphic approaches have also been explored, such as estimating
image difficulty based on the time required for human segmentation (Vijayanarasimhan & Grau-
man, 2009). However, in this work, we focus on assessing the difficulty of an image from the
perspective of multiple models and also understand the change in the difficulty of images as they
get corrupted at different severity levels. We study models and datasets from a multi-dimensional
perspective. In particular, we draw upon the statistical framework of Item Response Theory (IRT)
(Baker & Kim, 2004), which enables us to study model performance in relation to latent traits of
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Figure 1: This figure shows how IRT captures instance level changes as we go from Severity 1(S1)
to Severity 5(S5) of corruption in the case of Defocus Blur on the CIFAR10 dataset. As we move
from S1-S5, discriminability, and feasibility decrease, suggesting that images are getting ambiguous
at higher severity levels.

samples. IRT is widely accepted in educational assessment to evaluate test items (Birnbaum, 1968).
The IRT framework learns latent variables corresponding to model performance, sample difficulty,
and discriminability. The variable corresponding to model performance is referred to as the ability
score. Based on the ability score, three measures are used to represent samples (questions in ed-
ucational assessment, images in our context): difficulty, discriminability, and feasibility. Difficulty
measures the item’s hardness for the classification task. Discriminability measures the effectiveness
of a sample in differentiating between similar models. Feasibility of a sample can be viewed as
capturing a measure of inherent ambiguity in a sample (e.g., in educational assessment, a computer-
based assessment that uses complex visual symbols may not be feasible for individuals with limited
access to technology or with certain disabilities). We discuss specifics of the IRT framework used
in our work in Section 2 and Figure 3.

Our key contributions and inferences in this work are summarized below:

• We estimate the latent parameters like difficulty in well-known computer vision datasets and mod-
els using classical Item Response Theory framework. We idenfity robust and sucecptible classes
when perturbed to corruption in these datasets using the calculated latent parameters. For example,
we find that Airplane is most robust, and Frog is most susceptible in case of the Defocus-Blur
corruption in CIFAR10.

• We observe that the detection of samples with low discriminability can aid in uncovering ≈ 30−
40% of annotation errors across CIFAR10, CIFAR100, and Imagenet datasets.

• Our class-level analysis sheds light on the ease of distinguishability of each class. For example, in
CIFAR10, we observe that cat and dog classes are the easiest to distinguish, whereas ships and
automobiles are the hardest.

• Top-performing models are those that can classify a high number of difficult and discriminative
samples. Unsurprisingly, we find through our studies that pretrained Vision Transformers are
able to classify hard samples in general.
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Figure 2: Discriminability vs. Difficulty Chart: Low feasibility and discriminability suggest anno-
tation errors. 3.1

2 ITEM RESPONSE THEORY

Item Response Theory (IRT) is a widely used psychometric methodology that provides a compre-
hensive framework for estimating the latent traits of both items (such as exam questions) and subjects
(such as test-takers). Developed as a substitute to traditional summary statistics (Edgeworth, 1888),
IRT has become a widely used tool in educational testing (Birnbaum, 1968). Furthermore, its appli-
cations have extended to machine learning, with recent studies exploring its use for model and data
analysis (Martı́nez-Plumed et al., 2016) , (Martı́nez-Plumed et al., 2019), (Martı́nez-Plumed et al.,
2016), (Vania et al., 2021), evaluating test sets (Lalor et al., 2016), (Lalor & Yu, 2020), (Rodriguez
et al., 2021a).

In IRT, subjects are human test-takers, and items are assessment questions. For dichotomous data, a
subject’s answers to a set of items are evaluated as either correct or incorrect. Given n test items T
= (T1, T2, ..., Tn) and m subjects S = (S1, S2, ...., Sm), we create a binary response matrix Zn×m

where each row in the matrix represents subject m′s responses to all the items in the dataset, ie
zij ∈ [0, 1], where zij = 1 indicates a correct response and zij = 0 indicates an incorrect response.
Appendix Sec B talks about type of IRT models and how to estimate the latent parameters.

3 EXPERIMENTAL RESULTS AND ANALYSIS

A key driving factor behind IRT is the observation that different deep learning models (equivalent
to individuals with different abilities) exhibit different error patterns. E.g., some models perform
extremely well on particular strata of the dataset, whereas some perform reasonably well on all
strata. IRT framework considers this phenomenon (analogous to the bandwidth-fidelity trade-off
(Liu et al., 2011) in educational assessment), enabling richer comparisons between models.

The following sections highlight the results and inferences of our study on different benchmark
corrupted datasets - CIFAR10-C, and CIFAR100-C to provide a compelling use case for using Item
Response Theory.

3.1 IDENTIFY ANNOTATION ERRORS?
Low feasible and discriminable items indicate ambiguous images. Thus, we use this information
to check for annotation errors in CIFAR10 and Imagenet datasets. (Northcutt et al., 2021) report
annotation errors in CIFAR10 and Imagenet datasets, which we use as ground truth for validating our
annotation error detection performance. We find that low discriminable and feasible items account
for ≈ 30− 40 percent of annotation errors in the dataset. This shows that IRT can help identify and
remove incorrect items and enhance the model’s overall performance. 2

3.2 ANALYSIS ON CORRUPTED DATASET
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Corruption Susceptible Classes Robust Classes

Defocus Blur Frog, Truck Airplane, Horse
Glass Blur Automobile, Frog Horse, Cat
Motion Blur Bird, Truck Ship, Dog
Zoom Blur Frog, Deer Horse, Ship
Gaussian Blur Truck, Dog Horse, Airplane
Elastic Transform Automobile, Deer Airplane, Horse
JPEG Compression Cat, Automobile Airplane, Dog
Pixelate Automobile, Deer Horse, Airplane
Gaussian Noise Cat, Ship Automobile, Horse
Impulse Noise Cat, Ship Bird, Deer

Table 1: Susceptible and robust classes for various corruptions.

We analyzed the effect of
corruptions on CIFAR10-C,
CIFAR100-C, and Imagenet-C
(Hendrycks & Dietterich, 2019)
datasets at the instance and class
level by examining the image’s
difficulty and discriminability
scores. We sorted the images
based on these scores and
divided them into four cate-
gories (”easy,” ”medium-easy,”
”medium-hard,” and ”hard”).
The robustness of a class refers
to the consistency of the score
achieved across different levels of corruption. Thus, we use the standard deviation of the score
computed across five severity levels of corruption. We perform this operation for all of the above
categories (”easy,” ”medium-easy,” ”medium-hard,” and ”hard”) and compute the average of these
standard deviation values. This becomes the robustness score for a particular class. We use this
score to find the most robust (high robustness score) and most susceptible classes (low robustness
score) w.r.t. a given corruption. For e.g., in the case of blur corruption on CIFAR10, ‘Frog’ and
‘Truck’ were the most susceptible, while ‘Horse’ and ‘Ship’ were the most robust. We report more
such interesting results in table 1 for ten different corruptions.

The above-proposed robustness score is helpful for understanding which classes need more atten-
tion to make the model robust. For e.g., consider Fig 5, where we study the effect of brightness
corruption on different classes. Here, we report the number of ”easy” category images for each class
for different severity levels. It can be observed that for some classes, the number of easy images de-
creases. For some, it remains the same, and for others, it increases. Thus, an ML practitioner could
focus only on those classes that become difficult to classify as the severity of corruption increases.

3.3 DIFFICULTY AND DISCRIMINABILITY ANALYSIS

Here we perform a class-level analysis on CIFAR10, CIFAR100, and Imagenet datasets. We used the
difficulty β and discriminability γ parameters using the 4PL model as shown in Fig. 3 to perform this
analysis. IRT helps us analyze the model by combining discriminability and difficulty parameters.
To study this, we divided the difficult and discriminable images into four segments, i.e., Easy, Med-
Easy, Med-Hard, and Hard. We checked how many images in these segments a model can classify.
We observe that high-accuracy models can correctly classify more high-difficulty images. Table 3
shows ViT16, a pretrained model that classifies more hard samples. Figure 4 shows classes with
low and high difficulty and discriminability for CIFAR10. We find that in the case of CIFAR10: cat,
dog, and bird are low discriminable and difficult classes. Similarly, we can see ships, trucks, and
automobiles as highly discriminable and difficult classes.

4 CONCLUSIONS

In this paper, we advocate using Item Response Theory (IRT) for evaluation in computer vision
tasks instead of using the classical model accuracy. In particular, we used IRT to get a detailed and
instance-level understanding of the behavior of models and datasets, particularly in the presence
of noise and corruption - beyond what classical metrics such as accuracy can provide. We used
the difficulty β and discriminability γ parameters of IRT to identify robust and susceptible classes
w.r.t. different corruption types. We further exploit the feasibility λ parameter to detect up to 40%
of the annotation errors across CIFAR10, CIFAR100, and Imagenet datasets. We also conducted a
class-level analysis, which helped shed light on the ease of distinguishability for each class. Finally,
we also observed that the top-performing models could classify many difficult and discriminative
samples. In summary, our findings highlight the importance of considering the impact of noise
and corruption on model performance and the benefits of using IRT to analyze and improve com-
puter vision models. We believe by incorporating IRT into computer vision tasks, researchers and
practitioners can gain a more nuanced understanding of model behavior and identify potential areas
for improvement in data annotation and model robustness. We hope our work can inspire further
research in this area and contribute to developing more robust and reliable computer vision systems.
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B IRT MODELS

We now briefly discuss existing models based on the Item Response Theory framework. IRT-Base
is called a Rasch Rasch (1981) or a 1PL model in psychometry. The 1-PL estimates a latent ability
parameter θj for subjects and a latent difficulty parameter βi for items. A high-performing subject
will have a higher ability score. However, we can only be sure about the top-performing model being
good if one keeps evaluating them on varying difficulty samples. Like our previous example, Model
B should have been better in accuracy. IRT handles this with ability θ and difficulty β scores. More
challenging items have higher difficulty β. So, the more significant the gap between the subject skill
θj and item difficulty βi, the more likely the subjects will respond correctly.

More complex IRT models like 2PL 1, 3PL 2 and 4PL 3 introduce additional item-specific latent
parameters.

p(yij = 1|αi, βi, θj) =
1

1 + e−αi(θj−βi)
(1)

p(yij = 1|αi, βi, γi, θj) = γi +
1− γi

1 + e−αi(θj−βi)
(2)

p(yij = 1|αi, βi, λi, θj) =
λi

1 + e−αi(θj−βi)
(3)

Our study uses the 4PL Model 3, which introduces the discriminability parameter αi and feasibility
parameter λi. A discriminable item is challenging but can be answered by a strong subject. For
example, if Model A’s ability is higher than most items’ difficulty, (θj - βi) will be large. Discrim-
inability multiplies this gap by γi, normalizing a strong model’s ability. In the context of computer
vision, images with low βi are generally easy to classify for the model. or the model is unclear
about them. Feasibility captures the ambiguity of images; the 4PL model (Fig 3) imposes a cap on
the probability of correctly answering an item if a significant portion of subjects has answered it
incorrectly. This cap, represented by λi, ensures that the probability remains feasible despite many
incorrect responses. Our study found that some low-feasibility images had annotation errors (Fig 2).

Figure 3: The likelihood of the correct response is modeled as a relationship between the difficulty
βi of an item, its discriminability γi, feasibility λi, and the subject ability θi.

B.1 ESTIMATING PARAMETERS USING VARIATIONAL INFERENCE

We use mean field variational inference to infer IRT parameters from model responses. Natesan
et al. (2016) shows that the variational inference Jordan et al. (1998) works better than traditional
methods like maximum marginal likelihood estimation Bock & Aitkin (1981) to calculate the latent
parameters when we scale to a larger dataset or a more significant number of subjects. Lalor et al.
(2019) have shown the effectiveness of this method on NLP datasets like Bowman et al. (2015).
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Given the data response matrix Zn×m as discussed in the main section, we approximate the joint
probability of the parameters p(.) with a variational posterior qϕ(.) 4 which is a mean-field distribu-
tion. For each parameter, we choose the distribution mentioned in Eq. 5

qϕ(θ, β, γ, µ, σ) = q(µ)q(σ)
∏
ij

q(θj)q(βi)q(γi) (4)

θj ∼ N (µθ, τ
−1
θ )

βi ∼ N (µβ , τ
−1
β )

γi ∼ N (µγ , τ
−1
γ )

λi ∼ U [0, 1]

(5)

Means µθ, µβ , µγ are drawn from N (0, 106) and τθ, τβ , τγ from a Γ(1, 1) prior, as recommended
by Natesan et al. (2016). Also, note that each latent z is drawn from N (µθ, τ

−1
θ ) whose parameters

are also latent variables. For these variables, we follow Lalor et al. (2019) Rodriguez et al. (2021b)
and use the variational distributions q(µz) = N (uµz , t

−1
µz

) and q(τz) = Γ(aτz , bτz ). We then fit the
posterior parameters by maximizing the evidence lower bound (ELBO).

B.2 RELIABILITY OF IRT MODELS

Corruption Correlation
Elastic Transform 0.9709
Frost 0.9729
Zoom Blur 0.9698
Motion Blur 0.9776
Brightness 0.9729
Defocus Blur 0.9750
Snow 0.9735
Fog 0.9784
Spatter 0.9753

Table 2: Kendall rank correlation
between model accuracy and ability
score for multiple corruptions(at sever-
ity level 1) on the CIFAR10-C dataset.

The IRT (Item Response Theory) test stands apart from
other tests in two fundamental ways. Firstly, it recog-
nizes that certain items are more informative than others.
Secondly, it assumes that each item’s degree of informa-
tiveness depends on the subject’s skill level (in our case,
the model’s performance).

To test for the reliability of the IRT models, we compute
the Kendall rank correlation between the ability score
ranking and the classical ranking of the models. We also
evaluate how well the IRT models predict the classical
model’s responses on a held-out test set. In both cases,
IRT models have a high correlation. Further, Table 2
shows that the IRT model achieves high correlation even
under different types of corruption.

Models Easy Med Easy Med Hard Hard

Mnetv3 E1 392 281 173 157
AlexNet 1323 575 329 255
Mnetv3 E2 246 206 246 302
Mnetv3 E3 1028 633 378 335
ViTb16 E2 2283 2431 2313 2144
SwinBase E2 2284 2428 2336 2169
R101Best 2285 2415 2252 1578
R101 E2 2287 2400 2219 1384

Table 3: Multiple models classifying varying levels of difficult samples in case of CIFAR10 Bright-
ness noise in no particular order. E1,E2,E3 denotes intermediate checkpoints in increasing order.)

C EXPERIMENTS SETTINGS

This section talks about the models and datasets we considered for our study.

Datasets:

We experiment with CIFAR-10, CIFAR-100, and Imagenet-1K along with their corrupted coun-
terparts, which include 19 types of algorithmically created corruptions from noise, blur, weather,
and digital categories for CIFAR-10 and CIFAR-100, and 18 types of corruptions for Imagenet-1K.
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Each type of corruption has five severity levels resulting in 95 distinct corruptions in CIFAR-10
and CIFAR-100 and 90 in Imagenet-1K. We focused primarily on testing the reliability of IRT on
various easily accessible datasets and the robustness and susceptibility of models in the presence of
corrupted datasets.
Custom Test Splits - Imagenet-1K and its corrupted counterpart with 18 noises do not have publicly
available labeled test examples. For this, we create a new custom split by randomly sampling 50% of
the validation examples as a new test set and keeping the rest for validation (25 samples per class for
test and 25 samples per class for validation, for a total of 1000 classes in Imagenet-1K, this comes
as 25000 samples for validation and 25000 samples for test data).

Models: For our investigation, we used various models, ranging from CNN-based to pre-trained
Transformer-based models. The use of some weaker CNN-based models was justified since utilizing
solely high-performing models could result in a poor IRT model fit (Martı́nez-Plumed et al., 2019).
We use 15 deep learning models: ViTb16, ViTb32 ((Dosovitskiy et al., 2021)), Swin-Base (Liu
et al., 2021), Convnext-Base, Convnext-Tiny ((Liu et al., 2022)), EfficientnetV2-Small (Tan & Le,
2019), MobilenetV2 ((Sandler et al., 2018)), MobilenetV3-Large ((Howard et al., 2019)), Alexnet
(Krizhevsky et al., 2012), VGG16, VGG19 ((Simonyan & Zisserman, 2014)), Densenet121 ((Huang
et al., 2017)), Resnet-18, Resnet-50, Resnet-101 ((He et al., 2015)). For all the models, we evaluate
five different checkpoints—at 1%, 10%, 30%, 50%, and 70% of the maximum epochs as well as the
best checkpoint on the validation set, which need not be one of the other five. This yields a total of
90 model predictions for each test example of CIFAR10 and CIFAR100.
However, with Imagenet-1K we included a few more pre-trained models’ best checkpoints to achieve
a satisfactory IRT model fit. We train the models using timm scripts (Wightman, 2019)

D IRT SAMPLES AFTER INFERENCE

Figure 4: Top Image: This image shows a visualization of the top 25% data in descending order
of discriminable γ and difficult β samples using 4PL model in the CIFAR10 dataset. The classes
were determined based on each image’s discriminative γ and difficulty β scores. We can see that
cat images are fewer and ships images are more in this segment.
Bottom Image: This image shows a visualization of the bottom 25% data in descending order of
discriminable γ and difficult β samples using 4PL model in the CIFAR10 dataset. The classes were
determined based on each image’s discriminative γ and difficulty β scores.In this quartile cat images
are more, and ships are fewer.
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Figure 5: Exploring the Impact of Corruption on Easy Samples in CIFAR10-Brightness Corruption:
Surprising Findings as Easy images persist in some classes only.

Figure 6: Hard images based on difficulty scores β for the Imagenet dataset.

Figure 7: Easy images based on difficulty scores β for the Imagenet dataset.

E EFFECT OF CORRUPTION ON CIFAR10

This section gives more examples mentioned in Section 3.2
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Figure 8: Low discriminable class-level samples changes in CIFAR10 dataset when exposed to the
JPEG Corruption. For Eg. Dog class shows an increase in low discriminable samples, while airplane
class shows a decrease in samples as we increase the severity level.

Figure 9: High discriminable class-level samples changes in CIFAR10 dataset when exposed to the
JPEG Corruption. For eg. Bird class shows an increase in high discriminable samples, while frog
class shows a decrease in samples as we increase the severity level.

Figure 10: Class-level hardness changes in CIFAR10 when perturbed to Brightness Corruptions.
Top Image : Easy classes changes, for eg. we can see airplane instances are getting hard to classify
while truck is getting easy as we increase the severity level.
Bottom Image: Hard classes changes, for eg. airplance instances are getting hard, truck classes are
getting easy. For class like deer we could see it can sustain effect of corruption.
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