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Abstract
Fine manipulation tasks, such as threading ca-
ble ties or slotting a battery, are notoriously dif-
ficult for robots because they require precision,
careful coordination of contact forces, and closed-
loop visual feedback. Performing these tasks typ-
ically requires high-end robots, accurate sensors,
or careful calibration, which can be expensive
and difficult to set up. Can learning enable low-
cost and imprecise hardware to perform these
fine manipulation tasks? We present a low-cost
system that performs end-to-end imitation learn-
ing directly from real demonstrations, collected
with a custom teleoperation interface. Imitation
learning, however, presents its own challenges,
particularly in high-precision domains: errors in
the policy can compound over time, and human
demonstrations can be non-stationary. To address
these challenges, we develop a simple yet novel
algorithm, Action Chunking with Transformers
(ACT), which learns a generative model over ac-
tion sequences. ACT allows the robot to learn 6
difficult tasks in the real world, such as opening a
translucent condiment cup and slotting a battery
with 80-90% success, with only 10 minutes worth
of demonstrations.

1. Introduction
Fine manipulation tasks involve precise, closed-loop feed-
back and require high degrees of hand-eye coordination to
adjust in response to environment changes. Examples of
such tasks include opening the lid of a condiment cup or
slotting a battery, which involve delicate operations such
as pinching, prying, and tearing rather than broad-stroke
motions such as picking and placing. Take opening the
lid of a condiment cup in Figure 1 as an example, where
the cup is initialized upright on the table: the right gripper
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needs to first tip it over, and nudge it into the opened left
gripper. Then the left gripper closes gently and lifts the cup
off the table. Next, one of the right fingers approaches the
cup from below and pries the lid open. Each of these steps
requires high precision, delicate hand-eye coordination, and
rich contact. Millimeters of error would lead to task failure.

Existing systems for fine manipulation use expensive robots
and high-end sensors for precise state estimation (Ke et al.,
2021; Sundaresan et al., 2021; Kim et al., 2022; Paradis
et al., 2020). In this work, we seek to develop a low-cost
system for fine manipulation that is, in contrast, accessible
and reproducible. However, low-cost hardware is inevitably
less precise than high-end platforms, making the sensing
and planning challenge more pronounced. One promising
direction to resolve this is to incorporate learning into the
system. Humans also do not have industrial-grade propri-
oception (Áron Horváth et al., 2022), and yet we are able
to perform delicate tasks by learning from closed-loop vi-
sual feedback and actively compensating for errors. In our
system, we therefore train an end-to-end policy that directly
maps RGB images from commodity web cameras to the
actions. This pixel-to-action formulation is particularly suit-
able for fine manipulation, because fine manipulation often
involves objects with complex physical properties, such
that learning the manipulation policy is much simpler than
modeling the whole environment. Take the condiment cup
example: modeling the contact when nudging the cup, and
also the deformation when prying open the lid involves
complex physics on a large number of degrees of freedom.
Designing a model accurate enough for planning would
require significant research and task specific engineering
efforts. In contrast, the policy of nudging and opening the
cup is much simpler, since a closed-loop policy can react to
different positions of the cup and lid rather than precisely
anticipating how it will move in advance.

Training an end-to-end policy, however, presents its own
challenges. The performance of the policy depends heav-
ily on the training data distribution, and in the case of fine
manipulation, high-quality human demonstrations can pro-
vide tremendous value by allowing the system to learn from
human dexterity. We thus build a low-cost yet dexterous tele-
operation system for data collection, and a novel imitation
learning algorithm that learns effectively from the demon-
strations. We overview each component in the following
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Figure 1: ALOHA : A Low-cost Open-source Hardware System for Bimanual Teleoperation. The whole system costs <$20k with
off-the-shelf robots and 3D printed components. Left: The user teleoperates by backdriving the leader robots, with the follower robots
mirroring the motion. Right: ALOHA is capable of precise, contact-rich, and dynamic tasks. We show examples of both teleoperated and
learned skills.

two paragraphs.

Teleoperation system. We devise a teleoperation setup
with two sets of low-cost, off-the-shelf robot arms. They
are approximately scaled versions of each other, and we
use joint-space mapping for teleoperation. We augment this
setup with 3D printed components for easier backdriving,
leading to a highly capable teleoperation system within
a $20k budget. We showcase its capabilities in Figure 1,
including teleoperation of precise tasks such as threading
a zip tie, dynamic tasks such as juggling a ping pong ball,
and contact-rich tasks such as assembling the chain in the
NIST board #2 (nis, 2022). For more details about ALOHA,
please refer to the Appendix A.

Imitation learning algorithm. Tasks that require precision
and visual feedback present a significant challenge for imita-
tion learning, even with high-quality demonstrations. Small
errors in the predicted action can incur large differences in
the state, exacerbating the “compounding error” problem
of imitation learning (Ross et al., 2010; Tu et al., 2021;
Ke et al., 2021). To tackle this, we take inspiration from
action chunking, a concept in psychology that describes
how sequences of actions are grouped together as a chunk,
and executed as one unit (Lai et al., 2022). In our case,
the policy predicts the target joint positions for the next k
timesteps, rather than just one step at a time. This reduces
the effective horizon of the task by k-fold, mitigating com-
pounding errors. Predicting action sequences also helps
tackle temporally correlated confounders (Swamy et al.,
2022), such as pauses in demonstrations that are hard to
model with Markovian single-step policies. To further im-
prove the smoothness of the policy, we propose temporal
ensembling, which queries the policy more frequently and
averages across the overlapping action chunks. We imple-
ment action chunking policy with Transformers (Vaswani
et al., 2017), an architecture designed for sequence model-

ing, and train it as a conditional VAE (CVAE) (Sohn et al.,
2015; Kingma and Welling, 2013) to capture the variability
in human data. We name our method Action Chunking with
Transformers (ACT), and find that it significantly outper-
forms previous imitation learning algorithms on a range of
simulated and real-world fine manipulation tasks.

The key contribution of this paper is a low-cost system
for learning fine manipulation, comprising a teleoperation
system and a novel imitation learning algorithm. The tele-
operation system, despite its low cost, enables tasks with
high precision and rich contacts. The imitation learning
algorithm, Action Chunking with Transformers (ACT), is
capable of learning precise, close-loop behavior and drasti-
cally outperforms previous methods. The synergy between
these two parts allows learning of 6 fine manipulation skills
directly in the real-world, such as opening a translucent
condiment cup and slotting a battery with 80-90% success,
from only 10 minutes or 50 demonstration trajectories.

2. Related Work
Imitation learning for robotic manipulation. Imitation
learning allows a robot to directly learn from experts. Behav-
ioral cloning (BC) (Pomerleau, 1988) is one of the simplest
imitation learning algorithms, casting imitation as super-
vised learning from observations to actions. Many works
have then sought to improve BC, for example by incorpo-
rating history with various architectures (Mandlekar et al.,
2021; Shafiullah et al., 2022; Jang et al., 2022; Brohan
et al., 2022), using a different training objective (Florence
et al., 2021; Pari et al., 2021), and including regularization
(Rahmatizadeh et al., 2017). Other works emphasize the
multi-task or few-shot aspect of imitation learning (Duan
et al., 2017; James et al., 2018; Dasari and Gupta, 2020),
leveraging language (Shridhar et al., 2021; 2022; Jang et al.,
2022; Brohan et al., 2022), or exploiting the specific task
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structure (Pastor et al., 2009; Zeng et al., 2020; Johns, 2021;
Shridhar et al., 2022). Scaling these imitation learning al-
gorithms with more data has led to impressive systems that
can generalize to new objects, instructions, or scenes (Ebert
et al., 2021; Jang et al., 2022; Brohan et al., 2022; Kim
et al., 2022). In this work, we focus on building an imitation
learning system that is low-cost yet capable of performing
delicate, fine manipulation tasks. We tackle this from both
hardware and software, by building a high-performance
teleoperation system, and a novel imitation learning algo-
rithm that drastically improves previous methods on fine
manipulation tasks.

Addressing compounding errors. A major shortcoming
of BC is compounding errors, where errors from previous
timesteps accumulate and cause the robot to drift off of its
training distribution, leading to hard-to-recover states (Ross
et al., 2010; Tu et al., 2021). This problem is particularly
prominent in the fine manipulation setting (Ke et al., 2021).
One way to mitigate compounding errors is to allow addi-
tional on-policy interactions and expert corrections, such
as DAgger (Ross et al., 2010) and its variants (Kelly et al.,
2018; Menda et al., 2018; Hoque et al., 2021). However, ex-
pert annotation can be time-consuming and unnatural with a
teleoperation interface (Ke et al., 2021). One could also in-
ject noise at demonstration collection time to obtain datasets
with corrective behavior (Laskey et al., 2017), but for fine
manipulation, such noise injection can directly lead to task
failure, reducing the dexterity of teleoperation system. To
circumvent these issues, previous works generate synthetic
correction data in an offline manner (Florence et al., 2019;
Ke et al., 2021; Zhou et al., 2023). While they are limited
to settings where low-dimensional states are available, or a
specific type of task like grasping. Due to these limitations,
we need to address the compounding error problem from
a different angle, compatible with high-dimensional visual
observations. We propose to reduce the effective horizon of
tasks through action chunking, i.e., predicting an action se-
quence instead of a single action, and then ensemble across
overlapping action chunks to produce trajectories that are
both accurate and smooth.

3. Action Chunking with Transformers
As we will see in Section 4, existing imitation learning al-
gorithms perform poorly on fine-grained tasks that require
high-frequency control and closed-loop feedback. We there-
fore develop a novel algorithm, Action Chunking with Trans-
formers (ACT), to leverage the data collected by ALOHA.
We first summarize the pipeline of training ACT, then dive
into each of the design choices.

To train ACT on a new task, we first collect human demon-
strations using ALOHA. We record the joint positions of the
leader robots (i.e. input from the human operator) and use

them as actions. It is important to use the leader joint posi-
tions instead of the follower’s, because the amount of force
applied is implicitly defined by the difference between them,
through the low-level PID controller. The observations are
composed of the current joint positions of follower robots
and the image feed from 4 cameras. Next, we train ACT
to predict the sequence of future actions given the current
observations. An action here corresponds to the target joint
positions for both arms in the next time step. Intuitively,
ACT tries to imitate what a human operator would do in
the following time steps given current observations. These
target joint positions are then tracked by the low-level, high-
frequency PID controller inside Dynamixel motors. At test
time, we load the policy that achieves the lowest validation
loss and roll it out in the environment. The main chal-
lenge that arises is compounding errors, where errors from
previous actions lead to states that are outside of training
distribution.

3.1. Action Chunking and Temporal Ensemble

To combat the compounding errors of imitation learning
in a way that is compatible with pixel-to-action policies
(Figure 2), we seek to reduce the effective horizon of long
trajectories collected at high frequency. We are inspired
by action chunking, a neuroscience concept where individ-
ual actions are grouped together and executed as one unit,
making them more efficient to store and execute (Lai et al.,
2022). Intuitively, a chunk of actions could correspond to
grasping a corner of the candy wrapper or inserting a battery
into the slot. In our implementation, we fix the chunk size
to be k: every k steps, the agent receives an observation,
generates the next k actions, and executes the actions in
sequence (Figure 3). This implies a k-fold reduction in the
effective horizon of the task. Concretely, the policy models
πθ(at:t+k|st) instead of πθ(at|st). Chunking can also help
model non-Markovian behavior in human demonstrations.
Specifically, a single-step policy would struggle with tempo-
rally correlated confounders, such as pauses in the middle
of a demonstration (Swamy et al., 2022), since the behavior
not only depends on the state, but also the timestep. Action
chunking can mitigate this issue when the confounder is
within a chunk, without introducing the causal confusion
issue for history-conditioned policies (de Haan et al., 2019).

A naïve implementation of action chunking can be sub-
optimal: a new environment observation is incorporated
abruptly every k steps and can result in jerky robot mo-
tion. To improve smoothness and avoid discrete switching
between executing and observing, we query the policy at
every timestep. This makes different action chunks overlap
with each other, and at a given timestep there will be more
than one predicted action. We illustrate this in Figure 3 and
propose a temporal ensemble to combine these predictions.
Our temporal ensemble performs a weighted average over
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Action Chunking + Temporal Ensemble
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Figure 2: Architecture of Action Chunking with Transformers (ACT). We train ACT as a Conditional VAE (CVAE), which has an encoder
and a decoder. Left: The encoder of the CVAE compresses action sequence and joint observation into z, the style variable. The encoder is
discarded at test time. Right: The decoder or policy of ACT synthesizes images from multiple viewpoints, joint positions, and z with a
transformer encoder, and predicts a sequence of actions with a transformer decoder. z is simply set to zero at test time.
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Figure 3: We employ both Action Chunking and Temporal En-
sembling when applying actions, instead of interleaving observing
and executing.

these predictions with an exponential weighting scheme
wi = exp(−m ∗ i), where w0 is the weight for the oldest
action. The speed for incorporating new observation is gov-
erned by m, where a smaller m means faster incorporation.
We note that unlike typical smoothing, where the current ac-
tion is aggregated with actions in adjacent timesteps, which
leads to bias, we aggregate actions predicted for the same
timestep. This procedure also incurs no additional training
cost, only extra inference-time computation. In practice, we
find both action chunking and temporal ensembling to be
important for the success of ACT, which produces precise
and smooth motion. We discuss these components in more
detail in the ablation studies in Subsection 5.1.

3.2. Modeling human data

Another challenge that arises is learning from noisy human
demonstrations. Given the same observation, a human can
use different trajectories to solve the task. Humans will
also be more stochastic in regions where precision matters
less (Li, 2006). Thus, it is important for the policy to fo-
cus on regions where high precision matters. We tackle
this problem by training our action chunking policy as a
generative model. Specifically, we train the policy as a con-
ditional variational autoencoder (CVAE) (Sohn et al., 2015),

Algorithm 1 ACT Training
1: Given: Demo dataset D, chunk size k, weight β.
2: Let at, ot represent action and observation at timestep t, ōt

represent ot without image observations.
3: Initialize encoder qϕ(z|at:t+k, ōt)
4: Initialize decoder πθ(ât:t+k|ot, z)
5: for iteration n = 1, 2, ... do
6: Sample ot, at:t+k from D
7: Sample z from qϕ(z|at:t+k, ōt)
8: Predict ât:t+k from πθ(ât:t+k|ot, z)
9: Lreconst = MSE(ât:t+k, at:t+k)

10: Lreg = DKL(qϕ(z|at:t+k, ōt) ∥ N (0, I ))
11: Update θ, ϕ with ADAM and L = Lreconst + βLreg

12: end for

Algorithm 2 ACT Inference
1: Given: trained πθ , episode length T , weight m.
2: Initialize FIFO buffers B[0 : T ], where B[t] stores actions

predicted for timestep t.
3: for timestep t = 1, 2, ...T do
4: Predict ât:t+k with πθ(ât:t+k|ot, z) where z = 0
5: Add ât:t+k to buffers B[t : t+ k] respectively
6: Obtain current step actions At = B[t]
7: Apply at =

∑
i wiAt[i]/

∑
i wi, with wi = exp(−m ∗ i)

8: end for

to generate an action sequence conditioned on current obser-
vations. The CVAE has two components: a CVAE encoder
and a CVAE decoder, illustrated on the left and right side
of Figure 2 respectively. The CVAE encoder only serves
to train the CVAE decoder (the policy) and is discarded at
test time. Specifically, the CVAE encoder predicts the mean
and variance of the style variable z’s distribution, which is
parameterized as a diagonal Gaussian, given the current ob-
servation and action sequence as inputs. For faster training
in practice, we leave out the image observations and only
condition on the proprioceptive observation and the action
sequence. The CVAE decoder, i.e. the policy, conditions
on both z and the current observations (images + joint po-
sitions) to predict the action sequence. At test time, we set
z to be the mean of the prior distribution i.e. zero to deter-
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ministically decode. The whole model is trained to maxi-
mize the log-likelihood of demonstration action chunks, i.e.
minθ −

∑
st,at:t+k∈D log πθ(at:t+k|st), with the standard

VAE objective which has two terms: a reconstruction loss
and a term that regularizes the encoder to a Gaussian prior.
Following (Higgins et al., 2016), we weight the second term
with a hyperparameter β. Intuitively, higher β will result
in less information transmitted in z (Tishby and Zaslavsky,
2015). Overall, we found the CVAE objective to be essential
in learning precise tasks from human demonstrations. We
include a more detailed discussion in Subsection 5.2.

3.3. Implementing ACT

We implement the CVAE encoder and decoder with trans-
formers, as transformers are designed for both synthesiz-
ing information across a sequence and generating new se-
quences. The CVAE encoder is implemented with a BERT-
like transformer encoder (Devlin et al., 2019). The inputs
to the encoder are the current joint positions and the tar-
get action sequence of length k from the demonstration
dataset, prepended by a learned “[CLS]” token similar to
BERT. This forms a k+2 length input (Figure 2 left). After
passing through the transformer, the feature corresponding
to “[CLS]” is used to predict the mean and variance of the
“style variable” z, which is then used as input to the decoder.
The CVAE decoder (i.e. the policy) takes the current obser-
vations and z as the input, and predicts the next k actions
(Figure 2 right). We use ResNet image encoders, a trans-
former encoder, and a transformer decoder to implement
the CVAE decoder. Intuitively, the transformer encoder syn-
thesizes information from different camera viewpoints, the
joint positions, and the style variable, and the transformer
decoder generates a coherent action sequence. The observa-
tion includes 4 RGB images, each at 480× 640 resolution,
and joint positions for two robot arms (7+7=14 DoF in to-
tal). The action space is the absolute joint positions for two
robots, a 14-dimensional vector. Thus with action chunking,
the policy outputs a k × 14 tensor given the current obser-
vation. The policy first process the images with ResNet18
backbones (He et al., 2015), which convert 480× 640× 3
RGB images into 15 × 20 × 512 feature maps. We then
flatten along the spatial dimension to obtain a sequence of
300 × 512. To preserve the spatial information, we add a
2D sinusoidal position embedding to the feature sequence
(Carion et al., 2020). Repeating this for all 4 images gives
a feature sequence of 1200 × 512 in dimension. We then
append two more features: the current joint positions and
the “style variable” z. They are projected from their orig-
inal dimensions to 512 through linear layers respectively.
Thus, the input to the transformer encoder is 1202 × 512.
The transformer decoder conditions on the encoder output
through cross-attention, where the input sequence is a fixed
position embedding, with dimensions k× 512, and the keys

and values are coming from the encoder. This gives the
transformer decoder an output dimension of k× 512, which
is then down-projected with an MLP into k × 14, corre-
sponding to the predicted target joint positions for the next
k steps. We use L1 loss for reconstruction instead of the
more common L2 loss: we noted that L1 loss leads to more
precise modeling of the action sequence. We also noted
degraded performance when using delta joint positions as
actions instead of target joint positions. We include a de-
tailed architecture diagram in Appendix C.

We summarize the training and inference of ACT in Algo-
rithms 1 and 2. The model has around 80M parameters,
and we train from scratch for each task. The training takes
around 5 hours on a single 11G RTX 2080 Ti GPU, and the
inference time is around 0.01 seconds on the same machine.

4. Experiments
We present experiments to evaluate ACT’s performance on
fine manipulation tasks. For ease of reproducibility, we
build two simulated fine manipulation tasks in MuJoCo
(Todorov et al., 2012), in addition to 6 real-world tasks with
ALOHA.

4.1. Tasks

All 8 tasks require fine-grained, bimanual manipulation,
and are illustrated in Figure 5. For Slide Ziploc, the right
gripper needs to accurately grasp the slider of the ziploc
bag and open it, with the left gripper securing the body of
the bag. For Slot Battery, the right gripper needs to first
place the battery into the slot of the remote controller, then
using the tip of fingers to delicately push in the edge of the
battery, until it is fully inserted. Because the spring inside
the battery slot causes the remote controller to move in the
opposite direction during insertion, the left gripper pushes
down on the remote to keep it in place. For Open Cup, the
goal is to open the lid of a small condiment cup. Because of
the cup’s small size, the grippers cannot grasp the body of
the cup by just approaching it from the side. Therefore we
leverage both grippers: the right fingers first lightly tap near
the edge of the cup to tip it over, and then nudge it into the
open left gripper. This nudging step requires high precision
and closing the loop on visual perception. The left gripper
then closes gently and lifts the cup off the table, followed
by the right finger prying open the lid, which also requires
precision to not miss the lid or damage the cup. The goal of
Thread Velcro is to insert one end of a velcro cable tie into
the small loop attached to other end. The left gripper needs
to first pick up the velcro tie from the table, followed by the
right gripper pinching the tail of the tie in mid-air. Then,
both arms coordinate to insert one end of the velcro tie into
the other in mid-air. The loop measures 3mm x 25mm, while
the velcro tie measures 2mm x 10-25mm depending on the
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Cube Transfer (sim) Bimanual Insertion (sim) Slide Ziploc (real) Slot Battery (real)

Touched Lifted Transfer Grasp Contact Insert Grasp Pinch Open Grasp Place Insert

BC-ConvMLP 34 | 3 17 | 1 1 | 0 5 | 0 1 | 0 1 | 0 0 0 0 0 0 0

BeT 60 | 16 51 | 13 27 | 1 21 | 0 4 | 0 3 | 0 8 0 0 4 0 0

RT-1 44 | 4 33 | 2 2 | 0 2 | 0 0 | 0 1 | 0 4 0 0 4 0 0

VINN 13 | 17 9 | 11 3 | 0 6 | 0 1 | 0 1 | 0 28 0 0 20 0 0

ACT (Ours) 97 | 82 90 | 60 86 | 50 93 | 76 90 | 66 32 | 20 92 96 88 100 100 96

Table 1: Success rate (%) for 2 simulated and 2 real-world tasks, comparing our method with 4 baselines. For the two simulated tasks,
we report [training with scripted data | training with human data], with 3 seeds and 50 policy evaluations each. For the real-world tasks,
we report training with human data, with 1 seed and 25 evaluations. Overall, ACT significantly outperforms previous methods.

Open Cup (real) Thread Velcro (real) Prep Tape (real) Put On Shoe (real)

Tip Over Grasp Open Lid Lift Grasp Insert Grasp Cut Handover Hang Lift Insert Support Secure

BeT 12 0 0 24 0 0 8 0 0 0 12 0 0 0

ACT (Ours) 100 96 84 92 40 20 96 92 72 64 100 92 92 92

Table 2: Success rate (%) for the remaining 3 real-world tasks. We only compare with the best performing baseline BeT.

position. For this task to be successful, the robot must use
visual feedback to correct for perturbations with each grasp,
as even a few millimeters of error during the first grasp will
compound in the second grasp mid-air, giving more than a
10mm deviation in the insertion phase. For Prep Tape, the
goal is to hang a small segment of the tape on the edge of a
cardboard box. The right gripper first grasps the tape and
cuts it with the tape dispenser’s blade, and then hands the
tape segment to the left gripper mid-air. Next, both arms
approach the box, the left arm gently lays the tape segment
on the box surface, and the right fingers push down on the
tape to prevent slipping, followed by the left arm opening
its gripper to release the tape. Similar to Thread Velcro, this
task requires multiple steps of delicate coordination between
the two arms. For Put On Shoe, the goal is to put the shoe
on a fixed manniquin foot, and secure it with the shoe’s
velcro strap. The arms would first need to grasp the tongue
and collar of the shoe respectively, lift it up and approach
the foot. Putting the shoe on is challenging because of the
tight fitting: the arms would need to coordinate carefully to
nudge the foot in, and both grasps need to be robust enough
to counteract the friction between the sock and shoe. Then,
the left arm goes around to the bottom of the shoe to support
it from dropping, followed by the right arm flipping the
velcro strap and pressing it against the shoe to secure. The
task is only considered successful if the shoe clings to the
foot after both arms releases.

In addition to the delicate bimanual control required to solve
these tasks, the objects we use also present a significant
perception challenge. For example, the ziploc bag is largely
transparent, with a thin blue sealing line. Both the wrinkles
on the bag and the reflective candy wrappers inside can vary
during the randomization, and distract the perception system.
Other transparent or translucent objects include the tape and

both the lid and body of the condiment cup, making them
hard to perceive precisely and ill-suited for depth cameras.
The black table top also creates a low-contrast against many
objects of interest, such as the black velcro cable tie and
the black tape dispenser. Especially from the top view, it is
challenging to localize the velcro tie because of the small
projected area.

4.2. Data Collection

For all 6 real-world tasks, we collect demonstrations using
ALOHA teleoperation. Each episode takes 8-14 seconds for
the human operator to perform depending on the complexity
of the task, which translates to 400-700 time steps given the
control frequency of 50Hz. We record 50 demonstrations
for each task, except for Thread Velcro which has 100. The
total amount for demonstrations is thus around 10-20 min-
utes of data for each task, and 30-60 minutes in wall-clock
time because of resets and teleoperator mistakes. For the
two simulated tasks, we collect two types of demonstrations:
one type with a scripted policy and one with human demon-
strations. To teleoperate in simulation, we use the “leader
robots” of ALOHA to control the simulated robot. In both
cases, we record 50 successful demonstrations.

We emphasize that all human demonstrations are inherently
stochastic, even though a single person collects all of the
demonstrations. Take the mid-air hand handover of the tape
segment as an example: the exact position of the handover
is different across each episode. The human has no visual or
haptic reference to perform it in the same position. Thus to
successfully perform the task, the policy will need to learn
that the two grippers should never collide with each other
during the handover, and the left gripper should always
move to a position that can grasp the tape, instead of trying
to memorize where exactly the handover happens, which
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can vary across demonstrations.

4.3. Experiment Results

We compare ACT with four prior imitation learning meth-
ods. BC-ConvMLP is the simplest yet most widely used
baseline (Zhang et al., 2017; Jang et al., 2022), which pro-
cesses the current image observations with a convolutional
network, whose output features are concatenated with the
joint positions to predict the action. BeT (Shafiullah et al.,
2022) also leverages Transformers as the architecture, but
with key differences: (1) no action chunking: the model
predicts one action given the history of observations; and
(2) the image observations are pre-processed by a separately
trained frozen visual encoder. That is, the perception and
control networks are not jointly optimized. RT-1 (Brohan
et al., 2022) is another Transformer-based architecture that
predicts one action from a fixed-length history of past ob-
servations. Both BeT and RT-1 discretize the action space:
the output is a categorical distribution over discrete bins,
but with an added continuous offset from the bin-center in
the case of BeT. Our method, ACT, instead directly predicts
continuous actions, motivated by the precision required in
fine manipulation. Lastly, VINN (Pari et al., 2021) is a
non-parametric method that assumes access to the demon-
strations at test time. Given a new observation, it retrieves
the k observations with the most similar visual features, and
returns an action using weighted k-nearest-neighbors. The
visual feature extractor is a pretrained ResNet finetuned on
demonstration data with unsupervised learning. We care-
fully tune the hyperparameters of these four prior methods
using cube transfer. Details of the hyperparameters are
provided in Appendix D.

As a detailed comparison with prior methods, we report the
average success rate in Table 1 for two simulated and two
real tasks. For simulated tasks, we average performance
across 3 random seeds with 50 trials each. We report the
success rate on both scripted data (left of separation bar) and
human data (right of separation bar). For real-world tasks,
we run one seed and evaluate with 25 trials. ACT achieves
the highest success rate compared to all prior methods, out-
performing the second best algorithm by a large margin
on each task. For the two simulated tasks with scripted or
human data, ACT outperforms the best previous method
in success rate by 59%, 49%, 29%, and 20%. While pre-
vious methods are able to make progress in the first two
subtasks, the final success rate remains low, below 30%.
For the two real-world tasks Slide Ziploc and Slot Battery,
ACT achieves 88% and 96% final success rates respectively,
with other methods making no progress past the first stage.
We attribute the poor performance of prior methods to com-
pounding errors and non-Markovian behavior in the data:
the behavior degrades significantly towards the end of an
episode, and the robot can pause indefinitely for certain

states. ACT mitigates both issues with action chunking. Our
ablations in Subsection 5.1 also shows that chunking can
significantly improve these prior methods when incorpo-
rated. In addition, we notice a drop in performance for all
methods when switching from scripted data to human data
in simulated tasks: the stochasticity and multi-modality of
human demonstrations make imitation learning a lot harder.

We report the success rate of the 3 remaining real-world
tasks in Table 2. For these tasks, we only compare with BeT,
which has the highest task success rate so far. Our method
ACT reaches 84% success for Cup Open, 20% for Thread
Velcro, 64% for Prep Tape and 92% for Put On Shoe, again
outperforming BeT, which achieve zero final success on
these challenging tasks. We observe relatively low success
of ACT in Thread Velcro, where the success rate decreased
by roughly half at every stage, from 92% success at the first
stage to 20% final success. The failure modes we observe
are 1) at stage 2, the right arm closes its gripper too early
and fails to grasp the tail of the cable tie mid-air, and 2) in
stage 3, the insertion is not precise enough and misses the
loop. In both cases, it is hard to determine the exact position
of the cable tie from image observations: the contrast is low
between the black cable tie and the background, and the
cable tie only occupies a small fraction of the image.

5. Ablations
ACT employs action chunking and temporal ensembling
to mitigate compounding errors and better handle non-
Markovian demonstrations. It also trains the policy as a
conditional VAE to model the noisy human demonstrations.
In this section, we ablate each of these components, to-
gether with a user study that highlights the necessity of
high-frequency control in ALOHA. We report results across
a total of four settings: two simulated tasks with scripted or
human demonstration.

5.1. Action Chunking and Temporal Ensembling

In Subsection 4.3, we observed that ACT significantly out-
performs previous methods that only predict single-step
actions, with the hypothesis that action chunking is the key
design choice. Since k dictates how long the sequence in
each “chunk” is, we can analyze this hypothesis by vary-
ing k. k = 1 corresponds to no action chunking, and
k = episode_length corresponds to fully open-loop con-
trol, where the robot outputs the entire episode’s action
sequence based on the first observation. We disable tem-
poral ensembling in these experiments to only measure the
effect of chunking, and trained separate policies for each
k. In Figure 4 (a), we plot the success rate averaged across
4 settings, corresponding to 2 simulated tasks with either
human or scripted data, with the blue line representing ACT
without the temporal ensemble. We observe that perfor-
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Table 1
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Figure 4: (a) We augment two baselines with action chunking, with different values of chunk size k on the x-axis, and success rate on the
y-axis. Both methods significantly benefit from action chunking, suggesting that it is a generally useful technique. (b) Temporal Ensemble
(TE) improves our method and BC-ConvMLP, while hurting VINN. (c) We compare with and without the CVAE training, showing that it is
crucial when learning from human data. (d) We plot the distribution of task completion time in our user study, where we task participants
to perform two tasks, at 5Hz or 50Hz teleoperation frequency. Lowering the frequency results in a 62% slowdown in completion time.

mance improves drastically from 1% at k = 1 to 44% at
k = 100, then slightly tapers down with higher k. This
illustrates that more chunking and a lower effective horizon
generally improve performance. We attribute the slight dip
at k = 200, 400 (i.e., close to open-loop control) to the
lack of reactive behavior and the difficulty in modeling long
action sequences. To further evaluate the effectiveness and
generality of action chunking, we augment two baseline
methods with action chunking. For BC-ConvMLP, we sim-
ply increase the output dimension to k ∗ action_dim, and
for VINN, we retrieve the next k actions. We visualize their
performance in Figure 4 (a) with different k, showing trends
consistent with ACT, where more action chunking improves
performance. While ACT still outperforms both augmented
baselines with sizable gains, these results suggest that action
chunking is generally beneficial for imitation learning in
these settings.

We then ablate the temporal ensemble by comparing the
highest success rate with or without it, again across the 4
aforementioned tasks and different k. We note that exper-
iments with and without the temporal ensemble are sepa-
rately tuned: hyperparameters that work best for no tempo-
ral ensemble may not be optimal with a temporal ensemble.
In Figure 4 (b), we show that BC-ConvMLP benefits from
temporal ensembling the most with a 4% gain, followed by
a 3.3% gain for our method. We notice a performance drop
for VINN, a non-parametric method. We hypothesize that
a temporal ensemble mostly benefits parametric methods
by smoothing out the modeling errors. In contrast, VINN
retrieves ground-truth actions from the dataset and does not
suffer from this issue.

5.2. Training with CVAE

We train ACT with CVAE objective to model human demon-
strations, which can be noisy and contain multi-modal be-
havior. In this section, we compare with ACT without the
CVAE objective, which simply predicts a sequence of ac-
tions given current observation, and trained with L1 loss. In

Figure 4 (c), we visualize the success rate aggregated across
2 simulated tasks, and separately plot training with scripted
data and with human data. We can see that when training on
scripted data, the removal of CVAE objective makes almost
no difference in performance, because dataset is fully deter-
ministic. While for human data, there is a significant drop
from 35.3% to 2%. This illustrates that the CVAE objective
is crucial when learning from human demonstrations.

5.3. Is High-Frequency Necessary?

Lastly, we conduct a user study to illustrate the necessity of
high-frequency teleoperation for fine manipulation. With
the same hardware setup, we lower the frequency from 50Hz
to 5Hz, a control frequency that is similar to recent works
that use high-capacity deep networks for imitation learning
(Brohan et al., 2022; Zhou et al., 2023). We pick two fine-
grained tasks: threading a zip cable tie and un-stacking two
plastic cups. Both require millimeter-level precision and
closed-loop visual feedback. We perform the study with
6 participants who have varying levels of experience with
teleoperation, though none had used ALOHA before. The
participants were recruited from among computer science
graduate students, with 4 men and 2 women aged 22-25
The order of tasks and frequencies are randomized for each
participant, and each participant was provided with a 2 min-
utes practice period before each trial. We recorded the time
it took to perform the task for 3 trials, and visualize the
data in Figure 4 (d). On average, it took 33s for partici-
pants to thread the zip tie at 5Hz, which is lowered to 20s
at 50Hz. For separating plastic cups, increasing the con-
trol frequency lowered the task duration from 16s to 10s.
Overall, our setup (i.e. 50Hz) allows the participants to per-
form highly dexterous and precise tasks in a short amount of
time. However, reducing the frequency from 50Hz to 5Hz
results in a 62% increase in teleoperation time. We then
use “Repeated Measures Designs”, a statistical procedure,
to formally verify that 50Hz teleoperation outperforms 5Hz
with p-value <0.001. We include more details about the
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study in Appendix E.

6. Limitations and Conclusion
We present a low-cost system for fine manipulation, com-
prising a teleoperation system ALOHA and a novel imitation
learning algorithm ACT. The synergy between these two
parts allows us to learn fine manipulation skills directly in
the real-world, such as opening a translucent condiment
cup and slotting a battery with a 80-90% success rate and
around 10 min of demonstrations. While the system is quite
capable, there exist tasks that are beyond the capability of
ALOHA and ACT, such as buttoning up a dress shirt. We
include a more detailed discussion about limitations in Ap-
pendix F. Overall, we hope that this low-cost open-source
system represents an important step and accessible resource
towards advancing fine-grained robotic manipulation.
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A. ALOHA: A Low-cost Open-source
Hardware System for Bimanual
Teleoperation

We seek to develop an accessible and high-performance
teleoperation system for fine manipulation. We summarize
our design considerations into the following 5 principles.

1. Low-cost: The entire system should be within budget
for most robotic labs, comparable to a single industrial
arm.

2. Versatile: It can be applied to a wide range of fine
manipulation tasks with real-world objects.

3. User-friendly: The system should be intuitive, reliable,
and easy to use.

4. Repairable: The setup can be easily repaired by re-
searchers, when it inevitably breaks.

5. Easy-to-build: It can be quickly assembled by re-
searchers, with easy-to-source materials.

When choosing the robot to use, principles 1, 4, and 5 lead
us to build a bimanual parallel-jaw grippers setup with two
ViperX 6-DoF robot arms (vx; Wiznitzer et al.). We do not
employ dexterous hands due to price and maintenance con-
siderations. The ViperX arm used has a working payload of
750g and 1.5m span, with an accuracy of 5-8mm. The robot
is modular and simple to repair: in the case of motor failure,
the low-cost Dynamixel motors can be easily replaced. The
robot can be purchased off-the-shelf for around $5600. The
OEM fingers, however, are not versatile enough to handle
fine manipulation tasks. We thus design our own 3D printed
“see-through” fingers and fit it with gripping tape (Fig 7).
This allows for good visibility when performing delicate
operations, and robust grip even with thin plastic films.

We then seek to design a teleoperation system that is max-
imally user-friendly around the ViperX robot. Instead of
mapping the hand pose captured by a VR controller or cam-
era to the end-effector pose of the robot, i.e. task-space
mapping, we use direct joint-space mapping from a smaller
robot, WidowX, manufactured by the same company and
costs $3300 (wx). The user teleoperates by backdriving
the smaller WidowX (“the leader”), whose joints are syn-
chronized with the larger ViperX (“the follower”). When
developing the setup, we noticed a few benefits of using
joint-space mapping compared to task-space. (1) Fine ma-
nipulation often requires operating near singularities of the
robot, which in our case has 6 degrees of freedom and no
redundancy. Off-the-shelf inverse kinematics (IK) fails fre-
quently in this setting. Joint space mapping, on the other
hand, guarantees high-bandwidth control within the joint
limits, while also requiring less computation and reducing

latency. (2) The weight of the leader robot prevents the
user from moving too fast, and also dampens small vibra-
tions. We notice better performance on precise tasks with
joint-space mapping rather than holding a VR controller.
To further improve the teleoperation experience, we design
a 3D-printed “handle and scissor” mechanism that can be
retrofitted to the leader robot (Fig 7). It reduces the force
required from the operator to backdrive the motor, and al-
lows for continuous control of the gripper, instead of binary
opening or closing. We also design a rubber band load
balancing mechanism that partially counteracts the gravity
on the leader side. It reduces the effort needed from the
operator and makes longer teleoperation sessions (e.g. >30
minutes) possible.

The rest of the setup includes a robot cage with 20×20mm
aluminum extrusions, reinforced by crossing steel cables.
There is a total of four Logitech C922x webcams, each
streaming 480×640 RGB images. Two of the webcams
are mounted on the wrist of the follower robots, allowing
for a close-up view of the grippers. The remaining two
cameras are mounted on the front and at the top respectively
(Fig 7). All robots and webcams are connected to a Linux
workstation through USB ports.

Specifically, the robot is composed of a chain of Dynamixel
actuators, with an integrated controller and driver. We set
all actuators to position control mode, where the underly-
ing proprietary PID controller tracks the position target at
>1kHz. The joint targets are read from leader robots and
sent to follower robots at 50Hz. It is worth noting that
this is not a bilateral system, in which case a much higher
frequency is needed to e.g. enable force reflection (Peñín
et al., 2002). A teleoperation frequency of 50Hz is common
among other non-bilateral systems (Berthet-Rayne et al.,
2018; Rezaei-Shoshtari et al., 2019; Li et al., 2022) and in
practice demonstrates sufficient performance. We include a
quantitative evaluation later in this section.

With the design considerations above, we build the biman-
ual teleoperation setup ALOHA within a 20k USD budget,
comparable to a single research arm such as Franka Emika
Panda. ALOHA enables the teleoperation of:

• Precise tasks such as threading zip cable ties, picking
credit cards out of wallets, and opening or closing ziploc
bags.

• Contact-rich tasks such as inserting 288-pin RAM into
a computer motherboard, turning pages of a book, and
assembling the chains and belts in the NIST board #2 (nis,
2022)

• Dynamic tasks such as juggling a ping pong ball with a
real ping pong paddle, balancing the ball without it falling
off, and swinging open plastic bags in the air.
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Slide Ziploc: Open the ziploc bag that is standing upright on the table. The bag is randomized along the 15cm white line. It is dropped from ~5cm 
above the table to randomize the deformation, which affects the height and appearance of the bag. The left arm first grasps the bag body (Subtask#1 
Grasp) followed by the right arm pinching the slider (Subtask #2 Pinch). Then the right arm moves right to unzip the bag (Subtask #3 Open).

Slot Battery: Insert the battery into the remote controller. The controller is randomized along the 15cm white line. The battery is initialized in 
roughly the same position with different rotations. The right arm first grasps the battery (Subtask#1 Grasp) then places it into the slot (Subtask#2 
Place). The left arm presses onto the remote to prevent it from sliding, while the right arm pushes in the battery (Subtask#3 Insert).

Open Cup: Pick up and open the lid of a translucent condiment cup. The cup is randomized along the 15cm white line. Both arms approach the cup, 
and the right gripper gently tips over the cup (Subtask#1 Tip Over) and pushes it into the gripper of the left arm. The left arm then gently closes its 
gripper and lifts the cup off the table (Subtask#2 Grasp). Next, the right gripper approaches the cup lid from below and prys open the lid.

Unwrap Candy Expose the candy by untwisting the wrapper. The candy is randomized along the 15cm white line. The right arm first lifts the candy 
by pinching one side of the wrapper (Subtask#1 Lift). Then both arms coordinate to let the left gripper pinch the other end of the wrapper mid-air 
(Subtask#2 Hold). Next, both arms pull to untwist the candy wrapper (Subtask#2 Untwist). Finally, the left arm holds the candy, while the right arm 
pinches the wrapper to peel it open.

Thread Velcro: Pick up the velcro cable tie and insert one end into the small loop on the other end. The velcro tie is randomized along the 15cm 
white line. The left arm first picks up the velcro tie by pinching near the plastic loop (Subtask#1 Lift). The right arm grasps the tail of the velcro tie 
mid-air (Subtask#2 Grasp). Next, both arms coordinate to deform the velcro tie and insert one end of it into the plastic loop on the other end.

Prep Tape: Hang a short segment of tape on the edge of the box. The tape dispenser is randomized along the 15cm white line. First, the right gripper 
grasps the tape from the side (Subtask#1 Grasp). It then lifts the tape and pulls to unroll it, followed by cutting it with the dispenser blade 
(Subtask#2 Cut). Next, the right gripper hands the tape segment to the left gripper in mid-air (Subtask#3 Handover), and both arms move toward the 
corner of the stationery cardboard box. The left arm then lays the tape segment flat on the surface of the box while the right gripper pushes down on 
the tape to prevent slipping. The left arm then opens its gripper to release the tape (Subtask#4 Hang). 

#1 #2 #3init.

#1 #2 #3init.

#1 #2 #3init.

#1 #2 #3init.

#1 #2 #3init.

#1 #2 #3init.

#4

#4

Real-World Task Definitions

Put On Shoe: Put a velcro-strap shoe on a fixed manniquin foot. The shoe pose is randomized along the 15cm white line. First, both left and right 
grippers pick up the shoe (Subtask#1 Lift). Then both arms coordinate to put it on, with the heel touching the heel counter (Subtask#2 Insert). Next, 
the left arm moves to support the shoe (Subtask#3 Support), followed by the right arm securing the velcro strap (Subtask#4 Secure).

#1 #2 #3init. #4

Figure 5: Real-World Task Definitions. For each of the 6 real-world tasks, we illustrate the initializations and the subtasks.
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Left: Cube Transfer. Transfer the red cube to the other arm. The right arm touches (#1) and grasps (#2) the red cube, then hands it to the left arm.
Right: Bimanual Insertion. Insert the red peg into the blue socket. Both arms grasp (#1), let socket and peg make contact (#2) and insertion.

20cm

20
cm

10cm

20cm

10cm

20
cm

init. #1 #2 #3 init. #1 #2 #3

rand. region rand. regions

Figure 6: Simulated Task Definitions. For each of the 2 simulated tasks, we illustrate the initializations and the subtasks.

top camera

front camera

wrist camerawrist camera

grip tape

see-through gripper

adjustable velcro
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#Dofs

Reach
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Repeatability

Accuracy

Working Payload

6+gripper

750mm

1500mm

1mm

5-8mm

750g

ViperX 6dof Arm (follower)

red: bimanual workspace

Figure 7: Left: Camera viewpoints of the front, top, and two wrist cameras, together with an illustration of the bimanual workspace of
ALOHA. Middle: Detailed view of the “handle and scissor” mechanism and custom grippers. Right: Technical spec of the ViperX 6dof
robot (vx).

Precise tasks Contact-rich tasks Dynamic tasks

Thread zip tie Pick credit card Open ziploc RAM insertion Turn pages NIST board belt Juggle ping pong Balance ping pong Swing open bags
(in 5s) (in 5s) (in 5s) (in 30s) (in 30s) (in 30s) (for 5 times) (for 20s) (in 5s)

10/10 10/10 10/10 9/10 10/10 8/10 4/10 9/10 10/10

Table 3: Teleoperation success. We report the number of successes out of 10 trials. The task is only successful if completed within
the time limit specified in the table, excepting the two ping pong tasks where success is measured in duration. All objects used are
off-the-shelf.

(a) Slide open ziploc (b) RAM insertion (c) Swing open plastic bag

High-effort Insertion

3m/s Fling

Figure 8: Teleoperation accuracy. We plot the position tracking error of the ALOHA teleoperation system for three representative tasks.
(a) A relatively smooth task of sliding open a ziploc bag. The tracking error is consistently below 2cm with an average of 0.68cm,
comparable to the accuracy of the robot arm. (b) The tracking error can spike when the follower arms are exerting high-amount of force,
e.g. inserting a RAM stick into a tight-fitting slot. This is due to the non-bilateral nature of the system. (c) High tracking error can also
occur during sudden acceleration, as in the case of swinging open a plastic bag. This is due to a combination of teleoperation delay and
motor torque limitations.

Skills such as threading a zip tie, inserting RAM, and jug-
gling ping pong ball, to our knowledge, are not available
for existing teleoperation systems with 5-10x the budget
(Handa et al., 2019; sha, 2022). We include quantitative
human teleoperation success rates for each of the tasks in

Table 3. We also plot the tracking performance for one rep-
resentative task in each of the three categories in Figure 8.
For opening ziploc bags (precise task), the tracking error
is consistently under 2cm, with an average of 0.68cm. The
error is comparable to the robotic arm’s accuracy of 5-8mm.
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For RAM insertion (contact-rich task), the tracking error is
generally under 2cm with the exception of insertion-time,
where high-amount of force is needed to secure the RAM in
the slot. This is expected as our setup is not bilateral, and
the tracking error defines how much force is applied through
the low-level PID controller. Lastly for swinging open a
plastic bag (dynamic task), both hands grasp the opening
and fling twice to let air fill in the bag. We measure a peak
velocity of 3m/s, and the rapid change in speed results in
spikes of tracking error at around 25cm. We attribute this
to a combination of teleoperation delay and motor torque
limitations. While despite these large spikes in tracking
error for forceful and dynamic motions, the teleoperation
success rate remains high. As shown in table 3, our oper-
ator is able to insert RAM in 30 seconds for 9 out of 10
times, and swing open the plastic bag in 5 seconds 10 out
of 10 times. We include a more detailed price & capability
comparison in Appendix A.1, as well as more skills that
ALOHA is capable of in Figure 9. To make ALOHA more
accessible, we open-source all software and hardware with a
detailed tutorial covering 3D printing, assembling the frame
to software installations.

A.1. Comparing ALOHA with Prior Teleoperation
Setups

In Figure 9, we include more teleoperated tasks that ALOHA
is capable of. We stress that all objects are taken directly
from the real world without any modification, to demon-
strate ALOHA’s generality in real life settings.

ALOHA exploits the kinesthetic similarity between leader
and follower robots by using joint-space mapping for tele-
operation. A leader-follower design choice dates back to at
least as far as 1953, when Central Research Laboratories
built teleoperation systems for handling hazardous material
(Jenness and Wicker, 1975). More recently, companies like
Sarcos and RE2 (you, 2014) also built highly dexterous
teleoperation systems with joint-space mapping. ALOHA is
similar to these previous systems, while benefiting signifi-
cantly from recent advances of low-cost actuators and robot
arms. It allows us to achieve similar levels of dexterity with
much lower cost, and also without specialized hardware or
expert assembly.

Next, we compare the cost of ALOHA to recent teleoper-
ation systems. DexPilot (Handa et al., 2019) controls a
dexterous hand using image streams of a human hand. It
has 4 calibrated Intel Realsense to capture the point cloud
of a human hand, and retarget the pose to an Allegro hand.
The Allegro hand is then mounted to a KUKA LBR iiwa7
R800. DexPilot allows for impressive tasks such as extract-
ing money from a wallet, opening a penut jar, and insertion
tasks in NIST board #1. We estimate the system cost to be
around $100k with one arm+hand. More recent works such

as Robotic Telekinesis (Sivakumar et al., 2022; Arunacha-
lam et al., 2022; Qin et al., 2022) seek to reduce the cost of
DexPilot by using a single RGB camera to detect hand pose,
and retarget using learning techniques. While sensing cost
is greatly reduced, the cost for robot hand and arm remains
high: a dexterous hand has more degrees of freedom and
is naturally pricier. Moving the hand around would also re-
quire an industrial arm with at least 2kg payload, increasing
the price further. We estimate the cost of these systems to
be around $18k with one arm+hand. Lastly, the Shadow
Teleoperation System is a bimanual system for teleoperating
two dexterous hands. Both hands are mounted to a UR10
robot, and the hand pose is obtained by either a tracking
glove or a haptic glove. This system is the most capable
among all aforementioned works, benefitted from its biman-
ual design. However, it also costs the most, at at least $400k.
ALOHA, on the other hand, is a bimanual setup that costs
$18k ($20k after adding optional add-ons such as cameras).
Reducing dexterous hands to parallel jaw grippers allows us
to use light-weight and low-cost robots, which can be more
nimble and require less service.

Finally, we compare the capabilities of ALOHA with previ-
ous systems. We choose the most capable system as refer-
ence: the Shadow Teleoperation System (sha, 2022), which
costs more than 10x of ALOHA. Specifically, we found three
demonstration videos (srcteam, 2021; 2022a;b) that contain
15 example use cases of the Shadow Teleoperation System,
and seek to recreate them using ALOHA. The tasks include
playing “beer pong”, “jenga,” and a rubik’s cube, using a
dustpan and brush, twisting open a water bottle, pouring
liquid out, untying velcro cable tie, picking up an egg and
a light bulb, inserting and unplugging USB, RJ45, using
a pipette, writing, twisting open an aluminum case, and
in-hand rotation of Baoding balls. We are able to recreate
14 out of the 15 tasks with similar objects and compara-
ble amount of time. We cannot recreate the Baoding ball
in-hand rotation task, as our setup does not have a hand.

B. Example Image Observations
We include example image observations taken during policy
execution time in Figure 10, for each of the 6 real tasks.
From left to right, the 4 images are from top camera, front
camera, left wrist, and right wrist respectively. The top
and front cameras are static, while the wrist cameras move
with the robots and give detailed views of the gripper. We
also rotate the front camera by 90 degrees to capture more
vertical space. For all cameras, the focal length is fixed with
auto-exposure on to adjust for changing lighting conditions.
All cameras steam at 480× 640 and 30fps.
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Figure 9: Teleoperation task examples with ALOHA.

C. Detailed Architecture Diagram
We include a more detailed architecture diagram in Fig-
ure 11. At training time, we first sample tuples of RGB
images and joint positions, together with the corresponding
action sequence as prediction target (Step 1: sample data).
We then infer style variable z using CVAE encoder shown
in yellow (Step 2: infer z). The input to the encoder are 1)
the [CLS] token, which consists of learned weights that are
randomly initialized, 2) embedded joint positions, which
are joint positions projected to the embedding dimension
using a linear layer, 3) embedded action sequence, which is
the action sequence projected to the embedding dimension
using another linear layer. These inputs form a sequence of
(k + 2) × embedding_dimension, and is processed with
the transformer encoder. We only take the first output, which
corresponds to the [CLS] token, and use another linear net-
work to predict the mean and variance of z’s distribution,
parameterizing it as a diagonal Gaussian. A sample of z is
obtained using reparameterization, a standard way to allow
back-propagating through the sampling process so the en-
coder and decoder can be jointly optimized (Kingma and
Welling, 2013).

Next, we try to obtain the predicted action from CVAE

decoder i.e. the policy (Step 3: predict action sequence).
For each of the image observations, it is first processed by
a ResNet18 to obtain a feature map, and then flattened to
get a sequence of features. These features are projected to
the embedding dimension with a linear layer, and we add
a 2D sinusoidal position embedding to perserve the spatial
information. The feature sequence from each camera is
then concatenated to be used as input to the transformer
encoder. Two additional inputs are joint positions and z,
which are also projected to the embedding dimension with
two linear layers respectively. The output of the transformer
encoder are then used as both “keys” and “values” in cross
attention layers of the transformer decoder, which predicts
action sequence given encoder output. The “queries” are
fixed sinusoidal embeddings for the first layer.

At test time, the CVAE encoder (shown in yellow) is dis-
carded and the CVAE decoder is used as the policy. The
incoming observations (images and joints) are fed into the
model in the same way as during training. The only dif-
ference is in z, which represents the “style” of the action
sequence we want to elicit from the policy. We simply set z
to a zero vector, which is the mean of the unit Gaussian prior
used during training. Thus given an observation, the out-
put of the policy is always deterministic, benefiting policy
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Figure 10: Image observation examples for 5 real-world tasks. The 4 columns are [top camera, front camera, left wrist camera, right
wrist camera] respectively. We rotate the front camera by 90 degree to capture more vertical space.

evaluation.

D. Experiment Details and Hyperparameters
We carefully tune the baselines and include the hyperpa-
rameters used in Table 4, 5, 6, 7, 8. For BeT, we found
that increasing history length from 10 (as in original paper)
to 100 greatly improves the performance. Large hidden
dimension also generally helps. For VINN, the k used when
retrieving nearest neighbor is adaptively chosen with the
lowest validation loss, same as the original paper. We also
found that using joint position differences in addition to
visual feature similarity improves performance when there
is no action chunking, in which case we have state weight =
10 when retrieving actions. However, we found this to hurt
performance with action chunking and thus set state weight
to 0 for action chunking experiments.

E. User Study Details
We conduct the user study with 6 participants, recruited
from computer science graduate students, with 4 men and
2 women aged 22-25. 3 of the participants had experience
teleoperating robots with a VR controller, and the other 3

has no prior experience teleoperating. None of the partici-
pants used ALOHA before. To implement the 5Hz version
of ALOHA, we read from the leader robot at 5Hz, interpo-
late in the joint space, and send the interpolated positions
to the robot at 50Hz. We choose tasks that emphasizes
high-precision and close-loop visual feedback. We include
images of the objects used in Figure 12. For threading zip
cable tie, the hole measures 4mm x 1.5mm, and the cable
tie measures 0.8mm x 3.5mm with a pointy tip. It is ini-
tially lying flat on the table, and the operator needs to pick
it up with one gripper, grasp the other end mid-air, then
coordinate both hands to insert one end of the cable tie into
the hole on the other end. For unstacking cup, we use two
single-use plastic cups that has 2.5mm clearance between
them when stacked. The teleoperator need to grasp the edge
of upper cup, then either shake to separate or use the help
from the other gripper. During the user study, we randomize
the order in which operators attempt each task, and whether
they use 50Hz or 5Hz controller first. We also randomize
the initial position of the object randomly around the table
center. For each setting, the operator has 2 minutes to adapt,
followed by 3 consecutive attempts of the task with duration
recorded.
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Figure 11: Detail architecture of Action Chunking with Transformers (ACT).

F. Limitations
We now discuss limitations of the ALOHA hardware and
the policy learning with ACT.
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Figure 12: The cable tie and cups for user study.

Hardware Limitations. On the hardware front, ALOHA
struggles with tasks that require multiple fingers from both
hands, for example opening child-proof pill bottles with a
push tab. To open the bottle, one hand needs to hold the
bottle and pushes down on the push tab, with the other hand
twisting the lid open. ALOHA also struggles with tasks that
require high amount of forces, for example lifting heavy
objects, twisting open a sealed bottle of water, or opening
markers caps that are tightly pressed together. This is be-
cause the low-cost motors cannot generate enough torque
to support these manipulations. Tasks that requires finger
nails are also difficult for ALOHA, even though we design
the grippers to be thin on the edge. For example, we are not
able to lift the edge of packing tape when it is taped onto
itself, or opening aluminum soda cans.

Policy Learning Limitations. On the software front, we
report all 2 tasks that we attempted where ACT failed to
learn the behavior. The first one is unwrapping candies. The
steps involves picking up the candy from the table, pull on
both ends of it, and pry open the wrapper to expose the candy.
We collected 50 demonstrations to train the ACT policy. In
our preliminary evaluation with 10 trials, the policy picks
up the candy 10/10, pulls on both ends 8/10, while unwraps
the candy 0/10. We attribute the failure to the difficulty of
perception and lack of data. Specifically, after pulling the
candy on both sides, the seam for prying open the candy
wrapper could appear anywhere around the candy. During
demonstration collection, it is difficult even for human to
discern. The operator needs to judge by looking at the
graphics printed on the wrapper and find the discontinuity.
We constantly observe the policy trying to peel at places
where the seam does not exist. To better track the progress,
we attempted another evaluation where we give 10 trials for
each candy, and repeat this for 5 candies. For this protocol,
our policy successfully unwraps 3/5 candies.

Another task that ACT struggles with is opening a small
ziploc bag laying flat on the table. The right gripper needs
to first pick it up, adjust it so that the left gripper can grasp
firmly on the pulling region, followed by the right hand
grasping the other side of the pulling region, and pull it
open. Our policy trained with 50 demonstrations can consis-
tently pick up the bag, while having difficulties performing
the following 3 mid-air manipulation steps. We hypothe-
size that the bag is hard to perceive, and in addition, small

differences in the pick up position can affect how the bag
deforms, and result in large differences in where the pulling
region ends up. We believe that pretraining, more data, and
better perception are promising directions to tackle these
extremely difficult tasks.
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learning rate 1e-5
batch size 8
# encoder layers 4
# decoder layers 7
feedforward dimension 3200
hidden dimension 512
# heads 8
chunk size 100
beta 10
dropout 0.1

Table 4: Hyperparameters of ACT.

learning rate 3e-4
batch size 128
epochs 100
momentum 0.9
weight decay 1.5e-6

Table 5: Hyperparameters of BYOL, the feature extractor for VINN and BeT.

learning rate 1e-4
batch size 64
# layers 6
# heads 6
hidden dimension 768
history length 100
weight decay 0.1
offset loss scale 1000
focal loss gamma 2
dropout 0.1
discretizer #bins 64

Table 6: Hyperparameters of BeT.

k (nearest neighbour) adaptive
state weight 0 or 10

Table 7: Hyperparameters of VINN.
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learning rate 1e-5
batch size 2
ViT dim head 32
ViT window size 7
ViT mbconv expansion rate 4
ViT mbconv shrinkage rate 0.25
ViT dropout 0.1
RT-1 depth 6
RT-1 heads 8
RT-1 dim head 64
RT-1 action bins 256
RT-1 cond drop prob 0.2
RT-1 token learner num output tokens 8
weight decay 0
history length 6

Table 8: Hyperparameters of RT-1.


