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Abstract

Large models trained on vast data sets can achieve both minimal training and test
loss, and, thus, generalize statistically. However, their interesting properties such
as good transfer performance or extrapolation concern out-of-distribution (OOD)
data. One desired OOD property is compositional generalization, when models
generalize to unseen feature combinations. While compositional generalization
promises good performance on a wide range of OOD scenarios, it does not account
for the plausibility of such combinations. A ubiquitous example is hallucinations in
large models. Building on recent advances in Bayesian causal inference, we propose
a unified perspective of counterfactual and compositional generalization. We use a
causal world model to reason about the plausibility of unseen combinations. By
introducing a Bayesian prior, we show that counterfactual generalization is a special
case of compositionality, restricted to realistic combinations. This perspective
allows us to formally characterize hallucinations, and opens up new research
directions to equip generative AI models with a formally motivated “switch"
between realistic and non-realistic/creative modes.

1 Introduction

The rise of realistic generative AI models made it simple to fall prey to these models’ realistic
hallucinations, in the form of false statements, image or video “evidence" of events that did not
happen [Nie et al., 2023, Anwar et al., 2024]. However, generating fictional data enables creative
professionals to tap into a creative well to compose previously unseen scenes or text. Our work
does not pass moral judgment on this phenomenon. As realistic hallucinations can have severe
implications, we hope to inspire a discourse about the topic by exploring a theoretical description
thereof.
Hallucinations often combine plausible pieces of information into an unrealistic combination, e.g.,
by putting the image of a spaceship into a Medieval codex. The compositionality of large models
is studied in recent works [Reizinger et al., 2024, Han and Padó, 2024, Okawa et al., 2023]. The
compositional generalization develops theoretical guarantees to ensure generalization to unseen, out-
of-distribution (OOD), feature combinations. Importantly, compositional generalization implicitly
assumes that all combinations are valid, realistic, and possible. This is rarely the case, nor is it a
universal problem—otherwise, fiction could not exist.
Causality [Pearl, 2009] models the world via (a composition of) causal mechanisms, which reflect
our beliefs of how the world works. Thus, causality can be thought of as prior knowledge, distilled
from and consistent with, the laws of nature.
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Figure 1: The relationship of i.i.d. data, counterfactuals, compositions, and OOD data of human
weight–height pairs: Left: a Venn diagram showing the relationship of these concepts with a red
arrow indicating a trajectory of changing features, depicted in the four figures on the Right: assuming
that the data set includes measurements taken on adults, (a) an adult, an i.i.d. sample of the data
set; (b) a child, with a causally plausible combination of weight and height not included in the data
set, thus, an OOD sample; (c) a “stick man," with a weight–height pair lying in the product space
[Wmin;Wmax] × [Hmin;Hmax] of the i.i.d. samples, but a physiologically infeasible one (i.e., the
counterfactual assigns a zero probability); and (d) a giant with a weight–height combination outside
of the support of the product space

We explore how the inherent compositionality of causal mechanisms relates to compositionality,
focusing on OOD generalization from a Bayesian perspective. We compare counterfactual and
compositional generalization, formulate a Bayesian framework to relate the two, and investigate
implications for improving the desired behavior in large AI models. Our contributions are:
• We make the first steps towards a Bayesian perspective to unify compositional and counterfactual

generalization;
• We discuss the implications for generative models and formally define hallucinations.

2 Background

Compositional generalization. Compositional generalization studies under what assumptions
models can generalize to unseen combinations of features such as color and shape. Most works
consider computer vision and assume that the independent features form an underlying product
space, and each feature’s all values (but not all combinations) are observed [Brady et al., 2023,
Wiedemer et al., 2023b,a, Lachapelle et al., 2023]. Recent works also started exploring compositional
generalization for natural language [Ahuja and Mansouri, 2024, Han and Padó, 2024, Ramesh et al.,
2024, Lake and Baroni, 2023, Nogueira et al., 2021, Dziri et al., 2023, Saparov et al., 2023].

Causality and counterfactuals. Causality [Pearl, 2009, Peters et al., 2018] models cause–effect
relationships and draws conclusions beyond statistical associations. Structural Equation Models
(SEMs) model independent exogenous noise variables (causes) Ni and dependent endogenous causal
Zi variables (effects) via functional mechanisms fi, i.e., Zi := fi(Pa(Zi), Ni), where Pa(Zi)
denotes the parents of Zi (Pa(Zi) ⊂ Z). Counterfactual queries answer “What if?" questions about
events that have not occurred. Technically, counterfactual questions ask about the hypothetical value
of a specific Zi given that, all else being equal, the corresponding exogenous variable Ni takes a
different value from the observed N0

i —i.e., it evaluates N0
i ̸= N̂i : fi(Pa(Zi), Ni = N̂i)

Trustworthiness and robustness in large models. The emergence of large (generative) AI models
spurred research to understand why these models work and how can they be made more reliable.
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This includes investigations whether these models adhere to causal principles [Jin et al., 2023,
Montagna et al., 2024, Willig et al., 2022, Li et al., 2024, Liu et al., 2024, Kasetty et al., 2024],
exhibit compositionality [Reizinger et al., 2024, Okawa et al., 2023, Han and Padó, 2024], or are
interpretable and trustworthy [Li et al., 2024, Wu et al., 2023, Anwar et al., 2024, Nie et al., 2023].

3 Towards the Bayesian unification of counterfactual and compositional
generalization

3.1 Intution

The Independent Causal Mechanisms (ICM) principle [Peters et al., 2018] postulates that causal
mechanisms neither inform nor influence each other, which can be interpreted as a notion of composi-
tionality. This can be seen from the Markov factorization of the joint distribution over causal variables
p(Z) =

∏
i p(Zi|Pa(Zi), Ni), where the probabilistic causal model is composed of causal mecha-

nisms p(Zi|Pa(Zi), Ni). The modularity of the causal mechanisms imply that in OOD scenarios,
e.g., under distribution shifts, only the affected mechanism needs to be adjusted.

A bivariate case study. To illustrate the relationship between statistical, causal, and compositional
generalization, we consider the simplified example of weight W and height H (see also Fig. 1). With
all else (age, gender, etc.) being equal, we know that for a specific height, there is a corresponding
physiologically feasible range of weights. Particularly, a bigger height requires a bigger minimum
weight. From the weight, it is not straightforward to draw such conclusions, as a short person can also
be extremely overweight. Thus, we model the joint distribution with a causal Markov factorization
p(W,H) = p(W |H)p(H) and assume that our data set contains measurements of adults. The
modularity implies that if we want to model weight–height relationships in children instead of adults,
we only need to adapt p(H). Given a data set of adult weight–height pairs, different generalizations
in increasing generality are:
• Statistical generalization (Fig. 1a) means generalizing to other (not observed) weight–height pairs

of adults, sampled from the same distribution. Statistical generalization cannot capture realistic
OOD data, e.g., weight–height pairs of children.

• A causal model (Fig. 1b) generalizes to unseen realistic OOD combinations, as counterfactual
queries about the weight and height of children are plausible. However, it cannot capture unrealistic
OOD combinations.

• Compositional generalization (Fig. 1c) generalizes to even the unrealistic OOD combinations,
given that they belong to the support of the observed product space [Wmin;Wmax]× [Hmin;Hmax],
such as a “stick man" character.

• The broadest category is OOD generalization, which includes all weight–height pairs, even outside
the support of the product space—e.g., the dwarfs and giants of fairy tales.

The relationship between the counterfactuals and compositionality is “subset of" and not “strict
subset of"—e.g., all possible shape–color combinations of man-made objects are plausible if that is
the designer’s intent , such as in dSprites [Watters et al., 2019].
Next, we take a Bayesian perspective in an attempt to formalize these restrictions as a prior expressing
the plausible combinations in our causal world. Thus, the difference between compositional and
counterfactual generalization becomes a difference of (the support of) priors.

3.2 Towards A Bayesian Framework

Following recent advances in a Bayesian view on causal discovery [Guo et al., 2022] and interven-
tions [Guo et al., 2024], we apply the same lens to counterfactuals, and connect counterfactuals
to compositional generalization via a prior expressing our world model rooted in science. In the
previous section, we argued that

A key difference between the causal and compositional view on generalization is that counterfactuals
assign a non-zero probability only to compositions that adhere to a prior causal world model.

Assume a data distribution p(x|θ) with a d−dimensional parameter θ and corresponding prior p(θ).
In our example in § 3.1, x denotes the weight–height pairs, whereas θ specifies the age, gender, na-
tionality, and, thus, determines the support of p(x|θ), i.e., the intervals [Wmin;Wmax] , [Hmin;Hmax].
Statistical (i.i.d.) generalization concerns the case when xtrain and xtest have the same θ, i.e., when
the prior collapses to a delta distribution p(θ) = δ(θ − θ0). In general, OOD generalization concerns
θtrain ̸= θtest, which is only possible for non-delta parameter priors.
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Counterfactual generalization requires that the learned model p(x|θ) correctly models plausible but
unseen combinations. That is, p(x|θ) is non-zero not only for xtrain, but also for xtest sampled from
p(x|θcf), where θcf corresponds to our causal prior knowledge of the world, modeled by pcf(θ). This
prior rules out unplausible combinations, i.e., the supp(θcf) ⊂ Rd.
In general, compositional generalization means generalizing over the product of the supports of
each latent variable: supp(θ1) × supp(θ2) × · · · × supp(θd). It requires each component θi,comp

to be in the interval [θi,min; θi,max] , determined by the parameter values in the training set. The
product space can include implausible combinations such as the “stick man" in Fig. 1c with a zero
counterfactual probability. Thus compositional generalization is more general than counterfactual
generalization, i.e., supp(θcf) ⊂ supp(θcomp). We refer to pcomp(θ), pcf(θ) as compositional and
counterfactual priors and formalize their relationship as:

Proposition 1 (Counterfactual priors are a strict subset of compositional priors). For real-world
scenarios with an underlying causal world model, the counterfactual prior pcf(θ) rules out some
combinations admitted by the compositional prior pcomp(θ), i.e., supp(θcf) ⊂ supp(θcomp).

The proof follows indirectly from the above counterexamples, showing that there are parameter
configurations which do not adhere to our causal model. However, the two notions can coincide when
all combinations are plausible.

Towards a formal definition of hallucinations. Our framework allows us to formally define
hallucinations. Namely, if the abstract parameters (e.g., defining the admissible combinations of
features) have a zero probability under the causal world model (counterfactual prior), then the
resulting sample is a hallucination. Formally:

Definition 1 (Hallucination). Assume a data distribution p(x|θmodel) modeled by a neural network
with a corresponding prior distribution pmodel(θ). If for any θ : pmodel(θ) > 0 the generated sample
xmodel has a zero probability under the counterfactual parameter prior pcf(θ), then xmodel is a
hallucination.

We conclude this section by relating our framework to the performance of state-of-the-art generative
models, based on the height–weight example in Fig. 1. We assume access to knowledge about the
possible ranges and combinations of the weight and height of humans, represented by pcf(θ). We
used the DALL-E model available via the free ChatGPT interface (using GPT4o [OpenAI, 2024]) to
generate images of a giant. Such a person is physiologically impossible, i.e., pcf(θgiant) = 0, thus,
by our definition, it is a hallucination. If we render an image of a person who is skinny like a stick
man cartoon character, then though Hstickman ∈ [Hmin;Hmax] and Wstickman ∈ [Wmin;Wmax] but
the corresponding parameter has zero density under the counterfactual prior pcf(θstickman) = 0, it is
still considered a hallucination, even though this combination is within the domain of compositional
generalization.

4 Discussion

Limitations. Our work makes the first step to provide a theoretical connection between compo-
sitionality and counterfactuals. Though our contributions can hopefully inspire a discussion about
mitigating hallucinations in generative models, our conceptual work has not formalized actionable
advice for practitioners.

Consequences for generative models. Compositionality and counterfactuals have merits for
different purposes. Enforcing only the realistic combinations is desirable to avoid hallucinations
in large models when facts are needed. Whereas the creative use of generative AI necessitates that
large models can go into the fictional domain. This can be modeled as a spectrum between facts
and fiction, for which, we argue, large models need a “knob" to intentionally select the degree of
moving beyond reality2. Otherwise, not being able to control the consistency between generated
samples and observational data can severely limit the practical applicability and trustworthiness of
large (generative) models.

Conclusion. We proposed the foundations for a Bayesian framework to unify compositional and
counterfactual generalization by introducing a prior that characterizes how realistic a(n unseen)

2The closest example we found is the creative/balanced/precise mode selector in Microsoft’s Copilot [Mi-
crosoft, 2024], though it is unclear whether any of these modes correspond to compositionality or counterfactuals
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combination is. In our framework, we can formally define hallucinations in generative models, which,
hopefully inspires further research in improving the robustness and trustworthiness of large models
by highlighting the key distinction between realistic and fictious samples.
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A Acronyms

i.i.d. independent and identically distributed

ICM Independent Causal Mechanisms

OOD out-of-distribution

SEM Structural Equation Model
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