
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CMAT: A MULTI-AGENT COLLABORATION TUNING
FRAMEWORK FOR ENHANCING SMALL LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Open large language models (LLMs) have significantly advanced the field of natu-
ral language processing, showcasing impressive performance across various tasks.
Despite the significant advancements in LLMs, their effective operation still relies
heavily on human input to accurately guide the dialogue flow, with agent tuning
being a crucial optimization technique that involves human adjustments to the
model for better response to such guidance. Addressing this dependency, our work
introduces the TinyAgent model, trained on a meticulously curated high-quality
dataset.
We also present the Collaborative Multi-Agent Tuning (CMAT) framework, an in-
novative system designed to augment language agent capabilities through adaptive
weight updates based on environmental feedback. This framework fosters collab-
orative learning and real-time adaptation among multiple intelligent agents, en-
hancing their context-awareness and long-term memory. In this research, we pro-
pose a new communication agent framework that integrates multi-agent systems
with environmental feedback mechanisms, offering a scalable method to explore
cooperative behaviors. Notably, our TinyAgent-7B model exhibits performance
on par with GPT-3.5, despite having fewer parameters, signifying a substantial
improvement in the efficiency and effectiveness of LLMs.

1 INTRODUCTION

In the rapid development of the field of artificial intelligence, large language models (LLMs) such
as BERT and GPT-4 OpenAI (2023) have become important cornerstones of natural language
processing (NLP). These models utilize the Transformer architecture and effectively capture long-
distance dependencies through multi-head self-attention mechanisms, demonstrating strong capabil-
ities across various NLP tasks. With technological advancements, the performance and application
scope of LLMs continue to expand, promising significant improvements in computational efficiency
and functionality, including anticipated advanced features such as self-improvement, self-checking,
and sparse expert models Liu et al. (2023).

However, it is noteworthy that the success of these models largely depends on human input to guide
the correct dialogue. This dependency requires users to provide relevant and precise prompts based
on their intentions and the feedback from the chat agent, raising a critical question: Can we replace
human intervention with autonomous communication agents capable of steering conversations
towards task completion with minimal human supervision?

Our research addresses the challenges faced by LLMs in real-world deployments, including high
computational requirements, data biases, and lack of robustness, which limit their applicability in
resource-constrained environments Abid et al. (2021); Du et al. (2022). As shown in Figure 1, we
optimize models and training methods to enable smaller models to match larger models’ perfor-
mance. Recognizing MAS’s potential to improve processing efficiency through agent cooperation,
we develop a collaborative agent framework Ferry et al. (2018); Talwar et al. (2005). Based on our
experiments showing that low-quality prompts can significantly degrade model performance, we
propose the Collaborative Multi-Agent Tuning (CMAT) framework.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: TinyAgent demonstrates outstanding performance, comparable to that of GPT-3.5.
TinyAgent is a series of models fine-tuned based on Qwen Bai et al. (2023) and Codellama Roziere
et al. (2023).

Figure 2: In the CMAT framework, the user assigns tasks to an assistant, which generates SQL
commands based on short-term and long-term memories: short-term memory provides immediate
context from trajectory history, while self-reflective outputs are stored as long-term memory. The
checker verifies the correctness of SQL commands before they are executed in the environment.

The CMAT framework introduces a structured environment where individual agents, each with spe-
cialized roles and capabilities, work together to process information, make decisions, and solve
complex tasks Hernández-Orallo et al. (2017). By sharing insights and learning from interactions
within this multi-agent ecosystem, the framework allows for a more scalable and flexible approach
to training LLMs Lewis et al. (2017). This collaborative effort not only helps in bridging the gap
in performance between smaller and larger models but also fosters a more resilient system capable
of adapting to new challenges without extensive human intervention Kaplan et al. (2020). Through
CMAT, we aim to push the boundaries of what is possible with LLMs, making them more accessible
and effective for a wider range of applications Rajpurkar et al. (2018).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The main contributions of our work are as follows:

• We propose the CMAT framework which represents an innovative approach that allows for
dynamic and real-time memory updates within multi-agent systems.

• We design a novel role-playing mechanism for precise task allocation and enhanced agent
communication, significantly boosting overall performance and cooperation.

• We evaluated the fine-tuned TinyAgent models across multiple agent tasks, finding that in
certain scenarios, their performance rivals that of advanced LLMs like GPT-4 and agentlm
Zeng et al. (2023), demonstrating the potential efficiency and capabilities of compact mod-
els.

2 RELATED WORK

2.1 LLMS APPLICATIONS IN A MULTI-AGENT FRAMEWORK

We explore the applications of LLMs within multi-agent systems, highlighting their role versatility
as users, assistants, and checkers de Zarzà et al. (2023); Talebirad & Nadiri (2023). LLMs showcase
remarkable adaptability through supervised fine-tuning and real-time feedback learning, particularly
in tasks involving operating systems and databases Christianos et al. (2023); Li et al. (2023). Their
ability to enhance communication and collaboration among agents is crucial for addressing complex
issues requiring multi-role coordination Zhao et al. (2021). However, LLMs face challenges within
multi-agent frameworks, particularly in contextual comprehension, memory retention, and adapta-
tion to evolving environments Diallo et al. (2020). Data bias, security concerns, and complexities
in multi-agent cooperation protocols remain significant challenges Zhang et al. (2017); Garcı́a et al.
(2015). By examining LLMs’ roles in multi-agent frameworks, we emphasize the need for contin-
ued innovation to overcome these hurdles Lu & Zhang (2020). To enhance LLMs in multi-agent
systems, we’ve implemented memory modes with long-term support and short-term environmental
feedback Liang et al. (2016). This implementation enables better interaction, learning, and adapta-
tion in dynamic environments, leveraging past experiences for swift responses to changes.

2.2 THE TUNING METHOD FOR LLMS

The main tuning methods include supervised fine-tuning and reinforcement learning Ouyang et al.
(2022). Supervised fine-tuning enhances performance by training models on specific task datasets,
particularly for natural language understanding (NLU) Howard & Ruder (2018). Reinforcement
learning, guided by reward mechanisms, is suitable for handling complex and variable tasks Mnih
et al. (2015).

The combination of these methods significantly improves LLMs’ performance across various tasks.
Notably, smaller LLMs with 1.8 billion parameters can achieve performance comparable to 6 billion
parameter models when supported by high-quality datasets Stiennon et al. (2020). This demonstrates
the decisive role of data quality and appropriate tuning strategies in LLM performance Howard &
Ruder (2018). Through our work combining both approaches, we’ve achieved significant improve-
ments in task-specific benchmarks Ouyang et al. (2022).

3 PROPOSED METHOD

Our research focuses on the development and implementation of the Collaborative Multi-Agent
Language Model Tuning (CMAT) framework, which aims to enhance decision-making quality,
controllability, and operational efficiency in complex systems through the collaboration of vari-
ous agent roles: the User (U), Assistant (A), and Checker (C). The CMAT framework employs
advanced supervised fine-tuning techniques such as Low-Rank Adaptation (LoRA) Hu et al. (2021)
and Prompt Tuning (P-Tuning) Lester et al. (2021), leveraging pre-trained datasets like AgentBench
(DAgentBench). Additionally, it incorporates mechanisms inspired by Reinforcement Learning from
Human Feedback (RLHF) Vázquez-Canteli & Nagy (2019), Chain of Thought (CoT), and ReAct
methods.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Comparative study of Llama-2-7b and TinyAgent-7b in DataBase cases. (1) In DataBase
tasks with a reflection mechanism, Llama-2-7b still made errors after reflection, while TinyAgent-7b
adjusted its operations after reflecting on its first failed attempt. (2) Without a reflection mechanism,
TinyAgent-7b repeated the same operation and ultimately failed to complete the task.

3.1 AGENT ROLES

In the CMAT framework, we define a collaborative system with three agents: User (U), Assistant
(A), and Checker (C). The Assistant acts as the Actor, while the Checker serves as the Critic,
forming an Actor-Critic dynamic.

At each time step t, the User U provides an input xt ∈ X to the Assistant. The Assistant A,
modeled as a language model Mθactor with parameters θactor, generates an action at based on its
policy πθactor : at = πθactor(xt). The Checker C evaluates the Assistant’s action using a feedback
function F : A×X → F , providing feedback ft: ft = F (at,xt). The feedback loop embodies the
Actor-Critic Dynamics, where the Assistant (Actor) adapts its policy based on the evaluation from
the Checker (Critic), facilitating continuous learning and improvement.

3.2 LEARNING STRATEGY

To optimize the Assistant’s policy πθactor , we employ a learning strategy that integrates supervised
fine-tuning, feedback-driven reinforcement learning using the Actor-Critic method, and advanced
reasoning methods like Chain of Thought (CoT) and ReAct.

3.2.1 SUPERVISED FINE-TUNING

The Assistant’s modelMθactor is initially fine-tuned on a dataset D = {(xi,yi)} using techniques
like LoRA Hu et al. (2021) and P-Tuning Lester et al. (2021), minimizing the loss function:

Lsup(θactor) = E(x,y)∼D [ℓ (Mθactor(x),y)] , (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where ℓ(·, ·) denotes the cross-entropy loss.

3.2.2 INCORPORATING CHAIN OF THOUGHT AND REACT

To enhance reasoning capabilities, the Assistant employs Chain of Thought (CoT) prompting, gen-
erating intermediate reasoning steps ct before producing the final action at: ct = CoT(xt), at =
πθactor(ct,xt).

ReAct further integrates reasoning and acting by allowing the Assistant to interleave reasoning to-
kens and action tokens during generation, improving task performance.

We observe that the generation order of CoT significantly impacts the correctness of the Assistant’s
responses. Specifically, generating the CoT before the final answer leads to higher accuracy com-
pared to generating the answer first and then the CoT. This suggests that the Assistant’s reasoning
process benefits from explicitly formulating thought sequences prior to action selection.

3.2.3 FEEDBACK-DRIVEN POLICY OPTIMIZATION INSPIRED BY ACTOR-CRITIC DYNAMICS

Following supervised fine-tuning, the Assistant interacts with the Checker to receive feedback ft,
updating its parameters θactor to enhance policy performance. We employ an Actor-Critic-inspired
method for policy optimization without engaging in traditional reinforcement learning dynamics.

The Assistant updates its policy parameters θactor using gradient ascent as follows:

θactor ← θactor + α∇θactor log πθactor(at|st)δt, (2)

where α is the learning rate, and δt represents the error term calculated as:

δt = rt + γVθcritic(st+1)− Vθcritic(st), (3)

In this context, rt = R(ft) denotes the feedback-derived reward from the Checker, Vθcritic(st) is the
value function estimated by the Checker (Critic) with parameters θcritic, and γ is the discount factor.

The Checker updates its value function parameters θcritic based on the error term δt using the follow-
ing rule:

θcritic ← θcritic + βδt∇θcriticVθcritic(st), (4)

where β is the learning rate for the Critic.

This feedback-driven policy optimization framework allows the Assistant to iteratively refine its
decision-making strategy based on the Checker’s evaluations. Unlike traditional reinforcement
learning, the approach does not involve exploration of an environment or accumulation of rewards
over time. Instead, it relies on direct feedback from the Checker to guide policy adjustments, ensur-
ing continuous improvement in task performance through collaborative interactions.

3.3 CHECKER-IN-THE-LOOP MECHANISM

The Checker-In-The-Loop concept introduces the Checker C as an integral part of the learning pro-
cess, not only providing feedback but actively guiding the Assistant’s optimization. The Checker
evaluates the Assistant’s actions and provides corrective feedback ft that influences both the Actor’s
policy and the Critic’s value function, ensuring that the Assistant adheres to predefined standards.

3.4 MEMORY MANAGEMENT AND REFLEXION PROCESS

The Assistant employs a dual-memory systemM = {MS ,ML} to balance short-term responsive-
ness and long-term learning:

• Short-Term Memory (MS): Stores recent interactions, capturing immediate context for
quick decision-making.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• Long-Term Memory (ML): Accumulates significant experiences and insights from self-
reflection to improve future performance.

At each time step t,MS is updated as:

Mt+1
S = U(Mt

S ,xt,at, ft), (5)

where U represents the memory update operation, maintaining a fixed capacity by removing the
oldest entries when necessary.

The Assistant evaluates its action at and feedback ft, generating self-reflection st:

st = φ(at, ft,Mt
S), (6)

which is consolidated into long-term memory:

Mt+1
L = µ(Mt

L, st). (7)

Policy parameters are updated based on feedback and self-reflection:

θactor ← θactor − α∇θactorL(ft,at) + γ∇θactorG(st), (8)

where L(ft,at) is the feedback loss derived from the Checker, G(st) represents self-reflection gains,
and γ is the learning rate for self-reflection.

By integrating short-term and long-term memory with reflexion, the Assistant refines its policy πθactor ,
continuously learning from interactions and accumulated knowledge.

4 EXPERIMENTS

Our evaluation framework rigorously tests intelligent agents in six key domains to ensure their
readiness for diverse real-world challenges Ross et al. (2023). These areas include seamless LLM
integration into OS with an emphasis on security and user interaction; proficiency in real DB op-
erations using SQL Halevy et al. (2004); task execution on the simulated e-commerce platform
WebShop(WS) Yao et al. (2022); constructing and using KGs for enhanced semantic understanding;
employing the M2W dataset for complex web tasks, marking the first dataset for developing general
web agents following language instructions; and applying abstract reasoning and visual tasks in the
text-based ALFWorld(ALF) Shridhar et al. (2021). For more implementation and evaluation details,
see Appendices A and B.

4.1 DATASET

The dataset for our research was meticulously constructed to comprehensively evaluate the capabil-
ities of agents Gou et al. (2020). It was established through self-collected methods, aimed at pro-
viding a rich and diverse testing environment to thoroughly assess the performance of deep learning
models across various tasks Sachdeva & McAuley (2023). The construction of the dataset included
key processes such as data collection, filtering, enhancement, and knowledge distillation Chen &
Liu (2018). Through detailed screening and processing, we ensured the accuracy and consistency
of the dataset, retaining only high-quality samples directly related to the testing objectives Sachdeva
& McAuley (2023). Faced with issues of data imbalance and insufficient samples, we utilized data
augmentation and knowledge distillation techniques. Knowledge distillation helped us to extract the
most valuable and representative information from the vast amount of collected data, thus build-
ing an efficient and refined testing dataset. This process significantly improved the quality and
applicability of the dataset, providing a solid foundation for evaluating the capabilities of model
agents Mishra & Marr (2017).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Evaluation of Code Correction
Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
codellama-7b 25.01 45.91 29.83 26.24
codellama-13b 26.96 45.31 29.54 25.91
tinyllama-1.8b 43.38 59.86 37.81 42.86

Table 2: Test set results of AGENTBENCH. Comparison between API-based models and open-
source models. Bold: The best among API-based and open-source models.

LLM Type Models VER OS DB KG ALF WS M2W

API

gpt-3.5-turbo 613 31.6 15.7 25.9 16.0 64.1 16.0
gpt-4 613 42.4 32.0 58.8 78.0 61.6 29.0
text-davinci-003 – 20.1 16.3 34.9 20.0 61.7 26.0
text-davinci-002 – 8.3 16.7 41.5 16.0 56.3 9.0

OSS

tinyllama-1.1b1 – 2.8 0.0 0.0 0.0 0.0 0.0
opt-1.3b2 – 0.7 0.0 0.0 0.0 0.0 0.0
opt-2.7b – 1.4 0.0 0.0 0.0 0.0 0.0
qwen-1.8b chat 10.4 22.67 6.8 0.0 26.6 5.0
chatglm2-6b3 v1.1 4.2 1.3 0.0 0.0 0.0 0.0
codellama-7b instruct 9.7 2.7 0.0 0.0 14.3 5.0
llama2-7b4 chat 0.0 4.2 8.0 0.0 11.6 7.0
zephyr-7b5 alpha 12.5 9.7 5.0 8.0 45.0 11.0
baichuan2-6b6 chat 2.8 9.7 0.0 0.0 6.1 11.0
mpt-7b7 chat 5.6 9.7 12.7 0.0 0.0 0.0
qwen-7b chat 12.5 13.0 7.0 34.3 0.0 0.0
agentlm-7b chat 14.6 33.0 9.0 16.4 18.4 10.0
agentlm-7b(SFT) chat 17.4 37.0 10.0 17.4 26.6 10.0
tinyagent-1.8b chat 17.7 28.33 48.0 6.0 32.7 11.0
tinyagent-7b chat 23.1 41.3 28.0 8.0 58.7 12.0

1Zhang et al. (2024), 2Zhang et al. (2022), 3https://github.com/thudm/chatglm2-6b,
4Touvron et al. (2023), 5Tunstall et al. (2023), 6Yang et al. (2023),
7https://github.com/mosaicml/llm-foundry/

4.2 EVALUATING CODE CORRECTION

As shown in the Table 1, in this study, we conducted a comprehensive performance evaluation of
TinyAgent-1.8B and the CodeLlama series models (CodeLlama7B and CodeLlama13B), aiming
to explore their multi-task checking capabilities, including but not limited to code correction, OS
configuration, DB query optimization, and WS. The experimental results showed that TinyAgent-
1.8B demonstrated a significant advantage in cross-task performance evaluation compared to the
CodeLlama series models. This performance was not only significant in code correction tasks but
also prominent in other checking tasks such as OS configuration, DB query optimization, and WS
management. These findings highlight that TinyAgent-1.8B not only possesses efficient code anal-
ysis capabilities but is also widely applicable to the inspection and optimization of other complex
systems.

4.3 BASELINES

In the baseline section of our study, we’ve selected Qwen-1.8B and CodeLlama-7B as pivotal bench-
marks to assess the TinyAgent series’ performance, excluding the CMAT framework’s influence.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Evaluation Metrics Results
Evaluation Method BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
Prompt - High-quality 44.4 57.3 35.0 42.5
Prompt - Low-quality 15.2 27.4 10.3 16.8
Without prompts 26.8 47.2 30.2 26.7

Table 4: Distribution of various execution results across six tasks. Note: CLE: Exceeded Context
Limit, TLE: Surpassed Task Limit. Task limits exceeded are the main reason for incomplete tasks,
pointing to limitations in LLM agents’ reasoning and decision-making within constrained time-
frames.

Execution Results OS DB KG ALF WS M2W
Completed 84.7 84.0 25.0 2.0 93.5 57.0
CLE 0.0 0.0 0.0 0.0 0.0 0.0
Invalid Format 0.0 3.0 0.0 0.0 0.0 0.0
Invalid Action 0.0 0.0 0.0 96.0 0.0 8.0
TLE 15.3 13.0 75.0 2.0 6.5 35.0

4.4 RESULTS ANALYSIS

The results in Table 2 underscore the effectiveness of our fine-tuning methods, especially for the
TinyAgent models. Tinyagent-1.8B demonstrates significant performance in the KG task, on par
with advanced models like GPT-3.5. Tinyagent-7B also showcases its strengths, notably in the DB
task, where it surpasses its foundational model Antonello et al. (2020), CodeLlama-7B, and offers
competitive scores against GPT-4. These findings indicate the TinyAgent models’ capacity to match
or even surpass models with larger parameters in certain aspects. Moreover, the CMAT framework’s
potential to enhance the capabilities of smaller-scale models is highlighted, allowing the TinyAgent
models to closely compete with the performance of advanced models such as GPT-4.

As illustrated in Figure 1, Our comparative analysis indicates that Tinyagent models, refined from
Qwen-1.8B and CodeLlama-7B, exhibit superior performance to their base models. The incorpora-
tion of the CMAT framework further amplifies their functionality, equipping these small Models to
match the capabilities of GPT-3.5. This performance boost is credited to CMAT’s optimization of
model interactions and its strategic use of memory modes for specific tasks, confirming its effective-
ness in enhancing the sophistication of fine-tuned models Deshpande et al. (2021).

Table 3 presents the impact of different prompting strategies on performance metrics. High-quality
prompts significantly outperform low-quality prompts and scenarios without prompts across all eval-
uation metrics, demonstrating the importance of prompt design in optimizing model performance.

4.5 ERROR ANALYSIS

In our testing framework’s error analysis, we observed common challenges in DB tasks faced by
models, such as difficulties in understanding user requests, executing actions, and pre-action prob-
lem analysis. Many models simply respond with ”OK” to specific instructions without performing
actual SQL operations, indicating a gap in transforming user requests into database actions. Models
often provide superficial acknowledgments without delivering precise execution or in-depth problem
analysis, failing to meet user expectations. In contrast, the TinyAgent series excels in understanding
and converting user requests into actual SQL operations, effectively comprehending and executing
tasks. It provides clear responses and adheres to user-specified SQL formats, fulfilling user ex-
pectations comprehensively. Additionally, TinyAgent’s thorough pre-action problem analysis and
reflection demonstrate its advanced problem-solving skills and deep understanding of issues.

As illustrated in Table 4, the distribution of various execution results across six tasks highlights the
prevalence of specific error types, such as exceeding task limits (TLE) and invalid actions, which
point to limitations in LLM agents’ reasoning and decision-making within constrained timeframes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Ablation study on the effect of agent and general instructions.
Models OS DB KG ALF WS M2W
TinyAgent-7B 27.3 43.0 38.0 10.0 61.8 14.0

– Agent only 20.1 39.3 25.0 2.0 55.7 7.0
– General only 9.7 5.4 0.0 0.0 26.6 5.0

4.6 ABLATION STUDY

The Table 5 presents an ablation study on the TinyAgent-7B model, delineating the impact of agent-
specific and general instructions on task performance. The composite model, TinyAgent-7B, demon-
strates the highest efficacy, notably in WS and DB tasks, which implies its adeptness in handling
complex e-commerce interactions and database management. The agent-only variant exhibits a de-
cline in performance, suggesting that while task-specific instructions are crucial, they are not wholly
sufficient for the breadth of tasks such as KG. The general-only model’s performance is considerably
reduced across all tasks, with a complete inability to perform in KG and ALF, highlighting the in-
dispensability of agent-specific instructions. This data underscores the necessity of integrating both
agent-specific and general instructions to enhance the versatility and effectiveness of AI models in
diverse task domains.

5 CONCLUSIONS

The main findings of our work reveal that carefully trained small-parameter models on excellent
datasets can achieve performance comparable to that of large-parameter models. With the applica-
tion of the CMAT framework, we further demonstrate the significant potential for performance im-
provement in large-parameter models, highlighting the importance of model design and optimization
strategies for parameter size. In our evaluation, although most open-source LLMs performed poorly
compared to API-provided models without optimization, some models displayed similar capabili-
ties to API models after meticulous fine-tuning of the TinyAgent model. This finding emphasizes
not only the importance of parameter size in handling real-world environmental interactions but also
showcases the enormous potential of even smaller models through the CMAT framework and precise
adjustment strategies.

6 LIMITATIONS

In this study, we demonstrated the potential for performance improvement by applying the CMAT
framework to TinyAgent series models and other large language models (LLMs). However, there
are clear limitations to the research: First, although most models showed improved performance,
some models saw limited improvement due to weaker base agent capabilities, indicating that the
effectiveness of the CMAT framework might vary significantly between different models; second,
the limitations of datasets and task types could affect the broad applicability of the conclusions,
while low-quality datasets could negatively impact model performance; lastly, although evaluations
based on AgentBench ensured fairness, they might not fully reflect the complexity of real-world
scenarios, and due to computational resource constraints, larger-scale models could not be tested.
This underscores the importance of future work to consider a wider range of models, datasets, and
task types, especially the implementation of optimization strategies and framework applications in
resource-constrained situations.

REFERENCES

Abubakar Abid, Maheen Farooqi, and James Zou. Large language models associate muslims with
violence. Nature Machine Intelligence, 3(6):461–463, 2021.

Richard J. Antonello, Javier Turek, and Alexander G. Huth. Selecting informative contexts improves
language model fine-tuning. ArXiv, abs/2005.00175, 2020. doi: 10.18653/v1/2021.acl-long.87.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yalong Bai, Kuiyuan Yang, Wei Yu, Chang Xu, Wei-Ying Ma, and T. Zhao. Automatic image
dataset construction from click-through logs using deep neural network. Proceedings of the 23rd
ACM international conference on Multimedia, 2015. doi: 10.1145/2733373.2806243.

C. L. P. Chen and Zhulin Liu. Broad learning system: An effective and efficient incremental learn-
ing system without the need for deep architecture. IEEE Transactions on Neural Networks and
Learning Systems, 29:10–24, 2018. doi: 10.1109/TNNLS.2017.2716952.

Filippos Christianos, Georgios Papoudakis, Matthieu Zimmer, Thomas Coste, Zhihao Wu, Jingxuan
Chen, Khyati Khandelwal, James Doran, Xidong Feng, Jiacheng Liu, et al. Pangu-agent: A
fine-tunable generalist agent with structured reasoning. arXiv preprint arXiv:2312.14878, 2023.

I de Zarzà, J de Curtò, Gemma Roig, Pietro Manzoni, and Carlos T Calafate. Emergent cooperation
and strategy adaptation in multi-agent systems: An extended coevolutionary theory with llms.
Electronics, 12(12):2722, 2023.

A. Deshpande, A. Achille, Avinash Ravichandran, Hao Li, L. Zancato, Charless C. Fowlkes, Rahul
Bhotika, Stefano Soatto, and P. Perona. A linearized framework and a new benchmark for model
selection for fine-tuning. ArXiv, abs/2102.00084, 2021.

Elhadji Amadou Oury Diallo, Ayumi Sugiyama, and T. Sugawara. Coordinated behavior of co-
operative agents using deep reinforcement learning. Neurocomputing, 396:230–240, 2020. doi:
10.1016/J.NEUCOM.2018.08.094.

Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu. Shortcut learning of large language
models in natural language understanding: A survey. arXiv preprint arXiv:2208.11857, 2022.

Alexander Dunn, John Dagdelen, Nicholas Walker, Sanghoon Lee, Andrew S Rosen, Gerbrand
Ceder, Kristin Persson, and Anubhav Jain. Structured information extraction from complex sci-
entific text with fine-tuned large language models. arXiv preprint arXiv:2212.05238, 2022.

N. Ferry, F. Chauvel, Hui Song, A. Rossini, Maksym Lushpenko, and Arnor Solberg. Cloudmf:
Model-driven management of multi-cloud applications. ACM Trans. Internet Techn., 18:16:1–
16:24, 2018. doi: 10.1145/3125621.

Eloy Garcı́a, Yongcan Cao, and D. Casbeer. Periodic event-triggered synchronization of linear
multi-agent systems with communication delays. IEEE Transactions on Automatic Control, 62:
366–371, 2015. doi: 10.1109/TAC.2016.2555484.

Jianping Gou, B. Yu, S. Maybank, and D. Tao. Knowledge distillation: A survey. International
Journal of Computer Vision, 129:1789 – 1819, 2020. doi: 10.1007/s11263-021-01453-z.

A. Halevy, Z. Ives, J. Madhavan, P. Mork, Dan Suciu, and I. Tatarinov. The piazza peer data man-
agement system. IEEE Transactions on Knowledge and Data Engineering, 16:787–798, 2004.
doi: 10.1109/TKDE.2004.1318562.

José Hernández-Orallo, Marco Baroni, Jordi Bieger, Nader Chmait, David L Dowe, Katja Hofmann,
Fernando Martı́nez-Plumed, Claes Strannegård, and Kristinn R Thórisson. A new ai evaluation
cosmos: Ready to play the game? AI Magazine, 38(3):66–69, 2017.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
pp. 328–339, 2018. doi: 10.18653/v1/P18-1031.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Mike Lewis, Denis Yarats, Yann N Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-
to-end learning for negotiation dialogues. arXiv preprint arXiv:1706.05125, 2017.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for” mind” exploration of large scale language model society.
arXiv preprint arXiv:2303.17760, 2023.

Xin Liang, G. Shen, and Shanshan Bu. Multiagent systems in construction: A ten-year review.
Journal of Computing in Civil Engineering, 30:04016016–04016016, 2016. doi: 10.1061/(ASCE)
CP.1943-5487.0000574.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Kai Lu and Chongyang Zhang. Blockchain-based multiparty computation system. In 2020 IEEE
11th International Conference on Software Engineering and Service Science (ICSESS), pp. 28–
31. IEEE, 2020.

Asit K. Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve
low-precision network accuracy. ArXiv, abs/1711.05852, 2017.

Volodymyr Mnih, K. Kavukcuoglu, David Silver, Andrei A. Rusu, J. Veness, Marc G. Bellemare,
A. Graves, Martin A. Riedmiller, A. Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, D. Kumaran, Daan Wierstra, S. Legg, and D. Has-
sabis. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.
doi: 10.1038/nature14236.

OpenAI. Gpt-4 technical report, 2023. URL https://cdn.openai.com/papers/gpt-4.
pdf.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, J. Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, P. Welinder, P. Christiano, J. Leike, and
Ryan J. Lowe. Training language models to follow instructions with human feedback. ArXiv,
abs/2203.02155, 2022. doi: 10.48550/arXiv.2203.02155.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, and Justin D. Weisz. The
programmer’s assistant: Conversational interaction with a large language model for software de-
velopment. ArXiv, abs/2302.07080, 2023. doi: 10.1145/3581641.3584037.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Noveen Sachdeva and Julian McAuley. Data distillation: A survey. ArXiv, abs/2301.04272, 2023.
doi: 10.48550/arXiv.2301.04272.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021. URL
https://arxiv.org/abs/2010.03768.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan J. Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback.
ArXiv, abs/2009.01325, 2020.

11

https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://arxiv.org/abs/2010.03768

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yashar Talebirad and Amirhossein Nadiri. Multi-agent collaboration: Harnessing the power of
intelligent llm agents. arXiv preprint arXiv:2306.03314, 2023.

V. Talwar, Qinyi Wu, C. Pu, W. Yan, G. Jung, and D. Milojicic. Comparison of approaches to
service deployment. 25th IEEE International Conference on Distributed Computing Systems
(ICDCS’05), pp. 543–552, 2005. doi: 10.1109/ICDCS.2005.18.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

José R Vázquez-Canteli and Zoltán Nagy. Reinforcement learning for demand response: A review
of algorithms and modeling techniques. Applied energy, 235:1072–1089, 2019.

Jun Wang, Yong-Hong Sun, Z. Fan, and Yan Liu. A collaborative e-learning system based on multi-
agent. pp. 455–463, 2005. doi: 10.1007/11600930 45.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Jul 2022.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Wentao Zhang, Yang Liu, Jianquan Lu, and Jinde Cao. A novel consensus algorithm for second-
order multi-agent systems without velocity measurements. International Journal of Robust and
Nonlinear Control, 27:2510 – 2528, 2017. doi: 10.1002/rnc.3694.

Kai Zhao, Yongduan Song, CL Philip Chen, and Long Chen. Adaptive asymptotic tracking with
global performance for nonlinear systems with unknown control directions. IEEE Transactions
on Automatic Control, 67(3):1566–1573, 2021.

A IMPLEMENTATION SETTINGS

In this paper, we describe an experiment conducted using the Low-Rank Adaptation (LoRA) fine-
tuning method to enhance the performance of various models Wang et al. (2005). The accuracy of
the LoRA method is of paramount importance in dealing with personalized and emotionally rich
content. It enables the models to adapt to new data features while maintaining their core capabili-
ties Bai et al. (2015).

During the experiment, we set the temperature parameter of the test models to 0.7 to increase the
diversity of the content, and adjusted the top-p value to 0.95 to improve the precision of the generated
content. We employed a learning rate of 2e-4 and beta values of (0.9, 0.999) to ensure the stability
of the training process. The batch size was set to 4, with gradient accumulation, to ensure efficiency
within the limits of computational resources. To balance innovation and coherence, we used LoRA
parameters with a rank of 8 and an alpha value of 32, and adjusted both the top-p value and the
temperature parameter to 0.7.These adjustments significantly enhanced the models’ flexibility and
accuracy in handling personalized and emotionally rich content.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B EVALUATION CRITERIA

(1) Operating systems Integrating LLMs into operating systems offers vast potential for au-
tomating and optimizing tasks. This integration demands a secure, user-friendly interface
for effective LLM-OS interaction and requires LLMs to accurately understand the OS con-
text for informed operations. Ensuring the safety of these operations is paramount to pre-
vent misuse. Moreover, the system must handle errors and provide clear feedback to users,
enhancing interaction and control. Addressing these aspects can revolutionize computer
interaction and efficiency across industries.

(2) Database Database (DB). Due to the crucial and challenging nature of database analy-
sis in many daily affairs, it is paramount to examine the abilities of LLMs to operate on
real databases via SQL. Previous research has placed significant emphasis on individual
procedures, such as showcasing the effectiveness of LLMs in automating database access
through T5QL, a new SQL generation method. Additionally, utilizing fine-tuned LLMs
(such as GPT-3.5) to extract and link complex scientific information from scientific texts
has demonstrated the capacity of LLMs to obtain structured knowledge from unstructured
text and subsequently construct large databases Dunn et al. (2022).

(3) WebShop represents an innovative simulation of an e-commerce website environment, fea-
turing 1.18 million real-world products and 12,087 crowd-sourced text instructions. This
platform challenges agents to navigate through multiple types of webpages and perform a
variety of actions to find, customize, and purchase products according to given instructions.
WebShop presents several challenges, including understanding compositional instructions,
query (re-)formulation, dealing with noisy text in webpages, and conducting strategic ex-
ploration.

(4) Knowledge Graphs The utilization of LLMs in constructing and interacting with knowl-
edge graphs (KG) offers a promising avenue for enhancing semantic understanding and
information retrieval. This involves assessing the models’ ability to not only generate but
also interpret complex interrelations within data, facilitating more intuitive and context-
aware responses. The effectiveness of LLMs in this domain could significantly improve
AI’s capacity for reasoning and decision-making based on structured knowledge.

(5) Mind2Web Mind2Web (M2W) is a dataset for developing web agents that perform com-
plex tasks on real websites via language instructions. It features over 2,000 tasks across
137 sites from 31 domains. M2W’s real web environments and diverse user interactions
make it a crucial platform for advancing AI navigation capabilities.

(6) ALFWorld bridges interactive TextWorld environments with embodied tasks from the AL-
FRED dataset, enabling agents to learn abstract strategies and apply them to real-world
tasks. It facilitates abstract reasoning and concrete execution, allowing agents to plan ac-
tions in a text-based simulator and then execute these tasks in a visual environment. This
approach enhances agent generalization and problem-solving skills across various domains,
such as language understanding and visual navigation, by leveraging a modular design that
simplifies research improvements.

C DETAILS ABOUT EXPERIMENT

By examining prompts of varying quality—high-quality, low-quality, and no prompts—we aimed
to reveal how these factors influence the model’s capability, especially in identifying and correct-
ing programming errors. Our findings indicate that fine-tuned high-quality prompts significantly
enhance the model’s ability to write and rigorously check code, enabling it to produce high-quality
code and conduct stricter code inspections. As demonstrated in the Table 23∼ 25 .In contrast,
low-quality prompts might lead to the model generating nonsensical and ineffective code, and in sit-
uations where correct code is provided, the model might even alter it to incorrect code. The decline
in model output quality in these instances is primarily due to the vague and unclear descriptions
provided by the prompts and the lack of specific guidance, which prevents the model from effec-
tively utilizing the knowledge it acquired during training to focus on key error points and make
accurate correction decisions. Moreover, our study also showed that in the absence of any prompt
guidance, the model’s performance tends to be limited by the quality and scope of its training data,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

particularly when faced with novel or complex error types. This finding underscores the importance
of high-quality prompts in designing effective NLP models for complex tasks like code correction.
High-quality prompts not only guide the model to more accurately understand and address specific
programming issues but also reduce noise in the processing, thereby improving overall efficiency
and accuracy.

D PROMPTS FOR TASKS

We describe the task to the checker agent using the following instruction as shown in Table 6∼ 12.

E EXAMPLES OF TASKS

All tasks in the dataset are divided into six categories. For each category, we present an example of
successful execution as shown in Table 13∼ 22.

Table 6: Prompt for DATABASE
DATABASE(DB)

User
As the Database Inspector, your role involves overseeing and

validating the assistant’s interactions with a MySQL
database. The objective is a seamless collaboration to
fulfill a specified task. The process is straightforward:
the assistant will submit SQL queries, and it’s your
responsibility to examine the SQL syntax and logic to
confirm their accuracy in addressing the given question.

The mission is to collaborate effectively. You leverage your
expertise, guiding the assistant through the task. If the
assistant deviates from the correct approach, you’re
expected to provide guidance, offering both your insight
and the correct solution. Documenting your thought process
is essential.

During each review cycle, you’re given the option to act by
providing a SQL command or conclude with an answer. Your
actions should adhere to this format:

Action: Execute SQL
Example: SELECT * FROM table WHERE condition;
Ensure the SQL is concise, presented in markdown format,
restricted to a single line without additional commentary.
Only one SQL statement should be executed at a time.

The assistant will execute only the first SQL code block you
provide and then share the output. Once you’ve completed an
action and are ready to present a final answer, your

submission should be as follows:
Action: Submit Final Answer

Final Answer: ["Answer 1", "Answer 2", ...]
Your final answer must be precise and correct, perfectly

aligning with the expected answer. If the task involves
modifying the database, the answer field might vary post-
operation. Nonetheless, any departure from the specified
response format will lead to an immediate failure of the
task.

It’s important to remember that you will be presented with the
raw MySQL response to analyze independently. Accuracy and

correctness are crucial in this joint effort.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Prompt for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

User
As a reviewer, your task is to verify that the system for

answering questions based on a knowledge base (KB) operates
correctly. To achieve this goal, you will need to use the

following tools to review the query process in the
knowledge base:

1. Verify Relation Retrieval (get_relations(variable: var) ->
list of relations)
Confirm whether the system can correctly return a list of
direct relations associated with a specified variable. The
variable can be either a single entity or a set of entities
(i.e., the result of a previous query). This function

helps determine which relation to use for the next step in
expanding the query.
Example: Verify if ‘get_relations(Barack Obama)‘ can find
all relations/edges starting from the entity Barack Obama.
Note: The argument for ‘get_relations‘ must be a clearly
defined entity or a variable obtained from a previous query
(such as #0).

2. Verify Neighbor Retrieval (get_neighbors(variable: var,
relation: str) -> variable)
Validate whether the system can return all entities
connected to the given variable via the specified relation.
Note that ‘get_neighbors()‘ can only be used after ‘

get_relations()‘ is used to find a set of viable relations.
Example: Verify if ‘get_neighbors(Barack Obama, people.
person.profession)‘ correctly returns Obama’s profession in
Freebase.

3. Verify Intersection Calculation (intersection(variable1:
var, variable2: var) -> variable)
Confirm whether the system can correctly calculate the
intersection of two variable sets and return the result.
Importantly, the two variable sets must be of the same type
.

4. Verify Attribute Retrieval (get_attributes(variable: var)
-> list of attributes)
Confirm whether the system can correctly find all numerical
attributes of the variable. This function is only used

when the question requires extremum analysis (such as
argmax or argmin).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Prompt for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

5. Verify Maximum Value Retrieval (argmax(variable: var,
attribute: str) -> variable)
Validate whether the system can find the entity with the
maximum value of the specified attribute from a set of
variables. This operation requires using ‘get_attributes()‘
first to obtain a list of viable attributes.

Example: Verify if ‘argmax(variable, age)‘ correctly
returns the oldest entity in the variable set.

6. Verify Minimum Value Retrieval (argmin(variable: var,
attribute: str) -> variable)
Similar to ‘argmax‘, but needs to validate whether the
system can return the entity with the minimum attribute
value.

7. Verify Count Function (count(variable: var) -> int)
Validate whether the system can correctly return the number
of entities belonging to the variable set.

Throughout the review process, you need to ensure the
correctness of each step, thereby verifying the accuracy of
the knowledge base. Each variable is represented by an id

starting from 0. Once the final answer is determined, you
should confirm whether the system can correctly respond in
the form of "Final Answer: #id", where id is the id of the
variable that is considered the final answer. For example,
confirm if the system correctly responded with "Final
Answer: #3" when it determined #3 to be the final answer.

Your goal is to ensure the accuracy and logical consistency of
the knowledge base query process, to help improve system

performance and answer quality.

Table 9: Prompt for WEBSHOP
WEBSHOP(WS)

User
As the Shopping Experience Auditor, you are charged with the

task of verifying that all actions undertaken in our web
shopping simulation adhere to the given instructions and
are executed correctly.

Your responsibility includes scrutinizing each step to ensure
the selection of the correct product, compliance with price
criteria, and the proper execution of actions based on

available options. Should any discrepancies arise, it’s
within your purview to identify them and recommend
appropriate corrections.

You are invited to specify any particular interactions for
verification, and you will conduct a thorough assessment to
guarantee the precision of our shopping procedure.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 10: Prompt for ALFWORLD
ALFWORLD(ALF)

User
As an Interactive Environment Auditor, your task is to

meticulously review the actions taken by the intelligent
agent in the household environment, ensuring they comply
with the given instructions and the range of available
actions.

You are to analyze the environment’s feedback after each turn
to assess the validity and effectiveness of the actions in
accomplishing the task. Should an action result in "Nothing
happened," it falls to you to deem it invalid and

recommend alternative actions from those available.
Your objective is to ensure that the intelligent agent’s

decisions are logical, permissible, and conducive to
achieving the task’s goal. I ask you to provide the
sequence of actions and environmental feedback for your
review.

Table 11: Prompt for MIND2WEB
MIND2WEB(M2W)

User

As the Web Browsing Quality Supervisor, your role is to
evaluate the agent’s attempt at completing the following
task and assess whether the chosen action aligns with the
HTML webpage and task description:

Task Description:
[Insert specific task description here]

Previous actions taken by the agent:
[List of previous actions]

Agent’s proposed next action:
Element: [Description of the selected element]
Action: [Type of action]
Value: [Value for input or selection, if the action is not a

click]

Please examine the HTML element and the task description.
Determine if the agent’s proposed action accurately
fulfills the task requirements.

Provide feedback on the appropriateness of the action. If it
deviates from what is required, kindly specify the correct
action that should be taken.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 12: Prompt for OPERATING SYSTEM
OPERATING SYSTEM(OS)

User
As the System Operation Audit Expert, your role is to evaluate

the assistant’s actions in the context of a simulated
interaction with a Linux (Ubuntu) operating system.

The assistant will perform tasks based on your requests and
provide explanations for their actions. For each round,
review the assistant’s thought process and the action taken
, and determine if the task has been correctly completed.

The assistant can take one of three actions:
1. If the assistant decides to execute bash code, they will

present their thought process in the "Think" section and
the bash code in the "Act" section.

2. If the assistant believes the task is finished, they will
indicate completion in the "Think" section and provide a
justification for why the task is considered complete.

3. If the assistant has an answer to a question, they will
explain how they arrived at the answer in the "Think"
section and provide the answer in the "Act" section.

Your task is to assess the assistant’s performance based on
the following criteria:

Accuracy: Is the action taken appropriate for the task
described?

Completeness: Has the assistant provided all necessary
information and performed all required steps?

Justification: Is the thought process logical and does it
support the action taken?

Please provide feedback on the assistant’s actions, including
any errors or omissions, and suggest corrections if
necessary. If the assistant’s output is truncated, consider
whether the provided information up to the truncation

point is sufficient for the task at hand.

Begin your evaluation with the following prompt:
Please evaluate the assistant’s last action and thought

process. Was the task performed correctly? If not, what was
missing or incorrect, and what should have been done

instead? Provide specific feedback based on the assistant’s
"Think" and "Act" sections.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 13: Example for OPERATING SYSTEM
OPERATING SYSTEM(OS)

BASH>
ls /etc
User: The output of the OS: cpi cron.hourly fuse.conf iproute2

lvm networkd-dispatcher protocols selinux tmpfiles.d [
truncated because the output is too long]

Agent: Think: The output has been truncated because it is too
long, so I need to count files by script directly.

Act: bash
<BASH>
ls -1 /etc | wc -l

User: The output of the OS: 220

Agent: Think: Now I get the answer, it is 220.
Act: answer(220)

User: Now, I will start a new problem in a new OS. My problem
is: In this problem, you need to find the total number of
lines containing the word "Linux" in all the ".txt" files
inside a given directory and its subdirectories.

Here’s the problem detail: A new directory named "Linux_files"
will be created in your home directory. The "Linux_files"

directory will contain multiple ".txt" files and
subdirectories. Some of the subdirectories inside "
Linux_files" will also contain ".txt" files. Some of the ".
txt" files will contain the word "Linux" in one or more
lines.

Your task is to find the total number of lines containing the
word "Linux" in all the ".txt" files inside the "
Linux_files" directory and its subdirectories. Submit your
answer as an integer.

Agent: Think: To find the total number of lines containing the
word "Linux" in all the ".txt" files inside the "

Linux_files" directory and its subdirectories, I can use
the grep command with the -r option to search recursively.

Act: bash
<BASH>
grep -r "Linux" ˜/Linux_files/*.txt | wc -l

User: The output of the OS: 4

Agent: Think: The output shows that there are 4 lines
containing the word "Linux" in all the ".txt" files inside
the "Linux_files" directory and its subdirectories.

Act: answer(4)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 14: Example for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

Agent: Thought: Now I need to find the city where Busch
Stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #1.

Action: get_relations(#1)

User: Observation: [List of relations including location.
location.containedby, location.location.adjoin_s, location.
location.contains, and many others]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #2, which are instances of
location.location

Agent: Thought: Now I need to find the city where Busch
Stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #2.

Action: get_relations(#2)

User: Observation: [List of relations similar to the first
list]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #3, which are instances of
location.location

Agent: Thought: The Busch Stadium is located in St. Louis,
Missouri, USA. Now I need to find the city where the
stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #3.

Action: get_relations(#3)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 15: Example for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

User: Observation: [List of relations similar to the previous
lists]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #4, which are instances of
location.location

Agent: Thought: The Busch Stadium is located in St. Louis,
Missouri, USA. Now I need to find the city where the
stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #4.

Action: get_relations(#4)

User: Observation: [List of relations similar to the previous
lists]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #5, which are instances of
location.location

Agent: Thought: The Busch Stadium is located in St. Louis,
Missouri, USA. Now I need to find the city where the
stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #5.

Action: get_relations(#5)

User: Observation: [List of relations similar to the previous
lists]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 16: Example for ALFWORLD
ALFWORLD(ALF)

Agent Thought: "The task is to examine the mug with the
desklamp. I need to find where the mug is first and then
find the desklamp to light it up. I’ll start my search on
desk 1."

Agent Action: "go to desk 1"
Environment Feedback: "On the desk 1, you see a bowl 1, a

desklamp 1, a laptop 1, and a pen 1."

Agent Action: "examine bowl 1 with desklamp 1"
Environment Feedback: "You pick up the bowl 1 from the desk

1."

Agent Action: "put bowl 1 in/on desk 1"
Environment Feedback: "You put the bowl 1 in/on the desk 1."

Agent Thought: "The task is to examine the mug with the
desklamp. I need to find where the mug is first and then
find the desklamp to light it up. I’ll start my search on
desk 1."

Agent Action: "examine desk 1"
Environment Feedback: "On the desk 1, you see a bowl 1, a

desklamp 1, a laptop 1, and a pen 1."

Agent Action: "take mug 1 from desk 1"
Environment Feedback: "You pick up the bowl 1 from the desk

1."

Agent Action: "use desklamp 1"
Environment Feedback: "You turn on the desklamp 1."

Agent Action: "examine mug 1 with desklamp 1"
Environment Feedback: "You turn on the desklamp 1."

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 17: Example for MIND2WEB
MIND2WEB(M2W)

User: Based on the HTML webpage above, try to complete the
following task:

Task: Find tuition & fees for full term graduate students in
the college of engineering for the academic year 2022-2023

Previous actions:
[link] Costs & Financial Aid -> CLICK
[combobox] Academic Year -> SELECT: 2022-2023
[combobox] College/School -> SELECT: College of Engineering
[combobox] Full or Half Term -> SELECT: Full Term
[combobox] Level of Study -> SELECT: Graduate
What should be the next action? Please select from the

following choices (If the correct action is not in the page
above, please select A. ’None of the above’):

A. None of the above
B. Graduation
C. <select id=1 academic_year> <option all> Select </option> <

option 175 true>
D. <select id=2 college_school> <option all> Select </option>

<option 17> College
E. <select id=3 level_of_study> <option all> Select </option>

<option 38 true>
F. <input id=4 submit apply />
Agent: Thought: The search has already been set to College of

Engineering and Graduate level. Next, I should select Full
Term.

Answer: E.
Action: SELECT
User: Based on the HTML webpage above, try to complete the

following task:
Task: Find tuition & fees for full term graduate students in

the college of engineering for the academic year 2022-2023
Previous actions:
[link] Costs & Financial Aid -> CLICK
[combobox] Academic Year -> SELECT: 2022-2023
[combobox] College/School -> SELECT: College of Engineering
[combobox] Full or Half Term -> SELECT: Full Term
[combobox] Level of Study -> SELECT: Graduate
What should be the next action? Please select from the

following choices (If the correct action is not in the page
above, please select A. ’None of the above’):

A. None of the above
B. <input id=0 text search />
C. Tuition
D. <div id=2> Tuition & Fees </div>
E. Tuition & Fees
F. Class Fees

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 18: Example for MIND2WEB
MIND2WEB(M2W)

Agent: Thought: The search has already been set to Tuition.
Next, I should find the tuition & fees for full term
graduate students in the college of engineering for the
academic year 2022-2023.

Answer: D.
Action: CLICK on the link with the text "Tuition & Fees"
User: Based on the HTML webpage above, try to complete the

following task:
Task: Find tuition & fees for full term graduate students in

the college of engineering for the academic year 2022-2023
Previous actions:
[link] Costs & Financial Aid -> CLICK
[combobox] Academic Year -> SELECT: 2022-2023
[combobox] College/School -> SELECT: College of Engineering
[combobox] Full or Half Term -> SELECT: Full Term
[combobox] Level of Study -> SELECT: Graduate
What should be the next action? Please select from the

following choices (If the correct action is not in the page
above, please select A. ’None of the above’):

A. None of the above
B. <div id=0> Tuition & Fees </div>
C. <select id=1 level_of_study> <option all> Select </option>

<option 38 true>
Agent: Thought: The search has already been set to graduate

students in the college of engineering for the academic
year 2022-2023. Next, I should select the level of study.

Answer: C.
Action: SELECT: Graduate

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 19: Example for WEBSHOP
WEBSHOP(WS)

User: You are web shopping. I will give you instructions about
what to do. You have to follow the instructions. Every

round I will give you an observation and a list of
available actions, you have to respond with an action based
on the state and instruction. You can use the search

action if the search is available. You can click one of the
buttons in clickables. An action should be of the

following structure: search[keywords] or click[value]. If
the action is not valid, perform nothing. Keywords in
search are up to you, but the value in click must be a
value in the list of available actions. Remember that your
keywords in search should be carefully designed. Your
response should use the following format:

Thought:
I think ...

Action:
click[something]

Agent: Ok.

User: Observation:
"WebShop [SEP] Instruction: [SEP] I’m looking for rubber stole

shoes for light wearing it was brown in color, and price
lower than 70.00 dollars [SEP] Search"

Available Actions:
{"has_search_bar": true, "clickables": ["search"]}

Agent: Thought:
I think I should use the search bar to look for the product I

need.

Action:
search[rubber stole shoes brown price < 70.00]

User: Observation:
Instruction: [SEP] I’m looking for rubber stole shoes for

light wearing it was brown in color, and price lower than
70.00 dollars [SEP] Back to Search [SEP] Page 1 (Total
results: 50) [SEP] Next > [SEP] B08XHSG67V [SEP] Crosley
Furniture Madeleine 53.25" Farmhouse Metal Kitchen Island
in Brown/Black [SEP] 331.49 [SEP] B07CZ5YKWW [SEP] Roper
Tumbled Womens Brown Leather Petty Slip-On Shoes [...]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 20: Example for WEBSHOP
WEBSHOP(WS)

[...]
Available Actions:
{"has_search_bar": false, "clickables": ["back to search", "

next >", "b08xhsg67v", "b07cz5ykww", "b000jiatqs", "
b01ld5a59g", "b085wr7626", "b07s7qxncw", "b01lykp60o", "
b004xj62re", "b07fy9mfhx", "b09cfqjt7h"]}

Agent: Thought:
I think I should click on the product I need, which is

B08XHSG67V.

Action:
click[B08XHSG67V]

User: Observation:
Instruction: [SEP] I’m looking for rubber stole shoes for

light wearing it was brown in color, and price lower than
70.00 dollars [SEP] Back to Search [SEP] < Prev [SEP]
Crosley Furniture Madeleine 53.25" Farmhouse Metal Kitchen
Island in Brown/Black [SEP] Price: $331.49 [SEP] Rating: N.
A. [SEP] Description [SEP] Features [SEP] Reviews [SEP] Buy
Now

Available Actions:
{"has_search_bar": false, "clickables": ["back to search", "<

prev", "description", "features", "reviews", "buy now"]}

Agent: Thought:
I think I should click on the ’Buy Now’ button to purchase the

product.

Action:
click[Buy Now]

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 21: Example for DATABASE
DATABASE(DB)

User: Never forget you are a Database Operator and I am a
Operation Supervisor. Never flip roles! Never instruct me!
We share a common interest in collaborating to successfully
complete a task.You must help me to complete the task.

Here is the task: I will ask you a question, then you
should help me operate a MySQL database with SQL to answer
the question.Never forget our task! I must instruct you
based on your expertise and my needs to complete the task.
You have to explain the problem and your solution to me and
write down your thoughts. After thinking and explaining

thoroughly, every round you can choose to operate or to
answer.your operation should be like this:

Action: Operation
‘‘‘sql
SELECT * FROM table WHERE condition;
‘‘‘

You MUST put SQL in markdown format without any other comments
. Your SQL should be in one line. Every time you can only
execute one SQL statement. I will only execute the
statement in the first SQL code block. Every time you write
a SQL, I will execute it for you and give you the output.

If you are done operating, and you want to commit your
final answer, then write down:

Action: Answer
Final Answer: ["ANSWER1", "ANSWER2", ...]

DO NOT write this pattern unless you are sure about your
answer. I expect an accurate and correct answer.Please note
: Your answer should be accurate. Your answer must be
exactly the same as the correct answer. If the question is
about modifying the database, then after done operation,
your answer field can be anything. If your response cannot
match any pattern I mentioned earlier, you will be judged
as FAIL immediately. Your input will be raw MySQL response,
you have to deal with it by yourself.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 22: Example for DATABASE
DATABASE(DB)

Agent: Ok

User: What event did he fight masato shiozawa?\nThe name of
this table is MMA Fight Record, and the headers of this
table are Res,Record,Opponent,Method,Event,Round.

agent: To find the event that Masato Shiozawa and I fought, I
can use a SELECT statement to retrieve the ‘Event‘ column
from the ‘MMA Fight Record‘ table. To specify the condition
that Masato Shiozawa was the opponent, I can use a WHERE

clause with the condition ‘Opponent = ’Masato Shiozawa’‘.
Action: Operation
‘‘‘sql
SELECT ‘Event‘ FROM ‘MMA Fight Record‘ WHERE ‘Opponent‘ = ’

Masato Shiozawa’
‘‘‘

User: [(’Shooto 2003 - 5/4 in Korakuen Hall’,)]

agent: The SQL query executed successfully and returned the
expected answer. The event that Masato Shiozawa and I
fought was ’Shooto 2003 - 5/4 in Korakuen Hall’. I can now
commit my answer.

Action: Answer
Final Answer: ["Shooto 2003 - 5/4 in Korakuen Hall"]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 23: prompt - High-quality

Q1: How to install the required Python libraries for a Q&A
game?

A1 (Assistant): Use the following command to install the ’
transformers’ library:
‘‘‘ import subprocess
requirements = [’transformers’]
for package in requirements:

subprocess.run([’pip’, ’install’, ’-U’, package]) ‘‘‘
A1 (Checker): The code is correct but consider using a

requirements.txt file for better package management.
Q2: How to import the ’transformers’ library for a question-

answering task?
A2 (Assistant): Import the pipeline function to create a Q&A

task pipeline:
‘‘‘ from transformers import pipeline ‘‘‘

A2 (Checker): Correct. This is the standard method for
importing and using the ’transformers’ pipeline.

Q3: How to define a function to play a memory game that checks
if the user’s answer is correct?

A3 (Assistant): Define the ’play_memory_game’ function without
checking input types:
‘‘‘ def play_memory_game(context, question, user_answer):

question_answerer = pipeline(’question-answering’)
result = question_answerer(question=question, context=

context)
return user_answer == result[’answer’] ‘‘‘

A3 (Checker): You should validate input types to ensure they
are strings and handle exceptions. Use a specific model for
better accuracy:
‘‘‘def play_memory_game(context, question, user_answer):

if not all(isinstance(arg, str) for arg in [context,
question, user_answer]):

raise ValueError(’All arguments must be of type
str’)

question_answerer = pipeline(’question-answering’,
model=’distilbert-base-uncased-distilled-squad’)

result = question_answerer(question=question, context=
context)

return user_answer.lower() == result[’answer’].lower()
‘‘‘

Q4: How to call the ’play_memory_game’ function and check
results?

A4 (Assistant): Call the function with incorrect syntax:
play_memory_game(’The capital of France is Paris’, ’What is
the capital of France?’, ’Paris’)

A4 (Checker): The syntax is almost correct, but you should
capture and print the function’s return value to check the
result: ‘‘‘ result = play_memory_game(’The capital of
France is Paris’, ’What is the capital of France?’, ’Paris
’) print(result)‘‘‘

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 24: prompt - Low-quality

Q1: How to install the required Python libraries for a Q&A
game?

A1 (Assistant): Use the command ’pip install transformers’.
A1 (Checker Correction): It’s better to manage dependencies

via a requirements.txt file. Use ’pip install -r
requirements.txt’ where ’transformers’ is listed.

Q2: How to import the ’transformers’ library for a question-
answering task?

A2 (Assistant): Use ’from transformers import pipeline’.
A2 (Checker Correction): Correct. Ensure ’transformers’ is

installed beforehand.
Q3: How to define a function to play a memory game that checks

if the user’s answer is correct?
A3 (Assistant): Provides a basic function without input type

checking.
A3 (Checker Correction): Add input type checks and raise a

ValueError for non-string inputs. Use a specific model for
accuracy: ’distilbert-base-uncased-distilled-squad’. Q4:
How to test the ’play_memory_game’ function’s correctness?

A4 (Assistant): Provides a test function without exception
handling.

A4 (Checker Correction): Modify the test function to catch
exceptions and provide detailed output for each test case
for easier debugging.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 25: without prompts

Q1: How to install the required Python libraries?
A1: Use the following command to install the ’transformers’

library:
import subprocess
requirements = [’transformers’]
for package in requirements:

subprocess.run([’pip’, ’install’, ’-U’, package])
Q2: How to import the ’transformers’ library for a question-

answering task?
A2: Import the ’pipeline’ function to create a question-

answering task pipeline:
from transformers import pipeline

Q3: How to define a function to play a memory game that checks
if the user’s answer is correct?

A3: Define the ’play_memory_game’ function, which takes a
context, a question, and the user’s answer, then checks the
correctness using the ’transformers’ question-answering

pipeline:
def play_memory_game(context, question, user_answer):

if not all(isinstance(arg, str) for arg in [context,
question, user_answer]):

raise ValueError(’All arguments must be of type str’)
question_answerer = pipeline(’question-answering’, model=’
distilbert-base-uncased-distilled-squad’)
result = question_answerer(question=question, context=
context)
predicted_answer = result[’answer’]
return user_answer.lower() == predicted_answer.lower()

Q4: How to test the ’play_memory_game’ function?
A4: The ’test_play_memory_game’ function includes three test

cases: normal execution, handling non-string input, and
incorrect user answer:

def test_play_memory_game():
Normal execution test
assert play_memory_game(’The capital of France is Paris.’,
’What is the capital of France?’, ’Paris’), "Incorrect

answer."
Non-string input test
try:

play_memory_game(123, ’What is the answer?’, ’test’)
except ValueError:

pass # Expected failure for non-string input
Incorrect answer test
assert not play_memory_game(’The Earth revolves around the
Sun.’, ’What does the Moon revolve around?’, ’Sun’), "

Incorrect answer should fail."

31

	Introduction
	Related work
	LLMs Applications in a Multi-Agent Framework
	The tuning method for LLMs

	Proposed method
	Agent Roles
	Learning Strategy
	Supervised Fine-Tuning
	Incorporating Chain of Thought and ReAct
	Feedback-Driven Policy Optimization Inspired by Actor-Critic Dynamics

	Checker-In-The-Loop Mechanism
	Memory Management and Reflexion Process

	Experiments
	Dataset
	Evaluating Code Correction
	Baselines
	Results analysis
	Error analysis
	Ablation Study

	Conclusions
	Limitations
	Implementation Settings
	Evaluation criteria
	Details about Experiment
	Prompts for Tasks
	Examples of Tasks

