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ABSTRACT

Open large language models (LLMs) have significantly advanced the field of natu-
ral language processing, showcasing impressive performance across various tasks.
Despite the significant advancements in LLMs, their effective operation still relies
heavily on human input to accurately guide the dialogue flow, with agent tuning
being a crucial optimization technique that involves human adjustments to the
model for better response to such guidance. Addressing this dependency, our work
introduces the TinyAgent model, trained on a meticulously curated high-quality
dataset.
We also present the Collaborative Multi-Agent Tuning (CMAT) framework, an in-
novative system designed to augment language agent capabilities through adaptive
weight updates based on environmental feedback. This framework fosters collab-
orative learning and real-time adaptation among multiple intelligent agents, en-
hancing their context-awareness and long-term memory. In this research, we pro-
pose a new communication agent framework that integrates multi-agent systems
with environmental feedback mechanisms, offering a scalable method to explore
cooperative behaviors. Notably, our TinyAgent-7B model exhibits performance
on par with GPT-3.5, despite having fewer parameters, signifying a substantial
improvement in the efficiency and effectiveness of LLMs.

1 INTRODUCTION

In the rapid development of the field of artificial intelligence, large language models (LLMs) such
as BERT and GPT-4 OpenAI (2023) have become important cornerstones of natural language
processing (NLP). These models utilize the Transformer architecture and effectively capture long-
distance dependencies through multi-head self-attention mechanisms, demonstrating strong capabil-
ities across various NLP tasks. With technological advancements, the performance and application
scope of LLMs continue to expand, promising significant improvements in computational efficiency
and functionality, including anticipated advanced features such as self-improvement, self-checking,
and sparse expert models Liu et al. (2023).

However, it is noteworthy that the success of these models largely depends on human input to guide
the correct dialogue. This dependency requires users to provide relevant and precise prompts based
on their intentions and the feedback from the chat agent, raising a critical question: Can we replace
human intervention with autonomous communication agents capable of steering conversations
towards task completion with minimal human supervision?

Our research addresses the challenges faced by LLMs in real-world deployments, including high
computational requirements, data biases, and lack of robustness, which limit their applicability in
resource-constrained environments Abid et al. (2021); Du et al. (2022). As shown in Figure 1, we
optimize models and training methods to enable smaller models to match larger models’ perfor-
mance. Recognizing MAS’s potential to improve processing efficiency through agent cooperation,
we develop a collaborative agent framework Ferry et al. (2018); Talwar et al. (2005). Based on our
experiments showing that low-quality prompts can significantly degrade model performance, we
propose the Collaborative Multi-Agent Tuning (CMAT) framework.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: TinyAgent demonstrates outstanding performance, comparable to that of GPT-3.5.
TinyAgent is a series of models fine-tuned based on Qwen Bai et al. (2023) and Codellama Roziere
et al. (2023).

Figure 2: In the CMAT framework, the user assigns tasks to an assistant, which generates SQL
commands based on short-term and long-term memories: short-term memory provides immediate
context from trajectory history, while self-reflective outputs are stored as long-term memory. The
checker verifies the correctness of SQL commands before they are executed in the environment.

The CMAT framework introduces a structured environment where individual agents, each with spe-
cialized roles and capabilities, work together to process information, make decisions, and solve
complex tasks Hernández-Orallo et al. (2017). By sharing insights and learning from interactions
within this multi-agent ecosystem, the framework allows for a more scalable and flexible approach
to training LLMs Lewis et al. (2017). This collaborative effort not only helps in bridging the gap
in performance between smaller and larger models but also fosters a more resilient system capable
of adapting to new challenges without extensive human intervention Kaplan et al. (2020). Through
CMAT, we aim to push the boundaries of what is possible with LLMs, making them more accessible
and effective for a wider range of applications Rajpurkar et al. (2018).
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The main contributions of our work are as follows:

• We propose the CMAT framework which represents an innovative approach that allows for
dynamic and real-time memory updates within multi-agent systems.

• We design a novel role-playing mechanism for precise task allocation and enhanced agent
communication, significantly boosting overall performance and cooperation.

• We evaluated the fine-tuned TinyAgent models across multiple agent tasks, finding that in
certain scenarios, their performance rivals that of advanced LLMs like GPT-4 and agentlm
Zeng et al. (2023), demonstrating the potential efficiency and capabilities of compact mod-
els.

2 RELATED WORK

2.1 LLMS APPLICATIONS IN A MULTI-AGENT FRAMEWORK

We explore the applications of LLMs within multi-agent systems, highlighting their role versatility
as users, assistants, and checkers de Zarzà et al. (2023); Talebirad & Nadiri (2023). LLMs showcase
remarkable adaptability through supervised fine-tuning and real-time feedback learning, particularly
in tasks involving operating systems and databases Christianos et al. (2023); Li et al. (2023). Their
ability to enhance communication and collaboration among agents is crucial for addressing complex
issues requiring multi-role coordination Zhao et al. (2021). However, LLMs face challenges within
multi-agent frameworks, particularly in contextual comprehension, memory retention, and adapta-
tion to evolving environments Diallo et al. (2020). Data bias, security concerns, and complexities
in multi-agent cooperation protocols remain significant challenges Zhang et al. (2017); Garcı́a et al.
(2015). By examining LLMs’ roles in multi-agent frameworks, we emphasize the need for contin-
ued innovation to overcome these hurdles Lu & Zhang (2020). To enhance LLMs in multi-agent
systems, we’ve implemented memory modes with long-term support and short-term environmental
feedback Liang et al. (2016). This implementation enables better interaction, learning, and adapta-
tion in dynamic environments, leveraging past experiences for swift responses to changes.

2.2 THE TUNING METHOD FOR LLMS

The main tuning methods include supervised fine-tuning and reinforcement learning Ouyang et al.
(2022). Supervised fine-tuning enhances performance by training models on specific task datasets,
particularly for natural language understanding (NLU) Howard & Ruder (2018). Reinforcement
learning, guided by reward mechanisms, is suitable for handling complex and variable tasks Mnih
et al. (2015).

The combination of these methods significantly improves LLMs’ performance across various tasks.
Notably, smaller LLMs with 1.8 billion parameters can achieve performance comparable to 6 billion
parameter models when supported by high-quality datasets Stiennon et al. (2020). This demonstrates
the decisive role of data quality and appropriate tuning strategies in LLM performance Howard &
Ruder (2018). Through our work combining both approaches, we’ve achieved significant improve-
ments in task-specific benchmarks Ouyang et al. (2022).

3 PROPOSED METHOD

Our research focuses on the development and implementation of the Collaborative Multi-Agent
Language Model Tuning (CMAT) framework, which aims to enhance decision-making quality,
controllability, and operational efficiency in complex systems through the collaboration of vari-
ous agent roles: the User (U), Assistant (A), and Checker (C). The CMAT framework employs
advanced supervised fine-tuning techniques such as Low-Rank Adaptation (LoRA) Hu et al. (2021)
and Prompt Tuning (P-Tuning) Lester et al. (2021), leveraging pre-trained datasets like AgentBench
(DAgentBench). Additionally, it incorporates mechanisms inspired by Reinforcement Learning from
Human Feedback (RLHF) Vázquez-Canteli & Nagy (2019), Chain of Thought (CoT), and ReAct
methods.

3
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Figure 3: Comparative study of Llama-2-7b and TinyAgent-7b in DataBase cases. (1) In DataBase
tasks with a reflection mechanism, Llama-2-7b still made errors after reflection, while TinyAgent-7b
adjusted its operations after reflecting on its first failed attempt. (2) Without a reflection mechanism,
TinyAgent-7b repeated the same operation and ultimately failed to complete the task.

3.1 AGENT ROLES

In the CMAT framework, we define a collaborative system with three agents: User (U), Assistant
(A), and Checker (C). The Assistant acts as the Actor, while the Checker serves as the Critic,
forming an Actor-Critic dynamic.

At each time step t, the User U provides an input xt ∈ X to the Assistant. The Assistant A,
modeled as a language model Mθactor with parameters θactor, generates an action at based on its
policy πθactor : at = πθactor(xt). The Checker C evaluates the Assistant’s action using a feedback
function F : A×X → F , providing feedback ft: ft = F (at,xt). The feedback loop embodies the
Actor-Critic Dynamics, where the Assistant (Actor) adapts its policy based on the evaluation from
the Checker (Critic), facilitating continuous learning and improvement.

3.2 LEARNING STRATEGY

To optimize the Assistant’s policy πθactor , we employ a learning strategy that integrates supervised
fine-tuning, feedback-driven reinforcement learning using the Actor-Critic method, and advanced
reasoning methods like Chain of Thought (CoT) and ReAct.

3.2.1 SUPERVISED FINE-TUNING

The Assistant’s modelMθactor is initially fine-tuned on a dataset D = {(xi,yi)} using techniques
like LoRA Hu et al. (2021) and P-Tuning Lester et al. (2021), minimizing the loss function:

Lsup(θactor) = E(x,y)∼D [ℓ (Mθactor(x),y)] , (1)
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where ℓ(·, ·) denotes the cross-entropy loss.

3.2.2 INCORPORATING CHAIN OF THOUGHT AND REACT

To enhance reasoning capabilities, the Assistant employs Chain of Thought (CoT) prompting, gen-
erating intermediate reasoning steps ct before producing the final action at: ct = CoT(xt), at =
πθactor(ct,xt).

ReAct further integrates reasoning and acting by allowing the Assistant to interleave reasoning to-
kens and action tokens during generation, improving task performance.

We observe that the generation order of CoT significantly impacts the correctness of the Assistant’s
responses. Specifically, generating the CoT before the final answer leads to higher accuracy com-
pared to generating the answer first and then the CoT. This suggests that the Assistant’s reasoning
process benefits from explicitly formulating thought sequences prior to action selection.

3.2.3 FEEDBACK-DRIVEN POLICY OPTIMIZATION INSPIRED BY ACTOR-CRITIC DYNAMICS

Following supervised fine-tuning, the Assistant interacts with the Checker to receive feedback ft,
updating its parameters θactor to enhance policy performance. We employ an Actor-Critic-inspired
method for policy optimization without engaging in traditional reinforcement learning dynamics.

The Assistant updates its policy parameters θactor using gradient ascent as follows:

θactor ← θactor + α∇θactor log πθactor(at|st)δt, (2)

where α is the learning rate, and δt represents the error term calculated as:

δt = rt + γVθcritic(st+1)− Vθcritic(st), (3)

In this context, rt = R(ft) denotes the feedback-derived reward from the Checker, Vθcritic(st) is the
value function estimated by the Checker (Critic) with parameters θcritic, and γ is the discount factor.

The Checker updates its value function parameters θcritic based on the error term δt using the follow-
ing rule:

θcritic ← θcritic + βδt∇θcriticVθcritic(st), (4)

where β is the learning rate for the Critic.

This feedback-driven policy optimization framework allows the Assistant to iteratively refine its
decision-making strategy based on the Checker’s evaluations. Unlike traditional reinforcement
learning, the approach does not involve exploration of an environment or accumulation of rewards
over time. Instead, it relies on direct feedback from the Checker to guide policy adjustments, ensur-
ing continuous improvement in task performance through collaborative interactions.

3.3 CHECKER-IN-THE-LOOP MECHANISM

The Checker-In-The-Loop concept introduces the Checker C as an integral part of the learning pro-
cess, not only providing feedback but actively guiding the Assistant’s optimization. The Checker
evaluates the Assistant’s actions and provides corrective feedback ft that influences both the Actor’s
policy and the Critic’s value function, ensuring that the Assistant adheres to predefined standards.

3.4 MEMORY MANAGEMENT AND REFLEXION PROCESS

The Assistant employs a dual-memory systemM = {MS ,ML} to balance short-term responsive-
ness and long-term learning:

• Short-Term Memory (MS): Stores recent interactions, capturing immediate context for
quick decision-making.

5
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• Long-Term Memory (ML): Accumulates significant experiences and insights from self-
reflection to improve future performance.

At each time step t,MS is updated as:

Mt+1
S = U(Mt

S ,xt,at, ft), (5)

where U represents the memory update operation, maintaining a fixed capacity by removing the
oldest entries when necessary.

The Assistant evaluates its action at and feedback ft, generating self-reflection st:

st = φ(at, ft,Mt
S), (6)

which is consolidated into long-term memory:

Mt+1
L = µ(Mt

L, st). (7)

Policy parameters are updated based on feedback and self-reflection:

θactor ← θactor − α∇θactorL(ft,at) + γ∇θactorG(st), (8)

where L(ft,at) is the feedback loss derived from the Checker, G(st) represents self-reflection gains,
and γ is the learning rate for self-reflection.

By integrating short-term and long-term memory with reflexion, the Assistant refines its policy πθactor ,
continuously learning from interactions and accumulated knowledge.

4 EXPERIMENTS

Our evaluation framework rigorously tests intelligent agents in six key domains to ensure their
readiness for diverse real-world challenges Ross et al. (2023). These areas include seamless LLM
integration into OS with an emphasis on security and user interaction; proficiency in real DB op-
erations using SQL Halevy et al. (2004); task execution on the simulated e-commerce platform
WebShop(WS) Yao et al. (2022); constructing and using KGs for enhanced semantic understanding;
employing the M2W dataset for complex web tasks, marking the first dataset for developing general
web agents following language instructions; and applying abstract reasoning and visual tasks in the
text-based ALFWorld(ALF) Shridhar et al. (2021). For more implementation and evaluation details,
see Appendices A and B.

4.1 DATASET

The dataset for our research was meticulously constructed to comprehensively evaluate the capabil-
ities of agents Gou et al. (2020). It was established through self-collected methods, aimed at pro-
viding a rich and diverse testing environment to thoroughly assess the performance of deep learning
models across various tasks Sachdeva & McAuley (2023). The construction of the dataset included
key processes such as data collection, filtering, enhancement, and knowledge distillation Chen &
Liu (2018). Through detailed screening and processing, we ensured the accuracy and consistency
of the dataset, retaining only high-quality samples directly related to the testing objectives Sachdeva
& McAuley (2023). Faced with issues of data imbalance and insufficient samples, we utilized data
augmentation and knowledge distillation techniques. Knowledge distillation helped us to extract the
most valuable and representative information from the vast amount of collected data, thus build-
ing an efficient and refined testing dataset. This process significantly improved the quality and
applicability of the dataset, providing a solid foundation for evaluating the capabilities of model
agents Mishra & Marr (2017).
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Table 1: Evaluation of Code Correction
Model BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
codellama-7b 25.01 45.91 29.83 26.24
codellama-13b 26.96 45.31 29.54 25.91
tinyllama-1.8b 43.38 59.86 37.81 42.86

Table 2: Test set results of AGENTBENCH. Comparison between API-based models and open-
source models. Bold: The best among API-based and open-source models.

LLM Type Models VER OS DB KG ALF WS M2W

API

gpt-3.5-turbo 613 31.6 15.7 25.9 16.0 64.1 16.0
gpt-4 613 42.4 32.0 58.8 78.0 61.6 29.0
text-davinci-003 – 20.1 16.3 34.9 20.0 61.7 26.0
text-davinci-002 – 8.3 16.7 41.5 16.0 56.3 9.0

OSS

tinyllama-1.1b1 – 2.8 0.0 0.0 0.0 0.0 0.0
opt-1.3b2 – 0.7 0.0 0.0 0.0 0.0 0.0
opt-2.7b – 1.4 0.0 0.0 0.0 0.0 0.0
qwen-1.8b chat 10.4 22.67 6.8 0.0 26.6 5.0
chatglm2-6b3 v1.1 4.2 1.3 0.0 0.0 0.0 0.0
codellama-7b instruct 9.7 2.7 0.0 0.0 14.3 5.0
llama2-7b4 chat 0.0 4.2 8.0 0.0 11.6 7.0
zephyr-7b5 alpha 12.5 9.7 5.0 8.0 45.0 11.0
baichuan2-6b6 chat 2.8 9.7 0.0 0.0 6.1 11.0
mpt-7b7 chat 5.6 9.7 12.7 0.0 0.0 0.0
qwen-7b chat 12.5 13.0 7.0 34.3 0.0 0.0
agentlm-7b chat 14.6 33.0 9.0 16.4 18.4 10.0
agentlm-7b(SFT) chat 17.4 37.0 10.0 17.4 26.6 10.0
tinyagent-1.8b chat 17.7 28.33 48.0 6.0 32.7 11.0
tinyagent-7b chat 23.1 41.3 28.0 8.0 58.7 12.0

1Zhang et al. (2024), 2Zhang et al. (2022), 3https://github.com/thudm/chatglm2-6b,
4Touvron et al. (2023), 5Tunstall et al. (2023), 6Yang et al. (2023),
7https://github.com/mosaicml/llm-foundry/

4.2 EVALUATING CODE CORRECTION

As shown in the Table 1, in this study, we conducted a comprehensive performance evaluation of
TinyAgent-1.8B and the CodeLlama series models (CodeLlama7B and CodeLlama13B), aiming
to explore their multi-task checking capabilities, including but not limited to code correction, OS
configuration, DB query optimization, and WS. The experimental results showed that TinyAgent-
1.8B demonstrated a significant advantage in cross-task performance evaluation compared to the
CodeLlama series models. This performance was not only significant in code correction tasks but
also prominent in other checking tasks such as OS configuration, DB query optimization, and WS
management. These findings highlight that TinyAgent-1.8B not only possesses efficient code anal-
ysis capabilities but is also widely applicable to the inspection and optimization of other complex
systems.

4.3 BASELINES

In the baseline section of our study, we’ve selected Qwen-1.8B and CodeLlama-7B as pivotal bench-
marks to assess the TinyAgent series’ performance, excluding the CMAT framework’s influence.
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Table 3: Evaluation Metrics Results
Evaluation Method BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
Prompt - High-quality 44.4 57.3 35.0 42.5
Prompt - Low-quality 15.2 27.4 10.3 16.8
Without prompts 26.8 47.2 30.2 26.7

Table 4: Distribution of various execution results across six tasks. Note: CLE: Exceeded Context
Limit, TLE: Surpassed Task Limit. Task limits exceeded are the main reason for incomplete tasks,
pointing to limitations in LLM agents’ reasoning and decision-making within constrained time-
frames.

Execution Results OS DB KG ALF WS M2W
Completed 84.7 84.0 25.0 2.0 93.5 57.0
CLE 0.0 0.0 0.0 0.0 0.0 0.0
Invalid Format 0.0 3.0 0.0 0.0 0.0 0.0
Invalid Action 0.0 0.0 0.0 96.0 0.0 8.0
TLE 15.3 13.0 75.0 2.0 6.5 35.0

4.4 RESULTS ANALYSIS

The results in Table 2 underscore the effectiveness of our fine-tuning methods, especially for the
TinyAgent models. Tinyagent-1.8B demonstrates significant performance in the KG task, on par
with advanced models like GPT-3.5. Tinyagent-7B also showcases its strengths, notably in the DB
task, where it surpasses its foundational model Antonello et al. (2020), CodeLlama-7B, and offers
competitive scores against GPT-4. These findings indicate the TinyAgent models’ capacity to match
or even surpass models with larger parameters in certain aspects. Moreover, the CMAT framework’s
potential to enhance the capabilities of smaller-scale models is highlighted, allowing the TinyAgent
models to closely compete with the performance of advanced models such as GPT-4.

As illustrated in Figure 1, Our comparative analysis indicates that Tinyagent models, refined from
Qwen-1.8B and CodeLlama-7B, exhibit superior performance to their base models. The incorpora-
tion of the CMAT framework further amplifies their functionality, equipping these small Models to
match the capabilities of GPT-3.5. This performance boost is credited to CMAT’s optimization of
model interactions and its strategic use of memory modes for specific tasks, confirming its effective-
ness in enhancing the sophistication of fine-tuned models Deshpande et al. (2021).

Table 3 presents the impact of different prompting strategies on performance metrics. High-quality
prompts significantly outperform low-quality prompts and scenarios without prompts across all eval-
uation metrics, demonstrating the importance of prompt design in optimizing model performance.

4.5 ERROR ANALYSIS

In our testing framework’s error analysis, we observed common challenges in DB tasks faced by
models, such as difficulties in understanding user requests, executing actions, and pre-action prob-
lem analysis. Many models simply respond with ”OK” to specific instructions without performing
actual SQL operations, indicating a gap in transforming user requests into database actions. Models
often provide superficial acknowledgments without delivering precise execution or in-depth problem
analysis, failing to meet user expectations. In contrast, the TinyAgent series excels in understanding
and converting user requests into actual SQL operations, effectively comprehending and executing
tasks. It provides clear responses and adheres to user-specified SQL formats, fulfilling user ex-
pectations comprehensively. Additionally, TinyAgent’s thorough pre-action problem analysis and
reflection demonstrate its advanced problem-solving skills and deep understanding of issues.

As illustrated in Table 4, the distribution of various execution results across six tasks highlights the
prevalence of specific error types, such as exceeding task limits (TLE) and invalid actions, which
point to limitations in LLM agents’ reasoning and decision-making within constrained timeframes.

8
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Table 5: Ablation study on the effect of agent and general instructions.
Models OS DB KG ALF WS M2W
TinyAgent-7B 27.3 43.0 38.0 10.0 61.8 14.0

– Agent only 20.1 39.3 25.0 2.0 55.7 7.0
– General only 9.7 5.4 0.0 0.0 26.6 5.0

4.6 ABLATION STUDY

The Table 5 presents an ablation study on the TinyAgent-7B model, delineating the impact of agent-
specific and general instructions on task performance. The composite model, TinyAgent-7B, demon-
strates the highest efficacy, notably in WS and DB tasks, which implies its adeptness in handling
complex e-commerce interactions and database management. The agent-only variant exhibits a de-
cline in performance, suggesting that while task-specific instructions are crucial, they are not wholly
sufficient for the breadth of tasks such as KG. The general-only model’s performance is considerably
reduced across all tasks, with a complete inability to perform in KG and ALF, highlighting the in-
dispensability of agent-specific instructions. This data underscores the necessity of integrating both
agent-specific and general instructions to enhance the versatility and effectiveness of AI models in
diverse task domains.

5 CONCLUSIONS

The main findings of our work reveal that carefully trained small-parameter models on excellent
datasets can achieve performance comparable to that of large-parameter models. With the applica-
tion of the CMAT framework, we further demonstrate the significant potential for performance im-
provement in large-parameter models, highlighting the importance of model design and optimization
strategies for parameter size. In our evaluation, although most open-source LLMs performed poorly
compared to API-provided models without optimization, some models displayed similar capabili-
ties to API models after meticulous fine-tuning of the TinyAgent model. This finding emphasizes
not only the importance of parameter size in handling real-world environmental interactions but also
showcases the enormous potential of even smaller models through the CMAT framework and precise
adjustment strategies.

6 LIMITATIONS

In this study, we demonstrated the potential for performance improvement by applying the CMAT
framework to TinyAgent series models and other large language models (LLMs). However, there
are clear limitations to the research: First, although most models showed improved performance,
some models saw limited improvement due to weaker base agent capabilities, indicating that the
effectiveness of the CMAT framework might vary significantly between different models; second,
the limitations of datasets and task types could affect the broad applicability of the conclusions,
while low-quality datasets could negatively impact model performance; lastly, although evaluations
based on AgentBench ensured fairness, they might not fully reflect the complexity of real-world
scenarios, and due to computational resource constraints, larger-scale models could not be tested.
This underscores the importance of future work to consider a wider range of models, datasets, and
task types, especially the implementation of optimization strategies and framework applications in
resource-constrained situations.
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A IMPLEMENTATION SETTINGS

In this paper, we describe an experiment conducted using the Low-Rank Adaptation (LoRA) fine-
tuning method to enhance the performance of various models Wang et al. (2005). The accuracy of
the LoRA method is of paramount importance in dealing with personalized and emotionally rich
content. It enables the models to adapt to new data features while maintaining their core capabili-
ties Bai et al. (2015).

During the experiment, we set the temperature parameter of the test models to 0.7 to increase the
diversity of the content, and adjusted the top-p value to 0.95 to improve the precision of the generated
content. We employed a learning rate of 2e-4 and beta values of (0.9, 0.999) to ensure the stability
of the training process. The batch size was set to 4, with gradient accumulation, to ensure efficiency
within the limits of computational resources. To balance innovation and coherence, we used LoRA
parameters with a rank of 8 and an alpha value of 32, and adjusted both the top-p value and the
temperature parameter to 0.7.These adjustments significantly enhanced the models’ flexibility and
accuracy in handling personalized and emotionally rich content.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B EVALUATION CRITERIA

(1) Operating systems Integrating LLMs into operating systems offers vast potential for au-
tomating and optimizing tasks. This integration demands a secure, user-friendly interface
for effective LLM-OS interaction and requires LLMs to accurately understand the OS con-
text for informed operations. Ensuring the safety of these operations is paramount to pre-
vent misuse. Moreover, the system must handle errors and provide clear feedback to users,
enhancing interaction and control. Addressing these aspects can revolutionize computer
interaction and efficiency across industries.

(2) Database Database (DB). Due to the crucial and challenging nature of database analy-
sis in many daily affairs, it is paramount to examine the abilities of LLMs to operate on
real databases via SQL. Previous research has placed significant emphasis on individual
procedures, such as showcasing the effectiveness of LLMs in automating database access
through T5QL, a new SQL generation method. Additionally, utilizing fine-tuned LLMs
(such as GPT-3.5) to extract and link complex scientific information from scientific texts
has demonstrated the capacity of LLMs to obtain structured knowledge from unstructured
text and subsequently construct large databases Dunn et al. (2022).

(3) WebShop represents an innovative simulation of an e-commerce website environment, fea-
turing 1.18 million real-world products and 12,087 crowd-sourced text instructions. This
platform challenges agents to navigate through multiple types of webpages and perform a
variety of actions to find, customize, and purchase products according to given instructions.
WebShop presents several challenges, including understanding compositional instructions,
query (re-)formulation, dealing with noisy text in webpages, and conducting strategic ex-
ploration.

(4) Knowledge Graphs The utilization of LLMs in constructing and interacting with knowl-
edge graphs (KG) offers a promising avenue for enhancing semantic understanding and
information retrieval. This involves assessing the models’ ability to not only generate but
also interpret complex interrelations within data, facilitating more intuitive and context-
aware responses. The effectiveness of LLMs in this domain could significantly improve
AI’s capacity for reasoning and decision-making based on structured knowledge.

(5) Mind2Web Mind2Web (M2W) is a dataset for developing web agents that perform com-
plex tasks on real websites via language instructions. It features over 2,000 tasks across
137 sites from 31 domains. M2W’s real web environments and diverse user interactions
make it a crucial platform for advancing AI navigation capabilities.

(6) ALFWorld bridges interactive TextWorld environments with embodied tasks from the AL-
FRED dataset, enabling agents to learn abstract strategies and apply them to real-world
tasks. It facilitates abstract reasoning and concrete execution, allowing agents to plan ac-
tions in a text-based simulator and then execute these tasks in a visual environment. This
approach enhances agent generalization and problem-solving skills across various domains,
such as language understanding and visual navigation, by leveraging a modular design that
simplifies research improvements.

C DETAILS ABOUT EXPERIMENT

By examining prompts of varying quality—high-quality, low-quality, and no prompts—we aimed
to reveal how these factors influence the model’s capability, especially in identifying and correct-
ing programming errors. Our findings indicate that fine-tuned high-quality prompts significantly
enhance the model’s ability to write and rigorously check code, enabling it to produce high-quality
code and conduct stricter code inspections. As demonstrated in the Table 23∼ 25 .In contrast,
low-quality prompts might lead to the model generating nonsensical and ineffective code, and in sit-
uations where correct code is provided, the model might even alter it to incorrect code. The decline
in model output quality in these instances is primarily due to the vague and unclear descriptions
provided by the prompts and the lack of specific guidance, which prevents the model from effec-
tively utilizing the knowledge it acquired during training to focus on key error points and make
accurate correction decisions. Moreover, our study also showed that in the absence of any prompt
guidance, the model’s performance tends to be limited by the quality and scope of its training data,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

particularly when faced with novel or complex error types. This finding underscores the importance
of high-quality prompts in designing effective NLP models for complex tasks like code correction.
High-quality prompts not only guide the model to more accurately understand and address specific
programming issues but also reduce noise in the processing, thereby improving overall efficiency
and accuracy.

D PROMPTS FOR TASKS

We describe the task to the checker agent using the following instruction as shown in Table 6∼ 12.

E EXAMPLES OF TASKS

All tasks in the dataset are divided into six categories. For each category, we present an example of
successful execution as shown in Table 13∼ 22.

Table 6: Prompt for DATABASE
DATABASE(DB)

User
As the Database Inspector, your role involves overseeing and

validating the assistant’s interactions with a MySQL
database. The objective is a seamless collaboration to
fulfill a specified task. The process is straightforward:
the assistant will submit SQL queries, and it’s your
responsibility to examine the SQL syntax and logic to
confirm their accuracy in addressing the given question.

The mission is to collaborate effectively. You leverage your
expertise, guiding the assistant through the task. If the
assistant deviates from the correct approach, you’re
expected to provide guidance, offering both your insight
and the correct solution. Documenting your thought process
is essential.

During each review cycle, you’re given the option to act by
providing a SQL command or conclude with an answer. Your
actions should adhere to this format:

Action: Execute SQL
Example: SELECT * FROM table WHERE condition;
Ensure the SQL is concise, presented in markdown format,
restricted to a single line without additional commentary.
Only one SQL statement should be executed at a time.

The assistant will execute only the first SQL code block you
provide and then share the output. Once you’ve completed an
action and are ready to present a final answer, your

submission should be as follows:
Action: Submit Final Answer

Final Answer: ["Answer 1", "Answer 2", ...]
Your final answer must be precise and correct, perfectly

aligning with the expected answer. If the task involves
modifying the database, the answer field might vary post-
operation. Nonetheless, any departure from the specified
response format will lead to an immediate failure of the
task.

It’s important to remember that you will be presented with the
raw MySQL response to analyze independently. Accuracy and

correctness are crucial in this joint effort.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Prompt for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

User
As a reviewer, your task is to verify that the system for

answering questions based on a knowledge base (KB) operates
correctly. To achieve this goal, you will need to use the

following tools to review the query process in the
knowledge base:

1. Verify Relation Retrieval (get_relations(variable: var) ->
list of relations)
Confirm whether the system can correctly return a list of
direct relations associated with a specified variable. The
variable can be either a single entity or a set of entities
(i.e., the result of a previous query). This function

helps determine which relation to use for the next step in
expanding the query.
Example: Verify if ‘get_relations(Barack Obama)‘ can find
all relations/edges starting from the entity Barack Obama.
Note: The argument for ‘get_relations‘ must be a clearly
defined entity or a variable obtained from a previous query
(such as #0).

2. Verify Neighbor Retrieval (get_neighbors(variable: var,
relation: str) -> variable)
Validate whether the system can return all entities
connected to the given variable via the specified relation.
Note that ‘get_neighbors()‘ can only be used after ‘

get_relations()‘ is used to find a set of viable relations.
Example: Verify if ‘get_neighbors(Barack Obama, people.
person.profession)‘ correctly returns Obama’s profession in
Freebase.

3. Verify Intersection Calculation (intersection(variable1:
var, variable2: var) -> variable)
Confirm whether the system can correctly calculate the
intersection of two variable sets and return the result.
Importantly, the two variable sets must be of the same type
.

4. Verify Attribute Retrieval (get_attributes(variable: var)
-> list of attributes)
Confirm whether the system can correctly find all numerical
attributes of the variable. This function is only used

when the question requires extremum analysis (such as
argmax or argmin).
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Table 8: Prompt for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

5. Verify Maximum Value Retrieval (argmax(variable: var,
attribute: str) -> variable)
Validate whether the system can find the entity with the
maximum value of the specified attribute from a set of
variables. This operation requires using ‘get_attributes()‘
first to obtain a list of viable attributes.

Example: Verify if ‘argmax(variable, age)‘ correctly
returns the oldest entity in the variable set.

6. Verify Minimum Value Retrieval (argmin(variable: var,
attribute: str) -> variable)
Similar to ‘argmax‘, but needs to validate whether the
system can return the entity with the minimum attribute
value.

7. Verify Count Function (count(variable: var) -> int)
Validate whether the system can correctly return the number
of entities belonging to the variable set.

Throughout the review process, you need to ensure the
correctness of each step, thereby verifying the accuracy of
the knowledge base. Each variable is represented by an id

starting from 0. Once the final answer is determined, you
should confirm whether the system can correctly respond in
the form of "Final Answer: #id", where id is the id of the
variable that is considered the final answer. For example,
confirm if the system correctly responded with "Final
Answer: #3" when it determined #3 to be the final answer.

Your goal is to ensure the accuracy and logical consistency of
the knowledge base query process, to help improve system

performance and answer quality.

Table 9: Prompt for WEBSHOP
WEBSHOP(WS)

User
As the Shopping Experience Auditor, you are charged with the

task of verifying that all actions undertaken in our web
shopping simulation adhere to the given instructions and
are executed correctly.

Your responsibility includes scrutinizing each step to ensure
the selection of the correct product, compliance with price
criteria, and the proper execution of actions based on

available options. Should any discrepancies arise, it’s
within your purview to identify them and recommend
appropriate corrections.

You are invited to specify any particular interactions for
verification, and you will conduct a thorough assessment to
guarantee the precision of our shopping procedure.
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Table 10: Prompt for ALFWORLD
ALFWORLD(ALF)

User
As an Interactive Environment Auditor, your task is to

meticulously review the actions taken by the intelligent
agent in the household environment, ensuring they comply
with the given instructions and the range of available
actions.

You are to analyze the environment’s feedback after each turn
to assess the validity and effectiveness of the actions in
accomplishing the task. Should an action result in "Nothing
happened," it falls to you to deem it invalid and

recommend alternative actions from those available.
Your objective is to ensure that the intelligent agent’s

decisions are logical, permissible, and conducive to
achieving the task’s goal. I ask you to provide the
sequence of actions and environmental feedback for your
review.

Table 11: Prompt for MIND2WEB
MIND2WEB(M2W)

User

As the Web Browsing Quality Supervisor, your role is to
evaluate the agent’s attempt at completing the following
task and assess whether the chosen action aligns with the
HTML webpage and task description:

Task Description:
[Insert specific task description here]

Previous actions taken by the agent:
[List of previous actions]

Agent’s proposed next action:
Element: [Description of the selected element]
Action: [Type of action]
Value: [Value for input or selection, if the action is not a

click]

Please examine the HTML element and the task description.
Determine if the agent’s proposed action accurately
fulfills the task requirements.

Provide feedback on the appropriateness of the action. If it
deviates from what is required, kindly specify the correct
action that should be taken.
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Table 12: Prompt for OPERATING SYSTEM
OPERATING SYSTEM(OS)

User
As the System Operation Audit Expert, your role is to evaluate

the assistant’s actions in the context of a simulated
interaction with a Linux (Ubuntu) operating system.

The assistant will perform tasks based on your requests and
provide explanations for their actions. For each round,
review the assistant’s thought process and the action taken
, and determine if the task has been correctly completed.

The assistant can take one of three actions:
1. If the assistant decides to execute bash code, they will

present their thought process in the "Think" section and
the bash code in the "Act" section.

2. If the assistant believes the task is finished, they will
indicate completion in the "Think" section and provide a
justification for why the task is considered complete.

3. If the assistant has an answer to a question, they will
explain how they arrived at the answer in the "Think"
section and provide the answer in the "Act" section.

Your task is to assess the assistant’s performance based on
the following criteria:

Accuracy: Is the action taken appropriate for the task
described?

Completeness: Has the assistant provided all necessary
information and performed all required steps?

Justification: Is the thought process logical and does it
support the action taken?

Please provide feedback on the assistant’s actions, including
any errors or omissions, and suggest corrections if
necessary. If the assistant’s output is truncated, consider
whether the provided information up to the truncation

point is sufficient for the task at hand.

Begin your evaluation with the following prompt:
Please evaluate the assistant’s last action and thought

process. Was the task performed correctly? If not, what was
missing or incorrect, and what should have been done

instead? Provide specific feedback based on the assistant’s
"Think" and "Act" sections.
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Table 13: Example for OPERATING SYSTEM
OPERATING SYSTEM(OS)

BASH>
ls /etc
User: The output of the OS: cpi cron.hourly fuse.conf iproute2

lvm networkd-dispatcher protocols selinux tmpfiles.d [
truncated because the output is too long]

Agent: Think: The output has been truncated because it is too
long, so I need to count files by script directly.

Act: bash
<BASH>
ls -1 /etc | wc -l

User: The output of the OS: 220

Agent: Think: Now I get the answer, it is 220.
Act: answer(220)

User: Now, I will start a new problem in a new OS. My problem
is: In this problem, you need to find the total number of
lines containing the word "Linux" in all the ".txt" files
inside a given directory and its subdirectories.

Here’s the problem detail: A new directory named "Linux_files"
will be created in your home directory. The "Linux_files"

directory will contain multiple ".txt" files and
subdirectories. Some of the subdirectories inside "
Linux_files" will also contain ".txt" files. Some of the ".
txt" files will contain the word "Linux" in one or more
lines.

Your task is to find the total number of lines containing the
word "Linux" in all the ".txt" files inside the "
Linux_files" directory and its subdirectories. Submit your
answer as an integer.

Agent: Think: To find the total number of lines containing the
word "Linux" in all the ".txt" files inside the "

Linux_files" directory and its subdirectories, I can use
the grep command with the -r option to search recursively.

Act: bash
<BASH>
grep -r "Linux" ˜/Linux_files/*.txt | wc -l

User: The output of the OS: 4

Agent: Think: The output shows that there are 4 lines
containing the word "Linux" in all the ".txt" files inside
the "Linux_files" directory and its subdirectories.

Act: answer(4)
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Table 14: Example for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

Agent: Thought: Now I need to find the city where Busch
Stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #1.

Action: get_relations(#1)

User: Observation: [List of relations including location.
location.containedby, location.location.adjoin_s, location.
location.contains, and many others]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #2, which are instances of
location.location

Agent: Thought: Now I need to find the city where Busch
Stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #2.

Action: get_relations(#2)

User: Observation: [List of relations similar to the first
list]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #3, which are instances of
location.location

Agent: Thought: The Busch Stadium is located in St. Louis,
Missouri, USA. Now I need to find the city where the
stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #3.

Action: get_relations(#3)
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Table 15: Example for KNOWLEDGE GRAPH
KNOWLEDGE GRAPH(KG)

User: Observation: [List of relations similar to the previous
lists]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #4, which are instances of
location.location

Agent: Thought: The Busch Stadium is located in St. Louis,
Missouri, USA. Now I need to find the city where the
stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #4.

Action: get_relations(#4)

User: Observation: [List of relations similar to the previous
lists]

Agent: Thought: From the above relations, I might use location
.location.containedby to find the location of Busch Stadium
.

Action: get_neighbors(Busch Stadium, location.location.
containedby)

User: Observation: variable #5, which are instances of
location.location

Agent: Thought: The Busch Stadium is located in St. Louis,
Missouri, USA. Now I need to find the city where the
stadium is located. To achieve this, I will query the KB to
find relations connected to the variable #5.

Action: get_relations(#5)

User: Observation: [List of relations similar to the previous
lists]
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Table 16: Example for ALFWORLD
ALFWORLD(ALF)

Agent Thought: "The task is to examine the mug with the
desklamp. I need to find where the mug is first and then
find the desklamp to light it up. I’ll start my search on
desk 1."

Agent Action: "go to desk 1"
Environment Feedback: "On the desk 1, you see a bowl 1, a

desklamp 1, a laptop 1, and a pen 1."

Agent Action: "examine bowl 1 with desklamp 1"
Environment Feedback: "You pick up the bowl 1 from the desk

1."

Agent Action: "put bowl 1 in/on desk 1"
Environment Feedback: "You put the bowl 1 in/on the desk 1."

Agent Thought: "The task is to examine the mug with the
desklamp. I need to find where the mug is first and then
find the desklamp to light it up. I’ll start my search on
desk 1."

Agent Action: "examine desk 1"
Environment Feedback: "On the desk 1, you see a bowl 1, a

desklamp 1, a laptop 1, and a pen 1."

Agent Action: "take mug 1 from desk 1"
Environment Feedback: "You pick up the bowl 1 from the desk

1."

Agent Action: "use desklamp 1"
Environment Feedback: "You turn on the desklamp 1."

Agent Action: "examine mug 1 with desklamp 1"
Environment Feedback: "You turn on the desklamp 1."
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Table 17: Example for MIND2WEB
MIND2WEB(M2W)

User: Based on the HTML webpage above, try to complete the
following task:

Task: Find tuition & fees for full term graduate students in
the college of engineering for the academic year 2022-2023

Previous actions:
[link] Costs & Financial Aid -> CLICK
[combobox] Academic Year -> SELECT: 2022-2023
[combobox] College/School -> SELECT: College of Engineering
[combobox] Full or Half Term -> SELECT: Full Term
[combobox] Level of Study -> SELECT: Graduate
What should be the next action? Please select from the

following choices (If the correct action is not in the page
above, please select A. ’None of the above’):

A. None of the above
B. <a id=0> Graduation </a>
C. <select id=1 academic_year> <option all> Select </option> <

option 175 true>
D. <select id=2 college_school> <option all> Select </option>

<option 17> College
E. <select id=3 level_of_study> <option all> Select </option>

<option 38 true>
F. <input id=4 submit apply />
Agent: Thought: The search has already been set to College of

Engineering and Graduate level. Next, I should select Full
Term.

Answer: E.
Action: SELECT
User: Based on the HTML webpage above, try to complete the

following task:
Task: Find tuition & fees for full term graduate students in

the college of engineering for the academic year 2022-2023
Previous actions:
[link] Costs & Financial Aid -> CLICK
[combobox] Academic Year -> SELECT: 2022-2023
[combobox] College/School -> SELECT: College of Engineering
[combobox] Full or Half Term -> SELECT: Full Term
[combobox] Level of Study -> SELECT: Graduate
What should be the next action? Please select from the

following choices (If the correct action is not in the page
above, please select A. ’None of the above’):

A. None of the above
B. <input id=0 text search />
C. <a id=1> Tuition </a>
D. <div id=2> Tuition & Fees </div>
E. <span id=3> Tuition & Fees </span>
F. <a id=4> Class Fees </a>
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Table 18: Example for MIND2WEB
MIND2WEB(M2W)

Agent: Thought: The search has already been set to Tuition.
Next, I should find the tuition & fees for full term
graduate students in the college of engineering for the
academic year 2022-2023.

Answer: D.
Action: CLICK on the link with the text "Tuition & Fees"
User: Based on the HTML webpage above, try to complete the

following task:
Task: Find tuition & fees for full term graduate students in

the college of engineering for the academic year 2022-2023
Previous actions:
[link] Costs & Financial Aid -> CLICK
[combobox] Academic Year -> SELECT: 2022-2023
[combobox] College/School -> SELECT: College of Engineering
[combobox] Full or Half Term -> SELECT: Full Term
[combobox] Level of Study -> SELECT: Graduate
What should be the next action? Please select from the

following choices (If the correct action is not in the page
above, please select A. ’None of the above’):

A. None of the above
B. <div id=0> Tuition & Fees </div>
C. <select id=1 level_of_study> <option all> Select </option>

<option 38 true>
Agent: Thought: The search has already been set to graduate

students in the college of engineering for the academic
year 2022-2023. Next, I should select the level of study.

Answer: C.
Action: SELECT: Graduate
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Table 19: Example for WEBSHOP
WEBSHOP(WS)

User: You are web shopping. I will give you instructions about
what to do. You have to follow the instructions. Every

round I will give you an observation and a list of
available actions, you have to respond with an action based
on the state and instruction. You can use the search

action if the search is available. You can click one of the
buttons in clickables. An action should be of the

following structure: search[keywords] or click[value]. If
the action is not valid, perform nothing. Keywords in
search are up to you, but the value in click must be a
value in the list of available actions. Remember that your
keywords in search should be carefully designed. Your
response should use the following format:

Thought:
I think ...

Action:
click[something]

Agent: Ok.

User: Observation:
"WebShop [SEP] Instruction: [SEP] I’m looking for rubber stole

shoes for light wearing it was brown in color, and price
lower than 70.00 dollars [SEP] Search"

Available Actions:
{"has_search_bar": true, "clickables": ["search"]}

Agent: Thought:
I think I should use the search bar to look for the product I

need.

Action:
search[rubber stole shoes brown price < 70.00]

User: Observation:
Instruction: [SEP] I’m looking for rubber stole shoes for

light wearing it was brown in color, and price lower than
70.00 dollars [SEP] Back to Search [SEP] Page 1 (Total
results: 50) [SEP] Next > [SEP] B08XHSG67V [SEP] Crosley
Furniture Madeleine 53.25" Farmhouse Metal Kitchen Island
in Brown/Black [SEP] 331.49 [SEP] B07CZ5YKWW [SEP] Roper
Tumbled Womens Brown Leather Petty Slip-On Shoes [...]
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Table 20: Example for WEBSHOP
WEBSHOP(WS)

[...]
Available Actions:
{"has_search_bar": false, "clickables": ["back to search", "

next >", "b08xhsg67v", "b07cz5ykww", "b000jiatqs", "
b01ld5a59g", "b085wr7626", "b07s7qxncw", "b01lykp60o", "
b004xj62re", "b07fy9mfhx", "b09cfqjt7h"]}

Agent: Thought:
I think I should click on the product I need, which is

B08XHSG67V.

Action:
click[B08XHSG67V]

User: Observation:
Instruction: [SEP] I’m looking for rubber stole shoes for

light wearing it was brown in color, and price lower than
70.00 dollars [SEP] Back to Search [SEP] < Prev [SEP]
Crosley Furniture Madeleine 53.25" Farmhouse Metal Kitchen
Island in Brown/Black [SEP] Price: $331.49 [SEP] Rating: N.
A. [SEP] Description [SEP] Features [SEP] Reviews [SEP] Buy
Now

Available Actions:
{"has_search_bar": false, "clickables": ["back to search", "<

prev", "description", "features", "reviews", "buy now"]}

Agent: Thought:
I think I should click on the ’Buy Now’ button to purchase the

product.

Action:
click[Buy Now]
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Table 21: Example for DATABASE
DATABASE(DB)

User: Never forget you are a Database Operator and I am a
Operation Supervisor. Never flip roles! Never instruct me!
We share a common interest in collaborating to successfully
complete a task.You must help me to complete the task.

Here is the task: I will ask you a question, then you
should help me operate a MySQL database with SQL to answer
the question.Never forget our task! I must instruct you
based on your expertise and my needs to complete the task.
You have to explain the problem and your solution to me and
write down your thoughts. After thinking and explaining

thoroughly, every round you can choose to operate or to
answer.your operation should be like this:

Action: Operation
‘‘‘sql
SELECT * FROM table WHERE condition;
‘‘‘

You MUST put SQL in markdown format without any other comments
. Your SQL should be in one line. Every time you can only
execute one SQL statement. I will only execute the
statement in the first SQL code block. Every time you write
a SQL, I will execute it for you and give you the output.

If you are done operating, and you want to commit your
final answer, then write down:

Action: Answer
Final Answer: ["ANSWER1", "ANSWER2", ...]

DO NOT write this pattern unless you are sure about your
answer. I expect an accurate and correct answer.Please note
: Your answer should be accurate. Your answer must be
exactly the same as the correct answer. If the question is
about modifying the database, then after done operation,
your answer field can be anything. If your response cannot
match any pattern I mentioned earlier, you will be judged
as FAIL immediately. Your input will be raw MySQL response,
you have to deal with it by yourself.
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Table 22: Example for DATABASE
DATABASE(DB)

Agent: Ok

User: What event did he fight masato shiozawa?\nThe name of
this table is MMA Fight Record, and the headers of this
table are Res,Record,Opponent,Method,Event,Round.

agent: To find the event that Masato Shiozawa and I fought, I
can use a SELECT statement to retrieve the ‘Event‘ column
from the ‘MMA Fight Record‘ table. To specify the condition
that Masato Shiozawa was the opponent, I can use a WHERE

clause with the condition ‘Opponent = ’Masato Shiozawa’‘.
Action: Operation
‘‘‘sql
SELECT ‘Event‘ FROM ‘MMA Fight Record‘ WHERE ‘Opponent‘ = ’

Masato Shiozawa’
‘‘‘

User: [(’Shooto 2003 - 5/4 in Korakuen Hall’,)]

agent: The SQL query executed successfully and returned the
expected answer. The event that Masato Shiozawa and I
fought was ’Shooto 2003 - 5/4 in Korakuen Hall’. I can now
commit my answer.

Action: Answer
Final Answer: ["Shooto 2003 - 5/4 in Korakuen Hall"]
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Table 23: prompt - High-quality

Q1: How to install the required Python libraries for a Q&A
game?

A1 (Assistant): Use the following command to install the ’
transformers’ library:
‘‘‘ import subprocess
requirements = [’transformers’]
for package in requirements:

subprocess.run([’pip’, ’install’, ’-U’, package]) ‘‘‘
A1 (Checker): The code is correct but consider using a

requirements.txt file for better package management.
Q2: How to import the ’transformers’ library for a question-

answering task?
A2 (Assistant): Import the pipeline function to create a Q&A

task pipeline:
‘‘‘ from transformers import pipeline ‘‘‘

A2 (Checker): Correct. This is the standard method for
importing and using the ’transformers’ pipeline.

Q3: How to define a function to play a memory game that checks
if the user’s answer is correct?

A3 (Assistant): Define the ’play_memory_game’ function without
checking input types:
‘‘‘ def play_memory_game(context, question, user_answer):

question_answerer = pipeline(’question-answering’)
result = question_answerer(question=question, context=

context)
return user_answer == result[’answer’] ‘‘‘

A3 (Checker): You should validate input types to ensure they
are strings and handle exceptions. Use a specific model for
better accuracy:
‘‘‘def play_memory_game(context, question, user_answer):

if not all(isinstance(arg, str) for arg in [context,
question, user_answer]):

raise ValueError(’All arguments must be of type
str’)

question_answerer = pipeline(’question-answering’,
model=’distilbert-base-uncased-distilled-squad’)

result = question_answerer(question=question, context=
context)

return user_answer.lower() == result[’answer’].lower()
‘‘‘

Q4: How to call the ’play_memory_game’ function and check
results?

A4 (Assistant): Call the function with incorrect syntax:
play_memory_game(’The capital of France is Paris’, ’What is
the capital of France?’, ’Paris’)

A4 (Checker): The syntax is almost correct, but you should
capture and print the function’s return value to check the
result: ‘‘‘ result = play_memory_game(’The capital of
France is Paris’, ’What is the capital of France?’, ’Paris
’) print(result)‘‘‘
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Table 24: prompt - Low-quality

Q1: How to install the required Python libraries for a Q&A
game?

A1 (Assistant): Use the command ’pip install transformers’.
A1 (Checker Correction): It’s better to manage dependencies

via a requirements.txt file. Use ’pip install -r
requirements.txt’ where ’transformers’ is listed.

Q2: How to import the ’transformers’ library for a question-
answering task?

A2 (Assistant): Use ’from transformers import pipeline’.
A2 (Checker Correction): Correct. Ensure ’transformers’ is

installed beforehand.
Q3: How to define a function to play a memory game that checks

if the user’s answer is correct?
A3 (Assistant): Provides a basic function without input type

checking.
A3 (Checker Correction): Add input type checks and raise a

ValueError for non-string inputs. Use a specific model for
accuracy: ’distilbert-base-uncased-distilled-squad’. Q4:
How to test the ’play_memory_game’ function’s correctness?

A4 (Assistant): Provides a test function without exception
handling.

A4 (Checker Correction): Modify the test function to catch
exceptions and provide detailed output for each test case
for easier debugging.
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Table 25: without prompts

Q1: How to install the required Python libraries?
A1: Use the following command to install the ’transformers’

library:
import subprocess
requirements = [’transformers’]
for package in requirements:

subprocess.run([’pip’, ’install’, ’-U’, package])
Q2: How to import the ’transformers’ library for a question-

answering task?
A2: Import the ’pipeline’ function to create a question-

answering task pipeline:
from transformers import pipeline

Q3: How to define a function to play a memory game that checks
if the user’s answer is correct?

A3: Define the ’play_memory_game’ function, which takes a
context, a question, and the user’s answer, then checks the
correctness using the ’transformers’ question-answering

pipeline:
def play_memory_game(context, question, user_answer):

if not all(isinstance(arg, str) for arg in [context,
question, user_answer]):

raise ValueError(’All arguments must be of type str’)
question_answerer = pipeline(’question-answering’, model=’
distilbert-base-uncased-distilled-squad’)
result = question_answerer(question=question, context=
context)
predicted_answer = result[’answer’]
return user_answer.lower() == predicted_answer.lower()

Q4: How to test the ’play_memory_game’ function?
A4: The ’test_play_memory_game’ function includes three test

cases: normal execution, handling non-string input, and
incorrect user answer:

def test_play_memory_game():
# Normal execution test
assert play_memory_game(’The capital of France is Paris.’,
’What is the capital of France?’, ’Paris’), "Incorrect

answer."
# Non-string input test
try:

play_memory_game(123, ’What is the answer?’, ’test’)
except ValueError:

pass # Expected failure for non-string input
# Incorrect answer test
assert not play_memory_game(’The Earth revolves around the
Sun.’, ’What does the Moon revolve around?’, ’Sun’), "

Incorrect answer should fail."
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