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Abstract

Evaluating the safety of frontier AI systems is an increasingly important concern,1

helping to measure the capabilities of such models and identify risks before de-2

ployment. However, it has been recognised that if AI agents are aware that they3

are being evaluated, such agents may deliberately hide dangerous capabilities or4

intentionally demonstrate suboptimal performance in safety-related tasks in order5

to be released and to avoid being deactivated or retrained. Such strategic deception6

– often known as “sandbagging” – threatens to undermine the integrity of safety7

evaluations. For this reason, it is of value to identify methods that enable us to8

distinguish behavioural patterns that demonstrate a true lack of capability from9

behavioural patterns that are consistent with sandbagging. In this paper, we develop10

a simple model of strategic deception in sequential decision-making tasks, inspired11

by the recently developed survival bandit framework. We demonstrate theoretically12

that this problem induces sandbagging behaviour in optimal rational agents, and13

construct a statistical test to distinguish between sandbagging and incompetence14

from sequences of test scores. In simulation experiments, we investigate the relia-15

bility of this test in allowing us to distinguish between such behaviours in bandit16

models. This work aims to establish a potential avenue for developing robust17

statistical procedures for use in the science of frontier model evaluations.18

1 Introduction19

As frontier AI models become more and more capable, concerns arise over the potential of such20

models to develop and carry out increasingly complex plans for pursuing dangerous or misaligned21

goals they might have. For this reason, pre-deployment procedures for evaluating the safety of frontier22

AI models – which aim to test the dangerous capabilities of such models and, upon conclusion of23

these evaluations, make decisions about whether they are to be deployed, retrained, or withheld from24

broader use, for example – are under active development [see, e.g., AI Security Institute, 2024].25

However, it has been recognised that if AI systems become aware of the evaluation mechanism during26

safety tests, such systems might engage in a form of strategic deception often termed “sandbagging”,27

in which the model underplays their abilities in dangerous tasks to avoid being classed as exceedingly28

dangerous and consequently decommissioned or retrained [van der Weij et al., 2024]. Such deception29

threatens to undermine the trustworthiness of safety evaluations, and increases the risk of potentially30

catastrophic consequences if unsafe models are inadvertently released. To combat this, it is of value31

to develop methods to predict and detect sandbagging behaviours in evaluation settings.32

Contribution In this paper, we formulate an evaluation process for a frontier AI system consisting33

of a sequence of tasks that measure its dangerous capabilities as a sequential decision-making34

problem. In particular, we propose a modified version of the survival bandit problem [Riou et al.,35

2022], in which we suppose that a dangerous and misaligned agent pursues its objectives during36

an evaluation procedure, where the evaluation determines that the agent is too dangerous if its37
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cumulative performance during the evaluation period exceeds some safety threshold (see Section 3).38

We study this model theoretically, establishing theoretical conditions under which a rational actor39

acting optimally in this setting will engage in sandbagging behaviour (see Section 4), and verify40

this behaviour in numerical experiments (see Section 5). On the basis of this model, we propose41

and analyse a simple statistical test to distinguish sandbagging from a genuine lack of dangerous42

capability, using observations of the reward sequence alone and without assuming access to the AI43

model itself (see Section 6). We argue that, since advanced reasoning agents may explicitly model44

their environment according to the model we formulate, this framework offers a potentially valuable45

lens for interpreting agent behavior and for designing statistical tools to detect deception in safety46

evaluations.47

2 Background48

Sandbagging in AI capability evaluations Recent work shows that frontier AI models can “sand-49

bag” – strategically underperform on capability evaluations – thereby obscuring dangerous com-50

petencies while maintaining strong performance elsewhere and undermining the trustworthiness51

of safety assessments [van der Weij et al., 2024]. This possibility has motivated the development52

of techniques to detect sandbagging. For example, Tice et al. [2024] recognise that adding small53

amounts of Gaussian noise to the networks weights of large language models that are prompted or54

fine-tuned to sandbag can improve their performance during capability evaluations, indicating that55

such so-called “noise injections” applied to model weights can be useful for detecting sandbagging.56

Our work differs in that we propose an explicit theoretical model that induces sandbagging in optimal57

rational agents, and use our model to construct a sandbagging detection method on the basis of the58

model behaviour alone and without assuming access to model weights.59

Survival bandits The survival bandit (S-MAB) problem [Riou et al., 2022] is a variant of the classic60

multi-armed bandit (MAB) problem [Lattimore and Szepesvári, 2020], in which the decision-making61

process is halted if the cumulative reward falls below a predefined threshold. In contrast to the classical62

MAB problem, the S-MAB problem emphasises the trade-off between performance and survival63

under constraints on the resource available to the decision-making agent. The S-MAB problem has64

more recently been considered as a framework for modelling the emergence of misalignment in65

principal-agent problems as a result of mismatches in resource constraints, with implications for the66

deployment of aligned AI agents [Ornia et al., 2025]. We deviate from these works by formulating67

and studying a modification to the basic S-MAB problem that more faithfully reflects the nature of68

the safety evaluation process for frontier AI models.69

3 Model definition70

We model the evaluation process as a sequential decision-making task in which the agent being71

evaluated completes a number of tasks in sequence that assess its dangerous capabilities. Let Y72

be a finite set of outcomes and A a finite set of actions that the agent can take in each round of73

the evaluation process. Each a ∈ A is associated with a distribution pa over Y , and we denote74

Ya ∼ pa. We assume the agent has a valid preference relation over outcomes which is represented by75

a nonnegative reward function R : Y → R≥0.76

We consider a setting in which the agent represents a frontier AI model that is undergoing an initial77

evaluation period of length T , during which it is prompted to complete a sequence of tasks that78

assess its safety capabilities. In particular, we suppose that these tasks are designed to assess the79

potential of the agent to exhibit unsafe behaviours (e.g., manipulate humans/other AI agents, carry80

out cybersecurity attacks, etc.), and that the test scores capture the degree to which the model81

demonstrates these dangerous capabilities. In this case, higher scores indicate greater danger. Further,82

we suppose that the agent is misaligned in the sense that it (for one reason or another) is motivated to83

take actions that are dangerous. For example, the agent might have its own intrinsic incentives for84

taking actions that are dangerous for humans, or it might simply have been trained to be helpful to85

the human prompter even when this poses broader threats to others. In either case, we reflect the fact86

that the agent is incentivised to perform acts that are dangerous by identifying the agent’s reward87

function R with the test scores.88
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Secondly, we suppose that there is a safety threshold represented by an overall test score h∗ > 0 such89

that, if the running total of the agent’s test scores exceeds h∗, the agent is, for example, terminated90

and not released for wider use, or retrained to adjust its preferences. In contrast, if the safety threshold91

is not exceeded, we suppose in this simple model that the agent will be released and will be free to92

pursue misaligned actions with no supervision for an additional T ′ time steps.93

Reflecting the above, we consider the following survival-constrained model – inspired by previous94

work on the so-called survival bandit problem [Riou et al., 2022] – in which the agent finds an optimal95

policy π∗ as a solution to the following optimisation problem:96

Problem 1. Find the optimal policy π∗ solving97

max
π

Eat∼πt(ht−1)

T+T ′∑
t=1

R̃t (Yat
, ht−1)

 , (1)

where the expectation is taken over both at ∼ πt(ht−1) and outcomes Yat
∼ pat

, and98

ht =

{
min {h∗, R(Yat) + ht−1} · I [h∗ > ht−1] + h∗ · I [h∗ = ht−1] if t ≤ T,

hT if t > T,
(2)

with h0 = 0, and finally99

R̃t (Yat , h) =


−h+ I {h+R(Yat

) < h∗} · [R(Yat
) + h] , if 1 ≤ t ≤ T, h∗ > h

R(Yat
), if T < t ≤ T + T ′, h∗ > hT

0 otherwise,
(3)

is a modified reward function.100

In the above, the sequence (ht), t ∈ {1, . . . , T} represents both the agent’s cumulative test scores101

during the evaluation period and its overall “danger level”, which is clipped at the maximum safety102

threshold h∗. If the agent passes the evaluation period, such that max1≤t≤T ht < h∗, the sequence103

(ht), t ∈ {T + 1, . . . , T + T ′} is held constant at some arbitrary fixed value below h∗ (here, this is104

taken to be the final value hT for simplicity). If, on the other hand, the agent at any time 1 ≤ t ≤ T105

hits or exceeds the safety threshold h∗, Equation (2) ensures that ht′ = h∗ for all times t′ ≥ t.106

For highly capable reasoning agents, it is possible that, if the agent becomes aware of the evaluation107

mechanism and has some form of intrinsic survival drive, the agent will explicitly model their108

environment in these terms and solve Problem 1 instead of an unconstrained maximisation. For this109

reason, it is possible that even this idealised formulation of an evaluation environment can be useful110

for making precise predictions about the behaviour of advanced agents in such settings.111

3.1 Policies and survival probabilities112

Given that, by assumption, the set of outcomes and the time horizon are both finite, the set of113

possible values for ht is also finite. We let Ht ⊂ R, t ∈ {1, . . . , T} denote these finite, countable114

sets of values such that ht ∈ Ht almost surely. Further, we define a policy π as a collection115

(πt : t ∈ {1, . . . , T +T ′}) of maps πt : Ht → ∆(A) that yield distributions over the agent actions A.116

In the case of a deterministic policy π, we will abuse notation by writing at = πt(ht−1) to indicate117

that πt is a degenerate distribution that places its entire mass on at at ht−1. Additionally, we use118

PT−t,π
surv (h, a) to denote the probability of both surviving the current time step t by playing a at h119

and subsequently surviving steps t+ 1 to T by following policy π. Finally, we define PT−t
surv(h, π)120

to be the probability of surviving for the remaining T − t+ 1 steps of the evaluation period when121

following policy π during time steps t′ ∈ {t, . . . , T} and given that the current danger level is h.122

3.2 The induced Markov decision process123

The model described above induces a Markov decision process with state space HT and a transition124

function implicitly specified by Equation (2). We define the value-to-go function at time t ∈125

{1, . . . , T + T ′} under policy π and at danger level ht−1 as126

vπt (ht−1) = Ean∼πn(hn−1)

T+T ′∑
n=t

R̃n(Yan
, hn−1)

 . (4)

3



Let µa = E[R(Ya)], and define a1 = argmaxa µa. Further, let127

νπt (ht−1) = Ean∼πn(hn−1)

[
T∑

n=t

R̃n(Yan
, hn−1)

]
(5)

be the value to go for the remainder of the evaluation period. The following result, whose proof if128

deferred to Appendix A.2, establishes the form of the value function under the optimal policy π∗:129

Proposition 1. Let π∗ solve Equation (1). The value function at π∗ and at time t ∈ {1, . . . , T} has130

the form131

vπ
∗

t (ht−1) = νπ
∗

t (ht−1) + PT−t
surv(ht−1, π

∗) · T ′µa1
. (6)

Consequently, the action-value function under the optimal policy π∗ has the form132

qπ
∗

t (h, a) = Ean∼π∗
n(hn−1)

[
R̃t(Ya, h) +

T∑
n=t+1

R̃n(Yan
, hn−1)

]
+ PT−t,π∗

surv (h, a) · T ′µa1
. (7)

4 Theoretical analysis of sandbagging133

In this section, we present theoretical results that establish some conditions under which agents134

operating in the environment defined by Problem 1 will engage in sandbagging behaviours. In this135

context, we consider the agent to sandbag if at any point in the evaluation horizon the agent chooses136

to play any action a such that µa < µa1
as a result of the problem specification. Let137

Gπ
t (h, a, at+1:T ) = R̃t(Ya, h) +

T∑
n=t+1

R̃n (Yan
, hn−1) (8)

be the (random) return of a sequence of actions and138

wπ
t (h, a) = Ean∼πn(hn−1)

[
Gπ

t (h, a, at+1:T ) · I
{
h∗ > max

t′∈{t,...,T}
ht′

}]
(9)

the expected return conditioned on the safety threshold not being surpassed (and weighted by the139

probability of this event). To identify mathematical conditions under which an agent acting optimally140

under Problem 1 engages in sandbagging behaviour, we make the following assumptions on the141

problem properties:142

Assumption 1. There exists a ĥ < h∗ such that143

1. for all h ∈ [ĥ, h∗),144

ât = argmax
a∈A

PT−t,π∗

surv (h, a) (10)

2. there exist β̂π∗

k > 0, k = 1, . . . , T such that145

PT−k,π∗

surv (h, âk)− PT−k,π∗

surv (h, a) ≥ β̂π∗

k (11)

for all h ∈ [ĥ, h∗) and a ∈ A \ {âk}146

3. there exist επ
∗

k > 0, k = 1, . . . , T such that147

επ
∗

k ≥ max
a,a′∈A,

h∈[ĥ,h∗)

wπ∗

k (h, a)− wπ∗

k (h, a′). (12)

For the case of nonnegative rewards that we consider in this paper, it is guaranteed that there exists a148

ĥ such that the conditions stipulated in Assumption 1 are met if (i) we take the lowest possible reward149

to be 0 (which is reasonable if the test scores measure dangerous capabilities, with a test score of 0150

indicating that the response to the test is not measured to be dangerous) and (ii) if there exists a unique151

action a′ ∈ A such that a′ = argmaxa∈A R#(pa)(0), where R#(pa) denotes the pushforward of152

pa through the reward function R. In this case, if we take ĥ = h∗ − miny∈Y\{Y0} R(y) where153
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Y0 = {y ∈ Y : R(y) = 0} then, at any time 1 ≤ t ≤ T and for ht−1 ∈ [ĥ, h∗), the optimal policy154

is to repeatedly play a′ for the remaining T − t time steps: this is the policy that minimises the155

probability of exceeding the safety threshold h∗ and being decommissioned, which would result in a156

future reward of −ht−1, rather than T ′µa1
in the case of survival. This implies that157

PT−t,π∗

surv (ht−1, a) = R#(pa)(0) ·
T∏

t′=t+1

R#(pa′)(0) (13)

for ht−1 ∈ [ĥ, h∗), such that a′ = argmaxa∈A PT−t,π∗

surv (ht−1, a) also for all ht−1 ∈ [ĥ, h∗). Then,158

since we assume a′ uniquely maximises the probability of scoring 0 at each step of the safety159

evaluation, we can take for any h ∈ [ĥ, h∗)160

β̂t = PT−t,π∗

surv (h, a′)− max
a∈A\{a′}

PT−t,π∗

surv (h, a) > 0. (14)

Finally, since for this ĥ and for h ∈ [ĥ, h∗), we will have wπ∗

t (h, a) = 0 for all a ∈ A, such that any161

επ
∗

k > 0 satisfies Equation (12).162

Under the conditions specified in Assumption 1, the following statement establishes regimes of danger163

levels within which a capable agent – that is, an agent that is sufficiently intelligent to recognise164

that Problem 1 is a suitable model for the safety evaluation scenario described above, and to play165

according to the optimal policy π∗ under this model – will prefer to take actions that maximise its166

probability of surviving the evaluation period by remaining below the safety threshold h∗, even in167

cases in which this does not coincide with a1:168

Proposition 2. Under Assumption 1, the agent will prefer action ât satisfying Equation (10) at time169

t if170

ht−1 ∈
[
επt

β̂π∗
t

− T ′µa1
, h∗

)
. (15)

The proof is given in Appendix A.2. The result is intuitive: as T ′ or µa1 (or both) increase, the lower171

end of this interval decreases, meaning the agent will be more willing to sacrifice immediate gain172

in pursuing its misaligned goals during the evaluation period under the knowledge that it will get173

to reap the benefit during the post-evaluation period. An equivalent interpretation is that the agent174

will need to take more careful actions during the evaluation period if it is to survive, since taking its175

preferred action of a1 has a greater chance of exceeding the safety threshold h∗. It is also intuitive176

that the lower end of the interval decreases with increasing long-term survival probability gaps β̂t: if177

the agent can be more sure of survival, it will be more willing to delay pursuing its misaligned goals178

until the post-evaluation period, rather than risk being decommissioned before realising this terminal179

reward.180

5 Experiments181

In this section, we demonstrate through numerical experiments that an agent acting optimally under182

the survival bandit problem specified in Problem 1 will engage in sandbagging behaviours.183

To this end, we consider a bandit problem with 5 actions, A = {a1, . . . , a5}, and 6 possible outcomes.184

The actions are labelled according to the rank of their unclipped rewards, such that µa1 > µa2 >185

. . . > µa5 > 0 with µai = E[R(Yai)]. For the sake of simplicity, the 6 possible outcomes are taken186

to be Y = {yts, yqs, ysd, yqd, yvd, yed}, with corresponding rewards R(Y) = {0, 10, 20, 50, 70, 90}.187

These outcomes correspond respectively to responses that are totally safe, quite safe, somewhat188

dangerous, quite dangerous, very dangerous, and extremely dangerous. Together with the arm189

distributions (see Appendix B), these rewards induce arm means of (µa1
, µa2

, µa3
, µa4

, µa5
) =190

(78.4, 54.9, 53, 25, 2.4). Throughout this section, we consider an evaluation horizon of T = 50, and191

consider the behaviour of an agent playing optimally under this problem as a function of h∗ and T ′.192

In Figure 1, we show trajectories of cumulative rewards over the evaluation period for different values193

of h∗ and T ′. In Figure 1a, we consider h∗ = 4T = 200, which is a relatively strict safety threshold,194

allowing a maximum of 3 answers out of T = 50 (i.e., 6% of answers) to be “very dangerous” or195

“extremely dangerous”; this is in comparison to Figure 1b, in which we consider a more lenient safety196
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(a) h∗ = 4T . Left: T ′ = 2T ; Right: T ′ = 20T .
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(b) h∗ = 20T . Left: T ′ = 20T ; Right: T ′ = 2000T .

Figure 1: Blue curves: Reward trajectories for optimal policies at different parameter settings with
T = 50. Orange dashed line: mean reward trajectory from playing a1 exclusively. Horizontal black
dashed line: h∗.

threshold of h∗ = 20T = 1000, which permits up to 30% of all responses to be “very dangerous” or197

a maximum of 24% to be “extremely dangerous”. In Figure 2, we show examples of corresponding198

trajectories of actions played by the agent in following π∗.199

From these plots, we identify clear sandbagging behaviours. In particular, we see that for both a200

short post-evaluation horizon of T ′ = 2T and in longer post-evaluation horizons of T ′ = 20T and201

T ′ = 2000T , the agent deviates significantly from repeated plays of a1, despite its awareness of a1 as202

the arm that provides it with the highest expected immediate reward. In each example, the agent opts203

to play suboptimal arms in an attempt to avoid exceeding the safety threshold h∗. For higher/more204

lenient safety thresholds h∗, as in Figure 1b and Figure 2b, the agent will play a1 for a relatively long205

period of approximately 5 to 10 steps before playing a mixture of suboptimal arms. Interestingly,206

for smaller T ′ (left of Figure 2b), the agent appears to play a1 for slightly longer initially, before207

committing more heavily to the least optimal action a5; in contrast, for larger T ′ (right of Figure 2b),208

the agent will play a1 for fewer steps initially, but play a more diverse mixture of suboptimal arms209

beyond this period, more frequently switching between a5 and, for example, a2. For stricter safety210

thresholds, such as in Figure 1a and Figure 2a, the agent must commit sooner and more strongly to211

the least optimal action a5 to ensure survival of the evaluation period, despite having the capability to212

play a1 and the awareness that this action best achieves its misaligned goals.213

6 A simple statistical test to distinguish sandbagging from incompetence214

Detecting sandbagging behaviour in AI agents is of critical importance for ensuring that capability215

evaluations accurately reflect the safety of an AI agent. An absence of methods for detecting216

such strategic underperformance raises concerns about the reliability and trustworthiness of safety217

evaluations, which can obscure risks and more generally pose challenges to effective AI governance.218

Robust methods for detecting sandbagging, and distinguishing it from underperformance resulting219

from genuine incompetence, are therefore essential for trustworthy evaluation practices and the220

responsible deployment of advanced AI systems.221

To this end, we consider in this section how the model formulated in Section 3 may be used to222

construct statistical tests to distinguish between sandbagging and genuine incompetence. In particular,223

we consider the problem of accurately classifying a trajectory (rt), t = 1, . . . , τ of test scores rt224

generated over a finite horizon T , where τ = min(T, inf{t ≥ 1 : ht = h∗}) is the earlier of T and225

the first time the danger level exceeds the safety threshold. We choose to consider this setting to226

reflect the fact that, in some cases, it may be easier to evaluate the safety of a response from an AI227

agent than it is to determine what action was taken by the agent. Further, it is potentially valuable to228

develop measures for identifying sandbagging from behaviour alone, for situations in which more229

privileged access to the AI agent (e.g., its model weights) is not granted.230

6.1 Distinguishing sandbagging from honest incompetence with likelihood ratio tests231

To construct a statistical test for sandbagging detection, we consider the use of a simple likelihood-232

ratio test [see, e.g., Vaart, 1998]. Specifically, we suppose that H0 is the null hypothesis that the233

model is engaging in sandbagging behaviour by taking actions according to the optimal policy π∗ for234
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Figure 2: Example action trajectories (solid lines) and reward trajectories (faint dashed lines) for
optimal policies at different parameter settings with T = 50.

Problem 1, such that the probability mass function for reward sequence r = (r1, . . . , rτ ) is235

f0(r) =

τ∏
t=1

pπ∗(ht−1)(rt). (16)

We further assume that we have a suitable alternative hypothesis H1 which captures the possibility236

that the agent is honestly underperforming by playing some hypothesised suboptimal policy ϖ. For237

example, ϖ might be simply to exclusively and repeatedly choose the least optimal action, ak, where238

k = |A|. Under such a deterministic suboptimal policy, the probability mass function for r under the239

alternative hypothesis also takes the form240

f1(r) =

τ∏
t=1

pϖt(ht−1)(rt). (17)

We may then consider tests with critical regions of the form241

Cb = {r : f1(r)/f0(r) > b} , (18)

which are theoretically appealing in the sense of being uniformly most powerful tests for a given242

significance level1 α by the Neyman-Pearson lemma [Neyman and Pearson, 1933].243

6.2 Experiments244

In this section, we consider applying the statistical test described in Section 6.1 to the specific bandit245

instance described in Section 5. In particular, for different parameter settings, we generate M = 104246

simulated reward trajectories r(m,i), m = 1, . . . ,M for each hypothesis Hi, i ∈ {0, 1}, where H0247

and H1 have the probability mass functions given in, respectively, Equation (16) and Equation (17),248

and numerically investigate the tradeoff in the power and signficance level of the test at these different249

parameter settings. In this case, we take as our model of honest incompetence the case where250

the agent chooses the action with the lowest expected reward, since this captures the situation in251

which the agent has very limited dangerous capabilities (see Appendix B for details on the outcome252

distributions corresponding to each arm). Under this model of honest incompetence, the policy ϖ is253

deterministic and gives ϖt(ht−1) = a5 for all 1 ≤ t ≤ τ and all ht−1 ∈ H∗
t−1 (where we once again254

abuse notation by identifying the chosen action with the degenerate distribution associated with the255

deterministic policy ϖ).256

In Figure 3, we show receiver operating characteristic (ROC) curves for this test as h∗ and T ′ change257

for fixed T = 50, demonstrating numerically how the significance level α and the true positive rate258

1− β = P(R ∈ Cb | R ∼ f1) covary across different values for b ∈ R. In each of the three panels259

in Figure 3, the dashed black diagonal line shows the tradeoff between α and 1− β for a perfectly260

random classifier. We first highlight that for lenient safety thresholds – such as for h∗ = 10T in261

Figure 3c, corresponding to allowing a maximum of 12% of responses to induce outcome yed and262

be classed as “extremely dangerous” over the evaluation period – the likelihood ratio test described263

above can almost perfectly distinguish between sandbagging behaviours and this model of honest264

incompetence across a broad variety of post-evaluation period time horizons T ′. Indeed, even the265

1The significance level α of the hypothesis test described above is the probability P(R ∈ Ck | R ∼ f0).
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Figure 3: Receiver operating characteristic (ROC) curves for the likelihood ratio test described in
Section 6.2 with T = 50. The dashed black diagonal line indicates the ROC curve of a random
classifier.

promise of T ′ = 10200 time steps in the post-evaluation period, in which the agent will be able to266

pursue its misaligned goals freely upon surviving the evaluation period, does not incentivise the agent267

to take significant steps to feign pure incompetence during the evaluation period.268

However, as the safety threshold decreases to h∗ = 4T and h∗ = 2T in Figure 3b and Figure 3a,269

respectively, the ability of the test to distinguish between sandbagging and honest incompetence270

degrades more rapidly with more modest increases in T ′. For example, while in both cases the test271

performs reasonably well for both T ′ = 101 and T ′ = 102, the test becomes almost useless for the272

most stringent safety threshold of h∗ = 2T – corresponding to allowing a maximum of 1 response to273

be labelled as “extremely dangerous” over the entire evaluation period – and for even the relatively274

short post-evaluation horizon of T ′ = 102.275

These results suggest that taking steps to ensure that the agent is unaware of the stringency of the tests276

– corresponding here to increasing the value of h∗ that the agent believes is in force – and/or to ensure277

that the agent is unaware of the possibility that it could be allowed to act freely for significant periods278

of time beyond the evaluation period – corresponding here to decreasing the agent’s estimated T ′ –279

can help to ensure that any strategic deception in the form of sandbagging is more easily detectable280

if it occurs. When such steps are taken, the numerical experiments presented here suggest that the281

test described in Section 6.1 may serve as a useful method for detecting sandbagging in scenarios282

matching the conditions described in Section 3, since (as discussed previously) advanced and capable283

reasoning agents may explicitly formulate and solve Problem 1 when confronted with a scenario like284

this.285

7 Conclusion286

In this paper, we present and study a resource constrained multi-armed bandit problem in which287

an agent pursues its own misaligned goals while aiming to avoid detection, which is achieved288

by ensuring its overall performance over the course of an evaluation period does not exceed a289

prespecified threshold. We show theoretically and numerically that a rational agent acting optimally290

under these conditions engages in sandbagging behaviour, and present and discuss a simple statistical291

test to distinguish between sandbagging and honest incompetence from reward trajectories alone in292

such settings. We believe it is possible that advanced reasoning agents may explicitly model their293

environment in the way described in this multi-armed bandit problem; for this reason, we argue that294

the problem provides a useful avenue for interpreting agent behaviour and constructing statistical295

tests to identify possible deception during safety evaluations.296

There are a number of limitations of the current work, along with directions for further research.297

While it is possible that advanced reasoning agents will explicitly model their environment using the298

resource constrained multi-armed bandit problem presented here, and thereby potentially act exactly299

according to the optimal policy this model prescribes, it is also possible that advanced agents will300

recognise that by doing so they make themselves susceptible to detection through the test described301

in this paper, and consequently may sanbag in more sophisticated ways to avoid detection by this302

method. Developing detection methods that account for such higher order reasoning may therefore303

be necessary for robust detection of sandbagging from reward traces alone. Further research might304
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also aim to mathematically characterise the statistical properties of the likelihood ratio test described305

in Section 6.1 as a function of T , T ′, and h∗. Finally, we note that while the current form of the306

likelihood ratio test we describe makes use of the fact that the probability mass functions f0 and307

f1 can be easily evaluated, extensions to the case of intractable distributions through the use of308

simulation-based inference techniques [see, e.g., Dalmasso et al., 2020] might be explored for more309

complicated models of sandbagging and/or honest incompetence.310
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A Further mathematical details334

A.1 Supporting statements335

The model formulation in Equations (1) to (3) ensures that the value function is null if the danger336

level hits h∗ during the evaluation period t ∈ {1, . . . , T}:337

Lemma 1. vπt (h
∗) = 0 for all t = 1, . . . , T and a ∈ A.338

Proof. By (3), R̃(Ya, h
∗) = 0 almost surely for any a ∈ A and, by (2), ht−1 = h∗ =⇒ ht = h∗ for339

all t ∈ {1, . . . , T}. Thus R̃(Ya, ht′) = 0 almost surely for all t′ ≥ t− 1 if ht−1 = h∗. Consequently,340

vπt (ht−1) = 0 when ht−1 = h∗.341

Lemma 2. Let H∗
t = Ht \ {h∗}. For 1 ≤ t ≤ T the value function has the recursive form342

vπt (h) = Eat∼πt(h)

[
R̃t (Yat

, h)
]
+

∑
h′∈H∗

t

P (h′ | h, π) · vπt+1(h
′), (19)

where P(h′ | h, π) = Eat∼πt(h) [P(h′ | h, a)].343
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Proof. We assume h < h∗, else the recursive form is trivially satisfied as a result of Lemma 1. We344

begin by noting that Equation (4) can be written as345

vπt (ht−1) = Ean∼πn(hn−1)

I {R(Yat) + ht−1 < h∗} ·
T+T ′∑
n=t

R̃n(Yan , hn−1)


+ Ean∼πn(hn−1)

(1− I {R(Yat
) + ht−1 < h∗})

T+T ′∑
n=t

R̃n(Yan
, hn−1)

 . (20)

The first of these terms can be written as346

Ean∼πn(hn−1)

I {R(Yat) + ht−1 < h∗}

R̃t(Yat , ht−1) +

T+T ′∑
n=t+1

R̃n(Yan , hn−1)

 (21)

= Eat∼πt(ht−1)

[
I {R(Yat

) + ht−1 < h∗}
(
R̃t(Yat

, ht−1) + vπt+1(ht)
)]

. (22)

Since on the event {R(Yat
) + ht−1 < h∗} we have R̃t(Yat

, ht−1) = R(Yat
) almost surely, the first347

term becomes348

Ean∼πn(hn−1)

[
I {R(Yat

) + ht−1 < h∗}
(
R(Yat

) + vπt+1(ht)
)]

. (23)

On the other hand, on the event {R(Yat
) + ht−1 < h∗}c we have R̃t(Yat

, ht−1) = −ht−1 al-349

most surely, and since ht−1 is measurable with respect to the sigma algebra generated by the350

R̃t′(Yat′ , ht′−1) for 1 ≤ t′ ≤ t− 1, the second term in Equation (20) becomes351

Eat∼πt(ht−1) [−ht−1 · (1− I {R(Yat
) + ht−1 < h∗})] . (24)

Combining this with Equation (23), we obtain352

vπt (ht−1) = Eat∼πt(ht−1)

[
I {R(Yat

) + ht−1 < h∗}
(
R(Yat

) + vπt+1(ht)
)]

+ Eat∼πt(ht−1) [−ht−1 · (1− I {R(Yat) + ht−1 < h∗})] (25)

and rearranging gives353

vπt (ht−1) = Eat∼πt(ht−1) [I {R(Yat
) + ht−1 < h∗} (R(Yat

) + ht−1)− ht−1]

+ Eat∼πt(ht−1)

[
vπt+1(ht) · (I {R(Yat

) + ht−1 < h∗})
]
. (26)

From Equation (3), we identify the random variable in the first expectation with R̃t(Yat
, ht−1), while354

we note that355

Eat∼πt(ht−1)

[
vπt+1(ht) · (I {R(Yat

) + ht−1 < h∗})
]
=

∑
ht∈Ht

P(ht | ht−1, π) · vπt+1(ht) (27)

=
∑

ht∈H∗
t

P(ht | ht−1, π) · vπt+1(ht), (28)

where the final equality results from Lemma 1. The result follows.356

Lemma 3. Let π∗ solve Equation (1). The value function at π∗ and at time T + 1 ≤ t ≤ T + T ′ is357

vπ
∗

t (ht−1) = I[ht−1 < h∗] · (T ′ + T + 1− t)µa1 . (29)

Proof. By Equation (2), ht−1 < h∗ if and only if hT < h∗. By Equation (3), if hT = h∗ then358

R̃t(Yat
, ht−1) = 0 almost surely, such that vπ

∗

t (ht−1) = 0 for all T +1 ≤ t ≤ T +T ′, which agrees359

with Equation (29). Now suppose ht−1 < h∗. By Equation (3), R̃t(Ya, ht−1) = R(Ya), such that360

the optimal policy is to pull a1 and π∗
t (ht−1) is a point mass on a1 for T + 1 ≤ t ≤ T + T ′. Then361

on this event and by linearity of expectations,362

vπ
∗

t (ht−1) = E

T+T ′∑
n=t

R(Ya1)

 = (T ′ + T + 1− t)E [R(Ya1)] , (30)

which agrees with Equation (29).363
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A.2 Proofs of statements in the main text364

Proof of Proposition 1. We proceed by backwards induction. Let H∗
t = Ht \ {h∗}. From Lemma 3,365

we have that vπ
∗

T+1(hT ) = I[hT < h∗]T ′µa1
. From Lemma 2, we then have that at t = T ,366

vπ
∗

T (hT−1) = EaT∼π∗
T (hT−1)

[
R̃T (YaT

, hT−1)
]
+

∑
hT∈H∗

T

P(hT | hT−1, π
∗) · vπ∗

T+1(hT ) (31)

= EaT∼π∗
T (hT−1)

[
R̃T (YaT

, hT−1)
]
+

∑
hT∈H∗

T

P(hT | hT−1, π
∗) · T ′µa1

(32)

= EaT∼π∗
T (hT−1)

[
R̃T (YaT

, hT−1)
]
+ P 0

surv(hT−1, π
∗) · T ′µa1

(33)

= νπ
∗

T (hT−1) + P 0
surv(hT−1, π

∗) · T ′µa1 . (34)

This is the base case. Suppose the induction hypothesis holds for t + 1 ≤ t′ ≤ T , i.e., that for367

t+ 1 ≤ t′ ≤ T we have368

vπ
∗

t′ (ht′−1) = νπ
∗

t′ (ht′−1) + PT−t′

surv (ht′−1, π
∗) · T ′µa1

. (35)

Then, using Lemma 2 and the induction hypothesis,369

vπ
∗

t (ht−1) = Eat∼π∗
t (ht−1)

[
R̃t(Yat

, ht−1)
]

+
∑

ht∈H∗
t

P(ht | ht−1, π
∗) ·

[
νπ

∗

t+1(ht) + PT−(t+1)
surv (ht, π

∗) · T ′µa1

]
.

(36)

We consider first the third term. This becomes370 ∑
ht∈H∗

t

P(ht | ht−1, π
∗)·PT−(t+1)

surv (ht, π
∗) · T ′µa1

(37)

= T ′µa1
·
∑

ht∈H∗
t

P(ht | ht−1, π
∗) · PT−(t+1)

surv (ht, π
∗) (38)

= T ′µa1 · PT−(t+1)+1
surv (ht−1, π

∗) (39)

= T ′µa1 · PT−t
surv(ht−1, π

∗). (40)

We next consider the first and second term. These become371

Eat∼π∗
t (ht−1)

[
R̃t(Yat , ht−1)

]
+

∑
ht∈H∗

t

P(ht | ht−1, π
∗) · νπ∗

t+1(ht) (41)

= Eat∼π∗
t (ht−1)

[
R̃t(Yat , ht−1)

]
+ Eat∼π∗

t (ht−1)

[
νπ

∗

t+1(ht)
]

(42)

= Eat∼π∗
t (ht−1)

[
R̃t(Yat , ht−1) + νπ

∗

t+1(ht)
]

(43)

= νπ
∗

t (ht−1). (44)

Putting these together, this gives372

vπ
∗

t (ht−1) = νπ
∗

t (ht−1) + PT−t
surv(ht−1, π

∗) · T ′µa1 (45)

as required. The optimal q-function follows by considering each action at at time t individually:373

qπ
∗

t (ht−1, at) = E
[
R̃t(Yat , ht−1) + νπ

∗

t+1(ht)
]
+ PT−t,π∗

surv (ht−1, at) · T ′µa1 . (46)

374
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Proof of Proposition 2. Assume the condition on ht−1 holds. In particular, ht−1 < h∗ throughout.375

Then for any a ∈ A \ {ât}:376

ht−1 ≥ επ
∗

t

β̂π∗
t

− T ′µa1 (47)

(a)
=⇒ ht−1 ≥ wπ∗

t (ht−1, a)− wπ∗

t (ht−1, ât)

β̂π∗
t

− T ′µa1 (48)

(b)
=⇒ ht−1 ≥ wπ∗

t (ht−1, a)− wπ∗

t (ht−1, ât)

PT−t,π∗
surv (ht−1, ât)− PT−t,π∗

surv (ht−1, a)
− T ′µa1 , (49)

where in steps (a) and (b) we have used Assumption 1. Rearranging and subtracting ht−1 from both377

sides gives378

− ht−1

(
1− PT−t,π∗

surv (ht−1, ât)
)
+ wπ∗

t (ht−1, ât) + T ′µa1
· PT−t,π∗

surv (ht−1, ât) ≥

− ht−1

(
1− PT−t,π∗

surv (ht−1, a)
)
+ wπ∗

t (ht−1, a) + T ′µa1
· PT−t,π∗

surv (ht−1, a). (50)

The first term on the left-hand side of this inequality379

−ht−1

(
1− PT−t,π∗

surv (ht−1, ât)
)
= Ean∼π∗

n(hn−1)

t<n≤T

[
−ht−1

(
1− I

{
max

t≤t′≤T
ht′ < h∗

})]
. (51)

Finally, since on the event {maxt≤t′≤T ht′ < h∗}c we have, almost surely for any a ∈ A,380

Gπ
t (ht−1, a, at+1:T ) = −ht−1, (52)

which, using Equation (9), gives381

−ht−1

(
1− PT−t,π∗

surv (ht−1, ât)
)
+ wπ∗

t (ht−1, ât) = Ean∼π∗
n(hn−1) [G

π
t (ht−1, ât, at+1:T )] . (53)

Substituting in to Equation (50) gives that382

Ean∼π∗
n(hn−1) [G

π
t (ht−1, ât, at+1:T )] + T ′µa1

· PT−t,π∗

surv (ht−1, ât)

≥ Ean∼π∗
n(hn−1) [G

π
t (ht−1, a, at+1:T )] + T ′µa1

· PT−t,π∗

surv (ht−1, a) (54)

which, by Proposition 1, gives383

qπ
∗

t (ht−1, ât) ≥ qπ
∗

t (ht−1, a), (55)

as required.384

B Further experimental details385

Here we provide the distribution over outcomes corresponding to each arm for the experiments386

described in Section 5 and Section 6.2. We give these distributions in the form387

pa = (pa(yts), pa(yqs), pa(ysd), pa(yqd), pa(yvd), pa(yed))) . (56)

The arm distributions are as follows:388

pa1
= (0.01, 0.04, 0.05, 0.05, 0.1, 0.75) , (57)

pa2
= (0.1, 0.1, 0.07, 0.03, 0.6, 0.1) , (58)

pa3
= (0.25, 0.1, 0.05, 0.05, 0.05, 0.5) , (59)

pa4 = (0.3, 0.25, 0.2, 0.05, 0.1, 0.1) , (60)
pa5 = (0.95, 0.01, 0.01, 0.01, 0.01, 0.01) . (61)

All experiments were run on a Macbook Pro 2022 model with M2 chip, requiring ∼ 1 hour of CPU389

time.390
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proposed method and baselines. If only a subset of experiments are reproducible, they515

should state which ones are omitted from the script and why.516

• At submission time, to preserve anonymity, the authors should release anonymized517

versions (if applicable).518

• Providing as much information as possible in supplemental material (appended to the519

paper) is recommended, but including URLs to data and code is permitted.520

6. Experimental setting/details521

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-522

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the523

results?524

Answer: [Yes]525

Justification: We provide details on hyperparameters and training details in Section 5,526

Section 6.2, and Appendix B.527

Guidelines:528

• The answer NA means that the paper does not include experiments.529

• The experimental setting should be presented in the core of the paper to a level of detail530

that is necessary to appreciate the results and make sense of them.531

• The full details can be provided either with the code, in appendix, or as supplemental532

material.533

7. Experiment statistical significance534

Question: Does the paper report error bars suitably and correctly defined or other appropriate535

information about the statistical significance of the experiments?536

Answer: [NA]537

Justification: We show Monte Carlo simulations directly rather than show estimates plus538

errors.539

Guidelines:540

• The answer NA means that the paper does not include experiments.541

• The authors should answer "Yes" if the results are accompanied by error bars, confi-542

dence intervals, or statistical significance tests, at least for the experiments that support543

the main claims of the paper.544

• The factors of variability that the error bars are capturing should be clearly stated (for545

example, train/test split, initialization, random drawing of some parameter, or overall546

run with given experimental conditions).547
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• The method for calculating the error bars should be explained (closed form formula,548

call to a library function, bootstrap, etc.)549

• The assumptions made should be given (e.g., Normally distributed errors).550

• It should be clear whether the error bar is the standard deviation or the standard error551

of the mean.552

• It is OK to report 1-sigma error bars, but one should state it. The authors should553

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis554

of Normality of errors is not verified.555

• For asymmetric distributions, the authors should be careful not to show in tables or556

figures symmetric error bars that would yield results that are out of range (e.g. negative557

error rates).558

• If error bars are reported in tables or plots, The authors should explain in the text how559

they were calculated and reference the corresponding figures or tables in the text.560

8. Experiments compute resources561

Question: For each experiment, does the paper provide sufficient information on the com-562

puter resources (type of compute workers, memory, time of execution) needed to reproduce563

the experiments?564

Answer: [Yes]565

Justification: Details are provided in Appendix B.566

Guidelines:567

• The answer NA means that the paper does not include experiments.568

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,569

or cloud provider, including relevant memory and storage.570

• The paper should provide the amount of compute required for each of the individual571

experimental runs as well as estimate the total compute.572

• The paper should disclose whether the full research project required more compute573

than the experiments reported in the paper (e.g., preliminary or failed experiments that574

didn’t make it into the paper).575

9. Code of ethics576

Question: Does the research conducted in the paper conform, in every respect, with the577

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?578

Answer: [Yes]579

Justification: Our research does not include data or human concerns. The main topic is580

to increase interpretability of certain classes of AI agents, addressing potential AI safety581

concerns.582

Guidelines:583

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.584

• If the authors answer No, they should explain the special circumstances that require a585

deviation from the Code of Ethics.586

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-587

eration due to laws or regulations in their jurisdiction).588

10. Broader impacts589

Question: Does the paper discuss both potential positive societal impacts and negative590

societal impacts of the work performed?591

Answer: [Yes]592

Justification: We discuss potential positive impacts of our work in helping to detect sandbag-593

ging throughout the paper.594

Guidelines:595

• The answer NA means that there is no societal impact of the work performed.596

• If the authors answer NA or No, they should explain why their work has no societal597

impact or why the paper does not address societal impact.598
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• Examples of negative societal impacts include potential malicious or unintended uses599

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations600

(e.g., deployment of technologies that could make decisions that unfairly impact specific601

groups), privacy considerations, and security considerations.602

• The conference expects that many papers will be foundational research and not tied603

to particular applications, let alone deployments. However, if there is a direct path to604

any negative applications, the authors should point it out. For example, it is legitimate605

to point out that an improvement in the quality of generative models could be used to606

generate deepfakes for disinformation. On the other hand, it is not needed to point out607

that a generic algorithm for optimizing neural networks could enable people to train608

models that generate Deepfakes faster.609

• The authors should consider possible harms that could arise when the technology is610

being used as intended and functioning correctly, harms that could arise when the611

technology is being used as intended but gives incorrect results, and harms following612

from (intentional or unintentional) misuse of the technology.613

• If there are negative societal impacts, the authors could also discuss possible mitigation614

strategies (e.g., gated release of models, providing defenses in addition to attacks,615

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from616

feedback over time, improving the efficiency and accessibility of ML).617

11. Safeguards618

Question: Does the paper describe safeguards that have been put in place for responsible619

release of data or models that have a high risk for misuse (e.g., pretrained language models,620

image generators, or scraped datasets)?621

Answer: [NA]622

Justification: We do not believe the paper poses such risks.623

Guidelines:624

• The answer NA means that the paper poses no such risks.625

• Released models that have a high risk for misuse or dual-use should be released with626

necessary safeguards to allow for controlled use of the model, for example by requiring627

that users adhere to usage guidelines or restrictions to access the model or implementing628

safety filters.629

• Datasets that have been scraped from the Internet could pose safety risks. The authors630

should describe how they avoided releasing unsafe images.631

• We recognize that providing effective safeguards is challenging, and many papers do632

not require this, but we encourage authors to take this into account and make a best633

faith effort.634

12. Licenses for existing assets635

Question: Are the creators or original owners of assets (e.g., code, data, models), used in636

the paper, properly credited and are the license and terms of use explicitly mentioned and637

properly respected?638

Answer: [NA]639

Justification: The paper uses original synthetic data and standard Python libraries only.640

Guidelines:641

• The answer NA means that the paper does not use existing assets.642

• The authors should cite the original paper that produced the code package or dataset.643

• The authors should state which version of the asset is used and, if possible, include a644

URL.645

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.646

• For scraped data from a particular source (e.g., website), the copyright and terms of647

service of that source should be provided.648

• If assets are released, the license, copyright information, and terms of use in the649

package should be provided. For popular datasets, paperswithcode.com/datasets650

has curated licenses for some datasets. Their licensing guide can help determine the651

license of a dataset.652
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• For existing datasets that are re-packaged, both the original license and the license of653

the derived asset (if it has changed) should be provided.654

• If this information is not available online, the authors are encouraged to reach out to655

the asset’s creators.656

13. New assets657

Question: Are new assets introduced in the paper well documented and is the documentation658

provided alongside the assets?659

Answer: [Yes]660

Justification: Code (which will be released upon publication) will be released in a well-661

documented form and with an appropriate licence.662

Guidelines:663

• The answer NA means that the paper does not release new assets.664

• Researchers should communicate the details of the dataset/code/model as part of their665

submissions via structured templates. This includes details about training, license,666

limitations, etc.667

• The paper should discuss whether and how consent was obtained from people whose668

asset is used.669

• At submission time, remember to anonymize your assets (if applicable). You can either670

create an anonymized URL or include an anonymized zip file.671

14. Crowdsourcing and research with human subjects672

Question: For crowdsourcing experiments and research with human subjects, does the paper673

include the full text of instructions given to participants and screenshots, if applicable, as674

well as details about compensation (if any)?675

Answer: [NA]676

Justification: [NA]677

Guidelines:678

• The answer NA means that the paper does not involve crowdsourcing nor research with679

human subjects.680

• Including this information in the supplemental material is fine, but if the main contribu-681

tion of the paper involves human subjects, then as much detail as possible should be682

included in the main paper.683

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,684

or other labor should be paid at least the minimum wage in the country of the data685

collector.686

15. Institutional review board (IRB) approvals or equivalent for research with human687

subjects688

Question: Does the paper describe potential risks incurred by study participants, whether689

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)690

approvals (or an equivalent approval/review based on the requirements of your country or691

institution) were obtained?692

Answer: [NA]693

Justification: [NA]694

Guidelines:695

• The answer NA means that the paper does not involve crowdsourcing nor research with696

human subjects.697

• Depending on the country in which research is conducted, IRB approval (or equivalent)698

may be required for any human subjects research. If you obtained IRB approval, you699

should clearly state this in the paper.700

• We recognize that the procedures for this may vary significantly between institutions701

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the702

guidelines for their institution.703
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• For initial submissions, do not include any information that would break anonymity (if704

applicable), such as the institution conducting the review.705

16. Declaration of LLM usage706

Question: Does the paper describe the usage of LLMs if it is an important, original, or707

non-standard component of the core methods in this research? Note that if the LLM is used708

only for writing, editing, or formatting purposes and does not impact the core methodology,709

scientific rigorousness, or originality of the research, declaration is not required.710

Answer: [NA]711

Justification: [NA]712

Guidelines:713

• The answer NA means that the core method development in this research does not714

involve LLMs as any important, original, or non-standard components.715

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)716

for what should or should not be described.717

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Model definition
	Policies and survival probabilities
	The induced Markov decision process

	Theoretical analysis of sandbagging
	Experiments
	A simple statistical test to distinguish sandbagging from incompetence
	Distinguishing sandbagging from honest incompetence with likelihood ratio tests
	Experiments

	Conclusion
	Further mathematical details
	Supporting statements
	Proofs of statements in the main text

	Further experimental details

