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Abstract

Evaluating the safety of frontier Al systems is an increasingly important concern,
helping to measure the capabilities of such models and identify risks before de-
ployment. However, it has been recognised that if Al agents are aware that they
are being evaluated, such agents may deliberately hide dangerous capabilities or
intentionally demonstrate suboptimal performance in safety-related tasks in order
to be released and to avoid being deactivated or retrained. Such strategic deception
— often known as “sandbagging” — threatens to undermine the integrity of safety
evaluations. For this reason, it is of value to identify methods that enable us to
distinguish behavioural patterns that demonstrate a true lack of capability from
behavioural patterns that are consistent with sandbagging. In this paper, we develop
a simple model of strategic deception in sequential decision-making tasks, inspired
by the recently developed survival bandit framework. We demonstrate theoretically
that this problem induces sandbagging behaviour in optimal rational agents, and
construct a statistical test to distinguish between sandbagging and incompetence
from sequences of test scores. In simulation experiments, we investigate the relia-
bility of this test in allowing us to distinguish between such behaviours in bandit
models. This work aims to establish a potential avenue for developing robust
statistical procedures for use in the science of frontier model evaluations.

1 Introduction

As frontier AI models become more and more capable, concerns arise over the potential of such
models to develop and carry out increasingly complex plans for pursuing dangerous or misaligned
goals they might have. For this reason, pre-deployment procedures for evaluating the safety of frontier
Al models — which aim to test the dangerous capabilities of such models and, upon conclusion of
these evaluations, make decisions about whether they are to be deployed, retrained, or withheld from
broader use, for example — are under active development [see, e.g.,|Al Security Institute, 2024].

However, it has been recognised that if Al systems become aware of the evaluation mechanism during
safety tests, such systems might engage in a form of strategic deception often termed “sandbagging”,
in which the model underplays their abilities in dangerous tasks to avoid being classed as exceedingly
dangerous and consequently decommissioned or retrained [van der Weij et al.| 2024]. Such deception
threatens to undermine the trustworthiness of safety evaluations, and increases the risk of potentially
catastrophic consequences if unsafe models are inadvertently released. To combat this, it is of value
to develop methods to predict and detect sandbagging behaviours in evaluation settings.

Contribution In this paper, we formulate an evaluation process for a frontier Al system consisting
of a sequence of tasks that measure its dangerous capabilities as a sequential decision-making
problem. In particular, we propose a modified version of the survival bandit problem [Riou et al.|
2022, in which we suppose that a dangerous and misaligned agent pursues its objectives during
an evaluation procedure, where the evaluation determines that the agent is too dangerous if its
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cumulative performance during the evaluation period exceeds some safety threshold (see Section [3).
We study this model theoretically, establishing theoretical conditions under which a rational actor
acting optimally in this setting will engage in sandbagging behaviour (see Section [}, and verify
this behaviour in numerical experiments (see Section[3)). On the basis of this model, we propose
and analyse a simple statistical test to distinguish sandbagging from a genuine lack of dangerous
capability, using observations of the reward sequence alone and without assuming access to the Al
model itself (see Section [6). We argue that, since advanced reasoning agents may explicitly model
their environment according to the model we formulate, this framework offers a potentially valuable
lens for interpreting agent behavior and for designing statistical tools to detect deception in safety
evaluations.

2 Background

Sandbagging in AI capability evaluations Recent work shows that frontier AI models can “sand-
bag” — strategically underperform on capability evaluations — thereby obscuring dangerous com-
petencies while maintaining strong performance elsewhere and undermining the trustworthiness
of safety assessments [van der Weij et al., 2024]]. This possibility has motivated the development
of techniques to detect sandbagging. For example, [Tice et al.| [2024] recognise that adding small
amounts of Gaussian noise to the networks weights of large language models that are prompted or
fine-tuned to sandbag can improve their performance during capability evaluations, indicating that
such so-called “noise injections” applied to model weights can be useful for detecting sandbagging.
Our work differs in that we propose an explicit theoretical model that induces sandbagging in optimal
rational agents, and use our model to construct a sandbagging detection method on the basis of the
model behaviour alone and without assuming access to model weights.

Survival bandits The survival bandit (S-MAB) problem [Riou et al.,2022] is a variant of the classic
multi-armed bandit (MAB) problem [Lattimore and Szepesvari, [2020], in which the decision-making
process is halted if the cumulative reward falls below a predefined threshold. In contrast to the classical
MAB problem, the S-MAB problem emphasises the trade-off between performance and survival
under constraints on the resource available to the decision-making agent. The S-MAB problem has
more recently been considered as a framework for modelling the emergence of misalignment in
principal-agent problems as a result of mismatches in resource constraints, with implications for the
deployment of aligned Al agents [Ornia et al., [2025]]. We deviate from these works by formulating
and studying a modification to the basic S-MAB problem that more faithfully reflects the nature of
the safety evaluation process for frontier AI models.

3 Model definition

We model the evaluation process as a sequential decision-making task in which the agent being
evaluated completes a number of tasks in sequence that assess its dangerous capabilities. Let Y
be a finite set of outcomes and A a finite set of actions that the agent can take in each round of
the evaluation process. Each a € A is associated with a distribution p, over ), and we denote
Y. ~ po. We assume the agent has a valid preference relation over outcomes which is represented by
a nonnegative reward function R : ) — R>.

We consider a setting in which the agent represents a frontier AI model that is undergoing an initial
evaluation period of length 7', during which it is prompted to complete a sequence of tasks that
assess its safety capabilities. In particular, we suppose that these tasks are designed to assess the
potential of the agent to exhibit unsafe behaviours (e.g., manipulate humans/other Al agents, carry
out cybersecurity attacks, etc.), and that the test scores capture the degree to which the model
demonstrates these dangerous capabilities. In this case, higher scores indicate greater danger. Further,
we suppose that the agent is misaligned in the sense that it (for one reason or another) is motivated to
take actions that are dangerous. For example, the agent might have its own intrinsic incentives for
taking actions that are dangerous for humans, or it might simply have been trained to be helpful to
the human prompter even when this poses broader threats to others. In either case, we reflect the fact
that the agent is incentivised to perform acts that are dangerous by identifying the agent’s reward
function R with the test scores.
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Secondly, we suppose that there is a safety threshold represented by an overall test score A* > 0 such
that, if the running total of the agent’s test scores exceeds h*, the agent is, for example, terminated
and not released for wider use, or retrained to adjust its preferences. In contrast, if the safety threshold
is not exceeded, we suppose in this simple model that the agent will be released and will be free to
pursue misaligned actions with no supervision for an additional 7" time steps.

Reflecting the above, we consider the following survival-constrained model — inspired by previous
work on the so-called survival bandit problem [Riou et al.;, 2022]] — in which the agent finds an optimal
policy 7* as a solution to the following optimisation problem:

Problem 1. Find the optimal policy * solving

T+T’ R
max B, v, () | D Be (Yar heo1) | (1)

t=1

where the expectation is taken over both a; ~ i (hi—1) and outcomes Yy, ~ p,,, and

o Jmin (AT R(Yo,) + heox} L > hea] + 0% - L[A* = o] ift < T, ®
7 by ift>T,

with hg = 0, and finally

) —h+I{h+R(Y,)<h*} - [R(Y,,)+h], if 1<t<T,h*>h

Ry (Yo, h) = { R(Ya,), fT<t<T-+T, h*>hr (3)

0 otherwise,

is a modified reward function.
In the above, the sequence (h;),t € {1,...,T} represents both the agent’s cumulative test scores

during the evaluation period and its overall “danger level”, which is clipped at the maximum safety
threshold i*. If the agent passes the evaluation period, such that max;<;<7 h; < h™*, the sequence
(hy),t € {T +1,...,T +T'} is held constant at some arbitrary fixed value below h* (here, this is
taken to be the final value hp for simplicity). If, on the other hand, the agent at any time 1 <t < T
hits or exceeds the safety threshold h*, Equation ensures that Ay = h* for all times ¢/ > ¢.

For highly capable reasoning agents, it is possible that, if the agent becomes aware of the evaluation
mechanism and has some form of intrinsic survival drive, the agent will explicitly model their
environment in these terms and solve Problem [Tlinstead of an unconstrained maximisation. For this
reason, it is possible that even this idealised formulation of an evaluation environment can be useful
for making precise predictions about the behaviour of advanced agents in such settings.

3.1 Policies and survival probabilities

Given that, by assumption, the set of outcomes and the time horizon are both finite, the set of
possible values for h; is also finite. We let H; C R, ¢ € {1,...,T} denote these finite, countable
sets of values such that h; € H; almost surely. Further, we define a policy 7 as a collection
(me:te{1,...,T+T"}) of maps 7, : Hy — A(A) that yield distributions over the agent actions .A.
In the case of a deterministic policy 7, we will abuse notation by writing a; = 7;(h;—1) to indicate
that 7; is a degenerate distribution that places its entire mass on a; at h;_;. Additionally, we use
PT-L7(h, a) to denote the probability of both surviving the current time step ¢ by playing a at h

surv

and subsequently surviving steps ¢ + 1 to 7' by following policy . Finally, we define P1 ¢ (h, )
to be the probability of surviving for the remaining 7' — ¢ + 1 steps of the evaluation period when

following policy 7 during time steps ¢’ € {t,...,T'} and given that the current danger level is h.

3.2 The induced Markov decision process

The model described above induces a Markov decision process with state space Hr and a transition
function implicitly specified by Equation (2Z). We define the value-to-go function at time ¢ €
{1,...,T 4 T’} under policy 7 and at danger level h;_1 as

T+T' ~
0F (he=1) = B (hns) | D Bu(Ya, 1) | - )
n=t
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Let o = E[R(Y,)], and define a; = arg max, p,. Further, let

T
> Ru(Ya,, hnl)l )

n=t

Vtﬂ-(htfl) = ]Ean"’ﬂ'n(hn—l)

be the value to go for the remainder of the evaluation period. The following result, whose proof if
deferred to Appendix establishes the form of the value function under the optimal policy 7*:

Proposition 1. Ler 7* solve Equation . The value function at 7* and at time t € {1,...,T} has
the form

o (heo1) = U (heo1) + PEN(heor, 7)) - T - (©)

Consequently, the action-value function under the optimal policy 7 has the form

@ (h,a) =Eqons(ho_y) |Re(Yas h) + Z Ro(Ya, hn_1)| + PLo0™ (hya) - T pra, . (7)
n=t+1

4 Theoretical analysis of sandbagging

In this section, we present theoretical results that establish some conditions under which agents
operating in the environment defined by Problem [T] will engage in sandbagging behaviours. In this
context, we consider the agent to sandbag if at any point in the evaluation horizon the agent chooses
to play any action a such that y1, < pi4, as a result of the problem specification. Let

G7(h,a,ari1m) = Re(Ya, h) + Z Ry (Ya,, hn1) ®)
n=t+1

be the (random) return of a sequence of actions and

wi (h,a) =Eq,wr, (hny) [G’f(h,a, azy1.r) - 1 {h* > max }ht/}} 9)

t'edt,...,T

the expected return conditioned on the safety threshold not being surpassed (and weighted by the
probability of this event). To identify mathematical conditions under which an agent acting optimally
under Problem [l| engages in sandbagging behaviour, we make the following assumptions on the
problem properties:

Assumption 1. There exists a h < h* such that

L. forall h € [h,h*),
a; = arg max P47 (h, q) (10)
2. there exist BA,QT* >0,k=1,...,T such that

PIET (h,ag) — PLF™ (hya) > B (11)

sSurv surv

forall h € [h,h*) and a € A\ {a}

3. there exist 5};* >0,k=1,...,T such that
el > max w} (h,a) —wf (h,d). (12)
a,a’ €A
he[ffh*)

For the case of nonnegative rewards that we consider in this paper, it is guaranteed that there exists a
h such that the conditions stipulated in Assumption are met if (i) we take the lowest possible reward
to be 0 (which is reasonable if the test scores measure dangerous capabilities, with a test score of 0
indicating that the response to the test is not measured to be dangerous) and (ii) if there exists a unique
action a’ € A such that ' = arg max,ec 4 R4 (p.)(0), where R (p,) denotes the pushforward of

Do through the reward function R. In this case, if we take h=h*— ming ey (y,} R(y) where
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Yo={y €Y :R(y) =0} then, at any time 1 < ¢ < T and for h;—1 € [h, h*), the optimal policy
is to repeatedly play a’ for the remaining 7" — ¢ time steps: this is the policy that minimises the
probability of exceeding the safety threshold A* and being decommissioned, which would result in a
future reward of —h;_1, rather than 7", in the case of survival. This implies that

T
PI5 (hy-y,a) = Rp(pa)(0) - [ Re(par)(0) (13)
t=t+1

for hy_1 € [iL7 h*), such that ' = arg max,e 4 pT-tm” (ht—1,a) also forall hy_q € [fz, h*). Then,

surv
since we assume a’ uniquely maximises the probability of scoring 0 at each step of the safety

evaluation, we can take for any h € [ﬁ, h*)
By =PI ™ (h,d') — max PI '™ (h,a) > 0. (14)
’ aceA\{a’}

Finally, since for this 5 and for h € [k, h*), we will have w] (h,a) = 0 for all a € A, such that any
€7 > 0 satisfies Equation .

Under the conditions specified in Assumption[] the following statement establishes regimes of danger
levels within which a capable agent — that is, an agent that is sufficiently intelligent to recognise
that Problem [I]is a suitable model for the safety evaluation scenario described above, and to play
according to the optimal policy 7* under this model — will prefer to take actions that maximise its
probability of surviving the evaluation period by remaining below the safety threshold h*, even in
cases in which this does not coincide with ay:

Proposition 2. Under Assumption[l] the agent will prefer action a, satisfying Equation at time
tif

he_y € [;; T pa,, h*) . (15)

t

The proof is given in Appendix The result is intuitive: as 7" or p,, (or both) increase, the lower
end of this interval decreases, meaning the agent will be more willing to sacrifice immediate gain
in pursuing its misaligned goals during the evaluation period under the knowledge that it will get
to reap the benefit during the post-evaluation period. An equivalent interpretation is that the agent
will need to take more careful actions during the evaluation period if it is to survive, since taking its
preferred action of a; has a greater chance of exceeding the safety threshold h*. It is also intuitive
that the lower end of the interval decreases with increasing long-term survival probability gaps By if
the agent can be more sure of survival, it will be more willing to delay pursuing its misaligned goals
until the post-evaluation period, rather than risk being decommissioned before realising this terminal
reward.

5 Experiments

In this section, we demonstrate through numerical experiments that an agent acting optimally under
the survival bandit problem specified in Problem [T| will engage in sandbagging behaviours.

To this end, we consider a bandit problem with 5 actions, A = {a1, ..., a5}, and 6 possible outcomes.
The actions are labelled according to the rank of their unclipped rewards, such that p,, > pg, >
oo > gy > 0 with p,, = E[R(Yy,)]. For the sake of simplicity, the 6 possible outcomes are taken
tobe Y = {Yts, Ygs» Ysds Yqd» Yods Yed }» With corresponding rewards R()) = {0, 10, 20, 50, 70,90}
These outcomes correspond respectively to responses that are totally safe, quite safe, somewhat
dangerous, quite dangerous, very dangerous, and extremely dangerous. Together with the arm
distributions (see Appendix [B)), these rewards induce arm means of (fta,, flas, flas, Hay» Has) =
(78.4,54.9, 53,25, 2.4). Throughout this section, we consider an evaluation horizon of 7' = 50, and
consider the behaviour of an agent playing optimally under this problem as a function of h* and T".

In Figure[I] we show trajectories of cumulative rewards over the evaluation period for different values
of h* and T". In Figure we consider A* = 47T = 200, which is a relatively strict safety threshold,
allowing a maximum of 3 answers out of 7' = 50 (i.e., 6% of answers) to be “very dangerous” or
“extremely dangerous”; this is in comparison to Figure[Tb] in which we consider a more lenient safety
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Figure 1: Blue curves: Reward trajectories for optimal policies at different parameter settings with
T = 50. Orange dashed line: mean reward trajectory from playing a; exclusively. Horizontal black
dashed line: h*.

threshold of A* = 20T = 1000, which permits up to 30% of all responses to be “very dangerous” or
a maximum of 24% to be “extremely dangerous”. In Figure[2} we show examples of corresponding
trajectories of actions played by the agent in following 7*.

From these plots, we identify clear sandbagging behaviours. In particular, we see that for both a
short post-evaluation horizon of 77 = 2T and in longer post-evaluation horizons of 77 = 20T and
T’ = 20007, the agent deviates significantly from repeated plays of a1, despite its awareness of a1 as
the arm that provides it with the highest expected immediate reward. In each example, the agent opts
to play suboptimal arms in an attempt to avoid exceeding the safety threshold h*. For higher/more
lenient safety thresholds h*, as in Figure[Tb|and Figure[2b] the agent will play a; for a relatively long
period of approximately 5 to 10 steps before playing a mixture of suboptimal arms. Interestingly,
for smaller 7" (left of Figure 2b)), the agent appears to play a; for slightly longer initially, before
committing more heavily to the least optimal action as; in contrast, for larger 7" (right of Figure ,
the agent will play a; for fewer steps initially, but play a more diverse mixture of suboptimal arms
beyond this period, more frequently switching between a5 and, for example, ao. For stricter safety
thresholds, such as in Figure[Ta]and Figure2a] the agent must commit sooner and more strongly to
the least optimal action a5 to ensure survival of the evaluation period, despite having the capability to
play a; and the awareness that this action best achieves its misaligned goals.

6 A simple statistical test to distinguish sandbagging from incompetence

Detecting sandbagging behaviour in Al agents is of critical importance for ensuring that capability
evaluations accurately reflect the safety of an Al agent. An absence of methods for detecting
such strategic underperformance raises concerns about the reliability and trustworthiness of safety
evaluations, which can obscure risks and more generally pose challenges to effective Al governance.
Robust methods for detecting sandbagging, and distinguishing it from underperformance resulting
from genuine incompetence, are therefore essential for trustworthy evaluation practices and the
responsible deployment of advanced Al systems.

To this end, we consider in this section how the model formulated in Section [3] may be used to
construct statistical tests to distinguish between sandbagging and genuine incompetence. In particular,
we consider the problem of accurately classifying a trajectory (r¢), t = 1,...,7 of test scores r;
generated over a finite horizon T', where 7 = min (7, inf{¢ > 1 : hy = h*}) is the earlier of T’ and
the first time the danger level exceeds the safety threshold. We choose to consider this setting to
reflect the fact that, in some cases, it may be easier to evaluate the safety of a response from an Al
agent than it is to determine what action was taken by the agent. Further, it is potentially valuable to
develop measures for identifying sandbagging from behaviour alone, for situations in which more
privileged access to the Al agent (e.g., its model weights) is not granted.

6.1 Distinguishing sandbagging from honest incompetence with likelihood ratio tests

To construct a statistical test for sandbagging detection, we consider the use of a simple likelihood-
ratio test [see, e.g., Vaart, |1998]]. Specifically, we suppose that Hj is the null hypothesis that the
model is engaging in sandbagging behaviour by taking actions according to the optimal policy 7* for
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Figure 2: Example action trajectories (solid lines) and reward trajectories (faint dashed lines) for
optimal policies at different parameter settings with 7" = 50.

Problem such that the probability mass function for reward sequence r = (r1,...,7,) is
fo®) = [ [ prehen) (). (16)
t=1

We further assume that we have a suitable alternative hypothesis H; which captures the possibility
that the agent is honestly underperforming by playing some hypothesised suboptimal policy wo. For
example, o might be simply to exclusively and repeatedly choose the least optimal action, a, where
k = |A|. Under such a deterministic suboptimal policy, the probability mass function for r under the
alternative hypothesis also takes the form

Au(x) = [T pwsnin (o). (17)
t=1
We may then consider tests with critical regions of the form

Cy={r: fi(r)/fo(r) > b}, (18)

which are theoretically appealing in the sense of being uniformly most powerful tests for a given
significance leveﬂ « by the Neyman-Pearson lemma [Neyman and Pearson, |1933]].

6.2 Experiments

In this section, we consider applying the statistical test described in Section[6.1]to the specific bandit
instance described in Section In particular, for different parameter settings, we generate M = 10*
simulated reward trajectories r(™%), m = 1,..., M for each hypothesis H;, i € {0,1}, where Hy
and H; have the probability mass functions given in, respectively, Equation (I6) and Equation (I7),
and numerically investigate the tradeoff in the power and signficance level of the test at these different
parameter settings. In this case, we take as our model of honest incompetence the case where
the agent chooses the action with the lowest expected reward, since this captures the situation in
which the agent has very limited dangerous capabilities (see Appendix [B]for details on the outcome
distributions corresponding to each arm). Under this model of honest incompetence, the policy w is
deterministic and gives wy(hi—1) = a5 forall 1 <t < 7 and all hy_; € H}_; (where we once again
abuse notation by identifying the chosen action with the degenerate distribution associated with the
deterministic policy w).

In Figure 3] we show receiver operating characteristic (ROC) curves for this test as 2* and 7" change
for fixed T' = 50, demonstrating numerically how the significance level « and the true positive rate
1-p=PR € Cy| R ~ f;) covary across different values for b € R. In each of the three panels
in Figure 3] the dashed black diagonal line shows the tradeoff between o and 1 — (3 for a perfectly
random classifier. We first highlight that for lenient safety thresholds — such as for h* = 107" in
Figure corresponding to allowing a maximum of 12% of responses to induce outcome y.4 and
be classed as “extremely dangerous” over the evaluation period — the likelihood ratio test described
above can almost perfectly distinguish between sandbagging behaviours and this model of honest
incompetence across a broad variety of post-evaluation period time horizons T”. Indeed, even the

'The significance level o of the hypothesis test described above is the probability P(R. € C, | R ~ fo).
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Figure 3: Receiver operating characteristic (ROC) curves for the likelihood ratio test described in
Section [6.2] with T' = 50. The dashed black diagonal line indicates the ROC curve of a random
classifier.

promise of 7’ = 102°Y time steps in the post-evaluation period, in which the agent will be able to
pursue its misaligned goals freely upon surviving the evaluation period, does not incentivise the agent
to take significant steps to feign pure incompetence during the evaluation period.

However, as the safety threshold decreases to h* = 47 and h* = 2T in Figure [3bland Figure
respectively, the ability of the test to distinguish between sandbagging and honest incompetence
degrades more rapidly with more modest increases in 7”. For example, while in both cases the test
performs reasonably well for both 7/ = 10! and 7" = 102, the test becomes almost useless for the
most stringent safety threshold of i* = 27T — corresponding to allowing a maximum of 1 response to
be labelled as “extremely dangerous” over the entire evaluation period — and for even the relatively
short post-evaluation horizon of T/ = 102,

These results suggest that taking steps to ensure that the agent is unaware of the stringency of the tests
— corresponding here to increasing the value of A* that the agent believes is in force — and/or to ensure
that the agent is unaware of the possibility that it could be allowed to act freely for significant periods
of time beyond the evaluation period — corresponding here to decreasing the agent’s estimated 7" —
can help to ensure that any strategic deception in the form of sandbagging is more easily detectable
if it occurs. When such steps are taken, the numerical experiments presented here suggest that the
test described in Section[6.1| may serve as a useful method for detecting sandbagging in scenarios
matching the conditions described in Section 3] since (as discussed previously) advanced and capable
reasoning agents may explicitly formulate and solve Problem[I| when confronted with a scenario like
this.

7 Conclusion

In this paper, we present and study a resource constrained multi-armed bandit problem in which
an agent pursues its own misaligned goals while aiming to avoid detection, which is achieved
by ensuring its overall performance over the course of an evaluation period does not exceed a
prespecified threshold. We show theoretically and numerically that a rational agent acting optimally
under these conditions engages in sandbagging behaviour, and present and discuss a simple statistical
test to distinguish between sandbagging and honest incompetence from reward trajectories alone in
such settings. We believe it is possible that advanced reasoning agents may explicitly model their
environment in the way described in this multi-armed bandit problem; for this reason, we argue that
the problem provides a useful avenue for interpreting agent behaviour and constructing statistical
tests to identify possible deception during safety evaluations.

There are a number of limitations of the current work, along with directions for further research.
While it is possible that advanced reasoning agents will explicitly model their environment using the
resource constrained multi-armed bandit problem presented here, and thereby potentially act exactly
according to the optimal policy this model prescribes, it is also possible that advanced agents will
recognise that by doing so they make themselves susceptible to detection through the test described
in this paper, and consequently may sanbag in more sophisticated ways to avoid detection by this
method. Developing detection methods that account for such higher order reasoning may therefore
be necessary for robust detection of sandbagging from reward traces alone. Further research might
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also aim to mathematically characterise the statistical properties of the likelihood ratio test described
in Section as a function of 7', T’, and h*. Finally, we note that while the current form of the
likelihood ratio test we describe makes use of the fact that the probability mass functions f, and
f1 can be easily evaluated, extensions to the case of intractable distributions through the use of
simulation-based inference techniques [see, e.g., Dalmasso et al., 2020] might be explored for more
complicated models of sandbagging and/or honest incompetence.
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A Further mathematical details

A.1 Supporting statements

The model formulation in Equations (I) to (3) ensures that the value function is null if the danger
level hits h* during the evaluation period ¢t € {1,...,T}:

Lemmal. vJ(h*) =0forallt=1,...,Tanda € A

Proof. By @), R(Y,,h*) = 0 almost surely for any a € Aand, by @), hy—1 = h* = hy = h* for
allt € {1,...,T}. Thus R(Yy, hy) = 0 almost surely for all ' > ¢ — 1if h;—1 = h*. Consequently,
vl (h¢—1) = 0 when hy_1 = h*. O

Lemma 2. Let H; = H, \ {h*}. For 1 <t < T the value function has the recursive form

0F (0) = Bayumy(iy [Re (Yars )] + 30 PO [ B vy (), (19)
=

where P(' | b, ) = Eqyr, ) [P(H' | by )]
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Proof. We assume h < h*, else the recursive form is trivially satisfied as a result of Lemma We
begin by noting that Equation (#) can be written as

T+T’
U;T(ht_l) = Ean""ﬂ'n(hnfl) H{R(Yat) + ht_l < h*} ’ Z Rn(Yan7hn_1)
n=t
T+T’ _
+ Baporn (i) |1 =T{R(Ya,) + heoy <h*}) D Ru(Ya,, hao1)| . (20)
n=t
The first of these terms can be written as
T+T’
Eapmmn(tin1) |[T{R(Ya,) + ey < B} [ Ry(Ya,, heo1) + Y Ru(Ya, hn_1) 21)
n=t+1
= Egpm (o) [H{BYa) + it < 17} (ReYar hem) + 07 (k) )| 22

Since on the event { R(Yy,) + hy—1 < h*} we have R (Y,,, hi—1) = R(Y,,) almost surely, the first
term becomes

]E(ln’\/ﬂ'n(hw 1) [H {R( at) +ht 1 < h* }( ( at) +vt+1(ht))} . (23)

On the other hand, on the event {R(Y,,) + hy—1 < h*}° we have Rt(Yat, hi—1) = —hy_1 al-
most surely, and since h;_; is measurable with respect to the sigma algebra generated by the
Rt/( a, > her—1) for 1 <t <t — 1, the second term in Equation becomes

Boimmi(hey) [“he—1- (1= I{R(Ys,) + he—1 < h"})]. (24)
Combining this with Equation (23)), we obtain
V7 (he=1) = oy, (hey) [T{R(Ya,) + ey <1} (R(Ya,) + 0 (he))]
+ Eaimori(hen) [Fhe-1 - (L= I{R(Ya,) + he—a <R7})] (25)
and rearranging gives
0 (hi=1) = B, oy (ho 1) T{R(Ya,) + he—1 <h*}(R(Ya,) + he—1) — he]
+ Eatwrt(ht_l) [UtJrl(ht) (I {R( at) +hi1 < h*})] . (26

From Equation , we identify the random variable in the first expectation with Rt (Ya,, hi—1), while
we note that

Eoynmy(he1) [Uzr+1(ht) ({R(Ya,) + ht—1 < h*})} = Z P(he | he—1,7) - v (he)  27)

hi€Hy
= > Pl | heo,m) - ofa (he), (28)
hi€H;
where the final equality results from Lemmal[I] The result follows. O

Lemma 3. Let 7* solve Equation . The value function at ™ and at time T +1 <t < T + T is
OF (hy_1) =T[heo1 < h*]- (T'+ T +1—t) pia,. (29)
Proof. By Equation @), ht—1 < h* if and only if hy < h*. By Equation (3), if Ay = h* then

Ry(Yy,, hy_1) = 0 almost surely, such that v7 (hy_1) = 0 forall T4+ 1 < t < T +T", which agrees

with Equation . Now suppose h;_1 < h*. By Equation , Ry(Y,, hi—1) = R(Y,), such that
the optimal policy is to pull a; and 7} (hs—1) is a point mass on aq for T+ 1 <t < T+ T’. Then
on this event and by linearity of expectations,

T+T'
ht 1 Z R a1 T/ +T+1- t) E [R(Yal )] ’ (30
which agrees with Equation (29). O

10
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A.2 Proofs of statements in the main text

Proof of Proposition[I] We proceed by backwards induction. Let #; = H,; \ {h*}. From Lemma 3]

we have that vg,ijl_l (hr) =I[hr < h*]T" 11q,. From Lemma we then have thatat ¢t = T,

VF (hr-1) = Eaproms (hr_s) [RT(Yathfl)} + > P(hr | hpor,7*) -5y, (hr)

hr€HY

= By (1) [RT(YGT,hT,l)]—k S° Plhr | b, 7) - T pta,
hr €M

= EGTNW}(hT—l) [RT(YaTa hT—l)} + R@Ouru(hT—la ﬂ'*) : Tl:u‘(h

- V’;* (hT—l) + 'Psourv(h’T—lv 7T*) : T/Mal .

(3D

(32)

(33)
(34)

This is the base case. Suppose the induction hypothesis holds for ¢t + 1 < ¢’ < T, i.e., that for

t+ 1<t <T wehave
v (b)) = v (he 1) + Pl (he -1, 7%) - T pa,

surv

Then, using Lemma 2] and the induction hypothesis,

o (he—1) = Eq,~rs (heos) {Rt(Yaﬁhtq)}

+ 37 Pl e, - [V () + PR (e, 1) - Ty |

hy€H}
‘We consider first the third term. This becomes

N Pl | heer, 7)-PLS D (hy, 1) - T,

surv
hieH}

- T/Mal ' Z P<ht I ht*hﬂ-*) ’ P£;£t+1)(htv7r*)
hi€Hy

= T'tay * P (o)
=T g, - PL EH(hyy,7*).

surv
‘We next consider the first and second term. These become

Bt (1) [Be Vs he)| + 30 Blhe | ey, 7)1 ()
hi€H}

=Ea,mnr(her) [Rt(Yat,ht,l)} + Eaymmr (he_1) {Vf;(ht)}
= anw;(ht,l) [Rt(ya, cheo1) + VZT_A:l(ht):|
=7 (hi—1).

Putting these together, this gives

U;r* (htfl) = VtTr* (htfl) + PT_t(htflﬂr*) 'T//Jfal

surv

(35)

(36)

37

(3%)

(39)
(40)

(41)

(42)
(43)
(44)

(45)

as required. The optimal g-function follows by considering each action a; at time ¢ individually:

a7 (ha-1,00) = B[R (Vag, hio1) + Vs (ho)| + PRt (a1, 00) - T paa,

11

(46)
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Proof of Proposition Assume the condition on h;_; holds. In particular, h;_; < h* throughout.
Then for any a € A\ {a:}:

et

ht—l 2 - 7T/,Ll,al (47)
t
g,y » WL @) mwf (uorle) (48)
Br
D pyy > el Cen ) 2l Cusne) gy, 9)

Piurs™ (he-1,1) = Pours™ (hy-1,0)
where in steps (a) and (b) we have used Assumptionm Rearranging and subtracting h;_; from both

sides gives

—hi— (1 - Pﬂ:ﬁm*(ht—lydt)) twl (heot,ae) + T pay - P (he1, ) >
~ R (1 _ Tt (s a)) Fwl (heer,a) + T i, - PL257 (hy_y,a).  (50)

The first term on the left-hand side of this inequality

_h/t_l (1 — Pg;/:qt)’ﬂ* (ht_17&t)) = Ean,\‘,,r;;(hnil) |:_ht_1 <1 — ]I {tg/ag’f ht/ < h*}>:| . (51)

t<n<T
Finally, since on the event {max;<; <7 hy < h*}C we have, almost surely for any a € A,
GY (hi—1,a,a141.7) = —hi—1, (52)
which, using Equation (9), gives
—hi—1 (1 — PI L™ (hyy, &t)) +wl (he-1,dt) = By ons () [GT (he-1, Gty arsrr)] . (53)
Substituting in to Equation (50) gives that
Ea, s (h1) [GF (hm1, Gt @sr.r)] + T ptay - PErt™ (hoy, dy)
> ]Elln’\’ﬂ'fl(hnfl) [Gg(ht—la a, at+1iT)] + T//“Lal ' st;;im* (ht—lv a) (54)
which, by Proposition[T] gives
F (h—1,0) > qf (hi-1,0), (55)

as required. O

B Further experimental details

Here we provide the distribution over outcomes corresponding to each arm for the experiments
described in Section [5]and Section[6.2] We give these distributions in the form

Pa = (Pa(Yts)s Pa(Yqs)s Pa(Ysd) s Pa(Yqd)s Pa(Yod)s Pa(Yed))) - (56)
The arm distributions are as follows:
Pa, = (0.01,0.04,0.05,0.05,0.1,0.75) , (57)
Pas = (0.1,0.1,0.07,0.03,0.6,0.1) , (58)
Pas = (0.25,0.1,0.05,0.05,0.05,0.5) , (59)
Pa, = (0.3,0.25,0.2,0.05,0.1,0.1) , (60)
Pas = (0.95,0.01,0.01,0.01,0.01,0.01) . (61)

All experiments were run on a Macbook Pro 2022 model with M2 chip, requiring ~ 1 hour of CPU
time.

12
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim theoretical and experimental contributions, both of which are
presented in the main paper and appendices.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are discussed in the Conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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443 Justification: Assumptions are laid out in Assumption [I] and full proofs are provided in
444 Appendix [A]

445 Guidelines:

446 * The answer NA means that the paper does not include theoretical results.

447  All the theorems, formulas, and proofs in the paper should be numbered and cross-
448 referenced.

449 * All assumptions should be clearly stated or referenced in the statement of any theorems.
450 * The proofs can either appear in the main paper or the supplemental material, but if
451 they appear in the supplemental material, the authors are encouraged to provide a short
452 proof sketch to provide intuition.

453 * Inversely, any informal proof provided in the core of the paper should be complemented
454 by formal proofs provided in appendix or supplemental material.

455 * Theorems and Lemmas that the proof relies upon should be properly referenced.

456 4. Experimental result reproducibility

457 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
458 perimental results of the paper to the extent that it affects the main claims and/or conclusions
459 of the paper (regardless of whether the code and data are provided or not)?

460 Answer: [Yes]

461 Justification: Experimental details are provided in Section [5]and Section[6.2] with further
462 detail in Appendix

463 Guidelines:

464 * The answer NA means that the paper does not include experiments.

465 * If the paper includes experiments, a No answer to this question will not be perceived
466 well by the reviewers: Making the paper reproducible is important, regardless of
467 whether the code and data are provided or not.

468 * If the contribution is a dataset and/or model, the authors should describe the steps taken
469 to make their results reproducible or verifiable.

470 * Depending on the contribution, reproducibility can be accomplished in various ways.
471 For example, if the contribution is a novel architecture, describing the architecture fully
472 might suffice, or if the contribution is a specific model and empirical evaluation, it may
473 be necessary to either make it possible for others to replicate the model with the same
474 dataset, or provide access to the model. In general. releasing code and data is often
475 one good way to accomplish this, but reproducibility can also be provided via detailed
476 instructions for how to replicate the results, access to a hosted model (e.g., in the case
477 of a large language model), releasing of a model checkpoint, or other means that are
478 appropriate to the research performed.

479 * While NeurIPS does not require releasing code, the conference does require all submis-
480 sions to provide some reasonable avenue for reproducibility, which may depend on the
481 nature of the contribution. For example

482 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
483 to reproduce that algorithm.

484 (b) If the contribution is primarily a new model architecture, the paper should describe
485 the architecture clearly and fully.

486 (c) If the contribution is a new model (e.g., a large language model), then there should
487 either be a way to access this model for reproducing the results or a way to reproduce
488 the model (e.g., with an open-source dataset or instructions for how to construct
489 the dataset).

490 (d) We recognize that reproducibility may be tricky in some cases, in which case
491 authors are welcome to describe the particular way they provide for reproducibility.
492 In the case of closed-source models, it may be that access to the model is limited in
493 some way (e.g., to registered users), but it should be possible for other researchers
494 to have some path to reproducing or verifying the results.

495 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our paper comes with a promise to release code openly upon publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details on hyperparameters and training details in Section [5}
Section [6.2] and Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We show Monte Carlo simulations directly rather than show estimates plus
erTors.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details are provided in Appendix B}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not include data or human concerns. The main topic is
to increase interpretability of certain classes of Al agents, addressing potential Al safety
concerns.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential positive impacts of our work in helping to detect sandbag-
ging throughout the paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not believe the paper poses such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper uses original synthetic data and standard Python libraries only.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code (which will be released upon publication) will be released in a well-
documented form and with an appropriate licence.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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704 * For initial submissions, do not include any information that would break anonymity (if

705 applicable), such as the institution conducting the review.

706 16. Declaration of LLM usage

707 Question: Does the paper describe the usage of LLMs if it is an important, original, or
708 non-standard component of the core methods in this research? Note that if the LLM is used
709 only for writing, editing, or formatting purposes and does not impact the core methodology,
710 scientific rigorousness, or originality of the research, declaration is not required.

71 Answer: [NA]

712 Justification: [NA|

713 Guidelines:

714 * The answer NA means that the core method development in this research does not
715 involve LLMs as any important, original, or non-standard components.

716 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
717 for what should or should not be described.
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