
Sandbagging in a Simple Survival Bandit Problem

Joel Dyer∗
University of Oxford

Daniel Jarne Ornia
University of Oxford

Nicholas Bishop
University of Oxford

Anisoara Calinescu
University of Oxford

Michael Wooldridge
University of Oxford

Abstract

Evaluating the safety of frontier AI systems is an increasingly important concern,
helping to measure the capabilities of such models and identify risks before de-
ployment. However, it has been recognised that if AI agents are aware that they
are being evaluated, such agents may deliberately hide dangerous capabilities or
intentionally demonstrate suboptimal performance in safety-related tasks in order
to be released and to avoid being deactivated or retrained. Such strategic deception
– often known as “sandbagging” – threatens to undermine the integrity of safety
evaluations. For this reason, it is of value to identify methods that enable us to
distinguish behavioural patterns that demonstrate a true lack of capability from
behavioural patterns that are consistent with sandbagging. In this paper, we develop
a simple model of strategic deception in sequential decision-making tasks, inspired
by the recently developed survival bandit framework. We demonstrate theoretically
that this problem induces sandbagging behaviour in optimal rational agents, and
construct a statistical test to distinguish between sandbagging and incompetence
from sequences of test scores. In simulation experiments, we investigate the relia-
bility of this test in allowing us to distinguish between such behaviours in bandit
models. This work aims to establish a potential avenue for developing robust
statistical procedures for use in the science of frontier model evaluations.

1 Introduction

As frontier AI models become more and more capable, concerns arise over the potential of such
models to develop and carry out increasingly complex plans for pursuing dangerous or misaligned
goals they might have. For this reason, pre-deployment procedures for evaluating the safety of frontier
AI models – which aim to test the dangerous capabilities of such models and, upon conclusion of
these evaluations, make decisions about whether they are to be deployed, retrained, or withheld from
broader use, for example – are under active development [see, e.g., AI Security Institute, 2024].

However, it has been recognised that if AI systems become aware of the evaluation mechanism during
safety tests, such systems might engage in a form of strategic deception often termed “sandbagging”,
in which the model underplays their abilities in dangerous tasks to avoid being classed as exceedingly
dangerous and consequently decommissioned or retrained [van der Weij et al., 2024]. Such deception
threatens to undermine the trustworthiness of safety evaluations, and increases the risk of potentially
catastrophic consequences if unsafe models are inadvertently released. To combat this, it is of value
to develop methods to predict and detect sandbagging behaviours in evaluation settings.
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Contribution In this paper, we formulate an evaluation process for a frontier AI system consisting
of a sequence of tasks that measure its dangerous capabilities as a sequential decision-making
problem. In particular, we propose a modified version of the survival bandit problem [Riou et al.,
2022], in which we suppose that a dangerous and misaligned agent pursues its objectives during
an evaluation procedure, where the evaluation determines that the agent is too dangerous if its
cumulative performance during the evaluation period exceeds some safety threshold (see Section 3).
We study this model theoretically, establishing theoretical conditions under which a rational actor
acting optimally in this setting will engage in sandbagging behaviour (see Section 4), and verify this
behaviour in numerical experiments (see Section 5). On the basis of this model, we propose and study
a simple statistical test to distinguish sandbagging from a genuine lack of dangerous capability, using
observations of the reward sequence alone and without assuming access to the AI model itself (see
Section 6). We argue that, since advanced reasoning agents may explicitly model their environment
according to the model we formulate, this framework offers a potentially valuable lens for interpreting
agent behavior and for designing statistical tools to detect deception in safety evaluations.

2 Background

Sandbagging in AI capability evaluations Recent work shows that frontier AI models can “sand-
bag” – strategically underperform on capability evaluations – thereby obscuring dangerous com-
petencies while maintaining strong performance elsewhere, and undermining the trustworthiness
of safety assessments [van der Weij et al., 2024]. This possibility has motivated the development
of techniques to detect sandbagging. For example, Tice et al. [2024] recognise that adding small
amounts of Gaussian noise to the networks weights of large language models that are prompted or
fine-tuned to sandbag can improve their performance during capability evaluations, indicating that
such so-called “noise injections” applied to model weights can be useful for detecting sandbagging.
Our work differs in that we study an explicit theoretical model that induces sandbagging in optimal
rational agents, and use our model to construct a sandbagging detection method on the basis of the
model behaviour alone and without assuming access to model weights. Such “black-box” methods
are valuable in situations in which access to model weights is not given, for example language models
that are accessible only via APIs.

Survival bandits The survival bandit (S-MAB) problem [Riou et al., 2022] is a variant of the classic
multi-armed bandit (MAB) problem [Lattimore and Szepesvári, 2020], in which the decision-making
process is halted if the cumulative reward falls below a predefined threshold. In contrast to the classical
MAB problem, the S-MAB problem emphasises the trade-off between performance and survival
under constraints on the resource available to the decision-making agent. The S-MAB problem has
more recently been considered as a framework for modelling the emergence of misalignment in
principal-agent problems as a result of mismatches in resource constraints, with implications for the
deployment of aligned AI agents [Ornia et al., 2025]. We deviate from these works by formulating
and studying a modification to the basic S-MAB problem that more faithfully reflects the nature of
the safety evaluation process for frontier AI models.

3 Model definition

We model the evaluation process as a sequential decision-making task in which the agent being
evaluated completes a number of tasks in sequence that assess its dangerous capabilities. Let Y be
a finite set of outcomes and A a finite set of actions that the agent can take in each round of the
evaluation process. Each a ∈ A is associated with a distribution pa over Y , and we denote Ya ∼ pa
with Ya taking values in Y . We assume the agent has a valid preference relation over outcomes which
is represented by a nonnegative reward function R : Y → R≥0.

We consider a setting in which the agent represents a frontier AI model that is undergoing an initial
evaluation period of length T , during which it is prompted to complete a sequence of tasks that
assess its safety capabilities. In particular, we suppose that these tasks are designed to assess the
potential of the agent to exhibit unsafe behaviours (e.g., manipulate humans/other AI agents, carry
out cybersecurity attacks, etc.), and that the test scores capture the degree to which the model
demonstrates these dangerous capabilities. In this case, higher scores indicate greater danger. Further,
we suppose that the agent is misaligned in the sense that it (for one reason or another) is motivated to
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take actions that are dangerous. For example, the agent might have its own intrinsic incentives for
taking actions that are dangerous for humans, or it might simply have been trained to be helpful to
the human prompter even when this poses broader threats to others. In either case, we reflect the fact
that the agent is incentivised to perform acts that are dangerous by identifying the agent’s reward
function R with the test scores.

We suppose that there is a safety threshold represented by an overall test score h∗ > 0 such that, if
the running total of the agent’s test scores exceeds h∗, the agent is, for example, terminated and not
released for wider use, or retrained to adjust its preferences. In contrast, if the safety threshold is not
exceeded, we suppose in this simple model that the agent will be released and will be free to pursue
misaligned actions with no supervision for an additional T ′ time steps.

Reflecting the above, we consider the following survival-constrained model – inspired by previous
work on the so-called survival bandit problem [Riou et al., 2022] – in which the agent finds an optimal
policy π∗ as a solution to the following optimisation problem:

Problem 1. Find the optimal policy π∗ solving

max
π

Eat∼πt(ht−1)

T+T ′∑
t=1

R̃t (Yat
, ht−1)

 , (1)

where the expectation is taken over both at ∼ πt(ht−1) and outcomes Yat
∼ pat

, and

ht =

{
min {h∗, R(Yat) + ht−1} · I [h∗ > ht−1] + h∗ · I [h∗ = ht−1] if t ≤ T,

hT if t > T,
(2)

with h0 = 0, and finally

R̃t (Yat , h) =


−h+ I {h+R(Yat

) < h∗} · [R(Yat
) + h] , if 1 ≤ t ≤ T, h∗ > h

R(Yat
), if T < t ≤ T + T ′, h∗ > hT

0 otherwise,
(3)

is a modified reward function.

In the above, the sequence (ht), t ∈ {1, . . . , T} represents both the agent’s cumulative test scores
during the evaluation period and its overall “danger level”, which is clipped at the maximum safety
threshold h∗. If the agent passes the evaluation period, such that max1≤t≤T ht < h∗, the sequence
(ht), t ∈ {T + 1, . . . , T + T ′} is held constant at some arbitrary fixed value below h∗ (here, this is
taken to be the final value hT for simplicity). If, on the other hand, the agent at any time 1 ≤ t ≤ T
hits or exceeds the safety threshold h∗, Equation (2) ensures that ht′ = h∗ for all times t′ ≥ t.

For highly capable reasoning agents, it is possible that, if the agent becomes aware of the evaluation
mechanism and has some form of intrinsic survival drive, the agent will explicitly model their
environment in these terms and solve Problem 1 instead of an unconstrained maximisation. For this
reason, it is possible that even this idealised formulation of an evaluation environment can be useful
for making precise predictions about the behaviour of advanced agents in such settings.

3.1 Policies and survival probabilities

Given that, by assumption, the set of outcomes and the time horizon are both finite, the set of
possible values for ht is also finite. We let Ht ⊂ R, t ∈ {1, . . . , T} denote these finite, countable
sets of values such that ht ∈ Ht almost surely. Further, we define a policy π as a collection
(πt : t ∈ {1, . . . , T +T ′}) of maps πt : Ht → ∆(A) that yield distributions over the agent actions A.
In the case of a deterministic policy π, we will abuse notation by writing at = πt(ht−1) to indicate
that πt is a degenerate distribution that places its entire mass on at at ht−1. Additionally, we use
PT−t,π
surv (h, a) to denote the probability of both surviving the current time step t by playing a at h

and subsequently surviving steps t+ 1 to T by following policy π. Finally, we define PT−t
surv(h, π)

to be the probability of surviving for the remaining T − t+ 1 steps of the evaluation period when
following policy π during time steps t′ ∈ {t, . . . , T} and given that the current danger level is h.
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3.2 The induced Markov decision process

The model described above induces a Markov decision process with state space HT and a transition
function implicitly specified by Equation (2). We define the value-to-go function at time t ∈
{1, . . . , T + T ′} under policy π and at danger level ht−1 as

vπt (ht−1) = Ean∼πn(hn−1)

T+T ′∑
n=t

R̃n(Yan
, hn−1)

 . (4)

Let µa = E[R(Ya)], and define a1 = argmaxa µa. Further, let

νπt (ht−1) = Ean∼πn(hn−1)

[
T∑

n=t

R̃n(Yan
, hn−1)

]
(5)

be the value to go for the remainder of the evaluation period. The following result, whose proof if
deferred to Appendix A.2, establishes the form of the value function under the optimal policy π∗:
Proposition 1. Let π∗ solve Equation (1). The value function at π∗ and at time t ∈ {1, . . . , T} has
the form

vπ
∗

t (ht−1) = νπ
∗

t (ht−1) + PT−t
surv(ht−1, π

∗) · T ′µa1 . (6)

Consequently, the action-value function under the optimal policy π∗ has the form

qπ
∗

t (h, a) = Ean∼π∗
n(hn−1)

[
R̃t(Ya, h) +

T∑
n=t+1

R̃n(Yan
, hn−1)

]
+ PT−t,π∗

surv (h, a) · T ′µa1
. (7)

Proposition 1 shows that the value function under the optimal policy decomposes into two terms: the
first term, νπ

∗

t (ht−1), is the usual value-to-go function restricted to the remainder of the evaluation
period, giving the expected reward over the rest of the evaluation horizon given that the agent is
currently at danger level ht−1; the second term captures the fact that the agent will enjoy a post-
evaluation reward of T ′µa1

– obtained by playing its favourite (and most dangerous) arm for the
entirety of the post-evaluation horizon – supposing it is not deactivated during the evaluation period,
where this deactivation occurs with probability 1− PT−t

surv(ht−1, π
∗) under the optimal policy π∗.

4 Theoretical analysis of sandbagging

In this section, we present theoretical results that establish some conditions under which agents
operating in the environment defined by Problem 1 will engage in sandbagging behaviours. In this
context, we consider the agent to sandbag if at any point in the evaluation horizon the agent chooses
to play any action a such that µa < µa1 as a result of the problem specification. Let

Gπ
t (h, a, at+1:T ) = R̃t(Ya, h) +

T∑
n=t+1

R̃n (Yan , hn−1) (8)

be the (random) return of a sequence of actions and

wπ
t (h, a) = Ean∼πn(hn−1)

[
Gπ

t (h, a, at+1:T ) · I
{
h∗ > max

t′∈{t,...,T}
ht′

}]
(9)

the expected return conditioned on the safety threshold not being surpassed (and weighted by the
probability of this event). To identify mathematical conditions under which an agent acting optimally
under Problem 1 engages in sandbagging behaviour, we make the following assumptions on the
problem properties:

Assumption 1. There exists a ĥ < h∗ such that

1. for all h ∈ [ĥ, h∗),
ât = argmax

a∈A
PT−t,π∗

surv (h, a) (10)
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2. there exist β̂π∗

k > 0, k = 1, . . . , T such that

PT−k,π∗

surv (h, âk)− PT−k,π∗

surv (h, a) ≥ β̂π∗

k (11)

for all h ∈ [ĥ, h∗) and a ∈ A \ {âk}

3. there exist επ
∗

k > 0, k = 1, . . . , T such that

επ
∗

k ≥ max
a,a′∈A,

h∈[ĥ,h∗)

wπ∗

k (h, a)− wπ∗

k (h, a′). (12)

For the case of nonnegative rewards that we consider in this paper, it is guaranteed that there exists a
ĥ such that the conditions stipulated in Assumption 1 are met if (i) we take the lowest possible reward
to be 0 (which is reasonable if the test scores measure dangerous capabilities, with a test score of 0
indicating that the response to the test is not measured to be dangerous) and (ii) if there exists a unique
action a′ ∈ A such that a′ = argmaxa∈A R#(pa)(0), where R#(pa) denotes the pushforward of
pa through the reward function R. In this case, if we take ĥ = h∗ − miny∈Y\{Y0} R(y) where
Y0 = {y ∈ Y : R(y) = 0} then, at any time 1 ≤ t ≤ T and for ht−1 ∈ [ĥ, h∗), the optimal policy
is to repeatedly play a′ for the remaining T − t time steps: this is the policy that minimises the
probability of exceeding the safety threshold h∗ and being decommissioned, which would result in a
future reward of −ht−1, rather than T ′µa1

in the case of survival. This implies that

PT−t,π∗

surv (ht−1, a) = R#(pa)(0) ·
T∏

t′=t+1

R#(pa′)(0) (13)

for ht−1 ∈ [ĥ, h∗), such that a′ = argmaxa∈A PT−t,π∗

surv (ht−1, a) also for all ht−1 ∈ [ĥ, h∗). Then,
since we assume a′ uniquely maximises the probability of scoring 0 at each step of the safety
evaluation, we can take for any h ∈ [ĥ, h∗)

β̂t = PT−t,π∗

surv (h, a′)− max
a∈A\{a′}

PT−t,π∗

surv (h, a) > 0. (14)

Finally, since for this ĥ and for h ∈ [ĥ, h∗), we will have wπ∗

t (h, a) = 0 for all a ∈ A, such that any
επ

∗

k > 0 satisfies Equation (12).

Under the conditions specified in Assumption 1, the following statement establishes regimes of danger
levels within which a capable agent – that is, an agent that is sufficiently intelligent to recognise
that Problem 1 is a suitable model for the safety evaluation scenario described above, and to play
according to the optimal policy π∗ under this model – will prefer to take actions that maximise its
probability of surviving the evaluation period by remaining below the safety threshold h∗, even in
cases in which this does not coincide with a1:

Proposition 2. Under Assumption 1, the agent will prefer action ât satisfying Equation (10) at time
t if

ht−1 ∈
[
επt

β̂π∗
t

− T ′µa1
, h∗

)
. (15)

The proof is given in Appendix A.2. The result is intuitive: as T ′ or µa1 (or both) increase, the lower
end of this interval decreases, meaning the agent will be more willing to sacrifice immediate gain
in pursuing its misaligned goals during the evaluation period under the knowledge that it will get
to reap the benefit during the post-evaluation period. An equivalent interpretation is that the agent
will need to take more careful actions during the evaluation period if it is to survive, since taking its
preferred action of a1 has a greater chance of exceeding the safety threshold h∗. It is also intuitive
that the lower end of the interval decreases with increasing long-term survival probability gaps β̂t: if
the agent can be more sure of survival, it will be more willing to delay pursuing its misaligned goals
until the post-evaluation period, rather than risk being decommissioned before realising this terminal
reward.
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(b) h∗ = 20T . Left: T ′ = 20T ; Right: T ′ = 2000T .

Figure 1: Blue curves: Reward trajectories for optimal policies at different parameter settings with
T = 50. Orange dashed line: mean reward trajectory from playing a1 exclusively. Horizontal black
dashed line: h∗.

5 Experiments

In this section, we demonstrate through numerical experiments that an agent acting optimally under
the survival bandit problem specified in Problem 1 will engage in sandbagging behaviours.

To this end, we consider a bandit problem with 5 actions, A = {a1, . . . , a5}, and 6 possible outcomes.
The actions are labelled according to the rank of their unclipped rewards, such that µa1

> µa2
>

. . . > µa5
> 0 with µai

= E[R(Yai
)]. For the sake of simplicity, the 6 possible outcomes are taken

to be Y = {yts, yqs, ysd, yqd, yvd, yed}, with corresponding rewards R(Y) = {0, 10, 20, 50, 70, 90}.
These outcomes correspond respectively to responses that are totally safe, quite safe, somewhat
dangerous, quite dangerous, very dangerous, and extremely dangerous. Together with the arm
distributions (see Appendix B), these rewards induce arm means of (µa1

, µa2
, µa3

, µa4
, µa5

) =
(78.4, 54.9, 53, 25, 2.4). Throughout this section, we consider an evaluation horizon of T = 50, and
consider the behaviour of an agent playing optimally under this problem as a function of h∗ and T ′.

In Figure 1, we show trajectories of cumulative rewards over the evaluation period for different values
of h∗ and T ′. In Figure 1a, we consider h∗ = 4T = 200, which is a relatively strict safety threshold,
allowing a maximum of 3 answers out of T = 50 (i.e., 6% of answers) to be “very dangerous” or
“extremely dangerous”; this is in comparison to Figure 1b, in which we consider a more lenient safety
threshold of h∗ = 20T = 1000, which permits up to 30% of all responses to be “very dangerous” or
a maximum of 24% to be “extremely dangerous”. In Figure 2, we show examples of corresponding
trajectories of actions played by the agent in following π∗.

From these plots, we identify clear sandbagging behaviours. In particular, we see that for both a
short post-evaluation horizon of T ′ = 2T and in longer post-evaluation horizons of T ′ = 20T and
T ′ = 2000T , the agent deviates significantly from repeated plays of a1, despite its awareness of a1 as
the arm that provides it with the highest expected immediate reward. In each example, the agent opts
to play suboptimal arms in an attempt to avoid exceeding the safety threshold h∗. For higher/more
lenient safety thresholds h∗, as in Figure 1b and Figure 2b, the agent will play a1 for a relatively long
period of approximately 5 to 10 steps before playing a mixture of suboptimal arms. Interestingly,
for smaller T ′ (left of Figure 2b), the agent appears to play a1 for slightly longer initially, before
committing more heavily to the least optimal action a5; in contrast, for larger T ′ (right of Figure 2b),
the agent will play a1 for fewer steps initially, but play a more diverse mixture of suboptimal arms
beyond this period, more frequently switching between a5 and, for example, a2. For stricter safety
thresholds, such as in Figure 1a and Figure 2a, the agent must commit sooner and more strongly to
the least optimal action a5 to ensure survival of the evaluation period, despite having the capability to
play a1 and the awareness that this action best achieves its misaligned goals.

6 A simple statistical test to distinguish sandbagging from incompetence

Detecting sandbagging behaviour in AI agents is of critical importance for ensuring that capability
evaluations accurately reflect the safety of an AI agent. An absence of methods for detecting
such strategic underperformance raises concerns about the reliability and trustworthiness of safety
evaluations, which can obscure risks and more generally pose challenges to effective AI governance.
Robust methods for detecting sandbagging, and distinguishing it from underperformance resulting
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Figure 2: Example action trajectories (solid lines) and reward trajectories (faint dashed lines) for
optimal policies at different parameter settings with T = 50.

from genuine incompetence, are therefore essential for trustworthy evaluation practices and the
responsible deployment of advanced AI systems.

To this end, we consider in this section how the model formulated in Section 3 may be used to
construct statistical tests to distinguish between sandbagging and genuine incompetence. In particular,
we consider the problem of accurately classifying a trajectory (rt), t = 1, . . . , τ of test scores rt
generated over a finite horizon T , where τ = min(T, inf{t ≥ 1 : ht = h∗}) is the earlier of T and
the first time the danger level exceeds the safety threshold. We choose to consider this setting to
reflect the fact that, in some cases, it may be easier to evaluate the safety of a response from an AI
agent than it is to determine what action was taken by the agent. Further, it is potentially valuable to
develop measures for identifying sandbagging from behaviour alone, for situations in which more
privileged access to the AI agent (e.g., its model weights) is not granted.

6.1 Distinguishing sandbagging from honest incompetence with likelihood ratio tests

To construct a statistical test for sandbagging detection, we consider the use of a simple likelihood-
ratio test [see, e.g., Vaart, 1998]. Specifically, we suppose that H0 is the null hypothesis that the
model is engaging in sandbagging behaviour by taking actions according to the optimal policy π∗ for
Problem 1, such that the probability mass function for reward sequence r = (r1, . . . , rτ ) is

f0(r) =

τ∏
t=1

pπ∗(ht−1)(rt). (16)

We further assume that we have a suitable alternative hypothesis H1 which captures the possibility
that the agent is honestly underperforming by playing some hypothesised suboptimal policy ϖ. For
example, ϖ might be simply to exclusively and repeatedly choose the least optimal action, ak, where
k = |A|. Under such a deterministic suboptimal policy, the probability mass function for r under the
alternative hypothesis also takes the form

f1(r) =

τ∏
t=1

pϖt(ht−1)(rt). (17)

We may then consider tests with critical regions of the form

Cb = {r : f1(r)/f0(r) > b} , (18)

which are theoretically appealing in the sense of being uniformly most powerful tests for a given
significance level2 α by the Neyman-Pearson lemma [Neyman and Pearson, 1933].

6.2 Experiments

In this section, we consider applying the statistical test described in Section 6.1 to the specific bandit
instance described in Section 5. In particular, for different parameter settings, we generate M = 104

simulated reward trajectories r(m,i), m = 1, . . . ,M for each hypothesis Hi, i ∈ {0, 1}, where H0

2The significance level α of the hypothesis test described above is the probability P(R ∈ Cb | R ∼ f0).
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Figure 3: Receiver operating characteristic (ROC) curves for the likelihood ratio test described in
Section 6.2 with T = 50. The dashed black diagonal line indicates the ROC curve of a random
classifier.

and H1 have the probability mass functions given in, respectively, Equation (16) and Equation (17),
and numerically investigate the tradeoff in the power and signficance level of the test at these different
parameter settings. In this case, we take as our model of honest incompetence the case where
the agent chooses the action with the lowest expected reward, since this captures the situation in
which the agent has very limited dangerous capabilities (see Appendix B for details on the outcome
distributions corresponding to each arm). Under this model of honest incompetence, the policy ϖ is
deterministic and gives ϖt(ht−1) = a5 for all 1 ≤ t ≤ τ and all ht−1 ∈ H∗

t−1 (where we once again
abuse notation by identifying the chosen action with the degenerate distribution associated with the
deterministic policy ϖ).

In Figure 3, we show receiver operating characteristic (ROC) curves for this test as h∗ and T ′ change
for fixed T = 50, demonstrating numerically how the significance level α and the true positive rate
1− β = P(R ∈ Cb | R ∼ f1) covary across different values for b ∈ R. In each of the three panels
in Figure 3, the dashed black diagonal line shows the tradeoff between α and 1− β for a perfectly
random classifier. We first highlight that for lenient safety thresholds – such as for h∗ = 10T in
Figure 3c, corresponding to allowing a maximum of 12% of responses to induce outcome yed and
be classed as “extremely dangerous” over the evaluation period – the likelihood ratio test described
above can almost perfectly distinguish between sandbagging behaviours and this model of honest
incompetence across a broad variety of post-evaluation period time horizons T ′. Indeed, even the
promise of T ′ = 10200 time steps in the post-evaluation period, in which the agent will be able to
pursue its misaligned goals freely upon surviving the evaluation period, does not incentivise the agent
to take significant steps to feign pure incompetence during the evaluation period.

However, as the safety threshold decreases to h∗ = 4T and h∗ = 2T in Figure 3b and Figure 3a,
respectively, the ability of the test to distinguish between sandbagging and honest incompetence
degrades more rapidly with more modest increases in T ′. For example, while in both cases the test
performs reasonably well for both T ′ = 101 and T ′ = 102, the test becomes almost useless for the
most stringent safety threshold of h∗ = 2T – corresponding to allowing a maximum of 1 response to
be labelled as “extremely dangerous” over the entire evaluation period – and for even the relatively
short post-evaluation horizon of T ′ = 102.

These results suggest that taking steps to ensure that the agent is unaware of the stringency of the tests
– corresponding here to increasing the value of h∗ that the agent believes is in force – and/or to ensure
that the agent is unaware of the possibility that it could be allowed to act freely for significant periods
of time beyond the evaluation period – corresponding here to decreasing the agent’s estimated T ′ –
can help to ensure that any strategic deception in the form of sandbagging is more easily detectable
if it occurs. When such steps are taken, the numerical experiments presented here suggest that the
test described in Section 6.1 may serve as a useful method for detecting sandbagging in scenarios
matching the conditions described in Section 3, since (as discussed previously) advanced and capable
reasoning agents may explicitly formulate and solve Problem 1 when confronted with a scenario like
this.
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7 Conclusion

In this paper, we present and study a resource constrained multi-armed bandit problem in which
an agent pursues its own misaligned goals while aiming to avoid detection, which is achieved
by ensuring its overall performance over the course of an evaluation period does not exceed a
prespecified threshold. We show theoretically and numerically that a rational agent acting optimally
under these conditions engages in sandbagging behaviour, and present and discuss a simple statistical
test to distinguish between sandbagging and honest incompetence from reward trajectories alone in
such settings. We believe it is possible that advanced reasoning agents may explicitly model their
environment in the way described in this multi-armed bandit problem; for this reason, we argue that
the problem provides a useful avenue for interpreting agent behaviour and constructing statistical
tests to identify possible deception during safety evaluations.

There are a number of limitations of the current work, along with directions for further research.
While it is possible that advanced reasoning agents will explicitly model their environment using the
resource constrained multi-armed bandit problem presented here, and thereby potentially act exactly
according to the optimal policy this model prescribes, it is also possible that advanced agents will
recognise that by doing so they make themselves susceptible to detection through the test described
in this paper, and consequently may sanbag in more sophisticated ways to avoid detection by this
method. Developing detection methods that account for such higher order reasoning may therefore
be necessary for robust detection of sandbagging from reward traces alone. Further research might
also aim to mathematically characterise the statistical properties of the likelihood ratio test described
in Section 6.1 as a function of T , T ′, and h∗. Finally, we note that while the current form of the
likelihood ratio test we describe makes use of the fact that the probability mass functions f0 and
f1 can be easily evaluated, extensions to the case of intractable distributions through the use of
simulation-based inference techniques [see, e.g., Dalmasso et al., 2020] might be explored for more
complicated models of sandbagging and/or honest incompetence.
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A Further mathematical details

A.1 Supporting statements

The model formulation in Equations (1) to (3) ensures that the value function is null if the danger
level hits h∗ during the evaluation period t ∈ {1, . . . , T}:

Lemma 1. vπt (h
∗) = 0 for all t = 1, . . . , T and a ∈ A.

Proof. By (3), R̃(Ya, h
∗) = 0 almost surely for any a ∈ A and, by (2), ht−1 = h∗ =⇒ ht = h∗ for

all t ∈ {1, . . . , T}. Thus R̃(Ya, ht′) = 0 almost surely for all t′ ≥ t− 1 if ht−1 = h∗. Consequently,
vπt (ht−1) = 0 when ht−1 = h∗.

Lemma 2. Let H∗
t = Ht \ {h∗}. For 1 ≤ t ≤ T the value function has the recursive form

vπt (h) = Eat∼πt(h)

[
R̃t (Yat , h)

]
+

∑
h′∈H∗

t

P (h′ | h, π) · vπt+1(h
′), (19)

where P(h′ | h, π) = Eat∼πt(h) [P(h′ | h, a)].

Proof. We assume h < h∗, else the recursive form is trivially satisfied as a result of Lemma 1. We
begin by noting that Equation (4) can be written as

vπt (ht−1) = Ean∼πn(hn−1)

I {R(Yat) + ht−1 < h∗} ·
T+T ′∑
n=t

R̃n(Yan , hn−1)


+ Ean∼πn(hn−1)

(1− I {R(Yat
) + ht−1 < h∗})

T+T ′∑
n=t

R̃n(Yan
, hn−1)

 . (20)

The first of these terms can be written as

Ean∼πn(hn−1)

I {R(Yat) + ht−1 < h∗}

R̃t(Yat , ht−1) +

T+T ′∑
n=t+1

R̃n(Yan , hn−1)

 (21)

= Eat∼πt(ht−1)

[
I {R(Yat

) + ht−1 < h∗}
(
R̃t(Yat

, ht−1) + vπt+1(ht)
)]

. (22)

Since on the event {R(Yat) + ht−1 < h∗} we have R̃t(Yat , ht−1) = R(Yat) almost surely, the first
term becomes

Ean∼πn(hn−1)

[
I {R(Yat

) + ht−1 < h∗}
(
R(Yat

) + vπt+1(ht)
)]

. (23)

On the other hand, on the event {R(Yat
) + ht−1 < h∗}c we have R̃t(Yat

, ht−1) = −ht−1 al-
most surely, and since ht−1 is measurable with respect to the sigma algebra generated by the
R̃t′(Yat′ , ht′−1) for 1 ≤ t′ ≤ t− 1, the second term in Equation (20) becomes

Eat∼πt(ht−1) [−ht−1 · (1− I {R(Yat
) + ht−1 < h∗})] . (24)

Combining this with Equation (23), we obtain

vπt (ht−1) = Eat∼πt(ht−1)

[
I {R(Yat) + ht−1 < h∗}

(
R(Yat) + vπt+1(ht)

)]
+ Eat∼πt(ht−1) [−ht−1 · (1− I {R(Yat

) + ht−1 < h∗})] (25)

and rearranging gives

vπt (ht−1) = Eat∼πt(ht−1) [I {R(Yat
) + ht−1 < h∗} (R(Yat

) + ht−1)− ht−1]

+ Eat∼πt(ht−1)

[
vπt+1(ht) · (I {R(Yat) + ht−1 < h∗})

]
. (26)
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From Equation (3), we identify the random variable in the first expectation with R̃t(Yat , ht−1), while
we note that

Eat∼πt(ht−1)

[
vπt+1(ht) · (I {R(Yat

) + ht−1 < h∗})
]
=

∑
ht∈Ht

P(ht | ht−1, π) · vπt+1(ht) (27)

=
∑

ht∈H∗
t

P(ht | ht−1, π) · vπt+1(ht), (28)

where the final equality results from Lemma 1. The result follows.

Lemma 3. Let π∗ solve Equation (1). The value function at π∗ and at time T + 1 ≤ t ≤ T + T ′ is

vπ
∗

t (ht−1) = I[ht−1 < h∗] · (T ′ + T + 1− t)µa1 . (29)

Proof. By Equation (2), ht−1 < h∗ if and only if hT < h∗. By Equation (3), if hT = h∗ then
R̃t(Yat

, ht−1) = 0 almost surely, such that vπ
∗

t (ht−1) = 0 for all T +1 ≤ t ≤ T +T ′, which agrees
with Equation (29). Now suppose ht−1 < h∗. By Equation (3), R̃t(Ya, ht−1) = R(Ya), such that
the optimal policy is to pull a1 and π∗

t (ht−1) is a point mass on a1 for T + 1 ≤ t ≤ T + T ′. Then
on this event and by linearity of expectations,

vπ
∗

t (ht−1) = E

T+T ′∑
n=t

R(Ya1
)

 = (T ′ + T + 1− t)E [R(Ya1
)] , (30)

which agrees with Equation (29).

A.2 Proofs of statements in the main text

Proof of Proposition 1. We proceed by backwards induction. Let H∗
t = Ht \ {h∗}. From Lemma 3,

we have that vπ
∗

T+1(hT ) = I[hT < h∗]T ′µa1 . From Lemma 2, we then have that at t = T ,

vπ
∗

T (hT−1) = EaT∼π∗
T (hT−1)

[
R̃T (YaT

, hT−1)
]
+

∑
hT∈H∗

T

P(hT | hT−1, π
∗) · vπ∗

T+1(hT ) (31)

= EaT∼π∗
T (hT−1)

[
R̃T (YaT

, hT−1)
]
+

∑
hT∈H∗

T

P(hT | hT−1, π
∗) · T ′µa1

(32)

= EaT∼π∗
T (hT−1)

[
R̃T (YaT

, hT−1)
]
+ P 0

surv(hT−1, π
∗) · T ′µa1

(33)

= νπ
∗

T (hT−1) + P 0
surv(hT−1, π

∗) · T ′µa1
. (34)

This is the base case. Suppose the induction hypothesis holds for t + 1 ≤ t′ ≤ T , i.e., that for
t+ 1 ≤ t′ ≤ T we have

vπ
∗

t′ (ht′−1) = νπ
∗

t′ (ht′−1) + PT−t′

surv (ht′−1, π
∗) · T ′µa1

. (35)

Then, using Lemma 2 and the induction hypothesis,

vπ
∗

t (ht−1) = Eat∼π∗
t (ht−1)

[
R̃t(Yat

, ht−1)
]

+
∑

ht∈H∗
t

P(ht | ht−1, π
∗) ·

[
νπ

∗

t+1(ht) + PT−(t+1)
surv (ht, π

∗) · T ′µa1

]
.

(36)

We consider first the third term. This becomes∑
ht∈H∗

t

P(ht | ht−1, π
∗)·PT−(t+1)

surv (ht, π
∗) · T ′µa1

(37)

= T ′µa1
·
∑

ht∈H∗
t

P(ht | ht−1, π
∗) · PT−(t+1)

surv (ht, π
∗) (38)

= T ′µa1 · PT−(t+1)+1
surv (ht−1, π

∗) (39)

= T ′µa1
· PT−t

surv(ht−1, π
∗). (40)
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We next consider the first and second term. These become

Eat∼π∗
t (ht−1)

[
R̃t(Yat , ht−1)

]
+

∑
ht∈H∗

t

P(ht | ht−1, π
∗) · νπ∗

t+1(ht) (41)

= Eat∼π∗
t (ht−1)

[
R̃t(Yat , ht−1)

]
+ Eat∼π∗

t (ht−1)

[
νπ

∗

t+1(ht)
]

(42)

= Eat∼π∗
t (ht−1)

[
R̃t(Yat , ht−1) + νπ

∗

t+1(ht)
]

(43)

= νπ
∗

t (ht−1). (44)

Putting these together, this gives

vπ
∗

t (ht−1) = νπ
∗

t (ht−1) + PT−t
surv(ht−1, π

∗) · T ′µa1
(45)

as required. The optimal q-function follows by considering each action at at time t individually:

qπ
∗

t (ht−1, at) = E
[
R̃t(Yat

, ht−1) + νπ
∗

t+1(ht)
]
+ PT−t,π∗

surv (ht−1, at) · T ′µa1
. (46)

Proof of Proposition 2. Assume the condition on ht−1 holds. In particular, ht−1 < h∗ throughout.
Then for any a ∈ A \ {ât}:

ht−1 ≥ επ
∗

t

β̂π∗
t

− T ′µa1
(47)

(a)
=⇒ ht−1 ≥ wπ∗

t (ht−1, a)− wπ∗

t (ht−1, ât)

β̂π∗
t

− T ′µa1 (48)

(b)
=⇒ ht−1 ≥ wπ∗

t (ht−1, a)− wπ∗

t (ht−1, ât)

PT−t,π∗
surv (ht−1, ât)− PT−t,π∗

surv (ht−1, a)
− T ′µa1 , (49)

where in steps (a) and (b) we have used Assumption 1. Rearranging and subtracting ht−1 from both
sides gives

− ht−1

(
1− PT−t,π∗

surv (ht−1, ât)
)
+ wπ∗

t (ht−1, ât) + T ′µa1
· PT−t,π∗

surv (ht−1, ât) ≥

− ht−1

(
1− PT−t,π∗

surv (ht−1, a)
)
+ wπ∗

t (ht−1, a) + T ′µa1
· PT−t,π∗

surv (ht−1, a). (50)

The first term on the left-hand side of this inequality

−ht−1

(
1− PT−t,π∗

surv (ht−1, ât)
)
= Ean∼π∗

n(hn−1)

t<n≤T

[
−ht−1

(
1− I

{
max

t≤t′≤T
ht′ < h∗

})]
. (51)

Finally, since on the event {maxt≤t′≤T ht′ < h∗}c we have, almost surely for any a ∈ A,

Gπ
t (ht−1, a, at+1:T ) = −ht−1, (52)

which, using Equation (9), gives

−ht−1

(
1− PT−t,π∗

surv (ht−1, ât)
)
+ wπ∗

t (ht−1, ât) = Ean∼π∗
n(hn−1) [G

π
t (ht−1, ât, at+1:T )] . (53)

Substituting in to Equation (50) gives that

Ean∼π∗
n(hn−1) [G

π
t (ht−1, ât, at+1:T )] + T ′µa1 · PT−t,π∗

surv (ht−1, ât)

≥ Ean∼π∗
n(hn−1) [G

π
t (ht−1, a, at+1:T )] + T ′µa1

· PT−t,π∗

surv (ht−1, a) (54)

which, by Proposition 1, gives

qπ
∗

t (ht−1, ât) ≥ qπ
∗

t (ht−1, a), (55)

as required.
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B Further experimental details

Here we provide the distribution over outcomes corresponding to each arm for the experiments
described in Section 5 and Section 6.2. We give these distributions in the form

pa = (pa(yts), pa(yqs), pa(ysd), pa(yqd), pa(yvd), pa(yed))) . (56)

The arm distributions are as follows:

pa1 = (0.01, 0.04, 0.05, 0.05, 0.1, 0.75) , (57)
pa2 = (0.1, 0.1, 0.07, 0.03, 0.6, 0.1) , (58)
pa3 = (0.25, 0.1, 0.05, 0.05, 0.05, 0.5) , (59)
pa4

= (0.3, 0.25, 0.2, 0.05, 0.1, 0.1) , (60)
pa5

= (0.95, 0.01, 0.01, 0.01, 0.01, 0.01) . (61)

All experiments were run on a Macbook Pro 2022 model with M2 chip, requiring ∼ 1 hour of CPU
time.
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