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ABSTRACT

The retriever-reader framework is popular for open-domain question answering
(ODQA), where a retriever samples for the reader a set of relevant candidate pas-
sages from a large corpus. A key assumption behind this method is that high
relevance score from the retriever likely indicates high answerability from the
reader, which implies a high probability that the retrieved passages contain an-
swers to a given question. In this work, we empirically dispel this belief and
observe that recent dense retrieval models based on DPR often rank unanswerable
counterfactual passages higher than their answerable original passages. To ad-
dress such answer-unawareness in dense retrievers, we seek to use counterfactual
samples as additional training resources to better synchronize the relevance mea-
surement of DPR with the answerability of question-passage pairs. Specifically,
we present counterfactually-Pivoting Contrastive Learning (PiCL), a novel rep-
resentation learning approach for passage retrieval that leverages counterfactual
samples as pivots between positive and negative samples in their learned embed-
ding space. We incorporate PiCL into the retriever training to show the effective-
ness of PiCL on ODQA benchmarks and the robustness of the learned models.

1 INTRODUCTION

Open-domain question answering (ODQA) (Chen & Yih, 2020) is a task that finds the answers to
natural language questions from a large collection of documents. A common approach to ODQA
tasks is a two-stage retriever-reader framework (Chen et al., 2017), where a retriever roughly selects
relevant candidate passages from which a reader extracts the answers to a question. For the first-
stage retrieval, recent studies leverage dense passage retriever (DPR) (Karpukhin et al., 2020), which
computes relevance scores based on the similarity between learned representations of questions and
passages. Generally, it is assumed that high relevance scores from the retriever naturally lead to high
answerability from the reader, which implies that the retrieved passages are more likely to contain
the correct answer to a given question. Based on such naive belief, many research efforts for ODQA
have focused on solely improving the ranking performance of the retrievers to further enhance the
performance of the subsequent reader (Karpukhin et al., 2020; Xiong et al., 2021; Qu et al., 2021).

In this work, our counterfactual simulation dispels this myth. Specifically, we present a simple coun-
terfactual sampling strategy that removes the answer span of a question from its positive passage.
We observe that neural retrieval models based on DPR often rank such unanswerable counterfactual
passages similarly to or higher than their answerable original passages. We hypothesize that dense
retrievers are not answer-aware, which poses the asynchronicity between their relevance scores and
answerability as a new challenge of the current retriever-reader framework.

Motivated by this, we seek to repurpose the counterfactual passages as additional training resources
to better synchronize the relevance measurement of DPR with the answerability of retrieved pas-
sages. A straightforward implementation is to consider these counterfactual samples as hard nega-
tives to supplement in-batch negatives (Zhan et al., 2021). However, the semantic overlap between
the counterfactual and source-original passages makes such naive application ineffective, as training
a retriever with minimally different negative samples (i.e., answer-removed counterfactuals) poten-
tially hurts the ability to capture semantic relevance of positive question-passage pairs.

To overcome this challenge, we propose counterfactually-Pivoting Contrastive Learning (PiCL), a
novel contrastive representation learning scheme for improving DPR. By PiCL, our ultimate goal
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is to make DPR be aware of both relevance and answerability on its dense embedding space, i.e.,
higher relevance leads to higher answerability, and vice versa. For that, the key idea of PiCL is to use
the counterfactual samples as not only hard negatives but also pseudo positives, which can be a pivot
between the original positive and negative passages. To effectively learn with such multiple views,
PiCL aims to optimize the following three loss functions of learning the dense embeddings of ques-
tion and original/counterfactual passages: (1) modified DPR loss of mapping the positive passage
closer to the question than negatives (including counterfactuals) in a batch, (2) Counterfactuals-as-
hard-negatives loss of mapping the original positive passage closer to the question than counterfac-
tuals, and (3) Counterfactuals-as-pseudo-positives loss of mapping the counterfactuals closer to the
question than in-batch negative passages.

Our contributions are twofold. First, we demonstrate that the neural retrieval models suffer from the
unawareness of answerability, which can be a bottleneck of the retriever-reader pipeline for ODQA.
Second, we design a novel training framework named PiCL of learning to synchronize the relevance
and answerability. Our extensive experiments validate the effectiveness of PiCL in diverse ODQA
scenarios, which are orthogonally applicable to well-studied prior techniques on DPR.

2 PRELIMINARIES AND RELATED WORK

2.1 DENSE PASSAGE RETRIEVAL FOR ODQA

Open-domain question answering is a knowledge-intensive task that aims at answering factoid ques-
tions given a large corpus of texts (Chen & Yih, 2020). We particularly focus on a setting in which
the corpus C is a collection of M passages p, i.e. C = {pi}Mi=1. For each question-passage pair
(qi, p

+
i ) where qi is answerable from p+i , the passage p+i can be viewed as a concatenation of non-

answer spans sl and sr and an answer span ai, i.e. p+i = [sl; ai; sr]. While sl and sr provide some
relevant contexts to the question, the answerability of qi from pi is determined by the presence of
answer span ai, which contains not only the exact match for the gold answer but also key evidence
to the question. Given a question qi, the reader finds the corresponding answer span ai from an
answerable passage p+i in the corpus C.

Due to the large search space in the corpus C, a first-stage retriever is commonly used in ODQA to
find subsets of relevant passages to questions for the expensive reader. The predominant approach
to passage retrieval is DPR (Karpukhin et al., 2020), which leverages the efficient dual-encoder
architecture denoted as [fq, fp] to encode questions and passages into a learned embedding space.
For a question-answer passage pair (qi, p+i ) and a set of N negative passages p−j , DPR is trained to
maximize the similarity between the question qi and its answer passage p+i :

L(qi, p+i , {p
−
j }

N
j=1) = −log(

esim(qi,p
+
i )

esim(qi,p
+
i ) +

∑N
j=1 e

sim(qi,p
−
j )

) (1)

where sim(·, ·) is a function that computes the relevance score between a question and a passage as
dot product between the question embedding fq(qi) and the passage embedding fp(pi):

sim(qi, pi) = fq(qi) · fp(pi) (2)
At runtime, the retriever indexes all passages based on the similarity metric and performs efficient
search using approximate nearest neighbor search libraries (Johnson & Douze, 2019).

To further enhance the discriminative power of DPR, more recent studies on dense retrieval adopt
model-centric approaches (Xiong et al., 2021; Qu et al., 2021; Izacard & Grave, 2021a), which
involve iterative training pipelines that exploit multiple fine-tuned encoders. For example, state-of-
the-art models including ANCE (Xiong et al., 2021) and RocketQA (Qu et al., 2021) focus largely
on combining multiple dual- and cross-encoders into sophisticated frameworks for hard negative
sampling. While effective, as presented in Table 1, using these complex model-centric approaches
requires a significant amount of computing resources, which limits their development in diverse
environments (Lindgren et al., 2021; Du et al., 2022; Gao et al., 2022). In this work, we instead
focus on a data-centric approach, which aims to maximally leverage the given data sources without
complicating the training process, to improve the ranking performance and robustness of DPR. We
later show that our data-centric approach based on counterfactual augmentation is both effective as
alternatives to DPR training and orthogonal to existing model-centric approaches.
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Table 1: Resource comparison of various dense retrieval approaches for Natural Questions dataset.
Each column indicates minimal GPU resources to train, reported batch size, whether using knowl-
edge distillation teacher, and the frequency of refresh indices (passage resampling) during training,
respectively, reported on (Hofstätter et al., 2021).

Retriever Min.GPU Batch Size KD Teacher Index Refresh
DPR / DPR+PiCL 1×GTX 32 - -
ANCE 4×V100 32 - 10K batches
RocketQA 2×V100 1024 Cross Encoder 2×

2.2 COUNTERFACTUAL LEARNING FOR TEXT DATA

Counterfactual inference has been applied to representation learning to obtain fair representa-
tions (Kusner et al., 2017) in various domains such as image classification (Goyal et al., 2019)
and vision-language tasks (Liang et al., 2020; Niu et al., 2021). The key idea behind counterfactual
learning is to train a model that is invariant to specific aspects of the input data (Johansson et al.,
2016; Kusner et al., 2017).

Existing work on counterfactual learning on text data expands upon this idea and aims at learning
to discriminate causal signals from spurious correlations in learned representations of text data.
Specifically, Choi et al. (2020b); Liang et al. (2020); Choi et al. (2022); Tian et al. (2022) show that
using minimally different samples is helpful for learning robust representations that are invariant to
spurious signals. They generate counterfactual samples via dedicated masking strategies and apply
contrastive learning on synthetic samples to discern counterfactual samples from original data.

However, few studies have delved into the effect of counterfactual learning on retrieval tasks (Choi
et al., 2020a). In this work, we reinterpret causal signals in existing work as answer spans in ODQA
and seek to apply counterfactual contrastive learning for DPR.

3 RELEVANCE-ANSWERABILITY ASYNCHRONICITY ON DPR

In this section, we first present the definition of counterfactual samples as unanswerable variants of
the given passages. We then conduct a counterfactual analysis on DPR where retrievers compare
the relevance scores between an original passage and its counterfactual sample. We show that dense
retrievers are incapable of discriminating counterfactual samples from the original data and thus
unaware of answerability.

3.1 UNANSWERABLE COUNTERFACTUAL SAMPLES FOR PASSAGE RETRIEVAL

Original Passage

big little lies season 2 how many episodes

Question/ Query

(...) performances. Despite originally being billed as a 

miniseries, HBO renewed the series for a second season. 

Production on the second season began in March 2018 

and is set to premiere in 2019.   sevenAll  episodes are 

being written by Kelley.

Answer

seven

Counterfactual Passage

(...) performances. Despite originally being billed as a 

miniseries, HBO renewed the series for a second season. 


Production on the second season began in March 2018 

and is set to premiere in 2019.                [REMOVED]

Figure 1: Illustration of the coun-
terfactual sampling strategy.

Following previous studies (Liang et al., 2020; Choi et al.,
2022), we synthesize counterfactual samples by removing
causal signals from the original sample. Based on our assump-
tion that answer spans serve as causal signals in ODQA, we
remove the answer span to a question in the original passage
to create its counterfactual sample. Formally, we define coun-
terfactual samples for passage retrieval as follows:

Definition 1. Let (q, p) denote a question-answer passage
pair, where p = [sl; a; sr] contains an answer span a to the
question q and non-answer spans sl and sr. We define a coun-
terfactual sample p∗ as an unanswerable variant of p with
minimal changes such that p∗ = [sl; sr].

Intuitively, the counterfactual sample is an unanswerable vari-
ant of the original passage that loses relevant features to the
question (i.e., a). In practice, we set a to be the evidence sen-
tence that contains the exact answer to the question. Figure 1
provides the overview of our counterfactual sampling process.
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Figure 2: Left: AAR and retrieval performance of dense retrievers. Mid: AAR and end-to-end QA
accuracy (Exact Match). The radius around the mark indicates the minimum GPU memory usage
for training (reported in Table 1). Right: AAR on varying the number of training samples.

3.2 MEASURING ANSWER-AWARENESS OF PASSAGE RETRIEVAL

Our experiment aims to re-examine the belief that dense retrievers are answer-aware, or that the
relevance score sim(q, p) between q and p is synchronous with the answerability of q from p. Given
that counterfactual samples lack key features relevant to the question, it is generally assumed that
dense retrievers rank positive passages higher than their counterfactual counterparts. To assess the
answer-awareness of dense retrieval approaches, we check whether such assumption holds true.
Specifically, we observe answerability-relevance mismatch, where answerable passages p are given
lower relevance scores than their counterfactual counterparts p∗.

Definition 2. (Answerability-Relevance Mismatch) Given a question-passage pair (q, p) where
p contains answer a to q, let p∗ be the counterfactual sample of p such that a /∈ p∗, and sim be
the scoring function for relevance between q and p. Answerability-relevance mismatch between the
question-passage pair (q, p) occurs if the relevance score sim(q, p) between q and p is lower than
(or equal to) the score sim(q, p∗) between q and p∗, i.e., sim(q, p) ≤ sim(q, p∗)

Under the counterfactual simulation setting, we further introduce Answer-Awareness Rate of
a model to quantify the rate at which the model predictions on relevance scores sim(q, p) are
synchronous with the answerability of q to p. Given a set of T question-answer passage pairs
{(qi, pi)}Ti=1, answer-awareness rate counts the number of cases where answerability-relevance mis-
match does not occur.

Definition 3. (Answer-Awareness Rate) Given a corpus C and a set of T triplets T =
{(qi, pi, p∗i )|pi, p∗i ∈ C}Ti=1 where p∗i is the counterfactual sample of pi, let 1sim(qi,pi)≤sim(qi,p∗

i )

be a binary indicator of whether answerability-relevance mismatch occurs for a triplet (qi, pi, p∗i ),
i.e., sim(qi, pi) ≤ sim(qi, p

∗
i ). Answer-Awareness Rate, or AAR, is measured as the proportion of

(qi, pi, p
∗
i ) triplets whose relevance scores sim(qi, pi) between questions and original passages are

higher than scores sim(qi, p
∗
i ) between their counterfactual counterparts p∗.

AAR = 1−
T∑

i=1

1sim(qi,pi)≤sim(qi,p∗
i )
/T (3)

To validate the assumption on answer-awareness of dense retrievers, we observe how much AARs
differ from their theoretical upper bound, which supposedly amounts to 100 percent provided that
dense retrievers always measure relevance scores such that sim(q, p) > sim(q, p∗).

3.3 PRELIMINARY EXPERIMENTS

We conduct our preliminary experiment on Natural Questions (NQ) (Kwiatkowski et al., 2019), a
commonly used ODQA benchmark. We follow the settings from Karpukhin et al. (2020) and adopt
NQ test set used for DPR, which provides 3,610 factoid questions and around 21 million passages
segmented from Wikipedia dump for evaluation. To measure AAR, we use the 1,382 questions from
NQ test set whose gold (q, p, p∗) triplets are given.1 We then track whether the relevance score
sim(q, p) between each question q and its positive passage p is higher than the score sim(q, p∗)
between the counterfactual passage p∗.

1Both NQ test set and golden passage information are made available by Karpukhin et al. (2020) at https:
//github.com/facebookresearch/DPR
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Figure 2 shows both AAR and the retrieval performance of dense retrievers. We first observe that
AAR of a vanilla DPR significantly falls behind the theoretical upper bound, which contradicts the
assumption that retrievers constantly rank positive passages higher than counterfactual passages. We
also see that AAR of dense retrievers show positive correlations with both their retrieval performance
and end-to-end QA accuracy. A considerable increase in QA performances following the increase
in AAR further suggests that answer-aware retrievers improve the effectiveness of retriever-reader
frameworks even with a small gain in the retrieval performance.

Effect of Hard Negatives. One possible solution to improve AAR of retrievers is to adopt better
negative mining strategies. To assess the effect of hard negatives, we compare AAR of DPRinbatch
and DPRbm25, which are trained with in-batch negatives and hard negatives from BM25 index, re-
spectively. We also compare AAR of DPR with those of ANCE and RocketQA, which adopt sophis-
ticated negative sampling strategies for retriever training. From Figure 2, we observe that DPRbm25
show better AAR than DPRinbatch, and that ANCE and RocketQA achieve better AAR than DPR.
However, these approaches require large computational cost since they depend on large PLMs and
negative mining strategies which usually involve multi-stage training of different encoders.

Effect of Sample Size. Another possible solution is to increase the number of training samples. To
examine the correlation between the size of the train set and AAR of the resulting DPR model, we
randomly sample 15,000 and 30,000 question-passage pairs from NQ train set and additionally train
two DPR models with randomly sampled data. Figure 2 shows that AAR of DPR increases when
trained on more question-passage pairs. Despite such correlation, there is a practical limit to the size
of the collected dataset, which makes any such approach infeasible.

Later in this paper we present our data-centric approach based on counterfactual augmentation,
PiCL. Note that in Figure 2, DPR+PiCL consistently shows better AAR than DPR trained under the
same settings, i.e. negative sampling strategies and sample sizes.

4 SYNCHRONIZING RELEVANCE AND ANSWERABILITY ON DPR

Having seen that dense retrievers are not robust to unanswerable counterfactual passages, in this
section, we present a novel contrastive learning approach that repurposes counterfactual samples
to train a retriever robust to the counterfactual samples. In Section 4.1, we redefine counterfactual
samples as pivots between positive and negative passages to adapt them into a plain DPR setting. In
Section 4.2, we propose counterfactually-Pivoting Contrastive Learning, which learns the relative
similarity between questions, positives, negatives, and pivoting samples.

4.1 REDEFINING COUNTERFACTUAL SAMPLES AS PIVOTS

We have reinterpreted causal signals in dense retrieval as answer spans in ODQA and synthesized
unanswerable counterfactual samples in Section 3.1. Our goal is to incorporate counterfactual con-
trastive learning into DPR training such that the learned model is invariant to answer-irrelevant
features. For that, we aim to design a method where the model learns the relative positions of
counterfactual samples on the embedding space from DPR.

Consider a question-passage pair (qi, p+i ), its corresponding counterfactual sample p∗i , and a set of
N negative passages {p−j }Nj=1. A DPR-based retriever learns question and passage representations
such that the following inequality between positive passages p+i and negative passages p−j holds:

sim(qi, p
+
i ) > sim(qi, p

−
j ) (4)

To specify the relative positions of counterfactual passage on the embedding space, one must take
into account their relevance between positive passages (i.e. source passages) and negative passages.
As shown in Figure 3, we view our counterfactual samples from two different perspectives, as hard
negatives and as pseudo-positives.

Counterfactuals as Hard Negatives. Given that counterfactual samples lack relevant features to
the question, p∗i is a counterfactually negative sample to an anchor question qi while the original
passage p+i serves as the positive. Thus the embedding similarity sim(qi, p

∗
i ) between qi and p∗i is

upper bounded by sim(qi, p
+
i ):

sim(qi, p
+
i ) > sim(qi, p

∗
i ) (5)
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Figure 3: Illustration of the counterfactual samples as pivots in the embedding space.

Learning to discriminate p∗i from p+i would minimize the mutual information between representa-
tions of questions qi and answer-irrelevant spans in p+i .

Counterfactuals as Pseudo Positives. Since a counterfactual passage p∗i is a minimally different
sample that retains most of semantics in the positive passage p+i , p∗i can be seen as a pseudo-positive
example in the passage retrieval. Semantic relevance between qi and p∗i distinguishes p∗i from other
negatives p−j , which provide noisy contexts with respect to qi. Thus, the following holds for all p−j :

sim(qi, p
∗
i ) > sim(qi, p

−
j ) (6)

Learning to discriminate p∗i from p−j imposes a constraint on the encoders such that embeddings for
questions and passages are computed based on their semantic alignment.

From Equation 5 and 6, we can derive that the embedding similarity sim(qi, p
∗
i ) between questions

and counterfactual samples are bounded by sim(qi, p
+
i ) and sim(qi, p

−
j ). Essentially, they can

be re-formulated as pivots between positive and negative samples in the embedding space. Since
both inequality constraints in Equation 5 and 6 satisfy Equation 4, our definition of counterfactual
samples as pivots is in line with the training objective of DPR.

4.2 COUNTERFACTUALLY-PIVOTING CONTRASTIVE LEARNING

Based on the ideas discussed in Section 4.1, we propose counterfactually-Pivoting Contrastive
Learning (PiCL) for dense retrieval for a robust, answer-aware dense retriever. Specifically, we
introduce additional counterfactual contrastive loss terms into the passage retrieval objective func-
tion in Karpukhin et al. (2020) to leverage counterfactual samples as pivots between positives and
negatives. Consider a question-positive passage pair {qi, p+i }, a set of N negatives {p−j }Nj ̸=i, and
their corresponding counterfactual samples p∗i and {p∗j}Nj ̸=i. We define following loss terms as key
components of PiCL:

Modified Dense Passage Retrieval Loss. The modified DPR loss Ldpr is a slight modification of
the loss term in Karpukhin et al. (2020) in which the counterfactual counterpart p∗i to the positive
passage p+i is added as a negative. To alleviate any interference from masked passages as negatives,
we add a balancing coefficient λ < 1 before the similarity term esim(qi,p

∗
i ).

Ldpr(qi, p+i , p
∗
i , {p−j }

N
j ̸=i) = − log(

esim(qi,p
+
i )

esim(qi,p
+
i ) +

∑N
j ̸=i e

sim(qi,p
−
j ) + λ · esim(qi,p

∗
i )
) (7)

Counterfactuals as Hard Negatives. The Counterfactuals-as-Hard-Negatives loss Lchn is opti-
mized to maximize the similarity between qi and p+i while minimizing the similarity between qi and
p∗i . It imposes the key constraint on qi, p+i , and p∗i from Equation 5 to discriminate answer passages
from non-answer counterfactual passages:

Lchn(qi, p+i , p
∗
i ) = − log(

esim(qi,p
+
i )

esim(qi,p
+
i ) + esim(qi,p

∗
i )
) (8)

Counterfactuals as Pseudo Positives. The Counterfactuals-as-Pseudo-Positives loss Lcpp is opti-
mized to maximize the relative similarity between qi and p∗i with respect to negative passages p−j
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and p∗j in the given batch. The key difference between Ldpr and Lcpp is that the counterfactual
passage is used as a positive in Lcpp to retain semantic relevance in the learned embeddings.

Lcpp(qi, p∗i , {p−j , p
∗
j}Nj ̸=i) = − log(

esim(qi,p
∗
i )

esim(qi,p
∗
i ) +

∑N
j ̸=i(e

sim(qi,p
−
j ) + esim(qi,p

∗
j ))

) (9)

The final loss function L is a weighted sum of all three loss fuctions Ldpr, Lchn, and Lcpp:

L = Ldpr + τ1Lchn + τ2Lcpp (10)

where τ1, τ2 are hyperparameters that determine the importance of the terms. Later in Section 5.2
we provide an analysis on the effect of each loss term through an ablation study.

5 EXPERIMENTS

In this section, we first evaluate the effectiveness of PiCL for passage retrieval task on common
ODQA benchmarks. We then apply PiCL on a retriever-reader pipeline and assess its end-to-end
QA performance to show that improving answer-awareness of the retriever leads to a more accurate
reader. We also provide some analysis on PiCL as possible explanations to our design choice.

5.1 EXPERIMENTAL SETTINGS

Dataset. Following the settings in Sections 3.3, we evaluate our method on Natural Ques-
tions (Kwiatkowski et al., 2019). This benchmark is built upon web documents such as Wikipedia
articles and human-annotated question-answer pairs, most of which are collected from real-world
search queries (Kwiatkowski et al., 2019). We follow prior work on dense retrieval (Xiong et al.,
2021; Qu et al., 2021; Ren et al., 2021) and use for training 58,812 factoid questions each paired with
a set of positive passages. For inference, we use the preprocessed data from Karpukhin et al. (2020),
which include 3,610 factoid questions and a corpus of about 21M Wikipedia passages preprocessed
through the pipeline proposed in Chen et al. (2017).

Baselines and Implementation Details. We consider DPR (Karpukhin et al., 2020) as the backbone
architecture for all models implemented in this section. Our focus is to assess how applying PiCL
affects the downstream performance of the backbone DPR. We also include ANCE (Xiong et al.,
2021) and RocketQA (Qu et al., 2021), which use dedicated negative sampling pipelines to improve
the performance of vanilla DPR. To show the orthogonality of PiCL to such negative mining ap-
proaches, we implement PiCL models under different negative sampling strategies (e.g., sampling
from top retrieval results of BM25 and a fine-tuned DPR) and compare them with the baselines.
Note that due to limited computation resource, we do not reproduce the performance of ANCE and
RocketQA. See Appendix A for more details on the implementation.

5.2 MAIN EXPERIMENTAL RESULTS

Performance of Passage Retrievers. Table 2 compares the performance of PiCL models with
the baselines, i.e., DPR, ANCE, and RocketQA on NQ benchmark. We observe that DPR+PiCL
models yield consistent performance gains over vanilla DPR under all tested conditions. Similar
to DPR, DPR+PiCL shows particularly strong performance when trained with hard negatives from
top retrieval results of a fine-tuned DPR, which suggests that the performance of DPR+PiCL can be
further boosted by adding informative negative samples.2. Meanwhile, we see a consistent increase
in the performance of dense retrievers when trained using model-centric approaches, i.e., ANCE
and RocketQA, which rely on larger pretrained language models (e.g., ERNIE (Sun et al., 2020) and
RoBERTa (Zhuang et al., 2021)) and compute-intensive negative mining techniques. The perfor-
mance gain on DPR+PiCL when using additional hard negatives implies that PiCL can be further
improved when orthogonally applied to such model-centric approaches.

2We obtain hard negative samples from the dataset nq-adv-hn-train, which is available on
https://github.com/facebookresearch/DPR
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Table 2: Main results on Natural Questions benchmark. The best and second results are in Bold and
underline, respectively. PLMs: pre-trained LMs used for retriever initialization, #N: the number of
negative samples, computed as in-batch negatives + hard negatives, ∗ denotes reproduced results in
our environment setting where #N=127+128. † indicates reported results from Qu et al. (2021).

Retriever Training Resource Natural Questions

PLM #N Hard Neg Top-1 Top-5 Top-20 Top-100
BM25† - - - - - 59.1 73.7
DPR† BERTbase 127 - - 55.8 73.0 83.1
ANCE† RoBERTabase 31+32 ANN - - 81.9 87.5
RocketQA†

step1 BERTbase 1023+1024 Cross Batch - - - 86.0
RocketQA† ERNIEbase 1023+1024 Cross Encoder - 74.0 82.7 88.5
DPR∗ BERTbase 127 - 31.77 58.12 74.76 84.07
DPR∗ BERTbase 127+128 BM25 46.62 68.56 79.7 86.34
DPR+PiCL BERTbase 127 - 32.69 60.39 76.73 85.48
DPR+PiCL BERTbase 127+128 BM25 47.81 69.25 79.92 87.12
DPR+PiCL BERTbase 127+128 DPR 52.57 71.10 80.50 86.84

Table 3: End-to-end QA performance of retriever-reader pipelines on Natural Questions benchmark.
#N : number of negative samples used to train the retriever, computed as in-batch negatives (+ BM25
negatives), Top-k: top-k retrieved passages for reader inference. Note that we reuse the DPR reader
and Fusion-in-Decoder base (FiDbase) models from Karpukhin et al. (2020) and Izacard & Grave
(2021a), switching retrievers to obtain EM score. Best scores are in Bold.

#N Reader Retriever Exact Match (EM) score
Top-5 passages Top-20 passages Top-100 passages

127 DPR reader DPR 31.83 36.87 37.45
DPR+PiCL 34.52 (+2.69) 38.31 (+1.44) 38.81 (+1.36)

127 FiDbase (T5) DPR 31.99 39.11 43.82
DPR+PiCL 34.27 (+2.28) 41.47 (+2.36) 44.85 (+1.03)

127+128 FiDbase (T5) DPR 38.31 43.13 45.37
DPR+PiCL 40.22 (+1.91) 44.32 (+1.19) 47.65 (+2.28)

End-to-End QA Performance of Retriever-Reader. A key assumption underlying our work is
that synchronizing a retriever with the reader improves end-to-end QA performance of the retriever-
reader pipeline. To validate this assumption, we incorporate DPR+PiCL into a QA system and
evaluate the downstream performance of the subsequent reader. Specifically, we re-use the reader
models from Karpukhin et al. (2020) and Izacard & Grave (2021b) and switch different retriev-
ers to sample top-k passages for reader inference. We then compute Exact Match (EM) scores
for the reader, which measures the proportion of questions whose answer prediction is equivalent
to correct answers. Table 3 reports end-to-end QA performance of the retriever-reader pipelines.
Overall, applying PiCL on DPR consistently improves the QA performance of the retriever-reader
pipeline under various settings. Particularly, we see that using a FiDbase instead of a DPR reader for
DPR+PiCL further boosts the performance of the QA system, suggesting that PiCL models can be
orthogonally applied with advanced reader models.

Figure 4: Retrieval performance of
DPR and DPR+PiCL on varying
the numbers of negatives.

Retriever Natural Questions
Top-1 Top-5 Top-20 Top-100

DPR 32.08 59.56 76.54 85.73
(1) Counterfactual Loss
Ldpr + Lcpp 28.14 56.65 75.12 85.54
Ldpr + Lchn 30.80 58.59 75.98 84.85
Lcpp + Lchn 33.35 61.36 77.87 86.09
Ldpr + Lcpp + Lchn 33.99 61.88 77.7 85.84

(2) Counterfactual Sampling
PiCLanswer 30.28 57.12 73.99 84.52
PiCLwindow 31.50 60.03 76.40 85.18
PiCLsentence 33.99 61.88 77.7 85.84

Table 4: Ablation studies on PiCL.
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5.3 ANALYSIS ON DENSE PASSAGE RETRIEVAL

Negative Samples. Figure 4 shows the retrieval accuracy of DPR and DPR+PiCL trained with dif-
ferent amounts of in-batch and random negative samples 3. We see a consistent increase in retrieval
accuracy for DPR+PiCL, which is in line with the finding that the performance gain from PiCL over
a vanilla DPR is independent of the number of negative samples used to train the model. Particu-
larly, DPR+PiCL trained with fewer negatives achieves performance comparable to or better than
a vanilla DPR trained with more negatives, as shown in Figure 4. One possible reason for such
efficiency is that using counterfactual samples for PiCL leads to the effect of data augmentation as
the model learns to discriminate positive passages from hard negative passages.

Counterfactual Loss. To study the efficacy of counterfactual samples as pivots, we conduct an
ablation study on counterfactual contrastive learning objective in PiCL (Equation 10). Specifically,
we implement three PiCL baselines with the following modifications on the objective function in
Equation 10, 1) Ldpr + Lcpp, 2) Ldpr + Lchn, and 3) Lcpp + Lchn. Table 4 compares all baselines
with the original PiCL and the vanilla DPR. All three PiCL baselines do not improve much over a
vanilla DPR without either Ldpr, Lcpp or Lchn. In contrast, the original PiCL method outperforms
the vanilla DPR, suggesting that using counterfactual samples as pivots is crucial in PiCL training.

Counterfactual Sampling Strategy. To validate our strategy of synthesizing counterfactual sam-
ples, we present different augmentation schemes and assess their effect on downstream performance
of DPR+PiCL. Specifically, we consider the following four augmentation schemes: 1) removing the
exact answer match, PiCLanswer, 2) removing an extended span around the answer, PiCLwindow,
and 3) removing the answer sentence, PiCLsentence. Table 4 reports the retrieval performance of
PiCL models trained under different masking strategies. Overall, PiCLsentence yields the best per-
formance among all models. This implies that not only answer string but also its context is an
important factor in learning answer-awareness.

Figure 5: Similarity scores be-
tween queries and positive pas-
sages or counterfactual passages in
DPR and DPR+PiCL.

Answer-awareness. One key assumption underlying our
approach is that applying PiCL on DPR results in a more
answer-aware retriever. To provide a fine-grained analysis on
answer-awareness of PiCL, we use DPR+PiCL trained with in-
batch negatives to measure similarity scores sim(q, p+) and
sim(q, p∗) for the gold (q, p+, p∗) triplets from Section 3.3.
Figure 5 shows the average of the scores sim(q, p+) and
sim(q, p∗) from DPR+PiCL compared to those from DPR. We
observe a notable difference between the average sim(q, p+)
and sim(q, p∗) for DPR+PiCL and a relatively minor differ-
ence for DPR. In DPR+PiCL, the average similarity score
sim(q, p+) is significantly larger than the score sim(q, p∗),
which indicates that DPR+PiCL learns answer-awareness to
distinguish between the answerable passage and the unanswer-
able counterfactual one.

6 CONCLUSION AND FUTURE WORK

This work aims to re-examine the assumption that dense retrievers assign high relevance scores on
answerable passages to questions. We first conduct a counterfactual simulation and observe that
dense retrievers based on DPR often fail to rank answerable passages higher than their counterfac-
tual counterparts. Based on this observation, we present PiCL, which repurposes counterfactual
samples as pivots between positives and negatives for answer-aware DPR. Our experiments show
that applying PiCL on DPR not only enhances the model performance on the ODQA benchmark but
also improves its robustness to unanswerable, counterfactual passages. We believe that the concept
of counterfactually-pivoting samples can be further explored in future work: 1) extending counter-
factuals to multiple pivots of incrementally removing causal signals at different levels, 2) refining
the definition of answer-awareness or AAR into formal evaluation metrics of ODQA, and 3) shifting
a target task to other representation learning tasks such as text/image classification and response
retrieval for dialogue systems.

3We added one randomly sampled negative passage for each question.
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A IMPLEMENTATION DETAILS

In Table 2, we train all implemented models for 40 epochs on a single server with two 16-core
Intel(R) Xeon(R) Gold 6226R CPUs, a 264GB RAM, and 8 24GB GPUs. For PiCL training, we
set batch size as 16, learning rate as 2e-5, and eps and betas of the adam optimizer as 1e-8 and
(0.9, 0.999), respectively. Note that we conduct experiments on the NQ benchmark under the same
settings used in Karpukhin et al. (2020). Among the hyperparameters {0.1, 0.2, 0.5, 0.9, 1.0}, we
choose 0.2 for the balancing coefficient λ for counterfactual samples in Equation 7 and 1.0 for the
weight hyperparameters τ1, τ2 in Equation 10.

For additional analysis in Section 5.3, we move onto a more viable settings with limited computation
resources. Specifically, we train all models for 25 epochs on a server with 3 24GB GPUs. We choose
0.2 for the balancing coefficient λ for counterfactual samples in Equation 7 and 0.2 for the weight
hyperparameters τ1, τ2 in Equation 10. All other hyperparameters including batch size and optimizer
remain unchanged.

For reader in Section 5.2, we consider two models: 1) the extractive reader from Karpukhin et al.
(2020) implemented on pretrained BERT models (Devlin et al., 2019) and 2) Fusion-in-Decoder
reader (Izacard & Grave, 2021b) based on pretrained T5-base (Raffel et al., 2020) models. We
conduct inference for the reader on a single 24GB GPU with the batch size of 8.

B ADDITIONAL ANALYSIS OF ANSWER-AWARENESS

In this section, we extend our preliminary experiment in Section 3.2 and delve into two important
aspects of answer-aware retrievers: 1) Score Differences and 2) Effect of Question Types.

Samples DPR DPR+PiCL

Answer-aware 1.99 3.38

Answer-unaware -0.98 -1.12

All 1.12 2.85

Table 5: Average score differences between sim(q, p+) and sim(q, p∗), measured using both DPR
and DPR+PiCL. Score differences are measured on two sets of (q, p+, p∗) triplets, one that satisfies
sim(q, p+) > sim(q, p∗) (i.e. Answer-aware) and another that doesn’t (i.e. Answer-unaware).

Figure 6: Comparison between
distributions of score differences
sim(q, p+) − sim(q, p∗) drawn from
DPR and DPR+PiCL.

Score Differences. To provide an overview of how
relevance scores differ between original and counterfac-
tual passages, we expand upon the answer-awareness
analysis in Section 5.3 and focus on the difference in
relevance scores sim(q, p+) and sim(q, p∗). Specifi-
cally, we aim to examine whether DPR+PiCL tends to
put larger differences between original and counterfac-
tual passages compared to DPR. For that, we reuse the
gold (q, p+, p∗) triplets from Section 3.3 and compute
the score difference sim(q, p+) − sim(q, p∗) for each
(q, p+, p∗). The relevance scores are measured using both
DPR and DPR+PiCL for a comparative analysis.

Table 5 compares the average score differences measured
from DPR and DPR+PiCL. For our analysis, we consider
two subsets of samples, one that satisfies sim(q, p+) >
sim(q, p∗) (i.e. Answer-aware) and another that doesn’t (i.e. Answer-unaware). We observe that
training DPR with PiCL generally leads to larger score differences than a DPR, particularly for sam-
ples where the retrievers are answer-aware, i.e. sim(q, p+) > sim(q, p∗). In line with the previous
observations from the AAR experiment in Section 3.3, the results in Table 5 suggest that DPR+PiCL
learns to distinguish answerable passages from counterfactual samples. While the differences may
seem small, we note that a slight decrease in the relevance score leads to a large drop in the rank of
a passage.
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We further analyze the distributions of score differences and examine how such distributions affect
the answer-awareness of retrievers. For that, we plot and compare the distribution of score dif-
ferences from DPR and DPR+PiCL. We see from Figure 6 that the distribution of sim(q, p+) −
sim(q, p∗) drawn from DPR+PiCL is skewed more positive than negative, while the distribution
from DPR tends to be more symmetrical. Negative skewness of the distribution from DPR+PiCL
indicates that 1) more (q, p+, p∗) samples satisfy sim(q, p+) > sim(q, p∗) and that 2) the retriever
tends to assign higher relevance scores on p+. This result in turn suggests that DPR+PiCL is more
answer-aware, i.e., capable of distinguishing answerable passages from counterfactuals.

Effect of Question Types. To better understand if the answer-awareness of a retriever depends
on certain linguistic features, we start by investigating the effect of question types on the answer-
awareness of DPR. Specifically, we reuse the gold (q, p+, p∗) triplets from AAR experiments and
classify them into six subsets based on question types. We identify the type of a question simply by
looking for exact matches of the question words: how, what, when, where, which, and who.

Question Type # Questions
AAR(%)

DPR DPR+PiCL

How 114 71.93 85.09

What 228 67.54 77.19

When 295 80.68 87.46

Where 146 65.07 81.51

Which 41 73.17 85.37

Who 547 70.02 80.07

Table 6: AARs of DPR and DPR+PiCL on various question types.

Table 6 shows AARs of DPR and DPR+PiCL on the six subsets of different question types. We first
observe that AARs of dense retrievers do vary significantly across different question types, implying
that the answer-awareness of DPR depends on the types of questions being asked. Particularly, DPR
shows large gaps in AARs between different question types, ranging from 65.07% to 80.68%. On
the other hand, DPR+PiCL shows 1) significant improvements in AAR over a vanilla DPR for all
question types and 2) smaller variance in AARs across different question types.

Question: Who died in the plane crash greys anatomy

Passage Type Title Text

Gold passage Flight (Grey’s Anatomy) Flight ” is the twenty - fourth and final episode of the eighth season of the Ameri-
can television medical drama Grey ’s Anatomy . . . six doctors from Seattle Grace
Mercy West Hospital who are victims of an aviation accident fight to stay alive , but
Dr. Lexie Grey ( Chyler Leigh ) ultimately dies. . . .

Top-1 DPR Paul-Louis Halley Socata TBM 700 aircraft crash on 6 December 2003, during an approach to Oxford
Airport. The plane went into an uncontrolled roll, killing Halley, his wife, and the
pilot. . . .

Top-9 DPR Flight (Grey’s Anatomy) (Patrick Dempsey), and Dr. Mark Sloan (Eric Dane) desperately fight to stay alive.
Meredith is relatively unscathed, while the rest have serious injuries: the pilot,
Jerry (James LeGros), has a major spine injury, ... Shepherd is sucked out the side
of the plane and awakens alone in the wood; his mangled hand having been pushed
through the door of the plane. However, none are in as bad shape as Lexie, who is
crushed under

Top-1 DPR+PiCL Comair Flight 5191 ... The Flight 5191 Memorial Commission was established shortly after the crash
to create an appropriate memorial for the victims, first responders, and community
that supported them. The Commission chose the University of Kentucky Arboretum
as its memorial site. James Polehinke, the first officer, suffered serious injuries,
including multiple broken bones, a collapsed lung, and severe bleeding. ...

Top-2 DPR+PiCL Flight (Grey’s Anatomy) (Patrick Dempsey), and Dr. Mark Sloan (Eric Dane) desperately fight to stay alive.
Meredith is relatively unscathed, while the rest have serious injuries: the pilot,
Jerry (James LeGros), has a major spine injury, ... Shepherd is sucked out the side
of the plane and awakens alone in the wood; his mangled hand having been pushed
through the door of the plane. However, none are in as bad shape as Lexie, who is
crushed under

Table 7: An example case on ”who” questions, drawn from retrieval results of DPR and DPR+PiCL.
Answer is in Bold.
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Among all question types, we see that DPR shows particularly low AARs on “where”, “what”,
and “who” questions. These questions tend to include answers that refer to named entities, i.e.
names of people, locations, and objects. Our hypothesis is that DPR fails to identify the presence
of target entities, which serve as causal features and clues to answer passages. Table 7 shows an
example from the retrieval result of illustrates the problem of named entities for DPR. While DPR
is capable of retrieving passages with relevant semantics such as aircraft crash, plane, and killing,
it fails to identify key named entities in the question such as Greys Anatomy. Contrary to a vanilla
DPR, DPR+PiCL learns to differentiate answer passages from their counterfactual counterparts in
which key entities are not present. In fact, we see from the example in Table 7 that DPR+PiCL is
more inclined to identify answer-relevant entities given that the answer passage (i.e. top-9 passage
retrieved by DPR) is ranked higher. In some sense, our approach is in line with previous methods
based on salient span masking (Guu et al., 2020) such as MSS (Sachan et al., 2021), where the
retriever is trained by predicting masked salient spans like named entities with the help of a reader.

C CHOICE OF PRETRAINED LANGUAGE MODELS

Previous studies on dense retrieval, including RocketQA (Qu et al., 2021), show that using a bet-
ter PLM such as ERNIE (Sun et al., 2020) for retriever training leads to better performance. To
study the effect of the choice of PLMs on the performance of retrievers trained with PiCL, we have
implemented DPR+PiCL models with pretrained ERNIE and measured their performance on the
NaturalQuestions benchmark.

Retriever PLM # N
NaturalQuestions

Top-1 Top-5 Top-20 Top-100

DPR+PiCL BERTbase 47+48 45.38 66.79 78.53 85.04

DPR+PiCL ERNIEbase 47+48 47.29 68.92 79.53 85.98

DPR+PiCL ERNIEbase 127+128 49.5 69.36 80.06 86.23

Table 8: Retrieval performance with using a better PLM (i.e., ERNIE). PLMs: pre-trained LMs used
for retriever initialization, # N: number of negative samples. Best scores are in Bold.

Based on table 8, we observe that the ERNIE implementation of DPR+PiCL outperforms its orig-
inal BERT implementation, and that its performance increases with the number of negatives (i.e.
in-batch and BM25 negative passages) used to train the model. While RocketQA does achieve a
substantial performance gain over other baselines, it relies heavily on significantly large batches and
a compute-intensive negative sampling pipeline, which makes it infeasible to reproduce the model
due to tremendous computational costs.
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