
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ASTRAEA: A TOKEN-WISE ACCELERATION FRAME-
WORK FOR VIDEO DIFFUSION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Video diffusion transformers (vDiTs) have made tremendous progress in text-to-
video generation, but their high compute demands pose a major challenge for prac-
tical deployment. While studies propose acceleration methods to reduce workload
at various granularities, they often rely on heuristics, limiting their applicability.
We introduce ASTRAEA, a framework that searches for near-optimal configura-
tions for vDiT-based video generation under a performance target. At its core,
ASTRAEA proposes a lightweight token selection mechanism and a memory-
efficient, GPU-friendly sparse attention strategy, enabling linear savings on exe-
cution time with minimal impact on generation quality. Meanwhile, to determine
optimal token reduction for different timesteps, we further design a search frame-
work that leverages a classic evolutionary algorithm to automatically determine
the distribution of the token budget effectively. Together, ASTRAEA achieves up
to 2.4× inference speedup on a single GPU with great scalability (up to 13.2×
speedup on 8 GPUs) while achieving up to over 10 dB video quality compared to
the state-of-the-art methods (<0.5% loss on VBench compared to baselines).

1 INTRODUCTION

Visual imagination has always been at the core of humanity’s nature for creativity. After the re-
lease of Sora by OpenAI in early (OpenAI, 2024), there are numerous video generative frameworks
from text input, including Kuaishou’s Kling (Kuaishou, 2024), Google’s Veo (Google, 2024), and
Tencent’s HunyuanVideo (Tencent, 2024). Despite the abundance of frameworks, video diffusion
transformers (vDiTs) remain the core of these frameworks, widely regarded as the most effective
paradigm for high-fidelity video generation. However, its computational demand poses a challenge
for any industrial-level deployment. For instance, a 4-second 720×1280 video clip using Hunyuan-
Video (Kong et al., 2024) takes over 0.5 hours on a single Nvidia H100 GPU. This high computa-
tional cost comes from the extensive denoising steps and the long token sequence. For example, a
vDiT model often requires 50-100 denoising steps, with each step involving millions of tokens.

To address the inference inefficiency, various acceleration methods have been proposed to reduce
computations at different granularities, such as denoising step reduction (Li et al., 2023; Yin et al.,
2024; Gu et al., 2023), block caching (Zhao et al., 2024; Chen et al., 2024; Kahatapitiya et al., 2024;
Fang et al., 2023), token selection (Zou et al., 2024b), etc. However, these methods often require it-
eratively fine-tuning hyperparameters, i.e., which steps or blocks to skip, with a human in the loop to
achieve a target performance in industrial-level deployments. Fundamentally, previous approaches
propose various acceleration heuristics, without addressing a key question: given a performance
target, which tokens are worth computing at each denoising step to achieve optimal accuracy?

To answer this question, we propose ASTRAEA, a GPU-friendly acceleration framework that op-
erates at the token level, the smallest primitive in vDiT models. Specifically, we propose a sparse
diffusion inference with a lightweight token selection mechanism and GPU-efficient sparse attention
to accelerate each denoising step by dynamically selecting important tokens. Meanwhile, to deter-
mine optimal token budget allocation, a search framework is proposed to determine the number of
tokens that should be assigned in each denoising step to achieve the target performance.

Algorithm. One key downside of prior work (Zou et al., 2024b; Zhao et al., 2024) is the extensive
GPU memory usage. Unlike prior studies, which require storing the entire attention map, our mech-
anism introduces negligible memory overhead by only caching previous tokens. Thus, the memory

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Encode , …()θ(x’T, T) , …() Decode

Tokens@
Timestep (T)Noising Video, x’T

Tokens@
Timestep (T-1) Denoised Video, X’0

θ(x’1, 1) , …()
Tokens@

Timestep (0)

Iterative
Denoising

…

Reversing Diffusion Process

- z’T - z’1

Fig. 1: Diffusion models work by reversing a diffusion process, where they iteratively predict and
remove noise at each timestep to gradually reconstruct the original images or videos.

requirement of our selection metric scales linearly with the token length to avoid a memory explo-
sion. In addition, we purposely design our sparse attention to be natively parallelizable; thus, it can
be integrated with existing acceleration techniques, such as FlashAttention (Dao, 2023). On existing
GPUs, our sparse attention achieves linear speedup with the number of reduced input tokens.

Search Framework. Although our algorithm can achieve linear acceleration for each denoising
timestep, it is still unknown how many tokens should be selected for individual timesteps. While
numerous search techniques exist in the literature, such as neural architecture search (White et al.,
2023; Elsken et al., 2019) and network pruning (Hoefler et al., 2021; Cheng et al., 2024), none can be
applied to vDiTs due to their substantial search times. Here, we propose a search framework based
on the classic evolutionary search algorithms (Whitley et al., 1996; Ashlock, 2006). Our approach
guarantees to achieve the target performance while achieving the minimal accuracy loss.

ASTRAEA achieves up to 2.4× speedup with up to >10 dB better quality in PSNR compared to the
state-of-the-art algorithms, and achieves <0.5% loss on VBench. ASTRAEA also shows great scal-
ability and achieves 13.2× speedup across 8 GPUs. Our contributions are summarized as follows:

• We propose a lightweight token selection mechanism to reduce the computation workload
of each denoising step with negligible latency and memory overhead.

• We design a sparse attention computation method that achieves linear speedup on existing
GPUs, as the number of selected tokens decreases.

• We introduce a search framework that meets the target performance while achieving the
minimal accuracy loss against prior studies.

2 RELATED WORK

Diffusion models have been widely used in video generation. It learns to generate data from Gaus-
sian noise through a reverse Markov process (Fig. 1). The input of this diffusion process is a ran-
domly generated Gaussian noise, x′

T . The diffusion model recovers the original data by progres-
sively predicting and removing noise, z′t, from x′

t at each timestep t. The hope is that, through this
process, the prediction of the diffusion model, x′

0, can be close to the original data, x0. Mathemati-
cally, the denoising step can be expressed as,

x′
t−1 = αt(x

′
t − βtz

′
t) + σtn

′
t, z

′
t = Φ(x′

t, t), (1)

where Φ is the prediction function that predicts the noise z′t. Both αt and βt are hyper-parameters.
σtn

′
t is the renoising term to add randomness to the denoising step.

Normally, diffusion models often require hundreds or even thousands of steps to denoise images or
videos (Yang et al., 2022). The common practice to reduce the diffusion workload is to encode the
initial noising inputs into the latent space, then decode the tokens at the end (Fig. 1).

Prior methods to enhance the efficiency of diffusion models fall into two categories: step reduction,
which reduces the number of denoising steps, and block caching, which seeks to minimize the
computational demands within each denoising step. The following paragraphs provide an overview
of these two categories of acceleration techniques separately.

Step Reduction. Overall, step reduction methods can be classified into two types: one requires
retraining, and the other is training-free. The retraining methods (Yin et al., 2024; Salimans & Ho,
2022; Gu et al., 2023; Habibian et al., 2024; Kim et al., 2024), such as distillation, can reduce the
number of denoising steps to as few as one. However, the major downside of these methods is that
they require as much training time as the original model training. For this reason, current distillation
methods are primarily applied to image generation rather than video generation (Salimans & Ho,
2022; Gu et al., 2023; Yin et al., 2024; Habibian et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

On the other hand, training-free methods do not require re-training and are generally less effective.
The intuition of these training-free methods is to leverage the insignificance of predicted noises be-
tween steps, allowing diffusion models to skip these less critical steps. For instance, PAB (Zhao
et al., 2024) periodically skips two out of every three intermediate steps to reduce the overall com-
putation. AutoDiffusion (Li et al., 2023) applies heuristic search to iteratively develop better step-
sampling strategies. FasterCache (Lv et al., 2024) and Gradient-Optimized Cache (Qiu et al., 2025)
both propose some caching mechanisms to accelerate video diffusion. Fast Video Generation (Zhang
et al., 2025c) introduces a tile-based attention pattern that accelerates video diffusion without requir-
ing model retraining. AdaDiff (Zhang et al., 2023) and similar work (Fang et al., 2023) dynamically
select steps to skip during inference.

Block Caching. The execution time of diffusion transformers is dominated by either 2D or 3D
attention (Lin et al., 2024; Zheng et al., 2024). To reduce the computation in self-attention, existing
methods exploit the similarity of intermediate results across denoising steps and cache the interme-
diate results to avoid extra computations (Zhao et al., 2024; Chen et al., 2024; Kahatapitiya et al.,
2024; Ma et al., 2024; Wimbauer et al., 2024; Liu et al., 2024a;b).

Primary caching methods operate at the block level. They reuse the intermediate result of a block
from the previous denoising step and skip the corresponding block computation in the current de-
noising step entirely (Zhao et al., 2024; Kahatapitiya et al., 2024; Liu et al., 2024b; Chen et al., 2024;
Liu et al., 2024a; Zhang et al., 2025b; Ma et al., 2024; Wimbauer et al., 2024; Zhang et al., 2025a).
The key difference among block-wise methods lies in the strategies they apply to reuse the interme-
diate results. For instance, PAB (Zhao et al., 2024) applies a fixed step-skipping scheme throughout
the entire inference process, whereas ∆-DiT (Chen et al., 2024) and AdaptiveCache (Kahatapitiya
et al., 2024) adopt an adaptive scheme to tailor the step reuse for each input. SmoothCache (Liu
et al., 2024b) and BlockDance (Zhang et al., 2025b) exploit different features in DiTs to enable
continuous reuse of transformer blocks. Nevertheless, the underlying concept remains unchanged.

Recently, a few studies (Zou et al., 2024b; Bolya & Hoffman, 2023; Zou et al., 2025) have started to
explore reuse at a finer granularity, the token level. For instance, ToCa (Zou et al., 2024b) proposes a
composed metric that identifies the unimportant tokens during the inference and uses the previously
cached results for attention computation. However, its token selection process introduces non-trivial
compute and memory overheads. Neither is affordable on modern GPUs. Thus, token-wise methods
are still not fully exploited and require careful algorithmic design to enable practical usage.

3 METHODOLOGY

This section describes our framework, ASTRAEA. The goal of ASTRAEA is to determine which
tokens are worth computing throughout the diffusion process. Sec. 3 .2 first describes our selection
method that determines which specific tokens should be computed at each timestep under a token
budget. Sec. 3 .3 then describes a search algorithm that determines the token budget at each timestep.

3 .1 PRELIMINARY

Self-Attention. We first introduce one of the key operations in vDiTs: self-attention. The input to
the self-attention, Xin, is a sequence of tokens with a shape of ⟨N, d⟩. N is the number of tokens
and d is the token channel dimension. The computation of self-attention can be expressed as,

Attention(Q,K, V) = Softmax(
QKT

√
dk

)V, (2)

where query Q, key K, and value V are generated by performing three independent linear projec-
tions on input tokens, Xin. These three values have the same dimensions as Xin. The product QKT

is commonly referred to as the attention map, A, with a shape of ⟨N,N⟩. The attention map is then
divided by

√
dk where dk is the channel dimension of K. Finally, each row of the attention map, Ai,

is normalized by the softmax function, where

Softmax(Ai, j) =
eAi, j∑N

k=1 e
Ai, k

, (3)

before performing a dot product with V . i and j are the row and column indices of the attention
map, A. Note that,

∑N
k=1 e

Ai, k is often called the Log-Sum-Exp (LSE) score.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

y2,t’y0,t’ y1,t y3,tCache …

Reversed Diffusion Process

x
0,t-1

x
1,t-1

x
2,t-2

x
3,t-1

To
ke

n
Se

le
ct

io
n

C
om

pu
te

 B
lo

ck
 (B

0)

❌

y
0,t-1

y
2,t-1

y
3,t-1

y1,t

…

Ti
m

es
te

p
t-1

Input
Token

Cached
Token

Reuse
Op.

Update
Cache

❌

Not
Selectx0,t

x1,t

x2,t

x3,t

To
ke

n
Se

le
ct

io
n

C
om

pu
te

 B
lo

ck
 (B

0)

❌

❌

y2,t’

y3,t

y0,t’

Re
pe

at
 fo

r t
he

 n
ex

t
co

m
pu

te
 b

lo
ck

…

Ti
m

es
te

p
t

Legend

y1,t

Computed
Token

Fig. 2: The general diffusion process with token caching. For each compute block, a selection mod-
ule determines which tokens should be computed. Only the selected tokens perform computation.
The unselected tokens skip the compute block and query the cache for their results.

3 .2 TOKEN SELECTION

Execution Flow. Fig. 2 illustrates how our token selection integrates into the general diffusion
process. For instance, at timestep t, there are four input tokens, ⟨x0,t, ..., x3,t⟩. Before these tokens
pass through a compute block (typically a stack of a self-attention layer, a cross-attention layer, and
a multilayer perceptron in vDiTs), the token selection module first determines which tokens should
be computed. This module computes the importance of each token and selects the top significant
tokens, under a pre-defined computation budget, θ∗.

The selected tokens are then processed through the compute block, and their outputs are used to
update the cache. In contrast, unselected tokens would directly query their outputs from the cache,
which stores results from the same compute block at earlier timesteps. The final output token se-
quence is a combination of both computed and cached tokens, e.g., ⟨y0,t′ , y1,t, y2,t′ , y3,t⟩ in Fig. 2.
The same process is applied to all compute blocks in the subsequent process.

Selection Metric. Given the execution flow above, we next describe our token selection mecha-
nism. The goal of token selection is to skip unimportant tokens while retaining the same generation
quality. Despite studies (Zou et al., 2024b; Bolya et al., 2022; Bolya & Hoffman, 2023) proposing
various token selection metrics, they either incur high computational and memory overhead (Zou
et al., 2024b) or are specifically tailored to particular tasks (Bolya et al., 2022; Bolya & Hoffman,
2023). Thus, we propose a general token selection metric, Stoken, that applies to all vDiTs. Tbl. 1
shows that Stoken achieves superior performance compared to prior metrics.

Mathematically, Stoken has two components,

Stoken = wαSsig + wβSpenalty, (4)

where Ssig stands for the significance of this token and Spenalty represents the penalty for repeatedly
choosing the same token across multiple timesteps. Both wα and wβ are the hyperparameters that
are used to weigh the contributions of Ssig and Spenalty. Ssig is expressed as,

Ssig = SLSE, t-1∆token, t, (5)

where SLSE, t-1 is the LSE score of each token computed in the softmax function in the previous
timestep, t−1. Here, we use the LSE score in the previous timestep because LSE scores do not vary
across timesteps. To verify this point, we calculate the cosine similarity of the LSE of the attention
for each block in adjacent timesteps during the inference process of the Wan 2.1 (Wang et al., 2025).
The average cosine similarity of adjacent LSE is 99.1% with a standard error of 0.00736%.

Also, SLSE, t-1 is included in Ssig because its value is proportional to the attention score in self-
attention, which reflects the token importance. Meanwhile, SLSE, t-1 is the byproduct of softmax and
incurs no additional computational overhead.

∆token, t is the value difference of individual input tokens across two adjacent computed timesteps.
Here, a timestep is considered computed if the token is evaluated at that timestep rather than reused
from cache. Note that, we calculate ∆token, t, the difference of input tokens, so that we can select the
important tokens without performing the attention computation. Spenalty is expressed as,

Spenalty = eni , (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Attention Map

SoftMax() =⦿ Output
Tokens/ dk

$

$

Attention Map

SoftMax() =⦿ Output
Tokens/ dk

$

$

Naive Sparse Attention Our Sparse Attention

$
Computed

Tokens
Masked
Tokens

Cached
Tokens

VV

Fig. 3: An illustration of our sparse attention computation with selected tokens. While naive sparse
attention reduces overall computation quadratically by computing the selected tokens on Q, K,
and V , it suffers from computational inaccuracies and requires excessive memory usage. Our sparse
attention only computes the selected tokens on Q and keeps all tokens for K and V . The pseudocode
of our sparse attention is shown in Algo. 1 in the appendix.

where ni is the number of times the ith token has not been selected consecutively. This penalty term
is inspired by ToCa (Zou et al., 2024b), and we claim no contribution.

Sparse Attention. Next, we describe how to perform vDiT inference with the selected tokens.
There are three main computation operations in vDiT: self-attention, cross-attention, and multilayer
perceptron (MLP) (Zheng et al., 2024; Lin et al., 2024). Both cross-attention and MLP operate on
individual tokens; thus, we can directly skip the unselected tokens to reduce the computation.

However, naively performing sparse self-attention with selected tokens, e.g., in ToCa (Zou et al.,
2024b), would alter the semantics of self-attention, as shown in Fig. 3. Only computing the un-
masked positions in the attention map would lead to two issues: incorrect results and substantial
memory overhead. This is because self-attention requires calculating the LSE score for each row in
the attention map. Just computing the unmasked positions is semantically incorrect. Even reusing
the results of the same attention in a previous denoising timestep would lead to accuracy loss. Mean-
while, it requires caching the entire attention map, which introduces high memory overhead. Tbl. 1
shows that our technique achieves smaller memory overhead (roughly 2× reduction) and much
higher accuracy (> 10dB in PSNR) against the prior methods.

In contrast, we propose a seemingly “counterintuitive” sparse attention computation, as shown in
Fig. 3, where we only selectively compute the queries Q while computing all tokens for the keys K
and values V . Although this approach saves less computation than naive sparse attention, it offers
the following advantages. First, by computing the entire row of elements in the attention map, we
ensure the individual output token is computed correctly. Second, our sparse attention is natively
GPU-parallelizable and can be integrated with existing attention acceleration techniques, such as
FlashAttention (Dao et al., 2022). Third, our sparse attention does not require any additional GPU
memory, except for the cached tokens, which are negligible compared to the all attention scores.

3 .3 TOKEN-WISE SEARCH FRAMEWORK

Problem Setup. Sec. 3 .2 explains how to select tokens of a compute block under a given token
budget, θ∗. The next question is what token budget should be allocated for each compute block.
Ideally, to achieve the best performance, we should search for token budgets at the block level.
However, searching at the block level would make the search space intractable. Thus, we fix the
token budget at the timestep level and formulate the problem as follows: Given a total number of
selected tokens, how should the token budget be allocated for each timestep?

Search Space. In our framework, the search space is Θ, which can expressed as,

Θ = {θi}, i ∈ [1, 2, ..., T] and θi ∈ {0, 10%, 20%, ..., 100%}, (7)

where θi is the percentage of selected tokens at the denoising timestep i. T is the maximal timestep.

Algorithm. We now introduce our search algorithm, which adopts the classic stochastic search
framework, evolutionary algorithm (EA) (Whitley et al., 1996; Ashlock, 2006), to search for the
optimal token allocation across denoising steps. EA simulates the process of natural selection, which
evolves a population of candidates over generations using operations, e.g., selection, crossover, and
mutation, to find a near-optimal solution. In EA, we start by spawning the initial generation of K

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.9

0.9

0.1 0.2 0.3

1.0 0 0.7 0.4

…

…

P0

P1

0, 0, 1, 0, …Rand.
List

0.1 0.7 0.3New …

Uniform
Crossover

0.9

0.9

0.1 0.2 0.3

1.0 0 0.7 0.4

…

…

P0

P1

2, 30 Rand.
Range

0.1 0.7 0.4New …

Block
Crossover

0.9

…

New’ 0.3 0.7 0.3

New

…

Mutation

OR

Repair

0.9 0.3 0.7 0.3New’ …

Is ∑ θi over
1+ ⍺% of target

budget?

Is ∑ θi below
1- ⍺% of target

budget?
Randomly pick

θi += 0.1

Randomly pick
θi *= 0.8

Y

N

N

Y

Output

0.9 0.1 0.7 0.3

PMutation = P0 − βi

βMax
(P0 − Pfinal)

Iteratively Generate P New Candidates

{ }

{ }

{ } { }

{ }

{ }
{ }

{ }

{ }

M
ain

ta
ini

ng
 K

 C
an

di
da

te
s:

{θ
i}0

{θ
i}1

{θ
i}2

{θ
i}k

…

Se
lec

t T
op

-K
 C

an
di

da
te

s
 O

ut
 o

f (
K+

P)
 P

op
ula

tio
n

Fig. 4: An illustration of EA with its three key steps. Each new candidate would go through these
three steps sequentially before being added to the existing population. For each candidate, we would
randomly pick one out of two crossover methods. The detailed EA procedure is shown in Algo. 2.

0 5 10 15 20 25 30
Timestep ID

10 5

10 4

10 3

10 2

10 1

M
SE

(a) OpenSora (4s).

0 5 10 15 20 25 30
Timestep ID

10 5

10 4

10 3

10 2

10 1

M
SE

(b) Wan (4s).

Fig. 5: Different prompts show a similar trend when removing one specific timestep out of the entire
denoising process. The MSE is calculated against the original result without skipping timesteps.

candidates. We set K to be 50 in this paper. Each candidate has a list of selected token percentages,
{θi}k, k ∈ [0,K). Each θi stands for selecting θi percent of tokens at the ith timestep. All {θi}k
values together need to fit the total token budget constraint, Θ$.

At each generation, the top-K number of parents with smaller MSE losses are selected from the
previous generation. We then generate P number of new candidates from these top-K parents (P =
30). For each new candidate, we randomly pick a parent pair from the top-K parents. The selected
parent pair then goes through three key steps: crossover, mutation, and repair, to generate those
new candidates. These newly generated candidates are added to the current population. These new
candidates are then evaluated based on the MSE between the original video output and the output
generated using the selected tokens. Finally, the top-K candidates with the lowest MSEs are selected
for the next generation. After G generations (G = 30), we will pick the best candidate as the solution
for our token allocation. Next, we explain the three key steps in this process, as shown in Fig. 4.

Crossover. This step aims to generate a new candidate by combining two randomly picked candidates
from the previous population. We propose two crossover strategies: uniform crossover and block
crossover. Given two parent candidates, {θi}p0 and {θi}p1, uniform crossover randomly selects each
θi from either parent with equal probability to form a new candidate. In contrast, block crossover
first randomly creates a contiguous subset of timesteps within the range [0, T]. The new candidate
then inherits all θi values within this subset from one parent, and the remaining values from the other
parent. In the crossover step, we randomly pick between uniform crossover and block crossover.

Mutation. Once a new candidate {θi}new is generated, the goal of mutation is to introduce a possibly
better candidate by randomly mutating this candidate. We decide whether each timestep would be
mutated based on the probability, Pmutation = P0− βi

βMax
(P0−Pfinal), where P0 and Pfinal are the initial

and the final probability of mutation, respectively. We find that gradually decreasing the mutation
probability over generations leads to better convergence. βi is the ith evolution generation and βmax
is the maximal evolution generation. If a timestep were mutated, our algorithm would randomly
change its θi from the valid value range, i.e., {0, 0.1, ..., 1.0}.
Repair. A new candidate {θi}new’ from the previous two steps might no longer satisfy the token
budget constraint, Θ$. This repair step would ensure that the total token budget falls within the ac-
ceptable range, [0.9Θ$, 1.1Θ$]. If the total budget exceeds the upper bound, we randomly decrease
one or more θi. Conversely, if the total budget is below the lower bound, we randomly increase one
or more θi values until the constraint is met, as shown in Fig. 4.

Generality. Standard EA typically requires generating ground truth videos for multiple sample
prompts, which introduces additional computational overhead. In our implementation, we simply

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

select 4 prompts from different genres. While including more prompts could theoretically improve
generalization, we observe that it leads to minimal improvement in search outcomes while sub-
stantially increasing the search cost. The reason is that different prompts often exhibit a similar
robustness trend as shown in Fig. 5. Specifically, for each prompt, we skip one timestep during the
denoising process and calculate the MSE loss against the ground truth. By sweeping the timesteps,
we find that different prompts show a similar MSE trend on both OpenSora and Wan (Fig. 5).

Why EA? There are two main reasons why we choose EA over other search methods. First, EA
keeps the original model intact. Search methods, such as NAS (Elsken et al., 2019) or network
pruning (Cheng et al., 2024), would modify the network architecture or model weights. In contrast,
EA can well fit in the token selection problem without altering the original vDiT models. Second,
both NAS and Network Pruning are several orders of magnitude more computationally intensive
than ours. For instance, NASNet (Zoph et al., 2018) requires approximately 2,000 GPU hours to
complete its architecture search, and Diff-Pruning] (Fang et al., 2023) demanded up to 20% of the
original model training time. In contrast, our work only requires, on average, 82 GPU hours. So we
choose lightweight EA instead.

4 EVALUATION

4 .1 EXPERIMENTAL SETUP

Baselines. We evaluate three widely used text-to-video generation frameworks: HunyuanVideo-
T2V (Kong et al., 2024), Wan v2.1 1.3B (Wang et al., 2025) and OpenSora v1.2 (Zheng et al., 2024).
For HunyuanVideo-T2V, we generate 5-second videos with a resolution of 544× 960. For Wan and
OpenSora, we test both short-sequence videos (2-second 480P) and long-sequence videos (4-second
480P). Our evaluation compares with five the state-of-the-art training-free methods: ∆-DIT (Chen
et al., 2024), PAB (Zhao et al., 2024), TOCA (Zou et al., 2024b), SVG (Xi et al., 2025), and
SVG2 (Yang et al., 2025).

EA Configuration. In our EA algorithm, we set the maximal generation to be 30, K and P are
set to be 50 and 30 in each generation. To ensure diversity of candidates in the early stages and
structural stability of good candidates in the later stages, we set P0 and Pfinal to be 0.1 and 0.01,
respectively. Across all four evaluated models, the results converge after searching 30 generations.

Metrics and Hardware. Following prior works (Zhao et al., 2024; Zou et al., 2024b; Xi et al.,
2025; Chen et al., 2024), we use the VBench score (Huang et al., 2024) as the video quality met-
ric. During the experiments, we generate 5 videos for each of the 950 benchmark prompts using
different random seeds. The generated videos are then evaluated across 16 aspects. We report the
average value of the aspects. In addition, we compare the generated videos by different acceleration
methods against the original video results frame-by-frame on image quality, using PSNR, SSIM,
and LPIPS. For performance, we report end-to-end generation latency, GPU memory consumption,
and computational complexity (FLOPs). Our evaluation uses two GPUs as our hardware platforms:
Nvidia A6000 with 48 GB of memory and Nvidia A100 with 80 GB of memory.

4 .2 PERFORMANCE AND ACCURACY

Video Quality. Tbl. 1 presents the overall comparison of generation quality with different methods.
Across all vDiT models, ASTRAEA achieves the highest speedup (2.4×) while maintaining the best
VBench score compared to other baselines. On the VBench metric, almost all ASTRAEA variants
retain the accuracy loss within 0.5%. In contrast, the strongest baseline, TOCA2,85%, achieves only
79.2%, which is 1.0% lower than the original model’s score on Wan (4s). Similarly, on OpenSora,
we can achieve the best accuracy while achieving the highest speedup. Although ∆-DIT achieves
the best VBench score on OpenSora (2s), ∆-DIT achieves no speedup. In contrast, ASTRAEA 70%

is almost the best on all quality metrics with much higher speedup. ASTRAEA 50% achieves the third
best on quality metrics while achieving higher speedup with a large margin. Sec. C .6 shows detailed
VBench scores on five vDiT models. Across VBench scores, our variants are closely matched with
the original baselines. The qualitative comparison of ASTRAEA against other methods is shown in
the Appendix. Qualitatively, ASTRAEA achieves the best consistency against the original models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative evaluation of our method against the state-of-the-arts (Chen et al., 2024;
Zou et al., 2024b; Zhao et al., 2024; Xi et al., 2025; Yang et al., 2025) on three vDiT mod-
els: HunyuanVideo-T2V (Kong et al., 2024), Wan v2.1 1.3B (Wang et al., 2025), and OpenSora
v1.2 (Zheng et al., 2024). and denote the best and second-best results among all methods,
respectively. PAB: The subscript numbers represent the reuse strides for spatial, temporal, and
cross-attention. TOCA: The subscript numbers denote the timestep reuse stride and MLP reuse
ratio. SVG/SVG2: The percentage indicates the skipped attention computation. ASTRAEA: The
percentage indicates the total token budget. HunyuanVideo cannot run on Nvidia A6000.

Model Metric Quality Metrics Performance Metrics

Method VBench
(%)↑

PSNR
(dB)↑ SSIM↑ LPIPS↓ FLOPs

(1015)↓
LA100
(sec.)↓

Speedup
(A100)

LA6000
(sec.)↓

Speedup
(A6000)

Mem.
(GB)↓

HunyuanVideo (5s)

Original 80.28 - - - 217.27 1226.99 1.00 - - 45.81
∆-DIT (Chen et al., 2024) 79.43 26.09 0.862 0.111 145.09 996.44 1.23 - - 46.59
PAB2 6 (Zhao et al., 2024) 79.64 29.91 0.906 0.082 176.40 1048.82 1.17 - - 66.17
PAB5 9 (Zhao et al., 2024) 78.90 26.07 0.778 0.084 145.55 1009.10 1.22 - - 66.17
TOCA (Zou et al., 2024b) - - - - - - - - - OOM
SVG70% (Xi et al., 2025) 79.97 25.78 0.843 0.153 121.51 726.03 1.69 - - 50.87

SVG270% (Yang et al., 2025) 80.80 21.52 0.747 0.259 121.51 804.23 1.53 - - 55.61
ASTRAEA 40% 79.79 27.61 0.895 0.076 113.27 514.84 2.38 - - 69.01
ASTRAEA 50% 80.20 28.71 0.913 0.058 130.10 636.35 1.93 - - 69.01
ASTRAEA 70% 80.43 33.62 0.953 0.026 163.77 881.55 1.39 - - 69.01

Wan (2s)

Original 81.46 - - - 7.29 68.48 1.00 108.30 1.00 7.8
∆-DIT (Chen et al., 2024) 78.37 15.13 0.499 0.408 5.87 60.52 1.13 87.81 1.23 7.81
PAB2 6 (Zhao et al., 2024) 80.05 18.02 0.667 0.246 4.67 50.36 1.36 79.84 1.35 11.59
PAB5 9 (Zhao et al., 2024) 78.61 17.60 0.638 0.290 3.34 40.31 1.70 66.47 1.62 11.59

TOCA2,80% (Zou et al., 2024b) 81.06 18.01 0.651 0.254 4.14 44.43 1.54 75.02 1.44 17.66
TOCA2,85% (Zou et al., 2024b) 80.89 18.02 0.653 0.252 4.07 43.86 1.56 71.28 1.52 17.66

SVG70% (Xi et al., 2025) 77.51 18.87 0.695 0.237 4.11 56.58 1.21 100.08 1.08 21.99
SVG270% (Yang et al., 2025) 79.48 22.23 0.787 0.127 4.11 60.09 1.14 95.84 1.13 20.70

ASTRAEA 40% 80.82 23.77 0.826 0.144 3.05 30.23 2.27 46.05 2.35 9.04
ASTRAEA 50% 81.11 25.67 0.884 0.071 3.85 37.29 2.01 56.77 1.91 9.04
ASTRAEA 70% 81.28 30.83 0.948 0.026 5.38 44.71 1.53 77.91 1.39 9.04

Wan (4s)

Original 80.28 - - - 19.87 155.01 1.00 253.62 1.00 8.97
∆-DIT (Chen et al., 2024) 76.81 16.14 0.602 0.376 15.96 135.96 1.14 205.17 1.24 8.97
PAB2 6 (Zhao et al., 2024) 78.76 19.95 0.761 0.194 12.79 113.41 1.37 183.37 1.38 15.96
PAB5 9 (Zhao et al., 2024) 77.71 19.44 0.739 0.234 8.99 90.72 1.71 148.58 1.71 15.96

TOCA2,80% (Zou et al., 2024b) 79.01 18.10 0.689 0.269 11.04 96.84 1.60 154.83 1.64 38.40
TOCA2,85% (Zou et al., 2024b) 79.28 18.13 0.694 0.264 10.92 95.07 1.63 152.34 1.66 38.40

SVG70% (Xi et al., 2025) 77.74 18.85 0.678 0.255 11.69 129.50 1.20 216.50 1.17 22.38
SVG270% (Yang et al., 2025) 79.17 22.95 0.833 0.116 11.69 116.55 1.33 193.60 1.31 21.27

ASTRAEA 40% 79.78 26.98 0.901 0.072 8.20 67.61 2.29 106.65 2.38 11.71
ASTRAEA 50% 79.96 28.12 0.918 0.053 10.32 83.34 1.86 132.62 1.91 11.71
ASTRAEA 70% 80.18 33.00 0.958 0.021 14.42 114.20 1.36 184.89 1.37 11.71

OpenSora (2s)

Original 78.14 - - - 3.29 54.09 1.00 78.10 1.00 14.89
∆-DIT (Chen et al., 2024) 78.09 29.09 0.906 0.066 2.84 52.83 1.02 77.23 1.01 23.78
PAB246 (Zhao et al., 2024) 77.50 26.78 0.884 0.089 2.91 44.09 1.23 59.87 1.31 27.20
PAB579 (Zhao et al., 2024) 75.52 22.60 0.800 0.191 2.53 37.68 1.44 55.75 1.40 27.20

TOCA3,80% (Zou et al., 2024b) 77.13 20.28 0.766 0.209 1.89 32.04 1.69 53.61 1.45 41.27
TOCA3,85% (Zou et al., 2024b) 76.89 20.02 0.760 0.216 1.84 31.74 1.70 52.89 1.48 41.27

ASTRAEA 40% 76.95 27.23 0.875 0.095 1.50 22.97 2.35 33.67 2.32 20.08
ASTRAEA 50% 77.45 29.52 0.908 0.067 1.82 28.36 1.91 41.13 1.82 20.08
ASTRAEA 70% 78.08 31.78 0.932 0.039 2.48 37.15 1.46 54.54 1.43 20.08

OpenSora (4s)

Original 79.00 - - - 6.59 109.15 1.00 173.07 1.00 16.96
∆-DIT (Chen et al., 2024) 78.46 28.15 0.886 0.084 5.68 108.93 1.00 171.84 1.01 25.83
PAB246 (Zhao et al., 2024) 78.40 28.65 0.896 0.081 5.82 76.48 1.43 139.52 1.24 41.55
PAB579 (Zhao et al., 2024) 76.63 23.36 0.804 0.192 5.10 70.71 1.54 129.52 1.34 41.55

TOCA3,80% (Zou et al., 2024b) 77.69 21.02 0.773 0.212 3.79 65.48 1.67 OOM OOM 61.17
TOCA3,85% (Zou et al., 2024b) 77.68 20.72 0.767 0.219 3.56 64.46 1.69 OOM OOM 61.17

ASTRAEA 40% 76.62 25.65 0.841 0.145 3.00 47.30 2.31 74.63 2.32 27.98
ASTRAEA 50% 78.07 28.51 0.891 0.086 3.65 58.62 1.86 92.54 1.87 27.98
ASTRAEA 70% 78.65 30.92 0.920 0.056 4.97 76.13 1.43 121.57 1.42 27.98

Wan (2s) Wan (4s)HunyuanVideo OpenSora (2s) OpenSora(4s)

Fig. 6: VBench metrics, speedup, and memory consumption of ASTRAEA against other methods.

Image consistency. In addition to VBench scores, we also perform frame-to-frame comparisons
against the outputs from the original models to assess image consistency. Our results show that AS-
TRAEA consistently preserves higher image consistency across all evaluated models. In particular,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: The ablation study on Wan (4s).

Method Quality Metrics Performance Metrics
VBench

(%)↑
PSNR
(dB)↑ SSIM↑ LPIPS↓ FLOPs

(1015)↓
LA100
(sec.)↓

Speedup
(A100)

LA6000
(sec.)↓

Speedup
(A6000)

Mem.
(GB)↓

Original 80.28 - - - 16.54 155.01 - 253.62 - 8.97
SELECTQ&K 79.01 18.10 0.689 0.269 11.04 96.84 1.60 154.83 1.64 38.40

TIMSTEP-LEVEL 79.50 22.71 0.802 0.169 10.32 78.51 1.97 127.72 1.99 8.97
FIXED-TOKEN 77.92 19.75 0.753 0.214 10.32 83.20 1.86 132.19 1.91 11.71

ASTRAEA 79.96 28.12 0.918 0.053 10.32 83.34 1.86 132.62 1.91 11.71

0 250 500 750 1000 1250
Time (seconds)

Astraea

Org.
HunyuanVideo

0 50 100 150
Time (seconds)

Astraea

Org.
Wan

0 20 40 60 80 100
Time (seconds)

Astraea

Org.
OpenSora

token select self attn cross attn mlp other

Fig. 7: VBench metrics, speedup, and memory consumption of ASTRAEA against other methods.

ASTRAEA outperforms all methods by a significant margin on Wan (4s) across all image quality
metrics. On Wan, ASTRAEA 70% and ASTRAEA 50% outperform the strongest baseline by 10 dB.

Performance. Tbl. 1 also shows the performance comparison across various models. ASTRAEA
consistently outperforms all baselines in both inference speed and GPU memory. Across models,
ASTRAEA 40% delivers the highest speedup 2.4× on both A100 and A6000 with the lowest memory
usage. We configure all baselines to achieve their best quality; however, none of them can achieve
over 2× speedup. In contrast, ASTRAEA can be easily configured to achieve any target speedup (see
sensitivity study in Sec. 4 .4) with the minimal quality tradeoff.

Execution Breakdown. Fig. 7 shows the execution breakdown of three vDiT models: three
vDiT models: HunyuanVideo-T2V (Kong et al., 2024), Wan v2.1 1.3B (Wang et al., 2025), and
OpenSora v1.2 (Zheng et al., 2024). Here, Wan and OpenSora are all 4-second videos. From Fig. 7,
the latencies of all original compute blocks are proportionally decreased via our token selection
technique. In addition, our token selection only takes 2.3% of the total execution time. Results
indicate that our selection mechanism has low overhead.

Scalability. ASTRAEA shows strong performance scalability across various vDiT models. As
shown in Fig. 8, our method demonstrates sublinear speedups as the number of GPUs increases
across four different models. Specifically, our ASTRAEA 50% can achieve 13.2× speedup on Open-
Sora with 8 GPUs. Overall, ASTRAEA can achieve over 10× speedup with 8 GPUs across all
models. This shows the high parallelizability of our sparse attention described in Sec. 3 .2.

4 .3 ABLATION STUDY

In the ablation study, we compare three different variants: SELECTQ&K, TIMSTEP-LEVEL and
FIXED-TOKEN. SELECTQ&K sparsely select both Q and K for every block (similar to naive sparse
attention). TIMSTEP-LEVEL only selects timesteps. Each timestep either computes all tokens or
skips computation entirely. FIXED-TOKEN selects tokens at the granularity of timesteps instead of
blocks. All selected tokens within a timestep are computed, while unselected ones are skipped.

Our experiments show that all three variants achieve much lower VBench scores compared to our
method. Specifically, FIXED-TOKEN drops the VBench score significantly (>2.0%). This shows
that the important tokens vary across compute blocks. On the other hand, TIMSTEP-LEVEL drops
the VBench scores modestly, while achieving a slightly higher speedup compared to our method
under the same token budget. This suggests that selecting at the timestep level may be a viable
approach when trading off accuracy for higher performance. However, TIMESTEP-LEVEL suffers
from noticeably lower image consistency compared to ASTRAEA.

4 .4 SENSITIVITY STUDY

Fig. 9 shows the sensitivity of the computation budget (expressed as a percentage) to both the overall
VBench score and execution latency on Wan (2s) and OpenSora (2s). On both models, we observe
that the VBench score degrades rapidly when the computation budget drops below around 30%. In

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

12.26.83.8
1.9

(a) HunyuanVideo.

8.14
6.1

3.5
1.9

(b) Wan (2s).

11.1
6.7

3.8
1.9

(c) Wan (4s).

11.56.5
3.5

1.9

(d) OpenSora (2s).

13.27.1
4.0

1.9

(e) OpenSora (4s).

Fig. 8: The speedup of ASTRAEA against the baseline models across various numbers of GPUs.

(a) VBench vs. latency on
Wan (2s).

10 20 30 40 50 60 70 80
Computation Budget(%)

15
20
25
30
35

PS
NR

(b) PSNR on Wan (2s). (c) VBench vs. latency on
OpenSora (2s).

10 20 30 40 50 60 70 80
Computation Budget(%)

15
20
25
30
35

PS
NR

(d) PSNR on OpenSora
(2s).

Fig. 9: Sensitivity of quality metrics and performance to computational budget percentage.

contrast, execution latency increases linearly with the computation budget. These results suggest
that selecting a computation budget in the range between 30% and 50% offers a favorable trade-off.

Fig. 10 shows the sensitivity of the hyperparameters in Eqn. 4 to PSNR on Wan (4s).

0.0 0.2 0.4 0.6 0.8 1.0
w

25.0
25.2
25.4
25.6
25.8
26.0

PS
NR

Fig. 10: The sensitivity of hyperpa-
rameters in Eqn. 4 on Wan (4s).

Recall, wα is the hyperparameter for the significance term,
Ssig, and wβ is the hyperparameter for the penalty term,
Spenalty, for non-selected tokens. In this sensitivity study, we
fix wα = 1 and only vary wβ . The overall results show
that ASTRAEA achieves the best quality when wα and wβ

are 1 and 0.5, respectively. However, the overall variation is
extremely small (< 0.2 PSNR), indicating that our method
is robust to these hyperparameters. Also, we would like
to emphasize that this penalty term is adapted directly from
TOCA (Zou et al., 2024b), and our sensitivity trend matches
the trend reported in TOCA (Zou et al., 2024b). We claim no
contribution to this term.

5 CONCLUSION

As vDiTs continue to drive breakthroughs in text-to-video generation, their deployment remains
limited by computational demands. This work presents ASTRAEA, a framework that systemati-
cally accelerates vDiT inference through fine-grained token-level selection. By combining our three
optimizations in Sec. 3 , ASTRAEA dynamically determines the optimal token selection at each de-
noising step. We demonstrate that our method not only delivers almost linear speedup in inference
latency under certain performance target but also preserves the highest generation quality.

REFERENCES

Daniel Ashlock. Evolutionary computation for modeling and optimization, volume 571. Springer,
2006.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4599–4603, 2023.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. Delta-dit: A training-free acceleration method tailored for diffusion
transformers. arXiv preprint arXiv:2406.01125, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In Advances
in Neural Information Processing Systems, 2023.

Google. Veo 2: Our state-of-the-art video generation model, 2024. URL https://deepmind.
google/technologies/veo/veo-2/.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free dis-
tillation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop on Structured
Probabilistic Inference & Generative Modeling, 2023.

Amirhossein Habibian, Amir Ghodrati, Noor Fathima, Guillaume Sautiere, Risheek Garrepalli,
Fatih Porikli, and Jens Petersen. Clockwork diffusion: Efficient generation with model-step distil-
lation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8352–8361, 2024.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807–21818, 2024.

Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Michael S Ryoo, and Tian
Xie. Adaptive caching for faster video generation with diffusion transformers. arXiv preprint
arXiv:2411.02397, 2024.

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. Bk-sdm: A lightweight,
fast, and cheap version of stable diffusion. In European Conference on Computer Vision, pp. 381–
399. Springer, 2024.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Kuaishou. Kuaishou Unveils Proprietary Video Generation Model
‘Kling’; Testing Now Available, 2024. URL https://ir.
kuaishou.com/news-releases/news-release-details/
kuaishou-unveils-proprietary-video-generation-model-kling.

Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei
Chao, and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architec-
tures for automated diffusion model acceleration. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7105–7114, 2023.

Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
arXiv preprint arXiv:2412.00131, 2024.

11

https://deepmind.google/technologies/veo/veo-2/
https://deepmind.google/technologies/veo/veo-2/
https://ir.kuaishou.com/news-releases/news-release-details/kuaishou-unveils-proprietary-video-generation-model-kling
https://ir.kuaishou.com/news-releases/news-release-details/kuaishou-unveils-proprietary-video-generation-model-kling
https://ir.kuaishou.com/news-releases/news-release-details/kuaishou-unveils-proprietary-video-generation-model-kling

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. arXiv preprint arXiv:2411.19108, 2024a.

Joseph Liu, Joshua Geddes, Ziyu Guo, Haomiao Jiang, and Mahesh Kumar Nandwana. Smooth-
cache: A universal inference acceleration technique for diffusion transformers. arXiv preprint
arXiv:2411.10510, 2024b.

Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K
Wong. Fastercache: Training-free video diffusion model acceleration with high quality. arXiv
preprint arXiv:2410.19355, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024.

OpenAI. Sora: Bring your imagination to life with text, image, or video, 2024. URL https:
//openai.com/sora/.

Junxiang Qiu, Lin Liu, Shuo Wang, Jinda Lu, Kezhou Chen, and Yanbin Hao. Accelerating diffusion
transformer via gradient-optimized cache. arXiv preprint arXiv:2503.05156, 2025.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tencent. Tencent launches and open-sources Hunyuan video-generation
model, 2024. URL https://technode.com/2024/12/04/
tencent-launches-and-open-sources-hunyuan-video-generation-model/.

Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pan-
deng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou,
Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou,
Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han,
Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. arXiv
preprint arXiv:2503.20314, 2025.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv
preprint arXiv:2301.08727, 2023.

Darrell Whitley, Soraya Rana, John Dzubera, and Keith E Mathias. Evaluating evolutionary algo-
rithms. Artificial intelligence, 85(1-2):245–276, 1996.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerat-
ing diffusion models through block caching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6211–6220, 2024.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. arXiv preprint arXiv:2502.01776, 2025.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. arxiv 2022. arXiv preprint arXiv:2209.00796, 2022.

Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu Li,
Chenfeng Xu, Kelly Peng, et al. Sparse videogen2: Accelerate video generation with sparse
attention via semantic-aware permutation. arXiv preprint arXiv:2505.18875, 2025.

12

https://openai.com/sora/
https://openai.com/sora/
https://technode.com/2024/12/04/tencent-launches-and-open-sources-hunyuan-video-generation-model/
https://technode.com/2024/12/04/tencent-launches-and-open-sources-hunyuan-video-generation-model/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024.

Hanling Zhang, Rundong Su, Zhihang Yuan, Pengtao Chen, Mingzhu Shen Yibo Fan, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattnv2: Head-wise attention compression for multi-modality
diffusion transformers. arXiv preprint arXiv:2503.22796, 2025a.

Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, and Yu-Gang Jiang. Adadiff: Adaptive step selection
for fast diffusion. arXiv preprint arXiv:2311.14768, 2023.

Hui Zhang, Tingwei Gao, Jie Shao, and Zuxuan Wu. Blockdance: Reuse structurally similar spatio-
temporal features to accelerate diffusion transformers. arXiv preprint arXiv:2503.15927, 2025b.

Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhenghong Liu, and Hao
Zhang. Fast video generation with sliding tile attention. arXiv preprint arXiv:2502.04507, 2025c.

Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
attention broadcast. arXiv preprint arXiv:2408.12588, 2024.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
March 2024. URL https://github.com/hpcaitech/Open-Sora.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Toca: Accelerating diffusion
transformers with token-wise feature caching. https://github.com/Shenyi-Z/ToCa,
2024a.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching. arXiv preprint arXiv:2410.05317, 2024b.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching. arXiv preprint arXiv:2412.18911,
2025.

13

https://github.com/hpcaitech/Open-Sora
https://github.com/Shenyi-Z/ToCa

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Efficient Attention via Temporal Token Selection.

Require: Xin, t-1, Xin, t ∈ RN×D ▷ Token features at timestep t− 1 and t
Require: Xout, t-1 ∈ RN×D ▷ Cached output tokens at timestep t− 1
Require: θ ▷ The token budget for this attention block
Require: WQ,WK ,WV ▷ Projection matrices
Ensure: Xout, t ∈ RN×D ▷ Updated token features at t

1: Ssig ← Mean((Xin, t −Xin, t-1), dim = 1) · SLSE,t-1 ▷ Per-token squared difference
2: Stoken ← wα · Ssig + wβ · Spenalty ▷ Calculate our proposed selection metric
3: Isel, Iremain ← TopK(Stoken, θ) ▷ Selected top-θ percentile of token indices

4: Kt ← Xin, t ·WK, Vt ← Xin, t ·WV ▷ Project K and V
5: Qsel, t ← Xin, t[Isel] ·WQ ▷ Select important Query tokens and perform projection

6: Xout, t[Isel]← Softmax(Qsel,t ·K⊤/
√
d)V ▷ Compute attention only for selected Q

7: Xout, t[Iremain]← Xout, t-1[Iremain] ▷ Unselected tokens reuse the previously cached results
8: return Xout, t

A CODE OF ETHICS

I acknowledge that all co-authors of this work have read and commit to adhering to the ICLR Code
of Ethics.

B LLM USAGE

We did not use LLM throughout the entire submission.

C SUPPLEMENTARY

C .1 TOKEN SELECTION WITH SELF-ATTENTION.

Algo. 1 illustrates how our lightweight token selection mechanism is integrated with the self-
attention computation. Overall, our algorithm dynamically selects tokens required for computation
based on their significance and imposes a penalty for consecutive non-selected tokens.

Inputs. Our self-attention algorithm requires two kinds of input tokens, Xt−1 and Xt, which are
the input tokens of the given attention block at the timestep t−1 and t, respectively. Meanwhile, our
algorithm requires a token budget, θ, which is between 0 and 100%. θ stands for select θ-percent of
top important tokens. Xout, t-1 is the previously cached token results from the early timesteps.

Output. The output of our attention is the output token sequence, Xout, t.

Procedure. We now describe the detailed process of how our token selection mechanism is inte-
grated with the self-attention. The overall procedure consists of six steps.

• The first step is to compute the significance, Ssig, of each token. Ssig is the weighted
absolute difference between the input tokens of timestep t−1 and t. The absolute difference
is then weighted by SLSE, t-1.

• Once Ssig is computed, we then obtain our selection metric, Stoken, which is the weighted
sum between Ssig and Spenalty. Here, Spenalty is a penalty term that prevents one particular
token from being selected repeatedly.

• The third step is to find the top-θ percentile of token indices. Here, Isel are the indices of
the selected tokens, and Iremain are the indices of the remaining unselected tokens.

• The fourth step is to compute the key Kt and value Vt. This process is similar to the
conventional attention computation. However, computing query Q is different. Here, we
only compute the queries for the selected tokens, as shown in Line 5.

• The fifth step is to perform the attention computation for the selected tokens.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Evolutionary Search for Token Scheduling.

Require: T ▷ Total timesteps (e.g., 100)
Require: Θ$ ▷ Computation budget (e.g., total cost ≤ 50)
Require: P ▷ Parent candidates for evaluation
Require: K ▷ New population size
Require: G ▷ Number of generations
Ensure: Best schedule Θbest = [θ0, θ1, . . . , θT-1]

1: Initialize population S = {Θ(0), . . . ,Θ(K−1)}, Θ(k) = {θ(k)i } with
∑T−1

i=0 θ
(k)
i ≤ Θ$

2: for g = 1 to G do
3: for all Θ(k) ∈ S do
4: Compute fitness: L(k)

MSE ← Evaluate(Θ(k))
5: end for
6: Select top individuals as parents: P ⊂ S
7: Initialize new population: Snew ← P
8: while |Snew| < K + |P| do
9: Sample parents Θ(a),Θ(b) ∈ P

10: Θchild ← Crossover(Θ(a),Θ(b))
11: Θchild ← Mutate(Θchild)
12: Θchild ← RepairIfNeeded(Θchild,Θ$)
13: if Θchild /∈ Snew then
14: Add Θchild to Snew
15: end if
16: end while
17: S ← Snew
18: end for
19: return argminΘ∈S MSE(Θ)

• The last step is to reuse the cached token results from the previous timesteps for the unse-
lected tokens.

C .2 TOKEN-WISE SEARCH ALGORITHM.

Algo. 2 outlines our token-wise search algorithm via an evolutionary algorithm. This algorithm is
to determine the optimal token budget allocation across denoising timesteps, as discussed in Sec. 3
.3. The overall logic of this algorithm iteratively refines candidates through crossover, mutation, and
repair operations to achieve a target performance with minimal accuracy loss.

Inputs. Our token-wise search algorithm requires four input parameters. T is the total number
of timesteps of the vDiT model. Θ$ is the computational budget that we can afford for a specific
performance target. K is the population size of the potential candidates in the evolutionary algorithm
(EA). G is the total number of generations in EA.

Output. The output of our algorithm is the best schedule of the token selection after G generations.

Procedure. The overall process of our evolutionary algorithm is described as follows:

• The first step is to initialize the first generation, S, as shown in Line 1. Each candidate
Θ(k) represents a token allocation schedule, which is constrained such that the total token
budget across all timesteps,

∑T−1
i=0 θ

(k)
i , does not exceed the overall token budget Θ$.

• Then, we iterate through G number of generations. For each generation, we compute the
mean squared error (MSE) loss L(k)

MSE between the output of the baseline model and each
candidate schedule. Once we obtain the MSE loss of each candidate, we select the top
candidates among P and obtain the subset S.

• Then, we create the next generation of population based on S. Here, we first initialize an
empty set, Snew. Next, we spawn K number of new candidates based on the procedure as
we describe in Sec. 3 .3, following Crossover, Mutate, and Repair steps.

• Once we create the new set of candidates Snew, we then start over the next generation utill
we iterate over G number of generations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• After completing all generations, we select the candidate with the lowest MSE loss as the
final output, denoted as Θbest.

C .3 EXPERIMENTAL SETUP

Hardware Platforms. We conduct both the performance and accuracy measurements on two
hardware platforms:

• NVIDIA A6000 with 38.71 TFLOPS (FP32) and 48 GB memory;

• NVIDIA A100 with 19.49 TFLOPS (FP32) and 80 GB memory.

Video Generation Frameworks. We measure the performance of various acceleration techniques
on three widely-used video generation frameworks:HunyuanVideo-T2V (Kong et al., 2024), Wan
v2.1 1.3 B Wang et al. (2025) and OpenSora v1.2 (Zheng et al., 2024). We test HunyuanVideo-
T2V (Kong et al., 2024) on 5-second videos with 544x960 resolution and both Wan v2.1 1.3 B Wang
et al. (2025) and OpenSora v1.2 (Zheng et al., 2024) on 2-second videos and 4-second videos with
480p resolution.

Baselines. We compare against five different training-free acceleration techniques:

• ∆-DIT (Chen et al., 2024). The parameter b represents the timestep at which the reusing
strategy of the block residuals switches. The parameter N represents the timestep intervals
that skip full computation. In Opensora, we set b and N to be 15 and 3, respectively.
The partial computation starts at timestep 3 and ends at timestep 28. We also preserve the
residuals of the first 10 blocks or the last 10 blocks. In Wan model, we set b and N to be
25 and 3, respectively. The partial computation starts at timestep 5 and ends at timestep 45.
We also preserve the residuals of the first 10 blocks or the last 10 blocks.

• PAB (Zhao et al., 2024). The broadcast range n represents the timestep intervals that
skip full computation. In the OpenSora model, the broadcast ranges of spatial attention,
temporal attention, and cross-attention are set to be (2, 4, 6) or (5, 7, 9). Similarly, in the
Wan model, the broadcast ranges of self-attention and cross-attention are set to be (2, 6) or
(5, 9). For both models, we keep the first 15% and last 15% of the timesteps untouched.

• TOCA (Zou et al., 2024b): This variant is similar to PAB. However, TOCA also performs
a certain level of token-wise skipping similar to our work. We faithfully reimplement their
work according to their released code (Zou et al., 2024a), which only applies the token
selection on cross-attention and MLP layers. In OpenSora, their broadcast ranges of spatial
attention, temporal attention, cross-attention, and MLP are 3, 3, 6, and 3, respectively. The
reuse ratios of MLP in their two variants are set to 80% and 85%, respectively. In Wan
model, their broadcast ranges of spatial attention, temporal attention, cross-attention, and
MLP are 2, 2, 2, and 2, respectively. The reuse ratios of MLP in their two variants are also
set to 80% and 85%, respectively.

• SVG (Xi et al., 2025)/SVG2 (Yang et al., 2025): This variant leverages the sparsity in
self-attention computation and proposes to skip some unimportant tokens during the self-
attention.

Evaluation Metrics. Next, we describe how we obtain various performance and quality metrics.

• Video Quality. We used the VBench score (Huang et al., 2024) as the primary video qual-
ity metric. For each of the 946 benchmark prompts, 5 videos were generated using different
random seeds. The generated videos are then evaluated across 16 aspects. We then report
the average value of the aspects. The VBench score is obtained from the VBENCH bench-
mark suite (Huang et al., 2024). Specific APIs within this suite are used to evaluate aspects
like Motion Fidelity, Temporal Consistency, Aesthetic Quality, etc.

• Image Consistency (PSNR, SSIM, LPIPS). To assess frame-to-frame im-
age consistency, we compared generated videos by different acceleration meth-
ods against the original video results on image quality, using PSNR, SSIM,
and LPIPS. PSNR is calculated using standard image processing libraries,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

e.g.,skimage.metrics.peak signal noise ratio. Similarly, SSIM is cal-
culated using skimage.metrics.structural similarity. LPIPS is measured
using a the lpips library in Python.

• Performance. For performance, we report end-to-end generation latency, GPU memory
consumption, and computational complexity (FLOPs). For end-to-end latency, we mea-
sure the total time elapsed during video generation. Here, we use Python’s torch.cuda
module. We capture the start and end timestamps using torch.cuda.event() and use
the difference between these two as the end-to-end latency. For GPU memory consumption,
we use the built-in measurement to monitor the peak GPU memory usage during inference.
For FLOPs, we design an analytic model to calculate the floating-point operations. Please
see Sec. C .4.

C .4 FLOPS CALCULATION FORMULATIONS

Input Representation. We first define the symbols we used in our FLOPs computation:

• B: Batch size.

• N : Number of tokens (sequence length).

• H: Embedding dimension (hidden dimension).

• Nhead: Number of attention heads.

• d = H/Nhead: Dimension per head.

Attention FLOPs Calculation. We abstract the computation of an attention module into two
parts: linear projections for Query (Q), Key (K), and Value (V), and the subsequent attention score
computations.

Linear Projection. The input X ∈ RB×N×H is projected into Q, K, and V tensors, each of shape
RB×N×H . A single linear transformation of shape [H×H] has a FLOPs count of 2×B×N×H×H .
Therefore, the total FLOPs for Q, K, and V projections can be expressed as,

fqkv = 3× (2×B ×N ×H ×H) = 6BNH2. (8)

Attention Score Computation. This step includes calculating the attention scores, applying soft-
max, computing the attention output, and output linear projection. We next describe these four
parts.

1. Compute Attention Scores (QKT). Initially, the input shapes of Q and K are both
[B,Nhead, N, d]. Their product, QKT , results in a tensor of shape [B,Nhead, N,N]. The
FLOPs for computing QKT per head are 2 × N × d × N . If we sum across all heads
and batches, the total FLOPs becomes: FLOPsQKT = 2 × B ×Nhead ×N × d ×N =
2BNheadN

2d.

2. Softmax Operation. The softmax operation is applied to the QKT scores. Its computa-
tional cost is relatively small compared to matrix multiplications and can be approximated
as: FLOPssoftmax ≈ B × Nhead × N × N . For overall computational complexity, its
contribution is often considered negligible.

3. Attention Output (A · V). There are two inputs in this step: the attention map, A, which
has a shape of [B,Nhead, N,N]; and the value, V , with a shape of [B,Nhead, N, d]. The
attention output has a shape of [B,Nhead, N, d]. The FLOPs to compute A · V is expressed
as, FLOPsAV = 2×B ×Nhead ×N2 × d.

4. Output Linear Projection (Head Merging). Finally, the outputs from all heads are con-
catenated and passed through a linear layer of shape [H ×H] to produce the final attention
output. FLOPsproj = 2×B ×N ×H2.

Total Self-Attention FLOPs. By substituting d = H/Nhead and combining the above calculations,
the total FLOPs for a self-attention layer simplify to,

FLOPsattn-total = 8BNH2 + 4BN2H. (9)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
of Generation

0.001

0.002

0.003

0.004

0.005

M
S

E
 L

os
s

(a) OpenSora (2s, 34 hrs).

0 5 10 15 20 25 30
of Generation

0.001

0.002

0.003

M
S

E
 L

os
s

(b) OpenSora (4s, 85 hrs).

0 5 10 15 20 25 30
of Generation

0.01

0.02

0.03

0.04

0.05

M
S

E
 L

os
s

(c) Wan (2s, 69hrs).

0 5 10 15 20 25 30
of Generation

0.005

0.010

0.015

0.020

M
S

E
 L

os
s

(d) Wan (4s, 139hrs).

Fig. 11: The MSE loss trend in the EA search process. Here, we only show one case: the perfor-
mance target is 50% of the token budget reduction. The trend is similar for other cases. The first
number in parentheses is the video length, and the second number is the total GPU search hours.

Cross-Attention FLOPs Calculation. Cross-attention is similar to self-attention, but its Q and K
often come from different input tokens. Here, we define Nq be the number of query tokens and Nkv

be the number of key/value tokens. The FLOPs calculation can expressed as, FLOPscross-attn =
4BNqH

2 + 4BNkvH
2 + 4BNqNkvH .

MLP FLOPs Calculation. The MLP in a Transformer typically consists of two linear layers
separated by an activation function (e.g., GELU). Here, we ignore the computation of the activation
function and only consider the FLOPs in two linear layers. The total FLOPs for an MLP block are,
FLOPsmlp = 8BNH2 + 8BNH2 = 16BNH2.

C .5 DETAILED EXPERIMENT RESULTS

Video Quality. Tbl. 1 presents the overall comparison of generation quality across different tech-
niques. On Hunyuan, ASTRAEA achieves the highest speedup (roughly 2.4×) while maintaining a
better VBench score compared to other baselines. On VBench metric, all variants, ASTRAEA 40%,
ASTRAEA 50% and ASTRAEA 70%, can retain the accuracy loss within 0.5%. On other metrics, AS-
TRAEA also achieves the best quality. For instance, ASTRAEA 50% achieves 1.9× speedup and has
better quality metrics compared to all other methods. In contrast, the strongest baseline, SVG70%,
achieves only 1.6× speedup and has much lower generative quality (e.g., PSNR, SSIM) compared
to ASTRAEA 50%. On Wan, both 2-second and 4-second video sequences, ASTRAEA 50% achieves
a better quality in terms of all quality metrics compared to other baselines. Specifically, on the
PSNR metric, ASTRAEA is almost 10 dB higher than other baselines. This shows that ASTRAEA
can preserve a better quality. Similarly, on OpenSora, we can achieve almost the best accuracy while
achieving the highest speedup. Although ∆-DIT achieves the best VBench score on OpenSora (2s),
∆-DIT can only achieve 1.01× speedup. In contrast, ASTRAEA 70% is almost the best on all quality
metrics with much higher speedup. ASTRAEA 50% can achieve the second or third best on quality
metrics while achieving higher speedup with a large margin. More qualitative comparisons of AS-
TRAEA against other methods are shown in Fig. 12, Fig. 13, and Fig. 14. Qualitatively, ASTRAEA
achieves better consistency with the original models compared to other methods.

Image consistency. In addition to evaluating VBench scores, we also perform frame-to-frame
comparisons against the outputs from the original models to assess image consistency. Our results
show that ASTRAEA consistently preserves higher image consistency across all evaluated models.
In particular, ASTRAEA outperforms all baseline methods by a significant margin on Wan (2s), Wan
(4s), and OpenSora (2s) across all image quality metrics. For instance, on both Wan (2s) and Wan
(4s), the ASTRAEA 70% outperforms the strongest baseline by 10 dB.

Performance. Tbl. 1 also shows the performance comparison across various models. ASTRAEA
consistently outperforms all baselines in both inference speed and GPU memory. For Wan (2s),
ASTRAEA 50% can deliver the highest speedup 1.9× on both A100 and A6000 with lowest memory
usage. Meanwhile, it still delivers the second-best quality against the other methods. On other
models, our method also achieves significantly higher speedup. Specifically, when we set the token
budget to be 40%, we can achieve 2.4× speedup while the model accuracy is still competitive.

EA Search Time. In addition, Fig. 11 shows the EA search process of one case, 50% of the
token budget reduction. Across all four evaluated models, the results converge after approximately
10 generations, indicating that a certain reduction of search time is possible. All EA searches are
conducted on 8 A100 GPUs with an average search time of 82 GPU hours.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

While EA might appear computationally expensive at first glance, we emphasize that EA achieves
near-optimal schedules without any human-in-the-loop tuning. In contrast, prior training-free tech-
niques, despite not requiring explicit training, rely on extensive manual effort to investigate corre-
lations or redundancies inside models. This implicit “human training” cost is rarely accounted for,
whereas EA automates this process and avoids suboptimal hand-crafted designs.

Moreover, EA can be accelerated through two complementary techniques. First, EA is inherently
parallelizable: different individuals can be evaluated independently on different GPUs. Using 8
GPUs yields a 7.6× speedup, enabling the entire EA procedure to finish within one day. Sec-
ond, many EA candidates share identical prefix schedules (e.g., the same decisions in the first
20 timesteps). We can evaluate those candidates together by saving the intermediate results to
avoid redundant computations. Overall, we find that dynamic programming can further provide 1.5x
speedup. Combining both techniques, the EA process can achieve up to 11.4× overall acceleration.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Fig. 12: The qualitative comparison of ASTRAEA against other methods on HunyuanVideo.

C .6 FULL PERFORMANCE METRICS

In the remaining section, we show the detailed experimental results.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Fig. 13: The qualitative comparison of ASTRAEA against other methods on Wan (4s).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Fig. 14: The qualitative comparison of ASTRAEA against other methods on OpenSora (4s).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 3: Individual VBench scores for HunyuanVideo model.
Metric Original ASTRAEA 70% ASTRAEA 50% ASTRAEA 40% SVG 70% SVG2 70% PAB26 PAB59 ∆-DiT
Subject Consistency 0.9164 0.9236 0.9270 0.9216 0.9109 0.9622 0.9153 0.9142 0.9015
Motion Smoothness 0.9901 0.9900 0.9902 0.9901 0.9886 0.9919 0.9905 0.9915 0.9809
Dynamic Degree 0.8056 0.8571 0.8571 0.8571 0.7778 0.5000 0.7917 0.8115 0.7956
Aesthetic Quality 0.6234 0.6126 0.5840 0.5765 0.6181 0.6061 0.6165 0.6225 0.6206
Imaging Quality 0.6250 0.6494 0.6219 0.6197 0.6152 0.6524 0.6032 0.5994 0.6290
Overall Consistency 0.2676 0.2555 0.2551 0.2559 0.2715 0.2440 0.2663 0.2660 0.2674
Background Consistency 0.9633 0.9570 0.9668 0.9651 0.9583 0.9744 0.9620 0.9585 0.9633
Object Class 0.6305 0.6172 0.6133 0.6367 0.7112 0.7383 0.6614 0.6385 0.6915
Multiple Objects 0.5297 0.5469 0.5586 0.5703 0.5168 0.7930 0.5030 0.3111 0.5427
Color 0.8790 0.7641 0.7557 0.7203 0.8690 0.8934 0.8917 0.8836 0.8575
Spatial Relationship 0.6583 0.7611 0.7701 0.7705 0.6574 0.6587 0.6337 0.6470 0.6767
Scene 0.2885 0.2500 0.2831 0.2610 0.3009 0.3787 0.2696 0.1322 0.2929
Temporal Style 0.2367 0.2350 0.2359 0.2337 0.2421 0.2371 0.2357 0.2333 0.2371
Human Action 0.8900 0.8500 0.9000 0.8500 0.9200 0.9500 0.8400 0.8200 0.8800
Temporal Flickering 0.9861 0.9872 0.9874 0.9874 0.9852 0.9926 0.9869 0.9883 0.9761
Appearance Style 0.1908 0.1826 0.1841 0.1827 0.1942 0.1972 0.1901 0.1896 0.1898
Quality Score 0.8371 0.8435 0.8377 0.8348 0.8294 0.8293 0.8316 0.8336 0.8373
Semantic Score 0.6657 0.6477 0.6594 0.6499 0.6812 0.7228 0.6557 0.6107 0.6727
Total Score 0.8028 0.8043 0.8020 0.7979 0.7997 0.8080 0.7964 0.7890 0.7943

Table 4: Individual VBench scores for Wan (4s) model.
Metric Original ASTRAEA 70% ASTRAEA 50% ASTRAEA 40% ToCa 80% ToCa 85% SVG 70% SVG2 PAB26 PAB59 ∆-DiT
Subject Consistency 0.9576 0.9579 0.9585 0.9591 0.9478 0.9480 0.9374 0.9402 0.9556 0.9557 0.9510
Motion Smoothness 0.9826 0.9828 0.9830 0.9832 0.9816 0.9821 0.9700 0.9776 0.9831 0.9839 0.9802
Dynamic Degree 0.6389 0.6389 0.6250 0.6111 0.5694 0.5833 0.7857 0.7500 0.5694 0.5139 0.5714
Aesthetic Quality 0.6116 0.6123 0.6162 0.6169 0.5966 0.6004 0.5544 0.5887 0.5921 0.5837 0.5566
Imaging Quality 0.6410 0.6392 0.6331 0.6316 0.6348 0.6363 0.6285 0.6294 0.6387 0.6214 0.5730
Overall Consistency 0.2361 0.2362 0.2355 0.2343 0.2396 0.2387 0.2227 0.2299 0.2248 0.2191 0.2291
Background Consistency 0.9888 0.9888 0.9892 0.9894 0.9668 0.9683 0.9481 0.9714 0.9901 0.9901 0.9798
Object Class 0.7587 0.7658 0.7619 0.7611 0.7682 0.7682 0.6367 0.7239 0.7650 0.7350 0.7969
Multiple Objects 0.5663 0.5518 0.5450 0.5396 0.5450 0.5587 0.4219 0.5648 0.4482 0.4002 0.3516
Color 0.8754 0.8751 0.8715 0.8895 0.8990 0.9079 0.9042 0.8547 0.8709 0.8786 0.8438
Spatial Relationship 0.7286 0.7224 0.7001 0.6841 0.7717 0.7846 0.6489 0.7167 0.6608 0.6171 0.7447
Scene 0.2594 0.2485 0.2485 0.2238 0.2347 0.2166 0.1544 0.1330 0.2122 0.2064 0.1066
Temporal Style 0.2416 0.2408 0.2394 0.2384 0.2451 0.2445 0.2276 0.2319 0.2269 0.2172 0.2403
Human Action 0.7400 0.7300 0.7300 0.7300 0.7400 0.7500 0.7500 0.7400 0.6800 0.6700 0.6500
Temporal Flickering 0.9943 0.9938 0.9929 0.9924 0.9903 0.9910 0.9898 0.9915 0.9941 0.9929 0.9898
Appearance Style 0.1992 0.1988 0.1987 0.1982 0.1995 0.1991 0.2239 0.2074 0.1979 0.1986 0.2046
Quality Score 0.8370 0.8368 0.8353 0.8342 0.8199 0.8227 0.8170 0.8297 0.8284 0.8202 0.8067
Semantic Score 0.6660 0.6614 0.6567 0.6521 0.6710 0.6730 0.6189 0.6396 0.6240 0.6050 0.6135
Total Score 0.8028 0.8018 0.7996 0.7978 0.7901 0.7928 0.7774 0.7917 0.7876 0.7771 0.7681

Table 5: Individual VBench scores for Wan (2s) model.
Metric Original ASTRAEA 70% ASTRAEA 50% ASTRAEA 40% ToCa 80% ToCa 85% SVG 70% SVG2 70% PAB26 PAB59 ∆-DiT
Subject Consistency 0.9719 0.9722 0.9719 0.9726 0.9575 0.9506 0.9511 0.9513 0.9705 0.9684 0.9605
Motion Smoothness 0.9833 0.9832 0.9832 0.9816 0.9811 0.9819 0.9721 0.9768 0.9835 0.9836 0.9779
Dynamic Degree 0.5972 0.5833 0.5833 0.5833 0.7143 0.6389 0.7143 0.8333 0.6250 0.6250 0.5417
Aesthetic Quality 0.6279 0.6272 0.6278 0.6351 0.6142 0.6208 0.5386 0.5807 0.6057 0.5882 0.5906
Imaging Quality 0.6801 0.6788 0.6773 0.6642 0.6723 0.6717 0.6390 0.6421 0.6793 0.6630 0.6463
Overall Consistency 0.2383 0.2378 0.2386 0.2370 0.2175 0.2409 0.2153 0.2245 0.2266 0.2198 0.2335
Background Consistency 0.9884 0.9889 0.9887 0.9897 0.9656 0.9662 0.9629 0.9703 0.9885 0.9884 0.9789
Object Class 0.7595 0.7634 0.7832 0.7627 0.8906 0.8022 0.7148 0.7453 0.7381 0.6843 0.7191
Multiple Objects 0.6654 0.6700 0.6441 0.6159 0.4492 0.6601 0.3906 0.4794 0.4192 0.3377 0.4710
Color 0.9188 0.8857 0.8714 0.9350 0.8978 0.8705 0.8095 0.8440 0.8662 0.8431 0.8227
Spatial Relationship 0.7988 0.8023 0.7888 0.7441 0.7573 0.8283 0.5690 0.6221 0.7446 0.6400 0.7368
Scene 0.3089 0.3045 0.3067 0.2907 0.3971 0.3743 0.2132 0.1453 0.2871 0.2536 0.2304
Temporal Style 0.2345 0.2337 0.2328 0.2309 0.2285 0.2322 0.2328 0.2318 0.2175 0.2061 0.2202
Human Action 0.7800 0.7900 0.7600 0.7900 0.8000 0.7500 0.7000 0.7100 0.6800 0.5900 0.7200
Temporal Flickering 0.9900 0.9893 0.9887 0.9853 0.9848 0.9862 0.9900 0.9939 0.9907 0.9891 0.9876
Appearance Style 0.1994 0.1985 0.1981 0.1986 0.1962 0.2005 0.2223 0.2070 0.1951 0.1956 0.2049
Quality Score 0.8434 0.8418 0.8414 0.8385 0.8385 0.8335 0.8174 0.8392 0.8422 0.8360 0.8203
Semantic Score 0.6994 0.6968 0.6898 0.6868 0.6991 0.7105 0.6058 0.6173 0.6338 0.5867 0.6371
Total Score 0.8146 0.8128 0.8111 0.8082 0.8106 0.8089 0.7751 0.7948 0.8005 0.7861 0.7837

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Individual VBench scores for OpenSora (4s) model.
Metric Original ASTRAEA 70% ASTRAEA 50% ASTRAEA 40% ToCa 80% ToCa 85% PAB246 PAB579 ∆-DiT
Subject Consistency 0.9478 0.9471 0.9459 0.9340 0.9475 0.9462 0.9482 0.9360 0.9504
Motion Smoothness 0.9851 0.9872 0.9865 0.9751 0.9844 0.9842 0.9885 0.9889 0.9817
Dynamic Degree 0.5417 0.5000 0.4722 0.4861 0.3750 0.3750 0.4583 0.4028 0.4028
Aesthetic Quality 0.5560 0.5533 0.5483 0.5315 0.5637 0.5633 0.5509 0.5322 0.5601
Imaging Quality 0.5932 0.5831 0.5750 0.5498 0.5535 0.5537 0.5783 0.5509 0.5974
Overall Consistency 0.2742 0.2734 0.2718 0.2656 0.2716 0.2720 0.2734 0.2611 0.2635
Background Consistency 0.9751 0.9745 0.9718 0.9699 0.9695 0.9700 0.9713 0.9637 0.9767
Object Class 0.8062 0.8014 0.7903 0.8030 0.8687 0.8552 0.7967 0.7856 0.8972
Multiple Objects 0.4977 0.4947 0.4703 0.4566 0.5213 0.5358 0.5137 0.4764 0.5793
Color 0.7925 0.8047 0.8221 0.7814 0.8806 0.8659 0.8203 0.7871 0.8179
Spatial Relationship 0.6326 0.6149 0.6036 0.5724 0.6168 0.6308 0.6035 0.5979 0.5705
Scene 0.4135 0.4302 0.4215 0.4208 0.3874 0.3917 0.4484 0.3953 0.4564
Temporal Style 0.2412 0.2406 0.2390 0.2351 0.2481 0.2481 0.2393 0.2319 0.2384
Human Action 0.8800 0.8800 0.8700 0.8600 0.8600 0.8500 0.8800 0.8400 0.8900
Temporal Flickering 0.9952 0.9951 0.9946 0.9922 0.9946 0.9947 0.9951 0.9946 0.9937
Appearance Style 0.2380 0.2379 0.2374 0.2357 0.2381 0.2394 0.2377 0.2357 0.2361
Quality Score 0.8107 0.8064 0.8009 0.7859 0.7911 0.7909 0.8023 0.7871 0.7997
Semantic Score 0.7068 0.7071 0.7003 0.6873 0.7200 0.7202 0.7111 0.6830 0.7239
Total Score 0.7899 0.7865 0.7807 0.7662 0.7769 0.7768 0.7840 0.7663 0.7846

Table 7: Individual VBench scores for OpenSora (2s) model.
Metric Original ASTRAEA 70% ASTRAEA 50% ASTRAEA 40% ToCa 80% ToCa 85% PAB246 PAB579 ∆-DiT
Subject Consistency 0.9664 0.9675 0.9682 0.9615 0.9576 0.9570 0.9662 0.9591 0.9615
Motion Smoothness 0.9845 0.9864 0.9878 0.9826 0.9854 0.9853 0.9875 0.9885 0.9802
Dynamic Degree 0.3333 0.2917 0.3056 0.3611 0.3194 0.2917 0.2500 0.4286 0.4444
Aesthetic Quality 0.5681 0.5684 0.5676 0.5582 0.5592 0.5584 0.5683 0.5398 0.5463
Imaging Quality 0.5992 0.5930 0.5827 0.5771 0.5545 0.5554 0.5798 0.5376 0.5550
Overall Consistency 0.2722 0.2721 0.2701 0.2698 0.2723 0.2724 0.2709 0.2624 0.2469
Background Consistency 0.9790 0.9781 0.9734 0.9753 0.9717 0.9691 0.9766 0.9630 0.9738
Object Class 0.8347 0.8402 0.8402 0.8354 0.8473 0.8544 0.8576 0.8331 0.9531
Multiple Objects 0.4177 0.4238 0.4040 0.4070 0.4451 0.4261 0.4200 0.3636 0.6602
Color 0.7947 0.8013 0.7762 0.7693 0.7373 0.7539 0.7383 0.7995 0.7538
Spatial Relationship 0.5854 0.5779 0.5702 0.5673 0.5225 0.5381 0.5793 0.5231 0.4717
Scene 0.4295 0.4215 0.3910 0.3903 0.4331 0.4331 0.4368 0.3474 0.5441
Temporal Style 0.2470 0.2466 0.2449 0.2442 0.2455 0.2455 0.2435 0.2351 0.2389
Human Action 0.8600 0.8700 0.8700 0.8600 0.8400 0.8500 0.8400 0.8300 0.9000
Temporal Flickering 0.9947 0.9946 0.9947 0.9932 0.9942 0.9943 0.9946 0.9940 0.9931
Appearance Style 0.2407 0.2402 0.2397 0.2385 0.2420 0.2423 0.2403 0.2384 0.2406
Quality Score 0.8022 0.8012 0.7962 0.7908 0.7922 0.7883 0.7960 0.7780 0.7934
Semantic Score 0.6982 0.6991 0.6878 0.6845 0.6876 0.6912 0.6912 0.6637 0.7308
Total Score 0.7814 0.7808 0.7745 0.7695 0.7713 0.7689 0.7750 0.7552 0.7809

Table 8: FLOPs Breakdown for HunyuanVideo model across different methods (in 1015 FLOPs).

Method Self Cross MLP
Original 168.34 - 45.93
Delta-DiT 107.73 - 37.36
PAB 26 131.31 - 45.09
PAB 59 101.01 - 44.55
SVG 70% 75.58 - 45.93
ASTRAEA 0.4 67.34 - 45.93
ASTRAEA 0.5 84.17 - 45.93
ASTRAEA 0.7 117.84 - 45.93

Table 9: FLOPs Breakdown for Wan (2s) model across different methods (in 1015 FLOPs).

Method Self Cross MLP
Original 3.6830 0.1491 1.5900
Delta-DiT 2.9464 0.1192 1.2720
ToCa 0.8 1.9520 0.0790 0.9921
ToCa 0.85 1.9520 0.0790 0.9548
PAB 246 2.3940 0.0621 1.5900
PAB 579 1.6205 0.0563 1.5900
ASTRAEA 0.4 1.4732 0.0596 0.6360
ASTRAEA 0.5 1.8415 0.0745 0.7950
ASTRAEA 0.7 2.5781 0.1043 1.1130

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: FLOPs Breakdown for Wan (4s) model across different methods (in 1015 FLOPs).

Method Self Cross MLP
Original 13.0573 0.2816 3.0033
Delta-DiT 10.4458 0.2252 2.4026
ToCa 0.8 6.9204 0.1492 1.8741
ToCa 0.85 6.9204 0.1492 1.8035
PAB 246 8.4872 0.1173 3.0033
PAB 579 5.7452 0.1064 3.0033
ASTRAEA 0.4 5.2229 0.1126 1.2013
ASTRAEA 0.5 6.5286 0.1408 1.5016
ASTRAEA 0.7 9.1401 0.1971 2.1023

Table 11: FLOPs Breakdown for OpenSora (2s) model across different methods (in 1015 FLOPs).

Method Spatial Temporal Cross MLP
Original 0.7190 0.4282 0.4380 0.8508
Delta-DiT 0.5512 0.3283 0.3358 0.6523
ToCa 0.8 0.2876 0.1713 0.3504 0.4424
ToCa 0.85 0.2450 0.1287 0.1802 0.4169
PAB 246 0.4673 0.2034 0.1825 0.8508
PAB 579 0.3163 0.1713 0.1654 0.8508
ASTRAEA 0.4 0.2876 0.1713 0.1752 0.3403
ASTRAEA 0.5 0.3595 0.2141 0.2190 0.4254
ASTRAEA 0.7 0.5033 0.2997 0.3066 0.5956

Table 12: FLOPs Breakdown for OpenSora (4s) model across different methods (in 1015 FLOPs).

Method Spatial Temporal Cross MLP
Original 1.4379 0.8619 0.8759 1.7016
Delta-DiT 1.1024 0.6608 0.6715 1.3046
ToCa 0.8 0.5752 0.3447 0.7007 0.8848
ToCa 0.85 0.2450 0.1287 0.1802 0.8338
PAB 246 0.9347 0.4094 0.3650 1.7016
PAB 579 0.6327 0.3447 0.3309 1.7016
ASTRAEA 0.4 0.5752 0.3447 0.3504 0.6806
ASTRAEA 0.5 0.7190 0.4309 0.4380 0.8508
ASTRAEA 0.7 1.0065 0.6033 0.6131 1.1911

25

	Introduction
	Related Work
	Methodology
	Preliminary
	Token Selection
	Token-wise Search Framework

	Evaluation
	Experimental Setup
	Performance and Accuracy
	Ablation Study
	Sensitivity Study

	Conclusion
	Code Of Ethics
	LLM Usage
	Supplementary
	Token Selection with Self-Attention.
	Token-Wise Search Algorithm.
	Experimental Setup
	FLOPs Calculation Formulations
	Detailed Experiment Results
	Full Performance Metrics

