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ABSTRACT

Pretraining large language models (LLMs) on vast and heterogeneous datasets
is crucial for achieving state-of-the-art performance across diverse downstream
tasks. However, current training paradigms treat all samples equally, overlooking
the importance or relevance of individual samples throughout the training process.
Existing reweighting strategies, which primarily focus on group-level data impor-
tance, fail to leverage fine-grained instance-level information and do not adapt
dynamically to individual sample importance as training progresses. In this paper,
we introduce novel algorithms for dynamic, instance-level data reweighting aimed
at improving both the efficiency and effectiveness of LLM pretraining. Our meth-
ods adjust the weight of each training sample based on its loss value in an online
fashion, allowing the model to dynamically focus on more informative or important
samples at the current training stage. In particular, our framework allows us to sys-
tematically devise reweighting strategies deprioritizing redundant or uninformative
data, which we find tend to work best. Furthermore, we develop a new theoretical
framework for analyzing the impact of loss-based reweighting on the convergence
of gradient-based optimization, providing the first formal characterization of how
these strategies affect convergence bounds. We empirically validate our approach
across a spectrum of tasks, from large-scale LLM pretraining to smaller-scale linear
regression problems, demonstrating that loss-based reweighting can lead to faster
convergence and improved performance.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) (Brown et al., 2020; Raffel et al., 2020;
Touvron et al., 2023; Chowdhery et al., 2023; Achiam et al., 2023; Dubey et al., 2024) has revolution-
ized natural language processing and artificial intelligence (AI) capabilities. These models, trained
on billions or trillions of tokens, exhibit remarkable generalization capabilities across a wide range of
downstream tasks. As datasets grow to web-scale proportions and models become increasingly large,
the need for more efficient training techniques has become paramount.

Existing approaches to LLM pretraining predominantly involve two phases: heavy data curation
(Longpre et al., 2023; Dubey et al., 2024; Wettig et al., 2024; Penedo et al., 2024) and training
with uniform sampling on the constructed corpus. Data curation for LLM pretraining typically
involves a combination of automated filtering techniques and manual quality checks. For instance,
heuristic-based filters are often employed to remove low-quality content and deduplicate data. Some
approaches use perplexity-based filtering or auxiliary classifiers (Gao et al., 2020; Penedo et al., 2023)
to identify high-quality samples. Manual curation is then applied to refine these filtered datasets,
often involving human evaluation of subsets of the data to ensure quality and relevance. However,
these approaches face significant limitations due to scalability issues and the static nature of data
selection. First, as the pretraining corpora grow to hundreds of billions of tokens, manual curation
becomes increasingly infeasible. The sheer volume of data makes it impractical for humans to review
even a small fraction of the dataset. Second, data curation methods cannot adapt to the changing
importance of samples during the training process, e.g., as the model improves over time certain
samples that were useful early in training can become irrelevant in later training stages.

In addition, conventional gradient-based training pipelines often treat all data points as equally
informative regardless of their individual importance at current training stage. This uniform sampling
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strategy, while simple, overlooks the nuanced diversity within large-scale datasets and potentially
wastes computational resources on less informative samples. Recent work (Xie et al., 2023; Fan et al.,
2023) has explored group-level reweighting strategies, which adjust the importance of entire domains
or groups of data. While these methods have shown promise, they operate at a coarse level, do not
fully leverage the fine-grained information available at the instance level, and still lack dynamicity in
importance assignment during the training phase.

Given these limitations, this paper seeks to address the following fundamental question:

How can we dynamically leverage instance-level information to accelerate training and improve
model performance without incurring significant computational overhead while potentially reducing
the need for extensive data curation?

Answering this question presents several intertwined technical challenges, particularly in the context
of LLM pretraining. First, unlike in computer vision, where samples are seen repeatedly over the
course of training (often hundreds of times), in LLM pretraining, individual samples are typically en-
countered only once due to the vast size of the datasets. This renders dynamic reweighting approaches
primarily devised for multi-epoch training or relying on historical statistics, such as previous loss
or gradient norms (Loshchilov & Hutter, 2015; Jiang et al., 2019), inadequate within the context of
LLM pretraining. Second, storing previous statistics for individual samples becomes computationally
infeasible when working with web-scale datasets, and methods requiring the persistent storage of
sample-level data would significantly inflate resource requirements. Furthermore, for a general-
purpose LLM, leveraging small hold-out validation sets to compute importance weights through, e.g.,
bilevel optimization as in Grangier et al. (2023), is ineffective.

Addressing these challenges, our work makes the following significant contributions:

Instance-Level Loss-Based Reweighting Strategies. We introduce and systematically study a
variety of instance-level, loss-based reweighting strategies for improving both the efficiency and
effectiveness of ML training, especially within the context of LLM pretraining. Each strategy is
meticulously designed to achieve specific goals, such as focusing the learning dynamics on different
parts of the loss distribution. This builds on recent work that emphasizes the importance of data
diversity and sample importance in pretraining and extends previous works on group-level reweighting
for LLM pretraining, such as DoReMi Xie et al. (2023), DoGE Fan et al. (2023). It also adds a
new dimension by incorporating more fine-grained per-sample dynamics rather than domain-level
adjustments. In fact, combining our reweighting schemes with DoGE/DoReMi achieves better or
comparable performance on various few-shot reasoning benchmarks when we train on the SlimPajama
dataset. Moreover, our study reveals that, in general, strategies down-weighting the importance of
low-loss samples tend to consistently yield performance improvements across various scenarios.

New Theoretical Framework. We develop a new theoretical framework for analyzing the effects of
loss-based reweighting on training acceleration. To the best of our knowledge, this represents the
first explicit characterization of loss reweighting effects within the convergence bounds of gradient
methods under widely adopted loss geometries. Our derived convergence bounds provide theoretical
justification for the empirical success of downweighting low-loss samples, demonstrating faster
convergence under this strategy.

Empirical Validation. We conduct extensive experiments that corroborate our claims and support our
theoretical findings. Notably, we demonstrate that the advantages of downweighting low-loss samples
are observed across a spectrum of problem scales and complexities: (i) in complex, large-scale
problems such as LLMs pretraining, where our approach leads to improved performance and faster
convergence; (ii) in simple, small-scale problems like linear regression, highlighting the fundamental
nature of our findings.

2 RELATED WORK

Training Data Re-weighting/Selection for LLMs. Several recent studies (Xie et al., 2023; Chen
et al., 2023; Fan et al., 2023; Thakkar et al., 2023) have explored various reweighting techniques
to enhance the generalization and efficiency of language models pretraining. For instance, Xie
et al. (2023) and Fan et al. (2023) optimize the composition of pretraining corpora to achieve
better performance across pretraining domains or for out-of-domain generalization. Chen et al.
(2023) introduces a framework for ordered skill learning, optimizing data selection based on how
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effectively it teaches interdependent skills for continual pretraining and fine-tuning regimes. Although
effective, these techniques operate at the group level, whereas our work explores reweighting at
the instance level, offering finer control over how individual samples are treated based on their
loss values. Furthermore, we demonstrate that combining domain-level methods such as DoReMi
(Xie et al., 2023) or DoGE (Fan et al., 2023) with our instance-level reweighting methods results
in improved performance across multiple domains. Instance-level reweighting has been used in
post-training settings of LLMs (Chen et al., 2024; Jiang et al., 2024). Jiang et al. (2024) boost the
self-improvement abilities of LLMs by employing sample reweighting to filter out self-generated data
that have correct answers but exhibit high distribution shift. Chen et al. (2024) reweight individual
samples during continual training/instruction-tuning to focus on medium loss samples. In contrast,
our work systematically studies the effects of various sample-level, loss-based reweighting strategies
on the efficiency and effectiveness of LLMs pretraining. The approach in Fan & Jaggi (2023) offers
a curriculum learning framework that prioritizes samples with a higher learnability score, which
is precomputed using another auxiliary model similar to DoReMi and DoGE. While we do not
explicitly address curriculum learning in this work, our re-weighting mechanisms naturally allow for
implementing a form of loss-based curriculum learning algorithms without the need to train and store
additional proxy models as in Fan & Jaggi (2023).

Sample-level Re-weighting as generic ML solution. Sample-level reweighting has been extensively
explored in other machine learning areas. For image classification, Loshchilov & Hutter (2015), Jiang
et al. (2019), and Katharopoulos & Fleuret (2018) are pioneering approaches that prioritize samples
based on loss values or gradient norms with the goal of accelerating training speed. Although these
methods emphasize the importance of selecting high-loss samples during training, they typically
require additional forward/backward passes on each training sample and are primarily designed for
multi-epoch training, limiting their applicability with the vast pretraining corpus used for LLMs.
Using bilevel optimization, Grangier et al. (2023) adapt the data distribution during training to
focus more on relevant samples for a target data distribution. Similarly, Ren et al. (2018) employ a
meta-learning approach to adjust sample weights based on validation set performance, which excels
in noisy and imbalanced datasets. In this work, we introduce and investigate various light-weight,
loss-based reweighting techniques that add little to no computational overhead compared to uniform
sampling and do not require any nested optimization routines, often arising with bilevel optimization
or/and meta-learning. Sample-level reweighting has also been explored in the context of adversarial
machine learning (Zhang et al., 2020; Liu et al., 2021; Zeng et al., 2021; Sow et al., 2023), domain
adaptation (Jiang & Zhai, 2007; Fang et al., 2020), data augmentation (Yi et al., 2021), and imbalanced
classification (Qi et al., 2021; Ren et al., 2018). Our reweighting mechanisms also have the potential
to be studied under these contexts, which we leave as future work.

3 PRELEMINARIES: AUTOREGRESSIVE LANGUAGE MODELING & GOAL

Large language models (LLMs) are typically trained using autoregressive language modeling, where
the objective is to predict the next token in a sequence given the previous tokens. Formally, given a
sample sequence of tokens x = (x1, x2, . . . , xT ), where xt represents the t-th token in the sequence,
the LLM model parameterized by θ ∈ Rd is trained to maximize the likelihood of the sequence:

PLLM(x; θ) =

T∏
t=1

P (xt|x1, . . . , xt−1; θ).

where P (xt|x1, . . . , xt−1; θ) denotes the conditional probability of generating token xt given θ and
all previously seen tokens x1, . . . , xt−1. In practice, autoregressive LLMs typically compute the loss
f(x; θ) for sample x using the negative log-likelihood (NLL) of the predicted tokens.

f(x; θ) = − logPLLM(x; θ) = −
T∑

t=1

logP (xt|x1, . . . , xt−1; θ).

Based on these sample losses, conventional SGD-like algorithms will then update the model parame-
ters with the average gradient over all samples in a batch B at each training step t, i.e.,

θt+1 = θt − η

|B|
∑
i∈B

∇f(xi; θ
t), (1)
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which results in each sample contributing equally to the overall training update. While this approach
enjoys simplicity, it inherently treats all data points as equally informative, regardless of their
individual relevance or difficulty. This uniform treatment overlooks the nuanced diversity within the
data, which is particularly critical for current LLMs trained on vast and heterogeneous web-scale
datasets. In such scenarios, the ability to dynamically differentiate between high-value and lesser-
value data samples at different training stages is paramount for optimizing training efficiency and
model performance.

In contrast, our work introduces and benchmarks a variety of simple, lightweight reweighting strate-
gies that can be seamlessly integrated into existing training pipelines with little to no computational
overhead. These strategies aim to address the inherent limitations of the standard uniform averaging
method by assigning dynamic importance to individual data samples based on their loss values, thus
providing a more refined control over the training process. Ultimately, our objective is twofold: (i)
to improve the efficiency and effectiveness of LLM training by allowing the model to dynamically
focus on more relevant or informative data at different training stages and (ii) to potentially pro-
vide a scalable, automated approach to online data selection during pretraining. This ambitiously
seeks to reduce the need for extensive manual data curation and selection efforts, which are increas-
ingly becoming infeasible given the growing size and diversity of pretraining corpora. We envision
these reweighting strategies as a foundation for more efficient and adaptive data utilization in LLM
pretraining, ultimately reducing the time, cost, and complexity associated with model pretraining.

4 APPROACH

4.1 TECHNICAL CHALLENGE: DATA REWEIGTHING FOR LLMS MUST BE DYNAMIC AND
FULLY ONLINE

The core of our framework is to dynamically reweight individual training samples based on their
importance at different training stages. Although sample importance seems static—intuitively,
“garbage data is garbage data” regardless of model or training stage—data reweighting should be
dynamic. For instance, similar or duplicated samples in training corpora may be useful early in
training, but should be deprioritized once the model captures their patterns. Similarly, a hard but
useful sample could be assigned a larger weight, however, as the model learns it could be beneficial
to reduce its weight. Based on these observations, we update the model at each step t using

θt+1 = θt − ηt
∑
i∈B

w(xi; θ
t)∇f(xi; θ

t), (2)

where
∑

i∈B w(xi; θ
t) = 1 and the weight w(xi; θ

t) is dynamically assigned based on sample xi and
current model θt. However, designing effective dynamic reweighting methods for LLM pretraining
involves several inherent complexities. In LLM pretraining, each sample is typically seen only once
due to the vast size of the datasets, which contrasts with problems where repeated exposure to data is
common, such as in computer vision problems. This makes methods that depend on accumulating
historical data, such as previous loss or gradient norms (Loshchilov & Hutter, 2015; Jiang et al.,
2019), unsuitable. Furthermore, the sheer scale of these large corpus makes it computationally
prohibitive to track and store sample-specific statistics, as it would significantly increase resource
requirements. Additionally, approaches that rely on hold-out validation sets to compute sample
weights, as in Grangier et al. (2023), are also irrelevant for pretraining a general purpose LLM. These
unique technical challenges necessitate the development of a fully online, lightweight reweighting
approach that scales efficiently with the size of modern LLM training corpus, which we discuss next.

4.2 LOSS-BASED REWEIGHTING STRATEGIES

To address the aforementioned challenges, we propose a novel framework of loss-based sample
reweighting strategies, motivated by the following theorem. Theorem 1 characterizes the effects
of loss-based reweighting on the convergence bound of reweighted full gradient descent when the
sample losses f(xi; θ

t) are convex. The extension to the stochastic setting and analysis for other
types of loss geometries is deferred to Section 5. Our full statement of Theorem 1 and detailed proofs
for all theoretical statements can be found in the appendix.
Theorem 1. Consider M data points and let each loss f(xi; ·) be convex. Further, assume the
interpolation regime holds, i.e., ∃θ∗ ∈ Rd such that θ∗ ∈ argminθ∈Rd f(xi; θ) ∀i. Then, for a
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Figure 1: Left: Geometric curves of the different reweighting functions. Right: Shape of the
LinUpper strategy after applying Eq. (4) on top of it for different values of r. These plots are
obtained for a batch of 128 uniformly drawn losses. As r increases, LinUpper converges to the
uniform averaging method.

reweighting scheme that satisfies maxi∈{1,...,M} w(xi; θ
t) ≤ 2/M , we have

1

M

M∑
i=1

f(xi; θ̄
T )− 1

M

M∑
i=1

f(xi; θ
∗) ≤ O

(∥∥θ0 − θ∗
∥∥2

T

)
+

1

T

T−1∑
t=0

δt, (3)

where δt =
∑M

i=1

(
1
M − w(xi; θ

t)
)
(f(xi; θ

t)− f(xi; θ
∗)) and θ̄T = 1

T

∑T−1
t=0 θt.

Theorem 1 illustrates how setting the importance weight w(xi; θ
t) based on the loss gap f(xi; θ

t)−
f(xi; θ

∗) influences the convergence bound. Specifically, we make the following key observations:
(i) fixing w(xi; θ

t) = 1
M ∀i, leads to δt = 0 and we recover the traditional convergence bound of

gradient descent for convex functions; (ii) assigning larger weights to the smaller loss gaps leads
to δt ≥ 0, which yields a looser convergence bound; (iii) to achieve a better bound (δt ≤ 0),
one should down-weight the importance of samples with low loss gaps. Further, note that Eq. (3)
critically holds only for reweighting schemes satisfying w(xi; θ

t) ≤ 2/M , which puts an upper
bound on the maximum weight that can be assigned to a single data point, and hence, eliminates worst-
case importance assignment strategies—such as those based on distributionally robust optimization
(Qian et al., 2019; Qi et al., 2021; Kumar et al., 2023)—which are prone to overfitting to outliers,
a particularly problematic issue when dealing with the large-scale, noisy corpora used in LLM
pretraining.

Based on the insights from Theorem 1 on the relationship between loss and importance weight, we
study a series of reweighting strategies, each carefully designed to focus the learning dynamics on
different parts of the loss distribution during training. Let wi be the importance weight for sample
xi where we drop the dependency on θt for clarity. We first normalize the individual sample losses
into a bounded range [−δ, δ]. This step crucially ensures the loss values are scaled consistently and
amenable to the subsequent weighting functions. We then apply the following analytical functions on
the normalized loss hi. Figure 1 shows the geometric curves of these different functions.

• Linear Upper-Bound Strategy (LinUpper). In this strategy, the weight is proportional
to the normalized loss but is capped at a predefined δ value, ensuring that outliers do not
dominate the training process. The functional form is si := min{hi + δ, δ}.

• Quadratic Strategy (Quadratic). This strategy prioritizes samples with moderate loss
values while down-weighting both low-loss (easy or repetitive) and high-loss (potential
outliers) samples by applying a quadratic function si := δ

(
1− h2

i

δ2

)
.

• Extremes-Based Strategy (Extremes). This scheme emphasizes both the hardest (high-
loss) and the easiest (low-loss) samples by applying si := |hi|, ensuring that samples at the
extremes of the loss distribution receive higher importance weights.

To further enhance training stability and effectiveness, we add a curriculum-based adjustment
mechanism on top of the strategic sample weight si by controlling the sharpness of the importance
weighting using a temperature parameter r. The final weight wi is computed as:

wi =
esi/r∑
j esj/r

, (4)
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Algorithm 1 Fully Online Instance Reweighting

1: Input: stepsize η, initial model parameters θ0 ∈ Rd, temperature {rt}Tt=0, fmin and fmax.
2: for t = 0, 1, 2, ..., T − 1 do
3: Draw a minibatch of data samples B = {xi}bi=1

4: Run forward pass to compute losses {fi,t}bi=1 for all samples in B

5: Normalize losses into interval [−δ, δ] using linear transform: hi,t =
2(fi,t−fmin)
fmax−fmin

− 1

6: Apply reweighting strategy to normalized losses to obtain {si,t}bi=1 // {LinUpper, Quadratic, Extremes}
7: Apply curriculum adjustment using Eq. (4) to obtain sample weights {wi,t}bi=1

8: Update θt+1 = θt − η
∑

i∈B wi,t∇fi,t
9: end for

where r is annealed during training. Early in training, when the model is still learning fundamental
patterns and losses are less informative, we employ a more uniform weighting scheme to ensure
diverse feature learning by adopting a large r (see Figure 1). As training progresses, we decrease
the value of r to enact full use of our reweighting strategies. Algorithm 1 depicts our approach. It is
important to note that our reweighting approach adds nearly zero computational overhead. During the
forward pass, we already compute the sample losses, which are then used to derive the importance
weights through simple analytical transformations. Since no extra loss or gradient computations are
required, our reweighting strategies can be seamlessly integrated into standard training pipelines
without incurring significant additional costs in terms of time or resources.

Optimal strategy minimizing δt. We next demonstrate that applying Eq. (4) on top of our strategy
LinUpper, in fact, corresponds to the optimal strategy that minimizes a KL-divergence regularized
version of δt in Theorem 1.
Proposition 1. The optimal strategy that minimizes the KL-divergence regularized δt, i.e., δt +
r
∑M

i=1 wi log(Mwi), is given by

wi = Cmin

{
exp

(
hi

r

)
,
2

M

}
, (5)

where C is a normalizing constant that ensures
∑

i wi = 1.

Proof. Proof relegated to Appendix C.2.

As shown in Theorem 1 and Proposition 1, our experiments confirm that the LinUpper reweighting
scheme indeed achieves faster convergence and improved performance across a spectrum of LLMs
pretraining scales. The incorporation of KL-divergence regularization in the optimization of δt
prevents extreme solutions that focus only on the highest-loss samples. Without this regularization
term, the optimal solution becomes trivial: it assigns a weight of 2

M to the M
2 samples with the

highest losses and zero weight to the remaining samples. However, such a strategy discards half of
the dataset and performs poorly in practice. In contrast, the LinUpper method offers a balance
between focusing on high-loss samples and maintaining the diversity of data utilized during training.

5 ANALYSIS OF LOSS-BASED REWEIGHTING ON CONVERGENCE BOUND

In this section, we analyse the effects of loss-based reweighting on the convergence bound of
stochastic gradient methods under convex and nonconvex loss geometries. Consider the problem of
minimizing a finite sum of M objective functions:

min
θ∈Rd

{
f(θ) :=

1

M

M∑
i=1

fi(θ)

}
(6)

where each fi : Rd → R corresponds to a sample loss function f(xi; ·). We make the following
widely adopted assumptions:
Assumption 1 (Convexity). Each function fi is convex, i.e., for all θ, θ′ ∈ Rd and i ∈ 1, . . . ,M :

fi(θ
′) ≥ fi(θ) + ⟨∇fi(θ), θ

′ − θ⟩. (7)

6
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Assumption 2 (L-smoothness). Each function fi is Li-smooth. Formally, for all θ, θ′ ∈ Rd and
i ∈ 1, . . . ,M : ∥∥∇fi(θ

′)−∇fi(θ)
∥∥ ≤ Li

∥∥θ′ − θ
∥∥, (8)

and L = maxi∈[M ] Li.

Assumption 3 (Interpolation condition). There exists a global optimum θ∗ ∈ Rd such that:

θ∗ ∈ arg min
θ∈Rd

fi(θ), ∀i ∈ {1, . . . ,M} (9)

Assumption 3 is widely adopted in modern ML settings (Dar et al., 2021; Radhakrishnan et al., 2020;
Jhunjhunwala et al., 2023), particularly when analyzing overparameterized deep neural networks.
This ensures that all individual sample objectives can be minimized simultaneously, effectively
eliminating adversarial trade-offs where minimizing one objective could worsen another.

Next, we characterize the effects of loss-based reweighting on the convergence bound of reweighted
minibatch SGD when the sample losses fi are convex. For ease of notation, we denote w(xi; θ

t) by
wi,t in this section and the corresponding proofs in the Appendix.
Theorem 2. Let Assumptions 1, 2, and 3 hold. Consider a minibatch of size |B| = b with reweighting
scheme satisfying maxi∈B wi,t ≤ 2/b. Then,

• minibatch SGD: for η = 1
8L

√
T

, we have

E[f(θ̄T )− f(θ∗)] ≤
8L
∥∥θ0 − θ∗

∥∥2
√
T

+
1

T

T−1∑
t=0

δt, (10)

• minibatch SGD with momentum: for η = 1
8L

√
T+1

, λt > 0, we have

E[f(θT )− f(θ∗)] ≤
8L
∥∥θ0 − θ∗

∥∥2
√
T + 1

+
2

T + 1

T−1∑
t=0

δt +
2

T + 1

T−1∑
t=0

λtµt, (11)

where δt = E
[∑

i∈B
(
1
b − wi,t

)
(fi(θ

t)− fi(θ
∗))
]
, µt =

E
[∑

i∈B
(
1
b − wi,t

)
(fi(θ

t)− fi(θ
t−1))

]
, and θ̄T = 1

T

∑T−1
t=0 θt.

Proof. Proof provided in Appendix C.3.

We note similar observations as in Theorem 1 and again down-weighting the importance of samples
with low loss gaps leads to a better bound. Typically, the minibatch gradient with uniform weights
is unbiased, E

[∑
i∈B

1
b∇fi(θ

t)
]
= ∇f(θt). However, in our setting, the importance weights are

functions of the sample functions, hence, leading to biased gradients and the analysis of Theorem 2
being more involved. Update equations with heavy ball momentum are provided in eq. (39) (see
Appendix C.3). Further, we provide the analysis for minibatch SGD when the sample functions are
non-convex in Appendix C.4.

6 EXPERIMENTAL EVALUATION

6.1 TRAINING AND EVALUATION SETUP

We conduct our experiments using decoder-only transformer models (Vaswani, 2017; Radford et al.,
2019) with parameter sizes of 120M, 210M, and 300M, which we refer to as, respectively, GPT2-mini,
GPT2-small, and GPT2-medium. We train on the SlimPajama (Soboleva et al., 2023) corpus that
includes seven diverse domains: Common Crawl (CC), C4, GitHub, StackExchange, Book, Arxiv,
and Wikipedia. In the first step, we pre-train the three GPT2 models on all seven domains where we
compare our sample-level reweighting methods (LinUpper, Quadratic, Extremes) against
the uniform averaging baseline in which each sample contributes equally. In a second step, we assess
the impact of combining our reweighting techniques with existing domain-level reweighting methods,
specifically DoGE and DoReMi, to demonstrate the potential for further performance gains when
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Figure 2: Per-domain perplexities on hold-out validation sets under the uniform domain sampling
setting for the GPT2-medium model. Our reweighting strategy LinUpper strategy achieves better
or at least comparable perplexity on 5 out of 7 domains.

fine-grained sample reweighting is added on top of domain-level adjustments. For the pretraining of
all models, we use a minibatch size of 48, a sequence length of 512, and train for a total of 20,000
steps. For all reweighting methods, we set r to 100 for the first 1,000 steps and then reduce it to 1
for the remaining steps. Model architecture details can be found in Appendix A.2. Our codebase is
publicly available.1

We measure performance using two types of metrics:

Perplexity on Training Distribution. We evaluate per-domain perplexity and average perplexity on
all training domains using hold-out validation sets. By doing so, we aim to generate insights on the
sample efficiency during pretraining, i.e., how well a model can learn from a given dataset and adapt
to the data distribution.

Few-Shot Reasoning Ability. To assess generalization beyond the pretraining distribution, we
evaluate models on a series of diverse reasoning tasks in a 5-shot setting, including LogiQA Liu et al.
(2020), LogiQA 2 Liu et al. (2023), SciQ Welbl et al. (2017), and PiQA Bisk et al. (2020).

Table 1: Per-domain perplexities on hold-out validation datasets under the uniform domain sampling
setting for the GPT2 models. Across a wide variety of domains, our LinUpper method outperforms
the uniform baseline.

Benchmark
Model Method Arxiv Book C4 CC GitHub StackExchange Wikipedia Mean

GPT2-mini

Uniform 2.48 4.21 4.47 4.44 1.84 2.66 3.14 3.32
LinUpper (ours) 2.49 4.16 4.41 4.38 1.89 2.67 3.12 3.30
Quadratic (ours) 2.48 4.26 4.55 4.53 1.87 2.67 3.17 3.36
Extremes (ours) 2.54 4.23 4.47 4.44 1.90 2.74 3.19 3.36

GPT2-small

Uniform 2.36 4.04 4.29 4.26 1.67 2.51 2.90 3.15
LinUpper (ours) 2.36 3.99 4.23 4.19 1.73 2.53 2.88 3.13
Quadratic (ours) 2.38 4.14 4.43 4.41 1.72 2.54 2.99 3.23
Extremes (ours) 2.48 4.12 4.35 4.32 1.77 2.65 3.03 3.24

GPT2-medium

Uniform 2.34 4.02 4.27 4.22 1.66 2.49 2.88 3.13
LinUpper (ours) 2.34 3.96 4.20 4.15 1.72 2.50 2.85 3.10
Quadratic (ours) 2.35 4.11 4.40 4.36 1.70 2.51 2.93 3.19
Extremes (ours) 2.45 4.08 4.31 4.27 1.76 2.62 3.00 3.21

1Anonymized link: https://anonymous.4open.science/r/iclr-loss-reweighting/ or
alternatively in the submission’s supplementary material.
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Table 2: 5-shot Performance evaluations under uniform domain sampling for the GPT2-medium
model. We report the accuracy for every benchmark. The highest accuracy per benchmark is
highlighted in bold. The LinUpper reweighting strategy consistently yields competitive results,
outperforming the other compared baselines on 3 out of 4 tasks.

Method
Benchmark Accuracy Uniform LinUpper (ours) Quadratic (ours) Extremes (ours)

LogiQA 25.7 27.9 25.5 26.5
LogiQA 2 27.5 27.6 28.6 27.7
SciQ 49.0 51.8 48.7 49.6
PiQA 55.5 56.2 54.6 55.2

Mean 39.4 40.9 39.3 39.8

6.2 COMPARISONS UNDER UNIFORM DOMAIN SAMPLING

Comparisons on Pretrainining Distribution. Figure 2 shows the per-domain perplexity for the
GPT2-medium model on all seven domains. We provide the final per-domain perplexity results for the
GPT2-mini and GPT2-small models in Table 1. The perplexity plots for GPT2-mini and GPT2-small
can be found in Appendix A.3. Figure 2 shows that our proposed LinUpper strategy outperforms
or matches the other baseline in 5 out of 7 domains, with particularly notable improvements in
CC, C4, and Book domains. LinUpper achieves significantly lower perplexity in these domains,
demonstrating its effectiveness at handling noisier data sources. This suggests that down-weighting
low-loss samples –central to LinUpper– helps reduce the effects of redundant or similar data, and
thus accelerates convergence as supported by our theoretical findings. We also note competitive
results for LinUpper method at the smaller scale models in Table 1, but the advantage is more
significant in the larger GPT2-medium model.

Few-Shot Evaluations. Table 2 provides the 5-shot evaluations on 4 different tasks for the GPT2-
medium model. The LinUpper reweighting strategy consistently yields competitive results, outper-
forming the other compared baselines on 3 out of 4 tasks. These results further validate the general
effectiveness of LinUpper across different types of reasoning challenges, including logical infer-
ence (LogiQA), physical commonsense reasoning (PiQA), and scientific reasoning (SciQ). Notably,
Quadratic performs best in LogiQA 2 (28.6%) , indicating that reducing the effects of both high-
loss (potential outliers) and low-loss (potentially redundant data) samples can sometimes improve
generalization performance even though it generally does not achieve best efficiency for learning the
pretraining distribution. This suggests that the Quadratic scheme could be useful when training
under noisier and less curated datasets. Also not that the Extremes strategy consistently lags behind
the other methods, which further supports the advantage of reducing the importance of low-loss
samples.

Table 3: 5-shot performance evaluations under non-uniform domain sampling for the GPT2-medium
model. Our LinUpper instance reweighting approach creates synergies with state-of-the-art domain
reweighting techniques.

Method
Benchmark Accuracy DoGE DoGE + LinUpper DoReMi DoReMi + LinUpper

LogiQA 27.2 28.6 27.2 27.6
LogiQA 2 27.5 28.0 27.7 27.9
SciQ 52.8 53.2 53.3 54.5
PiQA 55.8 56.3 55.7 56.1
Mean 40.8 41.5 41.0 41.5

6.3 COMPARISONS UNDER NON-UNIFORM DOMAIN SAMPLING

The performance of the compared methods under non-uniform domain sampling setting are presented
in the Table 3. The results clearly demonstrate the value of incorporating our LinUpper strategy
on top of existing domain-level reweighting methods such as DoGE and DoReMi. Across all tasks,
LinUpper consistently improves the performance of both domain reweighting baselines, reinforcing
the effectiveness of dynamically adjusting sample weights at the instance level in conjunction with
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Table 4: Average performance of the 1.4B pa-
rameter model across LUR and QA benchmarks.
Overall, our LinUpper method improves re-
sults for 11 out of 19 tasks with an average per-
formance gain of 0.66% among LUR tasks and
1.72% among QA tasks.

Performance (task category) Uniform LinUpper (ours) Difference

Mean (LUR) 48.51 49.16 0.66

Mean (QA) 42.35 44.07 1.72

Mean (Overall) 46.56 47.55 0.99

Table 5: Intermediary results of the 7B parame-
ter model (checkpoints obtained after training on
80B tokens). Overall, our LinUpper method
improves results for 15 out of 19 tasks with an
average performance gain of 4.26% among LUR
tasks and 0.53% among QA tasks.

Performance (category) Uniform LinUpper (ours) Difference

Mean (LUR) 49.89 54.15 4.26

Mean (QA) 45.86 46.39 0.53

Mean (Overall) 48.62 51.70 3.08

domain-level reweighting. In particular, our reweighting strategy LinUpper provides notable
improvements for LogiQA task, boosting accuracy from 27.2% to 28.6% with DoGE and from
27.2% to 27.6% with DoReMi. The gains in LogiQA 2 are similar, where our reweighting method
LinUpper consistently improves the performance of both methods. For scientific reasoning (SciQ)
and physical commonsense (PiQA) tasks, LinUpper strategy also enhances both baseline methods,
with the most substantial improvement observed in SciQ (from 52.8% to 53.2% with DoGE and from
53.3% to 54.5% with DoReMi). These results indicate that LinUpper is particularly effective in
tasks requiring nuanced reasoning and factual knowledge.

6.4 ADDITIONAL EXPERIMENTS ON 1.4B AND 7B LLAMA MODELS

We have conducted experiments to train 1.4B (billion) and 7B parameter models with Llama
architecture on randomly sampled subsets of the FineWeb 15T dataset. For the 1.4B model, we have
completed training the models on 100B tokens. For the 7B model, we are currently (at the moment of
submitting this revision of our paper) at 80B tokens seen and report the benchmark results on the
latest checkpoints. For these larger models, we use the question-answering (QA) benchmarks and
additionally employ language understanding and reasoning (LUR) tasks since their capacity allows
for more complex tasks. Please see Appendix A for more details, including hyperparameters, model
architectural details, and performance on the full list of benchmarks.

Tables 4 and 5 show the average performance among LUR and QA tasks for the 1.4B and 7B
parameter models, respectively. For the 1.4B parameter model, we see that our LinUpper strategy
improves the average model performance by 0.66% and 1.72% for LUA and QA tasks, respectively.
In particular, we note that our LinUpper method improves performance for 11 out of 19 tasks in
total (see Tables 8 and 9 in Appendix A.3). For the 7B parameter model, our LinUpper method
improves results for 15 out of 19 tasks (see Tables 10 and 11 in Appendix A.3) with an average
performance gain of 4.26% among LUR tasks and 0.53% among QA tasks. These improvements are
particularly noteworthy given the scale of these models, highlighting the scalability and effectiveness
of our method.

7 CONCLUSION

In this paper, we introduce a novel sample-level reweighting framework aimed at improving the
efficiency and effectiveness of large language model (LLM) pretraining. By dynamically adjusting
the importance of individual samples based on their loss values, our approach overcomes the limita-
tions of traditional uniform averaging methods and adds a new dimension to existing domain-level
reweighting methods by incorporating more fine-grained sample-level dynamics. Through extensive
theoretical and empirical validation, we demonstrate that down-weighting low-loss samples acceler-
ates convergence and improves performance. Our experiments show that our proposed LinUpper
strategy consistently outperforms uniform sampling on common LLM reasoning and commonsense
benchmarks. Similarly, our approach creates synergies with existing domain reweighting techniques,
which underpins the importance of sample-level dynamics. We observe that the benefits of our method
are more pronounced in larger models, while smaller models show less significant improvements
on benchmarks. This could be due to the fact that smaller models may have limited capacity to
fully exploit the advantages of our approach. However, our overall findings highlight the potential
of loss-based reweighting strategies to optimize LLM pretraining both in training efficiency and in
model evaluation performance.
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A EXPERIMENTAL DETAILS

For full reproducibility of our work we provide insights on extending existing training routines with
our minimal-invasive loss reweighting scheme.

A.1 REFERENCE IMPLEMENTATION & REPRODUCIBILITY

To integrate our loss reweighting method with a PyTorch training routine, we have to add two
plug-and-play components. First, we need to define four utility functions to ensure the proper
functionality of our approach with reference implementations provided in Listing 1:

1. apply_strategy(...): Implements different reweighting strategies such as focusing
on medium losses (quadratic), capping high losses (linupper), or emphasizing extreme
values (extremes).

2. scale_losses(...): Applies exponential scaling to adjust the importance of losses
based on a temperature parameter r.

3. normalize_losses(...): Normalizes losses to a bounded interval [−δ, δ] for consis-
tency in subsequent reweighting.

4. get_batch_loss_from_logits(...): Computes per-sample losses using cross-
entropy, ensuring padding tokens do not affect the results.

These four functions are then employed inside the training step. We need to capture the unprocessed
raw losses and apply our reweighting scheme. We provide a reference implementation for PyTorch
FSDP training in Listing 2 to enable multi-GPU training.

For a full reference, we provide a ready-to-use implementation on GitHub: https://anonymous.
4open.science/r/iclr-loss-reweighting/.

Listing 1: Utility functions
1 import torch
2

3 # Exponential scaling function
4 def scale_losses(losses, r):
5 return torch.exp(losses / r)
6

7 # Normalization function for losses
8 def normalize_losses(losses, delta=1., l_min=0., l_max=1.):
9 return 2. * delta * losses / max(l_max - l_min, 1e-6) - delta * (

l_max + l_min) / max(l_max - l_min, 1e-6)
10

11 # Reweighting strategies
12 def apply_strategy(losses, delta=1.0, strategy="linupper"):
13 if strategy == "linupper":
14 return torch.minimum(losses + delta, delta * torch.ones_like(

losses))
15 elif strategy == "uniform":
16 # We do not reweight here. This is our baseline.
17 return losses
18 elif strategy == "quadratic":
19 return 1 - losses**2 / delta**2
20 elif strategy == "extremes":
21 return torch.abs(losses)
22 else:
23 raise NotImplementedError
24

25 # Compute batch losses from logits
26 def get_batch_loss_from_logits(logits, labels):
27 ignore_index = -100
28 shift_logits = logits[..., :-1, :].contiguous()
29 shift_labels = labels[..., 1:].contiguous()
30 num_active = (shift_labels != ignore_index).sum(dim=1)

15
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31 loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
32 loss = loss_fct(shift_logits.view(-1, logits.size(-1)),

shift_labels.view(-1).long())
33 return loss.view(logits.size(0), -1).sum(dim=1) / num_active,

num_active

Listing 2: Integration of reweighting strategies into a multi-GPU training loop.
1 import torch
2 import torch.distributed as dist
3

4 # Define reweighting function mapping
5 STRATEGY = "linupper"
6

7 # This has to be placed inside a training step.
8 ...
9

10 # Assume model outputs (logits) and labels are already computed
11 device_losses, len_norms = get_batch_loss_from_logits(outputs, labels

)
12

13 # Initialize placeholder to store the losses from all GPUs
14 gathered_losses = torch.zeros(
15 dist.get_world_size(),
16 len(device_losses),
17 device=device_losses.device,
18 dtype=device_losses.dtype
19 )
20

21 # Gather losses across all GPUs into tenor
22 dist.all_gather_into_tensor(gathered_losses, device_losses.detach())
23

24 r = r_scheduler(step, cfg.initial_r)
25 # Compute sample weights
26 with torch.no_grad():
27 min_loss = gathered_losses.min().item()
28 max_loss = gathered_losses.max().item()
29 normalized_losses = normalize_losses(gathered_losses.view(-1),

delta=1., l_min=min_loss, l_max=max_loss)
30 reweighted_losses = apply_strategy(normalized_losses, delta=1.,

strategy=STRATEGY)
31 scaled_losses = scale_losses(reweighted_losses -

reweighted_losses.max().item(), l=r)
32 weights = scaled_losses / scaled_losses.sum()
33

34 # for instance local_rank can be obtained with dist.get_rank()
35 device_weights = weights.view(dist.get_world_size(), -1)[

local_rank, :]
36

37 # Reweight losses and scale appropriately
38 loss = torch.sum(device_weights * device_losses) * dist.

get_world_size()
39 loss.backward()

A.2 TRAINING & EVALUATION DETAILS

In the following, we outline the hyper-parameter configuration and hardware requirements to fully
reproduce our experiments.

Models. We employ three different GPT-2 models to study the effectiveness of our reweighting
approach on various model sizes. We report the architectural details in Table 6. Furthermore, to
demonstrate the performance of our reweighting approach on state-of-the-art models, we employ a
1.4B parameter model with Llama architecture.
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Table 6: Model Architecture

Architecture Name Parameters Layers Attention Heads Embedding Dimensions Hidden Dimensions Max. Sequence Length

GPT-2
Mini 124M 12 12 768 3072 512
Small 210M 24 16 786 3072 512
Medium 300M 36 24 786 3072 512

LLAMA 1.4B 1400M 24 16 2048 2048 8192

Datasets. As a dataset for training our GPT-2 models, we employ the SlimPajama-6B dataset,
consisting of 7 domain partitions (ArXiv, Book, CC, C4, GitHub, StackExchange, and Wikipedia).
The exact number of documents seen is reported in Table 7. We use the FineWeb 15T dataset to
train the larger Llama-1.4B and Llama-7B models. For the Llama-1.4B model, we have completed
training on 100B randomly sampled tokens. For the 7B model, we are currently (at the moment of
submitting this revision of our paper) at 80B tokens seen and report the benchmark results on the
latest checkpoints.

Pretraining procedure. We pre-train all models with masked language modeling and do not apply
any instruction tuning routine for subsequent evaluations. The GPT-2 models are trained for 20,000
steps in total, and the Llama-1.4B model is trained for 100,000 steps with the hyperparameters
provided in Table 7. We use the Huggingface trainer interface and the accelerate library for
distributed training. We provide a ready-to-use execution script in our publicly available code base.

Table 7: Training Hyperparameters for our benchmark evaluations

Architecture Name Minibatch Learning Weight LR LR Warmup Max. Grad r Training Total
Size Rate (LR) Decay Schedule End Steps Norm Steps Documents Seen

GPT-2
Mini 32 0.0005 0.01 Linear Warmup Cosine 0.0001 500 1.0 0.4 20,000 640,000
Small 48 0.0005 0.01 Linear Warmup Cosine 0.0001 500 1.0 0.4 20,000 960,000
Medium 48 0.0005 0.01 Linear Warmup Cosine 0.0001 500 1.0 0.4 20,000 960,000

LLAMA 1.4B 128 0.0003 0.01 Linear Warmup Cosine 0.00003 2,000 1.0 1.0 100,000 12,800,000

Benchmarks. We use the LM Eval Harness to generate our benchmark results. We evaluate the
GPT-2 models every 2000 steps and the Llama model every 5000 steps. For the GPT-2 models, we
find that only question-answering tasks work well at this scale, which is why we report 5-shot results
on LogiQA, LogiQA-2, SciQ, and PiQA. All other benchmarks yielded random results at this scale,
i.e., they were not useful for model evaluation. The reason is the limited capacity of the GPT-2
models compared to larger models like the Llama-1.4B or 7B models. For the Llama architecture
models, we employ 13 language understanding and reasoning (LUR) and 6 question-answering (QA)
tasks to provide a holistic picture.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

Benchmark results. Using our LinUpper method, the experiments with the 1.4B parameter Llama
model show an average performance gain of 0.66%, improving on 6 out of 13 benchmarks and tied
on one benchmark (Table 8). For QA benchmarks, we improved on 5/6 tasks with an average of
1.72% (Table 9).

For the intermediary results in the 7B Llama architecture model, we observe performance improve-
ments of 4.26% and 0.53% for LUR (Table 10) and QA tasks (Table 11), respectively, with our
LinUpper method. We improve on 12/13 LUR tasks and 3/6 QA tasks.

Perplexity. We present additional perplexity visualizations of our GPT2 pretraining runs. Figure 3
shows the results for GPT2-mini and Figure 4 shows the results for GPT2-small.
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Table 8: Results of 1.4B parameter model on lan-
guage understanding and reasoning benchmarks.
Overall, our LinUpper method improves the
results for 6 out of 13 tasks, and there is a tie for
one task, with an average performance gain of
0.66%.

Benchmark Name Uniform LinUpper (ours) Difference

ARC Challenge 33.19 33.02 -0.17
ARC Easy 63.80 63.38 -0.42
COPA 77.0 77.0 0.00
Lambada (OpenAI) 49.87 49.60 -0.27
Lambada (Standard) 45.20 43.30 -1.90
MMLU 26.04 25.49 -0.54
MNLI 31.91 36.92 5.01
MNLI (mismatch) 32.07 36.56 4.50
RTE 51.26 52.35 1.08
SST-2 66.86 59.40 -7.45
TinyARC (norm.) 40.46 40.85 0.39
TinyWinoGrande 56.17 62.11 5.93
WinoGrande 56.75 59.12 2.37

Mean 48.51 49.16 0.66

Table 9: Results of 1.4B parameter model on lan-
guage question answering benchmarks. Overall,
our LinUpper method improves results for 5
out of 6 tasks with an average performance gain
of 1.72%.

Benchmark Name Uniform LinUpper (ours) Difference

BoolQ 61.59 65.47 3.88
LogiQA 20.28 23.66 3.38
LogiQA2 26.02 27.48 1.46
SciQ 91.30 91.90 0.60
SocialIQA 43.86 45.19 1.33
TriviaQA (Exact Match) 11.05 10.73 -0.32

Mean 42.35 44.07 1.72

Table 10: Intermediary results of the 7B parame-
ter model on language understanding and reason-
ing benchmark tasks. Overall, our LinUpper
method improves results for 12 out of 13 tasks
with an average performance gain of 4.26%.

Benchmark Name Uniform LinUpper (ours) Difference

ARC Challenge 36.77 39.33 2.56
ARC Easy 68.06 70.66 2.61
COPA 81.00 84.00 3.00
Lambada (OpenAI) 56.70 58.43 1.73
Lambada (Standard) 51.39 54.90 3.51
MMLU 26.06 26.78 0.72
MNLI 35.15 37.27 2.12
MNLI (mismatch) 35.74 38.60 2.86
RTE 49.82 57.40 7.58
SST-2 62.04 88.3 26.26
TinyARC 34.46 31.06 -3.40
TinyWinoGrande 46.18 51.24 5.06
WinoGrande 65.19 65.9 0.71

Mean 49.89 54.15 4.26

Table 11: Intermediary results of the 7B pa-
rameter model on question answering bench-
mark tasks. Overall, our LinUpper method
improves results for 3 out of 6 tasks with an av-
erage performance gain of 0.53%.

Benchmark Name Uniform LinUpper (ours) Difference

BoolQ 67.25 66.82 -0.43
LogiQA 24.12 23.04 -1.08
LogiQA2 26.91 28.44 1.53
SciQ 93.80 94.90 1.10
SocialIQA 46.57 46.57 0.00
TriviaQA (Exact Match) 16.55 18.59 2.04

Mean 45.86 46.39 0.53
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Figure 3: Per-domain perplexities on hold-out validation sets under the uniform domain sampling
setting for the GPT2-mini model. Our reweighting strategy LinUpper strategy achieves better or at
least comparable perplexity on 6 out of 7 domains.
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Figure 4: Per-domain perplexities on hold-out validation sets under the uniform domain sampling
setting for the GPT2-small model. Our reweighting strategy LinUpper strategy achieves better or
at least comparable perplexity on 6 out of 7 domains.

A.4 SENSITIVITY TO THE VALUE OF r

We conduct new experiments using different values of r to understand the sensitivity of our methods
to the value of r. The perplexity plots for out method LinUpper with different values of r are
provided in Figure 5, which shows that when the value of r is large (e.g. r = 1) then, as expected,
the performance of our method becomes closer to that of the uniform baseline. Decreasing the value
of r leads to the diminished effect of low-loss samples, but this can also have a negative effect on the
performance when r is too small (e.g. r = 0.2), potentially due to data wastage by over filtering the
low-loss samples.
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Figure 5: Sensitivity of our method LinUpper to the value of r. When the r is large (e.g. r = 1) the
performance of our method becomes closer to that of the uniform baseline. Decreasing the value of r
leads to diminished effect of low-loss samples, but can also have a negative effect on the performance
when r is too small (eg. r = 0.2)
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B TOY REGRESSION EXAMPLE

B.1 TOY REGRESSION PROBLEM SETUP

To further illustrate the effectiveness of our reweighting strategies on simple ML problems, we apply
them to a regression problem where the goal is to learn a linear mapping from input features to output
labels, while dealing with noisy data and outliers. We generate a synthetic dataset as follows.

The clean input features Xclean ∈ Rn×p are sampled from the standard normal distribution, where p
is the dimensionality of the data, n is the number of clean data points. The target output y ∈ Rn for
the clean data is generated using the following ground truth linear model with added noise:

yclean = XcleanW
∗ + b∗ + c · ϵ,

where W∗ ∈ Rp and b∗ ∈ R are the true model parameters, ϵ ∼ N (0, 1) represents Gaussian noise,
and c is a small constant controlling the noise level. For the m outlier data, we generate the input
features Xood ∈ Rm×p as:

Xood = 0.1 · N (0, 1) + 2.0,

with the corresponding target outputs yood drawn randomly from a standard normal distribution, i.e.,
yood ∼ N (0, 1).

The full training set consists of both the clean data (Xclean,yclean) and the outlier data (Xood,yood),
concatenated together:

Xall = [Xclean;Xood], yall = [yclean;yood].

By incorporating outliers into the training set, we test the robustness of our reweighting strategies,
which should down-weight the influence of noisy or irrelevant samples, allowing the model to learn
the underlying clean data distribution more effectively.

We define the objective function for this regression task as the mean squared error between the model
predictions and the target outputs. Given model parameters W ∈ Rp and b ∈ R, the loss for a single
data point (xi, yi) computed as:

ℓi(W, b) =
1

2

(
x⊤
i W + b− yi

)2
. (12)

To evaluate model performance, we compute the mean squared error on a held-out test set (Xtest,ytest),
which was generated using the same process as the clean training data.

B.2 COMPARISONS

The results from Figure 6 clearly show that LinUpper outperforms all other reweighting strategies
and the uniform baseline, achieving the fastest convergence. This supports our theoretical findings
that down-weighting low-loss samples allows the model to focus on more informative examples, thus
accelerating the optimization. Interestingly, the Quadratic strategy also performs better than the
uniform baseline, indicating that selectively up-weighting the moderate loss samples can improve
performance. While Quadratic converges more slowly than LinUpper, it still highlights that
more balanced reweighting can provide benefits over uniform sampling when dealing with noisy data.
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Figure 6: Left: Test loss vs training steps for the toy regression problem. Our LinUpper strategy
achieves faster convergence compared to all the other methods. Notably, the Quadratic strategy
also outperforms the uniform baseline, further highlighting the benefit of selective reweighting. Right:
Shape of the different reweighting methods used with r = 1.

Comparing with traditional robust optimization methods, such as those based on distributionally
robust optimization (DRO), our methods impose a cap on sample weights (wi ≤ 2/M ), as justified
by our theoretical analysis. This cap prevents over-reliance on a small subset of high-loss samples,
which can lead to overfitting to outliers. In contrast, DRO methods often focus heavily on worst-
case scenarios, potentially leading to suboptimal generalization when the training data contains a
substantial amount of noisy samples. To demonstrate this benefit of our method in practice, we
conducted experiments to compare with the traditional KL-divergence regularized distributionally
robust optimization (DRO-KL).

First, we created a synthetic regression problem (similar to the regression problem described above)
with 25% of the data being outliers to compare the robustness of the different methods against
outliers. As shown in Figure 7, we note the following: because it focuses heavily on the hard
samples, Extremes diverges when we use the same learning rate as the other two methods (our
LinUpper method & the Uniform baseline). The Extremes method requires a smaller learning
rate to converge, in which case it converges slower than our method. Furthermore, we include the
Extremes method among the compared baselines for the GPT-2-medium experiments, as shown
in Table 12. On average, our LinUpper strategy outperforms the other Extremes configurations,
which we attribute to its ability to handle outliers.

0.5 1.0
step t ×102

0

1

2

3

4

5

6
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×101

LinUpper (ours)
DRO-KL (same LR)
DRO-KL (reduced LR)
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Figure 7: Synthetic regression problem with Extremes.
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Table 12: Comparison of our LinUpper loss reweighting strategy with various Extremes config-
urations on the GPT2-medium experimental setup. On average, our LinUpper strategy outperforms
the other Extremes configurations.

Uniform LinUpper (r = 0.4; ours) DRO (KL = 0.4) DRO (KL = 1.0) DRO (KL = 2.0) DRO (KL = 5.0) DRO (KL = 10.0)

LogiQA 25.7 27.9 23.2 25.5 26.8 25.9 26.3
LogiQA2 27.5 27.6 24.4 28.7 27.5 28.2 27.6
SciQ 49.0 51.8 41.1 48.6 49.4 50.5 49.4
PiQA 55.5 56.2 54.0 56.2 55.7 56.5 55.4

Mean 39.4 40.9 35.7 39.8 39.9 40.3 39.7
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C PROOFS

Lemma 1. Let Assumptions 1 and 2 hold. Then we have∥∥∇f(θ)−∇f(θ′)
∥∥2 ≤ 2L (f(θ)− f(θ′)− ⟨∇f(θ′), θ − θ′⟩) .

Proof. Consider the following

f(θ1)− f(θ2) = f(θ1)− f(θ) + f(θ)− f(θ2). (13)

From the L-smoothness of f , we have for all θ2, θ ∈ Rd,

f(θ)− f(θ2) ≤ ⟨∇f(θ2), θ − θ2⟩+
L

2

∥∥θ − θ2
∥∥2. (14)

From the the convexity of f , we have for all θ1, θ ∈ Rd,

f(θ1)− f(θ) ≤ ⟨∇f(θ1), θ1 − θ⟩. (15)

Substituting Eq. (14), Eq. (15) in Eq. (13), we get

f(θ1)− f(θ2) ≤ ⟨∇f(θ1), θ1 − θ⟩+ ⟨∇f(θ2), θ − θ2⟩+
L

2

∥∥θ − θ2
∥∥2. (16)

Let θ = θ2 − 1
L (∇f(θ2)−∇f(θ1)). Substituting the definition of θ in Eq. (16), we obtain

f(θ1)− f(θ2) ≤ ⟨∇f(θ1), θ1 − θ2 +
1

L
(∇f(θ2)−∇f(θ1))⟩ −

1

L
⟨∇f(θ2),∇f(θ2)−∇f(θ1)⟩

+
1

2L

∥∥∇f(θ2)−∇f(θ1)
∥∥2

= ⟨∇f(θ1), θ1 − θ2⟩ −
1

L
∥∇f(θ2)−∇f(θ1)∥2 +

1

2L

∥∥∇f(θ2)−∇f(θ1)
∥∥2

= ⟨∇f(θ1), θ1 − θ2⟩ −
1

2L
∥∇f(θ2)−∇f(θ1)∥2. (17)

From lemma 1, we obtain at the optimum θ∗∥∥∇f(θ)−∇f(θ∗)
∥∥2 ≤ 2L (f(θ)− f(θ∗)) .

C.1 FULL GRADIENT

We have∥∥θt+1 − θ∗
∥∥2 =

∥∥θt − θ∗
∥∥2 + ∥∥θt+1 − θt

∥∥2 + 2
〈
θt+1 − θt, θt − θ∗

〉
=
∥∥θt − θ∗

∥∥2 + ∥∥ηt M∑
i=1

wi,t∇fi(θ
t)
∥∥2 − 2

〈
ηt

M∑
i=1

wi,t∇fi(θ
t), θt − θ∗

〉

≤
∥∥θt − θ∗

∥∥2 + η2tM

M∑
i=1

w2
i,t

∥∥∇fi(θ
t)
∥∥2 − 2ηt

M∑
i=1

wi,t

〈
∇fi(θ

t), θt − θ∗
〉

(18)

Using the convexity of function fi, we have〈
∇fi(θ

t), θt − θ∗
〉
≥ fi(θ

t)− fi(θ
∗). (19)

Therefore combining, we obtain

∥∥θt+1 − θ∗
∥∥2 ≤

∥∥θt − θ∗
∥∥2 + η2tM

M∑
i=1

w2
i,t

∥∥∇fi(θ
t)
∥∥2 − 2ηt

M∑
i=1

wi,t

(
fi(θ

t)− fi(θ
∗)
)

(20)
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Next, we upper-bound the quantity
∥∥∇fi(θ

t)
∥∥2.∥∥∇fi(θ

t)
∥∥2 ≤ 2

∥∥∇fi(θ
t)−∇fi(θ

∗)
∥∥2 + 2

∥∥∇fi(θ
∗)
∥∥2

≤ 4L
(
fi(θ

t)− fi(θ
∗)
)
+ 2σ2

∗ (21)

where Eq. (21) follows from lemma 1.

Now, combining Eq. (20) and Eq. (21), we obtain

∥∥θt+1 − θ∗
∥∥2 ≤

∥∥θt − θ∗
∥∥2 + 4MLη2t

M∑
i=1

w2
i,t

(
fi(θ

t)− fi(θ
∗)
)
+ 2Mη2t σ

2
∗

M∑
i=1

w2
i,t (22)

− 2ηt

M∑
i=1

wi,t

(
fi(θ

t)− fi(θ
∗)
)

=
∥∥θt − θ∗

∥∥2 + M∑
i=1

(4MLηtwi,t − 2) ηtwi,t

(
fi(θ

t)− fi(θ
∗)
)

+ 2Mη2t σ
2
∗

M∑
i=1

w2
i,t, (23)

Selecting ηt such that 4MLηtwi,t − 2 ≤ −1 ∀ i, i.e., ηt ≤ 1
4MLwmax,t

, yields

∥∥θt+1 − θ∗
∥∥2 ≤

∥∥θt − θ∗
∥∥2 − ηt

M∑
i=1

wi,t

(
fi(θ

t)− fi(θ
∗)
)
+ 2Mη2t σ

2
∗, (24)

where we also used the fact that
∑M

i=1 w
2
i,t ≤ 1 due to

∑M
i=1 wi,t = 1 and wi,t ≥ 0. Hence,∥∥θt+1 − θ∗

∥∥2
≤
∥∥θt − θ∗

∥∥2 − ηt
M

M∑
i=1

(
fi(θ

t)− fi(θ
∗)
)
+ ηt

M∑
i=1

(
1

M
− wi,t

)(
fi(θ

t)− fi(θ
∗)
)
+ 2Mη2t σ

2
∗

=
∥∥θt − θ∗

∥∥2 − ηt
(
f(θt)− f(θ∗)

)
+ ηt

M∑
i=1

(
1

M
− wi,t

)(
fi(θ

t)− fi(θ
∗)
)
+ 2Mη2t σ

2
∗.

(25)

Telescoping Eq. (25) from t = 0 to T − 1 yields

∥∥θT − θ∗
∥∥2 ≤

∥∥θ0 − θ∗
∥∥2 − T−1∑

t=0

ηt
(
f(θt)− f(θ∗)

)
+

T−1∑
t=0

ηt

M∑
i=1

(
1

M
− wi,t

)(
fi(θ

t)− fi(θ
∗)
)

+ 2Mσ2
∗

T−1∑
t=0

η2t . (26)

For a weighting scheme such that wmax,t ≤ 2
M so that ηt can be fixed to η = 1

8L , we obtain

η

T−1∑
t=0

(
f(θt)− f(θ∗)

)
≤
∥∥θ0 − θ∗

∥∥2 + η

T−1∑
t=0

M∑
i=1

(
1

M
− wi,t

)(
fi(θ

t)− fi(θ
∗)
)
+ 2Mσ2

∗η
2T.

f(θ̄T )− f(θ∗) ≤
8L
∥∥θ0 − θ∗

∥∥2
T

+
1

T

T−1∑
t=0

M∑
i=1

(
1

M
− wi,t

)(
fi(θ

t)− fi(θ
∗)
)
+

Mσ2
∗

4L
,

where θ̄T = 1
T

∑T−1
t=0 θt. Define δt =

∑M
i=1

(
1
M − wi,t

)
(fi(θ

t)− fi(θ
∗)). Hence, we obtain

f(θ̄T )− f(θ∗) ≤
8L
∥∥θ0 − θ∗

∥∥2
T

+
1

T

T−1∑
t=0

δt +
Mσ2

∗
4L

. (27)
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C.2 OPTIMAL WEIGHT STRATEGY

Proposition 1. The optimal strategy that minimizes the KL-divergence regularized δt, i.e., δt +
r
∑M

i=1 wi log(Mwi), is given by

wi = Cmin

{
exp

(
hi

r

)
,
2

M

}
, (5)

where C is a normalizing constant that ensures
∑

i wi = 1.

Proof. For the sake of clarity, we drop the index t in δt in the following proof.

Let ∆i = f(xi; θ
t)− f(xi; θ

∗) be the loss gap. After dropping all terms that do not depends on the
weights wi’s, we have the following constrained optimization problem

min
w1,...,wM

−
M∑
i=1

wi∆i + r

M∑
i=1

wi logwi (28)

subject to wi ≤
2

M
, i ∈ [M ], (29)

M∑
i=1

wi = 1. (30)

As we have inequality constraints in the above problem, we introduce the slack variable t and consider
the Lagrangian function to solve the above problem as follows:

L(w1, . . . , wM , ν, µ) = −
M∑
i=1

wi∆i + r

M∑
i=1

wi logwi − ν

(
M∑
i=1

wi − 1

)
− µ

(
wi −

2

M
+ t2

)
,

(31)
and we have the gradients

∂L

∂wi
= −∆i + r + r logwi − ν − µ

∂L

∂λ
= −

(
M∑
i=1

wi − 1

)
∂L

∂µ
= −

(
wi −

2

M
+ t2

)
. (32)

We consider the complementary slackness condition. We have one slack variable t, and the corre-
sponding Lagrange multiplier is ν. We now consider whether a slack variable is zero (which the
corresponding inequality constraint is active) or the Lagrange multiplier is zero (the constraint is
inactive), we obtain

• µ = 0, t2 > 0: Using ∂L
∂ν = 0, we get

∑M
i=1 wi = 1. Using ∂L

∂wi
= 0, µ = 0, we get

−∆i + r + r logwi − ν = 0. Hence, we have wi = exp
(
ν+∆i−r

r

)
. Therefore, we obtain

ν = −r ln
(∑M

i=1 exp
(
∆i−r

r

))
yielding wi = exp

(
−r ln(

∑M
i=1 exp(∆i−r

r ))+∆i−r

r

)
=

C exp
(
∆i

r

)
where C = exp

(
− ln

(∑M
i=1 exp

(
∆i−r

r

))
− 1
)

.

• µ ̸= 0, t2 = 0: Using ∂L
∂µ = 0, t = 0, we get wi =

2
M and µ+ ν = −∆i + r + r log 2

M .

Hence, we obtain wi = min
{
C exp

(
∆i

r

)
, 2
M

}
.
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C.3 CONVEX MINIBATCH SGD

Theorem 2. Let Assumptions 1, 2, and 3 hold. Consider a minibatch of size |B| = b with reweighting
scheme satisfying maxi∈B wi,t ≤ 2/b. Then,

• minibatch SGD: for η = 1
8L

√
T

, we have

E[f(θ̄T )− f(θ∗)] ≤
8L
∥∥θ0 − θ∗

∥∥2
√
T

+
1

T

T−1∑
t=0

δt, (10)

• minibatch SGD with momentum: for η = 1
8L

√
T+1

, λt > 0, we have

E[f(θT )− f(θ∗)] ≤
8L
∥∥θ0 − θ∗

∥∥2
√
T + 1

+
2

T + 1

T−1∑
t=0

δt +
2

T + 1

T−1∑
t=0

λtµt, (11)

where δt = E
[∑

i∈B
(
1
b − wi,t

)
(fi(θ

t)− fi(θ
∗))
]
, µt =

E
[∑

i∈B
(
1
b − wi,t

)
(fi(θ

t)− fi(θ
t−1))

]
, and θ̄T = 1

T

∑T−1
t=0 θt.

Proof. (i) Minibatch SGD: For the minibatch SGD based on Eq. (2), we have∥∥θt+1 − θ∗
∥∥2 =

∥∥θt − θ∗
∥∥2 + ∥∥θt+1 − θt

∥∥2 + 2
〈
θt+1 − θt, θt − θ∗

〉
=
∥∥θt − θ∗

∥∥2 + ∥∥ηt∑
i∈B

wi,t∇fi(θ
t)
∥∥2 − 2

〈
ηt
∑
i∈B

wi,t∇fi(θ
t), θt − θ∗

〉
. (33)

Applying expectation on both sides, we get

E
∥∥θt+1 − θ∗

∥∥2
≤
∥∥θt − θ∗

∥∥2 + η2tE
∥∥∑

i∈B
wi,t∇fi(θ

t)
∥∥2 − 2ηtE

〈∑
i∈B

wi,t∇fi(θ
t), θt − θ∗

〉
(a)

≤
∥∥θt − θ∗

∥∥2 + η2tE
∥∥∑

i∈B
wi,t∇fi(θ

t)
∥∥2 − 2ηtE

∑
i∈B

wi,t

(
fi(θ

t)− fi(θ
∗)
)

≤
∥∥θt − θ∗

∥∥2 + η2t bE

[∑
i∈B

w2
i,t

∥∥∇fi(θ
t)
∥∥2]− 2ηtE

∑
i∈B

wi,t

(
fi(θ

t)− fi(θ
∗)
)

(b)

≤
∥∥θt − θ∗

∥∥2 + 4Lη2t bE

[∑
i∈B

w2
i,t(fi(θ

t)− fi(θ
∗))

]
− 2ηtE

∑
i∈B

wi,t

(
fi(θ

t)− fi(θ
∗)
)

≤
∥∥θt − θ∗

∥∥2 + E

[∑
i∈B

wi,t(4Lη
2
t bwi,t − 2ηt)(fi(θ

t)− fi(θ
∗))

]
, (34)

where (a) follows from Assumption 1, and (b) follows from lemma 1. Selecting ηt such that
4bLηtwi,t − 2 ≤ −1 ∀ i, i.e., ηt ≤ 1

4bLwmax,t
, yields

E
∥∥θt+1 − θ∗

∥∥2 ≤
∥∥θt − θ∗

∥∥2 − ηtE

[∑
i∈B

wi,t(fi(θ
t)− fi(θ

∗))

]

=
∥∥θt − θ∗

∥∥2 − ηtE

[∑
i∈B

1

b
(fi(θ

t)− fi(θ
∗))

]

+ ηtE

[∑
i∈B

(
1

b
− wi,t

)
(fi(θ

t)− fi(θ
∗))

]
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=
∥∥θt − θ∗

∥∥2 − ηt(f(θ
t)− f(θ∗)) + ηtδt, (35)

where δt = E
[∑

i∈B
(
1
b − wi,t

)
(fi(θ

t)− fi(θ
∗))
]

and
∑

i∈S w2
i,t ≤ 1. Hence, telescoping Eq. (35)

from t = 0 to T − 1 yields

E
∥∥θT − θ∗

∥∥2 ≤
∥∥θ0 − θ∗

∥∥2 − T−1∑
t=0

ηt
(
f(θt)− f(θ∗)

)
+

T−1∑
t=0

ηtδt. (36)

For a weighting scheme such that wmax,t ≤ 2
b so that ηt can be fixed to η = 1

8L
√
T

, we obtain

f(θ̄T )− f(θ∗) ≤
8L
∥∥θ0 − θ∗

∥∥2
√
T

+
1

T

T−1∑
t=0

δt, (37)

where θ̄T = 1
T

∑T−1
t=0 θt.

The traditional convergence bound of minibatch SGD for convex functions can be recovered when
δt = 0 which occurs when the samples in the batch have uniform weights, wi,t =

1
b ∀i ∈ B. We

obtain a looser convergence bound when δt ≥ 0 resulting from the assignment of larger weights to
smaller loss gaps. Moreover, down-weighting the importance of samples with low loss gaps leads
to a better bound (δt ≤ 0). Note that the bound in Eq. (10) only holds for reweighting schemes
that satisfy wi,t ≤ 2/b. Thus, enforcing an upper bound on the maximum weight that can be
assigned to a single data point. Typically, the minibatch gradient with uniform weights is unbiased,
E
[∑

i∈B
1
b∇fi(θ

t)
]
= ∇f(θt). However, in our setting, the importance weights are functions of

the sample functions. Hence, E
[∑

i∈B wi,t∇fi(θ
t)
]
̸= ∇f(θt) leading to the analysis of Theorem 2

being more involved. Based on our analysis, we note that the step size ηt is a function of the maximum
value of the weights, wmax,t =

2
b which leads to the choice of η = 1

8L
√
T

for convergence.

(ii) Minibatch SGD with Momentum: Given the loss-based sample reweighting strategies, Eq. (11)
characterizes the effects of loss-based reweighting on the convergence bound of reweighted minibatch
SGD with momentum when the sample losses fi are convex. Given the loss-based sample reweighting
strategies, we incorporate heavy ball momentum method to improve the convergence result and to
characterize the effects of loss-based reweighting on the convergence bound. Hence, we have the
following update equations:

zt+1 = zt − ηt
∑
i∈B

wi,t∇fi(θt), (38)

θt+1 =
λt+1

1 + λt+1
θt +

1

1 + λt+1
zt+1, (39)

where ηt is the step size and ηt, λt > 0. The above iterates θt are equal to the iterates of the following
stochastic minibatch heavy ball momentum method Sebbouh et al. (2021).

θt+1 = θt −
ηt

1 + λt+1

∑
i∈B

wi,t∇fi(θt) +
λt

1 + λt+1
(θt − θt−1).

Eq. (11) characterizes the effects of loss-based reweighting on the convergence bound of reweighted
minibatch SGD with momentum when the sample losses fi are convex.

For the minibatch SGD with momentum based on Eq. (39), we have∥∥zt+1 − θ∗
∥∥2 =

∥∥zt − θ∗
∥∥2 + ∥∥zt+1 − zt

∥∥2 + 2
〈
zt+1 − zt, zt − θ∗

〉
=
∥∥zt − θ∗

∥∥2 + ∥∥ηt∑
i∈B

wi,t∇fi(θ
t)
∥∥2 − 2

〈
ηt
∑
i∈B

wi,t∇fi(θ
t), zt − θ∗

〉
. (40)

Applying expectation on both sides, we get

E
∥∥zt+1 − θ∗

∥∥2
≤
∥∥zt − θ∗

∥∥2 + η2tE
∥∥∑

i∈B
wi,t∇fi(θ

t)
∥∥2 − 2ηtE

[〈∑
i∈B

wi,t∇fi(θ
t), θt − θ∗

〉]
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− 2ηtλtE

[〈∑
i∈B

wi,t∇fi(θ
t), θt − θt−1

〉]
(a)

≤
∥∥zt − θ∗

∥∥2 + η2tE
∥∥∑

i∈B
wi,t∇fi(θ

t)
∥∥2 − 2ηtE

[∑
i∈B

wi,t

(
fi(θ

t)− fi(θ
∗)
)]

− 2ηtλtE

[∑
i∈B

wi,t

(
fi(θ

t)− fi(θ
t−1)

)]
(b)

≤
∥∥zt − θ∗

∥∥2 + E

[∑
i∈B

wi,t(4Lη
2
t bwi,t − 2ηt)(fi(θ

t)− fi(θ
∗))

]

− 2ηtλtE

[∑
i∈B

wi,t

(
fi(θ

t)− fi(θ
t−1)

)]

=
∥∥zt − θ∗

∥∥2 + E

[∑
i∈B

wi,t(4Lη
2
t bwi,t − 2ηt − 2ηtλt)(fi(θ

t)− fi(θ
∗))

]

+ 2ηtλtE

[∑
i∈B

wi,t

(
fi(θ

t−1)− fi(θ
∗)
)]

(c)

≤
∥∥zt − θ∗

∥∥2 − 2ηtλt+1E

[∑
i∈B

wi,t(fi(θ
t)− fi(θ

∗))

]
+ 2ηtλtE

[∑
i∈B

wi,t

(
fi(θ

t−1)− fi(θ
∗)
)]

=
∥∥zt − θ∗

∥∥2 − 2ηtλt+1E

[∑
i∈B

1

b
(fi(θ

t)− fi(θ
∗))

]
+ 2ηtλt+1E

[∑
i∈B

(
1

b
− wi,t

)
(fi(θ

t)− fi(θ
∗))

]

+ 2ηtλtE

[∑
i∈B

1

b

(
fi(θ

t−1)− fi(θ
∗)
)]

+ 2ηtλtE

[∑
i∈B

(
wi,t −

1

b

)(
fi(θ

t−1)− fi(θ
∗)
)]

=
∥∥zt − θ∗

∥∥2 − 2ηtλt+1E(f(θt)− f(θ∗)) + 2ηtλt+1E

[∑
i∈B

(
1

b
− wi,t

)
(fi(θ

t)− fi(θ
∗))

]

+ 2ηtλtE
(
f(θt−1)− f(θ∗)

)
+ 2ηtλtE

[∑
i∈B

(
wi,t −

1

b

)(
fi(θ

t−1)− fi(θ
∗)
)]

=
∥∥zt − θ∗

∥∥2 − 2ηtλt+1E(f(θt)− f(θ∗)) + ηtE

[∑
i∈B

(
1

b
− wi,t

)
(fi(θ

t)− fi(θ
∗))

]

+ 2ηtλtE
(
f(θt−1)− f(θ∗)

)
+ 2ηtλtE

[∑
i∈B

(
1

b
− wi,t

)(
fi(θ

t)− fi(θ
t−1)

)]
(41)

where (a) follows from applying Assumption 1 to the third and fourth terms, (b) follows from applying
Lemma 1 to the second term, and (c) follows from setting ηt as ηt ≤ 1

4Lbwmax,t
and λt+1 = λt +

1
2 .

Let δt = E
[∑

i∈B
(
1
b − wi,t

)
(fi(θ

t)− fi(θ
∗))
]
, µt = E

[∑
i∈B

(
1
b − wi,t

)
(fi(θ

t)− fi(θ
t−1))

]
and

∑
i∈B w2

i,t ≤ 1. Hence, telescoping Eq. (41) from t = 0 to T − 1 and noting that z0 = x0 yields

E
∥∥zT − θ∗

∥∥2 ≤
∥∥θ0 − θ∗

∥∥2 − 2ηλT+1E
(
f(θT )− f(θ∗)

)
+

T−1∑
t=0

2ηδt +

T−1∑
t=0

2ηλtµt. (42)

With λt = t/2, for a weighting scheme such that wmax,t ≤ 2
b so that ηt can be fixed to η = 1

8L
√
T+1

,
we obtain

E[f(θT )− f(θ∗)] ≤
8L
∥∥θ0 − θ∗

∥∥2
√
T + 1

+
2

T + 1

T−1∑
t=0

δt +
2

T + 1

T−1∑
t=0

λtµt. (43)
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C.4 NON-CONVEX MINIBATCH SGD

Non-convex: Unlike the convex case, the importance weight wi,t is set based on the gradient norm
instead of the loss gap fi(θ

t) − fi(θ
∗) when the sample functions fi are non-convex. Theorem 3

underlines the influence of these importance weights on the convergence bound for the non-convex
case. Note that computing the gradient norm requires extra computations, whereas the loss values are
readily available in practice.

Assumption 4. The norm of the difference between the sample gradient ∇fi(θt) and full gradient
∇f(θt) is bounded by ∥∇fi(θt)−∇f(θt)∥2 ≤ V2,∀θt, i ∈ [M ].

Theorem 3. [Non-convex Minibatch SGD] Given that the objective functions fi, i ∈ [n] satisfy
Assumption 2 and Assumption 4. Consider a minibatch of data points |B| = b with reweighting
scheme wi,t, if i ∈ B and 0 otherwise where maxi∈B wi,t ≤ 2/b. Then, for η = 1

8L
√
T

, we have

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤ 16L(f(θ0)− f∗)√
T

+
8

T

T−1∑
t=0

E

[∑
i∈B

(
1

b
− wit

)
∥∇fi(θ

t)∥2
]
+

bV2

4
√
T
.

(44)

Proof. Applying L-smoothness condition

f(θt+1)

≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+ L

2
∥θt+1 − θt∥2

= f(θt)− η

〈
∇f(θt),

∑
i∈B

wit∇fi(θ
t)

〉
+

Lη2

2

∥∥∥∥∥∑
i∈B

wit∇fi(θ
t)

∥∥∥∥∥
2

= f(θt)− η

〈
∇f(θt),

∑
i∈B

1

b
∇fi(θ

t)

〉
+ η

〈
∇f(θt),

∑
i∈B

(
1

b
− wit

)
∇fi(θ

t)

〉
+

Lη2

2

∥∥∥∥∥∑
i∈B

wit∇fi(θ
t)

∥∥∥∥∥
2

= f(θt)− η

〈
∇f(θt),

∑
i∈B

1

b
∇fi(θ

t)

〉
+ η

∑
i∈B

(
1

b
− wit

)〈
∇f(θt),∇fi(θ

t)
〉
+

Lη2

2

∥∥∥∥∥∑
i∈B

wit∇fi(θ
t)

∥∥∥∥∥
2

≤ f(θt)− η

〈
∇f(θt),

∑
i∈B

1

b
∇fi(θ

t)

〉
+ 2η

∑
i∈B

(
1

b
− wit

)
∥∇f(θt)∥2 + 2η

∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2

+
Lη2

2

∥∥∥∥∥∑
i∈B

wit∇fi(θ
t)

∥∥∥∥∥
2

= f(θt)− η

〈
∇f(θt),

∑
i∈B

1

b
∇fi(θ

t)

〉
+ 2η

∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2 + Lη2

2

∥∥∥∥∥∑
i∈B

wit∇fi(θ
t)

∥∥∥∥∥
2

≤ f(θt)− η

〈
∇f(θt),

∑
i∈B

1

b
∇fi(θ

t)

〉
+ 2η

∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2 + Lbη2

2

∑
i∈B

w2
it

∥∥∇fi(θ
t)
∥∥2

≤ f(θt)− η

〈
∇f(θt),

∑
i∈B

1

b
∇fi(θ

t)

〉
+ 2η

∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2

+ Lbη2
∑
i∈B

w2
it

∥∥∇fi(θ
t)−∇fi(θ

t)
∥∥2 + Lbη2

∑
i∈B

w2
it

∥∥∇f(θt)
∥∥2

≤ f(θt)− η

〈
∇f(θt),

∑
i∈B

1

b
∇fi(θ

t)

〉
+ 2η

∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2

+ Lbη2V2 + Lbη2
∑
i∈B

w2
i,t

∥∥∇f(θt)
∥∥2
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(45)

where we have used the bound ∥∇fi(θ
t)−∇f(θt)∥2 ≤ V2 and

∑
i∈B w2

i,t ≤ 1. Applying expecta-
tion on both sides, we get

Ef(θt+1) ≤ f(θt)− ηE
∥∥∇f(θt)

∥∥2 + (2η)E

[∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2]

+ Lbη2V2 + Lbη2
∑
i∈B

w2
itE
∥∥∇f(θt)

∥∥2
≤ f(θt)− ηE

∥∥∇f(θt)
∥∥2 + (2η)E

[∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2]

+ Lbη2V2 + Lb2η2w2
max,tE

∥∥∇f(θt)
∥∥2

≤ f(θt)− η

2
E
∥∥∇f(θt)

∥∥2 + 2ηE

[∑
i∈B

(
1

b
− wit

)∥∥∇fi(θ
t)
∥∥2]+ Lbη2V2 (46)

where η ≤ 1
2Lb2w2

max,t
in the last inequality. Telescoping and rearranging the terms yields

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤ 2(f(θ0)− f∗)

ηT
+

4

T

T−1∑
t=0

E

[∑
i∈B

(
1

b
− wit

)
∥∇fi(θ

t)∥2
]
+ 2LbηV2.

(47)

For a weighting scheme such that wmax,t ≤ 2
b so that ηt can be fixed to η = 1

8L
√
T

, we get

1

T

T−1∑
t=0

E∥∇f(θt)∥2 ≤ 16L(f(θ0)− f∗)√
T

+
4

T

T−1∑
t=0

E

[∑
i∈B

(
1

b
− wit

)
∥∇fi(θ

t)∥2
]
+

bV2

4
√
T
.

(48)

From Theorem 3, we can obtain the convergence bound of traditional minibatch SGD for non-
convex functions when wi,t =

1
b ∀i ∈ B. Moreover, a looser convergence bound is obtained when

E
[∑

i∈B
(
1
b − wit

)
∥∇fi(θ

t)∥2
]
≥ 0, for wi,t ≤ 1

b .
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