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ABSTRACT

Compositional Zero-Shot Learning (CZSL) aims to recognize unseen attribute-
object compositions by learning from seen combinations of visual primitives.
Recent advances extend this task to the Open-Vocabulary setting (OV-CZSL),
where novel attributes or objects may appear at test time. This setting presents two
major challenges: (1) global visual features often lack the granularity required to
distinguish fine-grained attribute information, particularly in unseen compositions;
and (2) indiscriminate knowledge transfer from seen to unseen compositions can
compromise class boundaries, leading to overfitting on seen compositions. To
address these issues, we propose a novel OV-CZSL framework that integrates Detail
Enhancement and Transfer Balance (DETB). Specifically, we propose a Multi-scale
Condition-guided Diffusion (MCD) module that selectively refines challenging
samples by integrating global semantic priors with localized visual disentangled
representations, enabling the recovery of fine-grained attribute information essential
for compositional recognition. Furthermore, we introduce a Transfer Balance Loss
(TBL) that adaptively adjusts the semantic margins between seen and unseen
compositions according to their inter-class similarity. This encourages effective
knowledge transfer while maintaining clear class separation. Extensive experiments
on three OV-CZSL benchmark datasets show that DETB consistently outperforms
existing approaches, setting a new state-of-the-art.

1 INTRODUCTION

Humans naturally possess the ability to generalize learned concepts to construct novel compositions.
For example, given prior knowledge of a ‘yellow bird’ and a ‘red flower’, humans can effortlessly infer
the meaning of an unknown composition such as a ‘yellow flower’. Inspired by it, Compositional
Zero-Shot Learning (CZSL) aims to classify images into unseen attribute-object pair labels by
learning primitives (i.e., attributes or objects) from images with known pair labels. However, CZSL
is constrained by the limited set of primitives observed during training, which restricts its ability to
generalize to unseen attributes, objects, and their compositions. Based upon this setting, recently
a more challenging task called Open Vocabulary-Compositional Zero-Shot Learning (OV-CZSL)
extends compositional reasoning by introducing novel primitives, aligning more closely with real-
world recognition scenarios.

Recent advances in CZSL highlight the importance of disentangling visual representations of at-
tributes and objects, as their co-occurrence in training images leads to entangled features that limit
compositional generalization. A widely adopted solution is the three-branch framework Saini et al.
(2022); Hao et al. (2023); Wang et al. (2023b); Huang et al. (2024), which employs attribute and object
branches to learn separate visual representations aligned with their respective textual embeddings,
while a composition branch performs final prediction based on global visual-textual similarity. By
extending this paradigm to the Open-Vocabulary setting (OV-CZSL), the most recent method BSPC
Saini et al. (2024) inherits the strengths of this framework and further incorporates external knowledge
(e.g., word embeddings) to bridge the semantic gap between seen and unseen attribute-object pairs,
thereby enabling the transfer of primitive knowledge. However, BSPC still suffers from two key
limitations in the OV-CZSL setting.
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Figure 1: (a) As fine-grained semantic concepts, attributes are prone to misclassification (e.g., ‘thick’
misidentified as ‘murky’) when models solely rely on global features with insufficient local detail.
(b) We mitigate this issue by employing diffusion-based enhancement to recover attribute-specific
details, thereby preserving fine-grained visual granularity. (c) Previous methods facilitate knowledge
transfer via similarity-based consistency, which blurs seen-unseen decision boundaries, leading to
misclassification of unseen samples vu as the seen composition ‘sliced fish’ ts. (d) We alleviate it by
introducing a class-adaptive balancing distance β, enabling correct prediction as ‘cooked fish’ tu.

(1) Lack of attribute-relevant visual details in global representations. Intuitively, attributes often
reflect fine-grained semantics (e.g., color, material, or state), which are usually difficult to capture
by global visual features extracted by standard backbones Huynh & Elhamifar (2020). OADis Saini
et al. (2022) attempts to address this by leveraging samples with the same attribute to enhance feature
disentanglement in the attribute branch. However, most CZSL methods, including OADis, still fail to
preserve these fine-grained details in the composition branch, resulting in misclassification during
final prediction. In OV-CZSL, this issue becomes more pronounced, as unseen attributes appear at
test time are more easily confused with seen ones due to limited visual granularity, as illustrated
in Figure 1 (a). To address this issue, enhancing the attribute-relevant details absent from global
visual features is essential to further improve the model’s ability to distinguish both seen and unseen
compositions.

(2) Indiscriminate knowledge transfer compromises class boundaries. To enhance knowledge
transfer from seen to unseen compositions for better generality, BSPC aligns seen and unseen
compositions by measuring the similarity of their compositional word embeddings. However, this
paradigm may compromise class boundaries and cause the model to overfit to seen compositions,
as shown in Figure 1 (c). Therefore, another challenge in OV-CZSL lies in balancing knowledge
transfer and discrimination: how to model the relationships between seen samples, seen labels, and
unseen labels in a shared space, while ensuring knowledge transfer is maintained without sacrificing
discriminative ability. In particular, preventing undesired alignment between unseen visual features
and seen textual features is essential for robust generalization to novel compositions.

To address the two core limitations discussed above, we propose a novel OV-CZSL framework named
DETB, which aims to achieve Detail Enhancement and Transfer Balance. Recent studies Li et al.
(2023); Wu et al. (2024) have shown that diffusion models Ho et al. (2020) possess strong capabilities
in refining visual details (e.g., textures and edges) by iterative denoising, which have superior
performance in tasks like super-resolution, image deblurring, and image inpainting. Motivated by
these findings, we design a Multi-scale Condition-guided Diffusion (MCD) module to enhance
attribute representations. Specifically, we first identify a subset of hard-to-predict samples by filtering
those with low attribute prediction confidence, which are then fed into MCD to enhance their attribute
representations. Given the strong contextual dependence of attribute features, MCD integrates both
global semantic context and local disentangled visual features to generate refined and discriminative
attribute representations.

To balance knowledge transfer and category discrimination, we introduce a class-adaptive margin
between each seen composition and its top-k most similar unseen compositions, as shown in Figure
1 (d). We define the margin as a function of semantic similarity, allowing closer pairs to maintain
smaller margins. We further propose a transfer balance loss (TBL), which explicitly constrains the
class-aware margins, encouraging the model to establish clear decision boundaries while supporting
effective semantic transfer.

Our main contributions are summarized below:
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• We propose DETB, a novel OV-CZSL framework to achieve detail enhancement and transfer
balance. To our knowledge, we are the first to leverage the strong generative ability of
diffusion models for fine-grained detail recovery in both CZSL and OV-CZSL.

• We propose a multi-scale condition-guided diffusion (MCD) module to enhance attribute
representations for hard samples, guided by both global context and local disentangled
features. Furthermore, a class-adaptive transfer balance loss (TBL) dynamically adjusts
margins based on semantic similarity, promoting clearer class boundaries between confusing
seen and unseen compositions.

• We comprehensively evaluate our DETB on three OV-CZSL datasets, achieving state-of-the-
art performance.

2 RELATED WORKS

Compositional Zero-Shot Learning (CZSL) represents a specialized branch of Zero-Shot Learning
(ZSL). It aims to classify images into previously novel attribute-object pair labels by learning
primitives (i.e., attributes or objects) in images with known pair labels. Early studies on CZSL mainly
follow two paradigms: word composition and visual disentanglement. Some word composition
methods Naeem et al. (2021); Mancini et al. (2022); Karthik et al. (2022) learn joint representations
via graph convolutional networks, leveraging the dependencies among attributes, objects, and their
compositions to facilitate knowledge transfer from seen to unseen pairs. Recent works Nayak et al.
(2022); Lu et al. (2023) utilize CLIP Radford et al. (2021) to learn soft prompts for individual
primitives, which are then combined into novel compositional prompts. For visual disentanglement,
contrastive-based approaches Wei et al. (2019); Yang et al. (2020) design attribute-object contrastive
losses to improve representation separability. Other methods Saini et al. (2022); Hao et al. (2023)
adopt attention-based mechanisms to retrieve samples sharing primitives, enabling the extraction of
disentangled features for better separation.

However, CZSL methods always depend on a fixed set of seen attributes and objects. To better
model open-world conditions, Open-Vocabulary CZSL (OV-CZSL) has emerged Saini et al. (2024),
allowing unseen attributes and objects at test time. It leads to challenges like semantic drift and
stronger entanglement, as new primitives lack visual supervision. Our work follows this direction by
tackling OV-CZSL’s core issues: enhancing attribute discriminative details and mitigating overfitting
to seen classes.

Feature Disentanglement focuses on separating latent semantic factors (e.g., style, identity, attributes)
to improve generalization across various visual tasks. In domain generalization methods Zhang et al.
(2022); Nguyen et al. (2021), they isolate domain-invariant features to reduce distribution shift. In
face recognition methods Tran et al. (2017); Zhang et al. (2021), they disentangle identity from
confounding factors like pose and age. In few-shot learning methods Xu et al. (2021); Cheng et al.
(2024), they separate class-generic and specific features to improve transfer with limited data. These
works demonstrate that learning factorized representations is broadly beneficial for robust and
compositional visual understanding.

In CZSL, visual feature disentanglement of attributes and objects has become a prevailing strategy.
Our work aims to advance this direction by extracting attribute-disentangled features with improved
accuracy and richer details.

Diffusion Models Ho et al. (2020), originally designed for image generation, have recently been
adapted for feature reinforcement in discriminative tasks by leveraging their ability to iteratively
denoise and generate structured representations. In semantic segmentation, Zbinden et al. (2023)
enhances feature learning by generating diverse segmentation masks conditioned on images. Diffu-
Mask Wu et al. (2023) leverages Stable Diffusion’s cross-attention to synthesize pixel-level annotated
images for supervision. DFormer Wang et al. (2023a) injects noise into ground-truth masks and
denoises them to improve universal segmentation.

These works demonstrate how diffusion models can enrich feature representations across tasks
through diverse, semantically guided synthesis. In this paper, we leverage the powerful detail-
capturing capacity of diffusion models and propose a multi-scale condition-guided diffusion module
to reinforce the attribute-level visual representations.
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Figure 2: Illustration of our framework DETB, which consists of three main components: a Primi-
tive Disentanglement Module (PDM); a proposed Multi-scale Condition-guided Diffusion (MCD)
module that enhances attribute details by global semantic priors with localized visual disentangled
representations; and a carefully designed class-adaptive Transfer Balancing Loss (TBL) that adjusts
the semantic margins between seen and unseen compositions according to their inter-class similarity.

3 OUR APPROACH

3.1 TASK FORMULATION

OV-CZSL aims to enable the composition of both seen and novel attributes and objects. Each image
X is associated with two semantic labels: an attribute A and an object O. We denote previously
unseen concepts with an asterisk, such that unseen attributes and objects are represented as A∗ and O∗,
respectively. The training set consists solely of observed attribute-object pairs, denoted by Y s = AO.
During inference, CZSL involves only novel attribute-object compositions with known primitives
during training (i.e., (AO)∗), whereas OV-CZSL introduces more challenging cases involving unseen
primitives. Specifically, the test set includes three types of novel compositions: (1) seen attribute
with unseen object AO∗, (2) unseen attribute with seen object A∗O, and (3) both attribute and object
unseen A∗O∗. The complete test label space is defined as Y u = (AO)∗ ∪ AO∗ ∪ A∗O ∪ A∗O∗.
Importantly, there is no overlap between training and testing compositions, i.e., Y s ∩ Y u = ∅.

3.2 PRELIMINARY

We propose a novel OV-CZSL framework named DETB, to achieve detail enhancement and transfer
balance. Inspired by mainstream visual disentanglement approaches in CZSL, we adopt a three-
branch architecture with dedicated disentanglers for separating attribute and object representations.
Specifically, as illustrated in Figure 2, our proposed framework consists of three main components:
a Primitive Disentanglement Module (PDM); a proposed Multi-scale Condition-guided Diffusion
(MCD) module that enhances fine-grained attribute-specific details; and a designed class-adaptive
Transfer Balancing Loss (TBL) designed to prevent overfitting to seen compositions.

3.3 PRIMITIVE DISENTANGLEMENT MODULE (PDM)

Followed by Saini et al. (2024), in the visual modality, for each sample xi, we extract image features
vi from the penultimate layer (prior to the average pooling operation) of a pre-trained ResNet18 He
et al. (2016). In the semantic modality, embeddings of composition and primitives (i.e., tci , tai , and toi )
are extracted from BERT Devlin et al. (2019) separately.

Then, we introduce Primitive Disentanglement Module (PDM) that disentangles attribute and object
features from image-level representations. In line with mainstream CZSL approaches, such as OADis
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Saini et al. (2022), for each xi, we select two assisted features randomly in the dataset: one with
the same attribute but a different object, denoted as xm, and another with the same object but a
different attribute, denoted as xn. The attribute disentangled feature vai is obtained by extracting the
similarity weight from the (xi,xm) pair and then multiplying it with vi. Similarly, the object feature
voi is extracted from (xi,xn). Followed by Saini et al. (2024), in the visual modality, for each sample
xi, we extract image features fi from the penultimate layer (prior to the average pooling operation)
of a pre-trained ResNet18 He et al. (2016). After aligning vai and voi to match the text embedding
dimensions via MLP, the primitive classification probabilities can be calculated as:

Pa
i =

e⟨v
a
i ,t

a
i ⟩/τ∑

ya
i ∈A e⟨va,y

a
i ⟩/τ

,Po
i =

e⟨v
o
i ,t

o
i ⟩/τ∑

yo
i ∈O e⟨vo,y

o
i ⟩/τ

, (1)

where yai and yoi denote the attribute and object labels of xi respectively, τ is the temperature factor,
and ⟨·, ·⟩ stands for the cosine similarity between visual and semantic features.

3.4 MULTI-SCALE CONDITION-GUIDED DIFFUSION (MCD)

As attributes are fine-grained semantic concepts, while the global visual feature vci is natively
object-centric, it often lacks sufficient detail to distinguish subtle attribute variations. To address
this limitation, we draw inspiration from the powerful generative capacity of diffusion models,
leveraging their ability to recover fine-grained details (e.g., subtle textures, edge color variations,
and material characteristics), to capture the key information necessary for correctly distinguishing
between confusing attributes.

We identify hard samples as the primary bottleneck to generalization, where missing fine-grained de-
tails result in ambiguous attribute representations. Enhancing attribute representations of challenging
samples is crucial for improving recognition accuracy. Therefore, we design a hard-aware filtering
strategy that focuses on the most critical samples, avoiding redundant information as noise to easier
instances and reducing computational cost.

Specifically, we identify hard samples based on attribute prediction errors from the PDM. Among
misclassified instances, we rank confidence scores Pa

i and select the bottom q%, forming a subset H
for diffusion-based visual enhancement.

Then, the selected H are fed into our proposed Multi-scale Condition-guided Diffusion (MCD). Since
the input vi is a high-dimensional feature represented as a 1D sequence, we introduce Unet1D and
apply Gaussian noise following the standard forward process of diffusion:

vi,t =
√
ᾱt · vi +

√
1− ᾱt · ϵ, ϵ ∼ N (0, I), (2)

where ᾱt =
∏t

s=1(1− βs) denotes the cumulative product in the standard diffusion noise schedule.
MCD is used to refine visual features via a class-guided denoising mechanism. Concretely, the class-
specific condition ccls

i is formed by the disentangled attribute representation vai and the composition
label embedding tci :

ccls
i = δ ·Adapter(vai ) + (1− δ) · tci , (3)

where δ is hyperparameter. Here we employ a learnable adapter to align the dimensions of vai and tci ,
which is implemented using a two-layer MLP. As attribute representations are strongly influenced
by the co-occurring object, the composition text tci constrains the attribute within its contextual
environment, enabling ccls

i to incorporate both global contextual and locally disentangled guidance.
We then predict noise under both conditions using the UNet1D:

ϵ̂θ = ϵθ(vi,t, t, c
cls
i ), (4)

where t is the timestep. This guided noise estimate can be used to recover a denoised representation:

ṽi =
1√
ᾱt

(
vi,t −

√
1− ᾱt · ϵ̂θ

)
. (5)

The entire attribute enhancement process within MCD can be formulated as follows:

vci =

{
ṽi, if i ∈ H
vi, otherwise

. (6)

Subsequently, we constrain the predicted noise to match the input, which can be formulated as:
Ldiff = Evi,ϵ,t,ccls

i
[ ∥ϵ− ϵ̂θ∥2 ]. (7)
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3.5 CLASS-ADAPTIVE TRANSFER BALANCE LOSS (TBL)

Prior works have demonstrated that similarity-based consistency between seen and unseen classes
promotes knowledge transfer. For instance, BSPC Saini et al. (2024) uses Neighborhood Expansion
Loss (NEL) to propagate labels from seen concepts to semantically similar unseen ones. Intuitively,
NEL pulls seen composition features closer to their most similar unseen neighbors.

However, this direct pulling operation may blur seen-unseen class boundaries. We think the model
should learn an appropriate margin within similar seen-unseen pairs to better balance knowledge
transfer and category discrimination. To this end, we propose a class-adaptive Transfer Balance Loss
(TBL), which dynamically determines the inter-class distances during training.

Our key intuition is that similar pairs should be subject to a smaller margin compared to dissimilar
ones. Therefore, we define the margin constraints based on the semantic similarity between class
embeddings. For every sample vci in seen compositions, we retrieve the top-k most similar unseen
class embeddings Nu

i = {tui,1, · · · , tui,k}, based on cosine similarity to tci . Then, the class-adaptive
margin βij is defined as follows:

βij = βmax ·
e⟨t

c
i ,t

u
i,j⟩/σ∑k

l=1 e
⟨tci ,tui,l⟩/σ

, (8)

where βmax is the upper bound of the margin, σ is a temperature factor, and ⟨·, ·⟩ stands for the cosine
similarity.

For each seen-unseen pair, we finally define the triplet loss with margins as:

Ltb =
1

B · k

B∑
i=1

k∑
j=1

[
∥tci − vci ∥2 −

∥∥tci − tui,j
∥∥
2
− βij

]
+
, (9)

where tui,j is the j-th most similar unseen class embedding for tci , B is batch-size, and the operator
[x]+ = max(0, x) denotes the standard hinge function.

3.6 TRAINING LOSS AND INFERENCE PHASE

Similar to Eq. 1, once vci is obtained, it can be used to compute classification probabilities with
compositional text features, which can be formally expressed as:

Pc
i =

e⟨v
c
i ,t

c
i ⟩/τ∑

yc
i∈Y s e⟨v

c
i ,y

c
i ⟩/τ

, (10)

where yci denotes the composition label of xi, τ is the temperature factor, and ⟨·, ·⟩ stands for the
cosine similarity. Thus, the classification loss can be computed as follows:

Ln
ce = − 1

|Xs|
∑

xi∈Xs

logPn
i , n ∈ {a, o, c}, (11)

where Xs is the training set. Following BSPC Saini et al. (2024), we also leverage NEL to facilitate
knowledge transfer. The final loss is linearly combined as a whole, incorporating the above losses:

L = Lc
ce + λ1(La

ce + Lo
ce) + Ldiff + λ2Ltb + λ3Lne (12)

where λ1, λ2, and λ3 are the weighting coefficients to balance the influence of each loss.

During the inference phase, consistent with mainstream approaches OADis Saini et al. (2022) and
BSPC, assisted samples sharing the same primitives (i.e., xm and xn) are unavailable. Consequently,
the disentangled attribute feature vai cannot be derived, and the model performs prediction based
solely on the holistic composition. Since the probability Pa

i is unavailable for filtering, we assume that
all test samples require attribute enhancement through MCD (i.e., vci = ṽi), with the class-adaptive
condition ccls

i set to empty. The final labels for the sample xi can be determined as follows:

ĉ = argmax
c∈Y u

Pc
i . (13)
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Table 1: Dataset Splits on MIT-States, C-GQA, and VAW-CZSL. We denote ∗ for unseen primitives:
A and O represent seen attributes and objects, while A∗ and O∗ denote unseen ones. Compositions
are categorized as Seen pairs AO, Unseen pairs (AO)∗ with seen primitives and Unseen pairs {AO∗,
A∗O, A∗O∗} with unseen primitives.

Datasets Attributes Objects Training Set Validation Set Test Set
A A∗ O O∗ AO AO / (AO)∗ / A∗O / AO∗ / A∗O∗ AO / (AO)∗ / A∗O / AO∗ / A∗O∗

MIT-states Isola et al. (2015) 84 31 182 63 955 236 / 105 / 126 / 177 / 44 289 / 130 / 157 / 218 / 50
C-GQA Naeem et al. (2021) 311 102 504 170 4094 1012 / 447 / 525 / 517 / 147 1239 / 542 / 664 / 655 / 176
VAW-CZSL Saini et al. (2022) 330 135 406 110 7142 1767 / 803 / 1420 / 1253 / 412 2161 / 982 / 1737 / 1532 / 504

Table 2: Results (%) on MIT-States and C-GQA. We report Top-1 AUC, which balances between seen
and unseen compositions with different bias terms. HM denotes the Harmonic Mean. Best accuracy
values of different kinds of compositions {AO, (AO)∗, AO∗, A∗O, A∗O∗} are also reported. AUC
and HM are the most representative and stable metrics to evaluate the performance of models. The
best and second-best results are marked in bold and underline, respectively.

Methods MIT-States C-GQA
AUC HM Seen Unseen AO (AO)∗ A∗O AO∗ A∗O∗ AUC HM Seen Unseen AO (AO)∗ A∗O AO∗ A∗O∗

LE Nagarajan & Grauman (2018) 1.01 7.64 16.29 9.46 10.24 11.38 5.98 4.15 2.87 1.17 8.39 19.37 8.36 10.76 6.51 9.53 2.67 1.08
CompCos Mancini et al. (2021) 1.97 10.22 26.53 10.29 14.32 21.09 5.86 2.89 0.63 2.35 9.64 40.19 7.25 21.19 20.24 4.47 1.95 0.26
OADis Saini et al. (2022) 1.83 9.55 25.35 10.79 12.68 16.06 6.40 5.41 1.34 2.33 9.74 42.88 7.12 20.86 15.19 6.17 3.47 0.61
SCEN Li et al. (2022) 1.73 9.72 22.08 8.25 11.85 30.02 3.82 0.33 0.08 1.97 9.03 41.65 7.83 20.65 21.42 3.61 1.08 0.05
CANet Wang et al. (2023b) 2.40 10.52 26.42 9.54 16.56 23.08 6.15 4.08 0.58 3.04 11.96 40.52 9.21 22.43 20.87 4.95 2.03 0.64
BSPC Saini et al. (2024) 2.41 10.94 29.02 11.13 14.11 18.87 8.24 5.49 3.54 3.18 12.11 42.38 9.77 19.78 16.07 12.86 2.87 3.04
DETB (Ours) 2.45 11.12 30.45 11.65 16.85 19.94 8.89 6.74 3.82 3.78 14.16 42.73 13.27 22.19 16.82 16.27 4.28 3.81

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our model on three benchmark datasets: 1) MIT-States Isola et al. (2015)
contains diverse real-world objects (e.g., cheese, sea) described by attributes (e.g., molten, dark). 2)
C-GQA Naeem et al. (2021) is the most extensive CZSL dataset, which is newly created based on
the Stanford GQA dataset Hudson & Manning (2019) for VQA tasks, composed of attributes (e.g.,
red, dirty) and objects (e.g., pen, window) commonly found in daily life. 3) VAW-CZSL Saini et al.
(2022) is a large-scale dataset derived from the VAW (Visual Attributes in the Wild) dataset Pham
et al. (2021), composed of attributes (e.g., furry, wet) and objects (e.g., dog, umbrella) grounded
in real-world images. Its long-tailed distribution and filtered compositions make it well-suited for
open-vocabulary scenarios. The split details are shown in Table 1.

Evaluation Metrics. Since the validation and test set include both seen and unseen compositions,
CZSL models inevitably exhibit a bias towards seen ones. Following the Generalized CZSL evaluation
protocol proposed by Purushwalkam et al. (2019), we apply a scalar bias to calibrate predictions.
Due to the difficulty of OV-CZSL, we adopt a closed-world evaluation, computing metrics only on
valid unseen compositions. We vary the scalar to plot an unseen-seen accuracy curve (seen on X-axis,
unseen on Y-axis) and calculate the Area Under Curve (AUC). The best Harmonic Mean (HM) is
also reported to assess bias balance. Best accuracy values are also reported for Seen AO, Unseen
pairs{(AO)∗} with seen primitives, and Unseen pairs{AO∗, A∗O, A∗O∗}. Among these metrics,
AUC and HM are the most representative and stable metrics to evaluate the performance of models.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Compared Methods. Currently, BSPC Saini et al. (2024) is the only existing method strictly under
the OV-CZSL setting. Therefore, we include a range of CZSL methods for comparison. Among them,
OADis Saini et al. (2022) is the most similar to our approach. We also compare with recent models,
such as SCEN Li et al. (2022) and CANet Wang et al. (2023b). To ensure a fair comparison, all
baselines use visual features from ResNet18 and word embeddings from BERT.

Results on MIT-States and C-GQA. As shown in Table 2, our proposed DETB achieves state-of-
the-art performance on both the MIT-States and C-GQA datasets, with significant improvements
across most evaluation metrics. It demonstrates a well-balanced prediction between seen and un-
seen categories, further validating the effectiveness of our method. Notably, our model achieves
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particularly evident gains on unseen pairs with unseen primitives (i.e., AO∗, A∗O, A∗O∗), which
directly confirms the effectiveness of our approach in alleviating overfitting to seen pairs. Although
DETB performs favorably on most metrics, it shows relatively weaker performance on unseen
pairs with seen primitives (i.e.,(AO)∗), where it still falls short compared to some traditional CZSL
methods. It’s likely because (AO)∗ emphasizes modeling attribute–object relations, whereas DETB
prioritizes primitive knowledge transfer and fine-grained visual enhancement; explicitly capturing
intra-compositional relations is not a primary strength of its design.

Table 3: Results (%) on VAW-CZSL. All metrics are shown
in Top-3 predictions. AUC and HM are the most represen-
tative and stable metrics to evaluate the performance of
models. The best and second-best results are marked in
bold and underline, respectively.

Methods AUC HM AO (AO)∗ A∗O AO∗ A∗O∗

LE Nagarajan & Grauman (2018) 1.49 8.27 15.62 10.48 5.79 2.78 0.98
CompCos Mancini et al. (2021) 2.69 10.68 20.21 20.58 5.04 2.48 0.50
OADis Saini et al. (2022) 2.68 10.91 21.19 15.65 6.75 3.16 0.76
SCEN Li et al. (2022) 2.53 10.64 19.06 20.76 4.52 2.05 0.42
CANet Wang et al. (2023b) 2.89 11.21 24.56 18.42 5.74 2.86 0.95
BSPC Saini et al. (2024) 2.91 11.35 23.02 16.18 7.86 3.37 1.36
DETB (Ours) 3.15 11.99 23.76 17.70 8.61 4.15 1.38

Results on VAW-CZSL. VAW-CZSL
is derived from the multi-label VAW
dataset, where the least frequent la-
bel is assigned to each image. Conse-
quently, the top-1 prediction may cap-
ture attributes present but not labeled.
Following prior CZSL methods, we re-
port evaluation metrics based on the
top-3 predictions. As shown in Table 3,
compared with other traditional CZSL
methods, CANet performs better on
AO, while SCEN excels on (AO)∗. In
contrast, DETB achieves the best re-
sults across other metrics, particularly on unseen compositions with unseen primitives (i.e., AO∗,
A∗O, A∗O∗), highlighting superior generalization to novel attribute-object pairs.

4.3 ABLATION ANALYSIS

Effect of MCD and TBL. We evaluate the effectiveness of Multi-scale Condition-guided Diffusion
(MCD) and Transfer Balance Loss (TBL), and report the results of ablation studies on the MIT-
States dataset in Table 4. Experimental results of the three variants we designed indicate that,

Table 4: Results (%) on MIT-States, C-GQA, and VAW-
CZSL w/ or w/o MCD and TBL. For MIT-States and C-
GQA, we report performance based on Top-1 prediction;
for VAW-CZSL, we report Top-3.

Datasets MCD TBL AUC HM AO (AO)∗ A∗O AO∗ A∗O∗

MIT-States

2.41 10.94 14.11 18.87 8.24 5.49 3.54
✓ 2.42 11.01 15.89 19.48 8.74 5.52 3.56

✓ 2.43 11.07 16.45 19.02 8.32 6.44 3.71
✓ ✓ 2.45 11.12 16.85 19.94 8.89 6.74 3.82

C-GQA

3.18 12.11 19.78 16.07 12.86 2.87 3.04
✓ 3.55 14.07 21.19 16.22 14.99 3.39 3.16

✓ 3.53 13.83 22.58 14.92 15.63 4.01 3.34
✓ ✓ 3.78 14.16 22.19 16.82 16.27 4.28 3.81

VAW-CZSL

2.91 11.35 23.02 16.18 7.86 3.37 1.36
✓ 3.06 11.57 23.58 17.56 8.62 3.81 1.19

✓ 3.13 11.87 23.16 17.30 8.46 4.34 1.39
✓ ✓ 3.15 11.99 23.76 17.70 8.61 4.15 1.38

removing either MCD or TBL from
the full DETB framework results in a
notable performance drop. Specifically,
the introduction of MCD brings greater
improvements for compositions involv-
ing seen primitives, especially for AO
pairs. It clearly highlights the benefits
of enhancing visual details in global
features for recognizing seen primitives.
Moreover, leveraging TBL substan-
tially boosts recognition performance
across various unseen pairs, verifying its
strong generalization ability under open-
vocabulary settings.

Table 5: Results (%) on MIT-States with differ-
ent scale guided in the MCD module. δ is the
hyperparameter in Eq. 3.

Scales δ AUC HM AO (AO)∗ A∗O AO∗ A∗O∗

0.00 2.43 10.96 15.84 19.74 8.59 6.61 3.45
0.25 2.41 10.89 16.89 18.96 8.40 6.67 3.67
0.50 2.45 11.12 16.85 19.94 8.89 6.74 3.82
0.75 2.40 10.73 16.40 19.66 8.28 6.80 3.64
1.00 2.43 10.95 15.65 19.87 8.50 6.96 3.62

Effect of Multi-scale Condition Fusion in MCD.
We evaluate the different values of the condition
fusion weight δ in MCD, and report the results of
ablation studies on the MIT-States dataset in Table
5. Specifically, δ controls the fusion ratio between
the disentangled attribute representation vai and
the compositional text embedding tci . When δ =
0, MCD is guided solely by tci ; when δ = 1, it is
guided only by vai . Experimental results of the five
variants we designed indicate that appropriately combining semantic and visual information leads to
better overall performance. Moreover, fully relying on visual attribute guidance (i.e., δ = 1) results in
a decline in overall performance, indicating that dependence on a single modality limits the model’s
generalization capability. However, its best results on unseen compositions with seen attributes
(i.e., (AO)∗ and AO∗), indirectly demonstrate the advantage of enhanced attribute-level features for
recognizing seen attributes.
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MIT-States

ancient clock

ancient clock

ancient clock

dirty coal

smooth phone

dirty coal

empty library

scratched wall

empty library

cluttered table

painted pear

small table

Ground truth

BSPC

DETB(Ours)

Success Cases Failure Cases

cooked seafood

clean seafood

cooked seafood

tiny room

cloudy bed

tiny room

empty toy

filled ceiling

empty hose

melted bottle

bent knife

engraved bottle

C-GQA

young girl

young girl

young girl

blue water

blue barrier

blue water

round bowl

rubber bowl

round bowl

black fireplace

vinyl cord

black box

Ground truth

BSPC

DETB(Ours)

worn tire

green bicycle

worn tire

white table

red dress

white table

open umbrella

steel shirt

worn umbrella

yellow book

wavy shirt

yellow dress

A*O*A*OA*OAO*AO* A*O*AO* A*O

Figure 3: Qualitative comparison with BSPC Saini et al. (2024). We present predictions on randomly
selected cases from MIT-States and C-GQA, focusing on unseen pairs with unseen primitives (i.e.,
AO∗, A∗O, A∗O∗). Green / Red denotes the correct / wrong predictions.

4.4 QUALITATIVE RESULTS

Performance comparison. Since OV-CZSL is more challenging than traditional CZSL due to
the inclusion of unseen primitives during testing, we select samples from MIT-States and C-GQA
belonging to {AO∗, A∗O, and A∗O∗}, and compare our predictions with BSPC Saini et al. (2024) in
Figure 3. Our DETB generates more accurate and semantically coherent predictions, especially for
samples in novel scenarios A∗O∗. It demonstrates more robust generalization to unseen pairs and
supports the effectiveness of our proposed TBL. Failure cases (e.g., 8th example in C-GQA) often stem
from semantic entanglement, which hinders accurate prediction. BSPC’s misclassification underscores
the limitation of relying solely on global visual features in complex contexts. In contrast, DETB
accurately predicts the attribute ‘yellow’, validating the effectiveness of our attribute enhancement
design in MCD.

T-SNE visualization of hardest samples fed into MCD. To directly validate the effectiveness of
MCD in enriching the discriminative features of samples, we visualize the feature distributions
before and after applying MCD using t-SNE. As shown in Figure 4, the sample points belonging

(a) Before MCD (b) After MCD

Figure 4: T-SNE visualization of the hardest samples from
MIT-States before and after enhancement by MCD.

to the same class in (b) are more com-
pact compared to (a) (e.g., ‘weath-
ered fence’), indicating that the MCD
module enhances intra-class consis-
tency, which makes samples in the
same class more tightly clustered in
the feature space. Meanwhile, the
class boundaries in (b) are more dis-
tinct, and fine-grained categories be-
come more separable (e.g., confusing
pairs ‘murky soup’ and ‘thick soup’),
demonstrating the effectiveness of
MCD in improving fine-grained dis-
criminability.

Please refer to the Appendix for Implementation Details A, more Ablations B, and Discussion C.

5 CONCLUSION

We propose a novel OV-CZSL framework named DETB, which simultaneously achieves fine-grained
detail enhancement and knowledge transfer balance. We design the MCD module to refine attribute
representations of challenging samples by leveraging both global context and local disentangled
features. In addition, our class-adaptive TBL dynamically adjusts decision boundaries based on
semantic similarity, boosting DETB’s generalization to unseen compositions. Extensive quantitative
and qualitative results demonstrate that DETB consistently outperforms existing approaches.
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A IMPLEMENTATION DETAILS

We implement DETB based on Pytorch 1.12.1. The model is trained and evaluated on NVIDIA
GeForce RTX 3090 for all three datasets. For fair comparison with existing CZSL Saini et al. (2022);
Li et al. (2022); Wang et al. (2023b) and OV-CZSL Saini et al. (2024) methods, we use image features
extracted from a frozen ResNet18 He et al. (2016) pre-trained on ImageNet Deng et al. (2009) without
finetuning. We use BERT Devlin et al. (2019) text embeddings for labels. Following OADis Saini et al.
(2022), we use image augmentations (random crop, horizontal flip) for our method. All projectors
are implemented as trainable two-layer MLPs. In the PDM module, τ is always set to 0.05. In the
MCD module, the inference steps t are set to 1000 across all three datasets. The confidence filter
threshold q% is set to 10% for all three datasets. In TBL, we configure the number of neighbors k as
5, 5, 10 for MIT-States Isola et al. (2015), C-GQA Naeem et al. (2021), and VAW-CZSL Saini et al.
(2022), separately. βmax and σ are always set to 1 and 10, respectively. In the final loss L, λ1 is 0.05,
λ2 is 0.3, 0.2, and 0.5 for MIT-States, C-GQA, and VAW-CZSL, separately. λ3 Consistent with the
setting in BSPC Saini et al. (2024), λ3 is fixed to 0.8 across all datasets. Our optimization setup uses
Adam optimizer with a learning rate of 5× 10−5 for MIT-States and VAW-CZSL, and 1× 10−4 for
C-GQA.

B ABLATION ANALYSIS

Table 6: Results (%) on MIT-States with different filter ratios in the MCD module. We select the
bottom q% of samples with the lowest attribute prediction confidence Pa

i and feed them into the
MCD module.

Filter Ratio q% AUC HM AO (AO)∗ A∗O AO∗ A∗O∗

5% 2.43 10.96 16.68 19.60 8.28 6.59 3.60
10% 2.45 11.12 16.85 19.94 8.89 6.74 3.82
20% 2.40 10.89 15.52 20.11 8.05 6.83 3.45
30% 2.36 10.87 16.56 18.65 7.82 6.88 3.39
40% 2.33 10.65 15.15 18.20 7.54 7.25 3.54

Table 7: Results (%) on MIT-States with different numbers of neighbors in TBL.

Neighbors Num k AUC HM AO (AO)∗ A∗O AO∗ A∗O∗

1 2.36 10.80 15.50 19.60 8.56 6.52 3.29
3 2.42 11.00 15.62 19.96 8.63 6.71 3.47
5 2.45 11.12 16.85 19.94 8.89 6.74 3.82
7 2.38 10.89 15.85 20.17 8.49 6.76 3.64

10 2.37 10.87 16.25 18.87 7.56 6.59 3.32

Effect of Filter by Attribute Confidence in MCD. We evaluate the different values of filter ratios q%
in MCD, and report the results of ablation studies on the MIT-States dataset in Table 6. Specifically,
we forward the bottom q% of samples ranked by attribute prediction confidence Pa

i into MCD to
enhance attribute awareness. Experimental results show that a moderate filtering ratio improves
overall model performance. In particular, when q% = 10%, the model achieves optimal AUC and
HM scores. Although gradually increasing q leads to a consistent accuracy gain on AO∗, further
confirming the benefit of MCD in recognizing seen attributes, we do not advocate using a large
q. First, it incurs higher computational cost; second, the overall performance (i.e., AUC and HM)
deteriorates, potentially due to over-enhancement of features, which may introduce noise and hinder
generalization from seen to unseen compositions. In summary, the results confirm the effectiveness
of the confidence-driven filtering mechanism. An appropriate selection ratio allows for targeted
enhancement of challenging samples, leading to improved compositional generalization.

Effect of the Number of Neighbors in TBL. We evaluate the different values of neighbor number
k in TBL, and report the results of ablation studies on the MIT-States dataset in Table 7. The
results indicate that a proper selection of k is crucial for enhancing compositional generalization.
When k = 5, our model achieves optimal performance across multiple metrics. It suggests that
moderately expanding the neighborhood during semantic transfer is beneficial, which helps estimate
the category semantics more robustly and reduces the risk of overfitting to a single class. However, as
k increases further (e.g., k = 10), the model’s performance degrades, possibly due to the introduction
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Table 8: Results (%) on MIT-States with different TBL weights λ2 in the final loss L.

TBL weights λ2 AUC HM AO (AO)∗ A∗O AO∗ A∗O∗

0.1 2.44 11.06 16.69 20.77 8.10 6.42 3.26
0.2 2.42 11.02 16.29 19.48 8.40 6.42 3.60
0.3 2.45 11.12 16.85 19.94 8.89 6.74 3.82
0.4 2.31 10.69 17.18 18.03 7.68 6.82 3.36
0.5 2.29 10.73 15.40 17.07 7.56 6.57 3.29

of noisy neighbors that weaken the discriminative power during class transfer. Overall, a moderate
neighborhood size offers a good trade-off between semantic generalization and class distinctiveness.

Effect of TBL Weight in the Final Loss. We evaluate the different values of TBL weight λ2 in L, and
report the results of ablation studies on the MIT-States dataset in Table 8. The results indicate that a
proper balance between the TBL component and the overall loss is essential for optimal compositional
generalization. When λ2 = 0.3, the model achieves the best performance across multiple metrics,
suggesting that moderately reinforcing TBL positively contributes to modeling unseen compositions.
However, with a larger weight (e.g., λ2 = 0.5), the model’s performance drops, indicating that
overemphasizing TBL may suppress the optimization of other crucial learning signals. In summary,
assigning TBL a moderate weight helps achieve better balance and generalization across different
composition splits.

C DISCUSSION

Why not directly generate unseen samples using diffusion models? As illustrated in Table 1
1 in our manuscript, the OV-CZSL setting involves approximately 6,000 unseen classes during
validation, and around 7,000 unseen classes during testing in large-scale datasets like VAW-CZSL.
Using MCD on our training GPUs, each image takes roughly 1 second by sampling, which greatly
slows down training and increases computational overhead. Moreover, many unseen classes are
visually similar, particularly those sharing the same object but differing in attributes. Thus, to enable
effective generation of such fine-grained unseen samples, future work would require stronger and
more discriminative conditions to guide the diffusion process.

Why is TBL not applied to the attribute branch? TBL defines a class-adaptive margin β based on
semantic similarity between seen and unseen classes. However, as fine-grained semantic concepts,
attributes often exhibit inconsistency between their semantic and visual similarities. In CZSL datasets,
attributes are grouped into categories like color (e.g., white, red), size (e.g., big, small), or state (e.g.,
clean, dirty). While attributes within a category are semantically close, their visual appearances can
vary drastically (e.g., ‘black’ and ‘white’). Therefore, applying a semantic similarity–based margin
constraint in TBL is not suitable for knowledge transfer between seen and unseen attributes. It can
easily introduce noise, so we do not apply TBL to the attribute branch.

Use of VLMs? Recent CZSL works increasingly incorporate Vision-Language Models (VLMs) like
CLIP Radford et al. (2021) to project data into a shared semantic space. Due to the fine-grained
nature of attributes as semantic concepts, we consider that even high-quality global visual features
obtained from VLMs still suffer from a lack of attribute details. In future work, we plan to leverage
their strong zero-shot capabilities to further improve CZSL performance under the open-vocabulary
setting.

D LLM USAGE STATEMENT

We only used GPT to polish the content of our manuscript and did not use LLM for any other purpose.
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