

000 DETAIL ENHANCEMENT AND TRANSFER BALANCE 001 FOR OPEN-VOCABULARY COMPOSITIONAL ZERO- 002 SHOT LEARNING 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Compositional Zero-Shot Learning (CZSL) aims to recognize unseen attribute-
014 object compositions by learning from seen combinations of visual primitives.
015 Recent advances extend this task to the Open-Vocabulary setting (OV-CZSL),
016 where novel attributes or objects may appear at test time. This setting presents two
017 major challenges: (1) global visual features often lack the granularity required to
018 distinguish fine-grained attribute information, particularly in unseen compositions;
019 and (2) indiscriminate knowledge transfer from seen to unseen compositions can
020 compromise class boundaries, leading to overfitting on seen compositions. To
021 address these issues, we propose a novel OV-CZSL framework that integrates Detail
022 Enhancement and Transfer Balance (DETB). Specifically, we propose a Multi-scale
023 Condition-guided Diffusion (MCD) module that selectively refines challenging
024 samples by integrating global semantic priors with localized visual disentangled
025 representations, enabling the recovery of fine-grained attribute information essential
026 for compositional recognition. Furthermore, we introduce a Transfer Balance Loss
027 (TBL) that adaptively adjusts the semantic margins between seen and unseen
028 compositions according to their inter-class similarity. This encourages effective
029 knowledge transfer while maintaining clear class separation. Extensive experiments
030 on three OV-CZSL benchmark datasets show that DETB consistently outperforms
031 existing approaches, setting a new state-of-the-art.

032 1 INTRODUCTION

035 Humans naturally possess the ability to generalize learned concepts to construct novel compositions.
036 For example, given prior knowledge of a ‘yellow bird’ and a ‘red flower’, humans can effortlessly infer
037 the meaning of an unknown composition such as a ‘yellow flower’. Inspired by it, **Compositional**
038 **Zero-Shot Learning** (CZSL) aims to classify images into unseen attribute-object pair labels by
039 learning primitives (*i.e.*, attributes or objects) from images with known pair labels. However, CZSL
040 is constrained by the limited set of primitives observed during training, which restricts its ability to
041 generalize to unseen attributes, objects, and their compositions. Based upon this setting, recently
042 a more challenging task called **Open Vocabulary-Compositional Zero-Shot Learning** (OV-CZSL)
043 extends compositional reasoning by introducing novel primitives, aligning more closely with real-
044 world recognition scenarios.

045 Recent advances in CZSL highlight the importance of disentangling visual representations of at-
046 tributes and objects, as their co-occurrence in training images leads to entangled features that limit
047 compositional generalization. A widely adopted solution is the three-branch framework Saini et al.
048 (2022); Hao et al. (2023); Wang et al. (2023b); Huang et al. (2024), which employs attribute and object
049 branches to learn separate visual representations aligned with their respective textual embeddings,
050 while a composition branch performs final prediction based on global visual-textual similarity. By
051 extending this paradigm to the Open-Vocabulary setting (OV-CZSL), the most recent method BSPC
052 Saini et al. (2024) inherits the strengths of this framework and further incorporates external knowledge
053 (*e.g.*, word embeddings) to bridge the semantic gap between seen and unseen attribute-object pairs,
thereby enabling the transfer of primitive knowledge. However, BSPC still suffers from two key
limitations in the OV-CZSL setting.

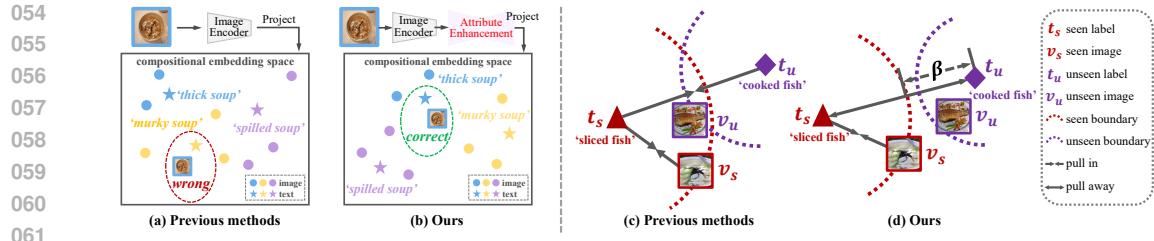


Figure 1: (a) As fine-grained semantic concepts, attributes are prone to misclassification (e.g., ‘thick’ misidentified as ‘murky’) when models solely rely on global features with insufficient local detail. (b) We mitigate this issue by employing diffusion-based enhancement to recover attribute-specific details, thereby preserving fine-grained visual granularity. (c) Previous methods facilitate knowledge transfer via similarity-based consistency, which blurs seen-unseen decision boundaries, leading to misclassification of unseen samples v_u as the seen composition ‘sliced fish’ t_s . (d) We alleviate it by introducing a class-adaptive balancing distance β , enabling correct prediction as ‘cooked fish’ t_u .

(1) Lack of attribute-relevant visual details in global representations. Intuitively, attributes often reflect fine-grained semantics (e.g., color, material, or state), which are usually difficult to capture by global visual features extracted by standard backbones Huynh & Elhamifar (2020). OADis Saini et al. (2022) attempts to address this by leveraging samples with the same attribute to enhance feature disentanglement in the attribute branch. However, most CZSL methods, including OADis, still fail to preserve these fine-grained details in the composition branch, resulting in misclassification during final prediction. In OV-CZSL, this issue becomes more pronounced, as unseen attributes appear at test time are more easily confused with seen ones due to limited visual granularity, as illustrated in Figure 1 (a). To address this issue, *enhancing the attribute-relevant details absent from global visual features* is essential to further improve the model’s ability to distinguish both seen and unseen compositions.

(2) Indiscriminate knowledge transfer compromises class boundaries. To enhance knowledge transfer from seen to unseen compositions for better generality, BSPC aligns seen and unseen compositions by measuring the similarity of their compositional word embeddings. However, this paradigm may compromise class boundaries and cause the model to overfit to seen compositions, as shown in Figure 1 (c). Therefore, another challenge in OV-CZSL lies in *balancing knowledge transfer and discrimination*: how to model the relationships between seen samples, seen labels, and unseen labels in a shared space, while ensuring knowledge transfer is maintained without sacrificing discriminative ability. In particular, preventing undesired alignment between unseen visual features and seen textual features is essential for robust generalization to novel compositions.

To address the two core limitations discussed above, we propose a novel OV-CZSL framework named DETB, which aims to achieve **D**etail **E**nancement and **T**ransfer **B**alance. Recent studies Li et al. (2023); Wu et al. (2024) have shown that diffusion models Ho et al. (2020) possess strong capabilities in refining visual details (e.g., textures and edges) by iterative denoising, which have superior performance in tasks like super-resolution, image deblurring, and image inpainting. Motivated by these findings, we design a Multi-scale Condition-guided Diffusion (MCD) module to enhance attribute representations. Specifically, we first identify a subset of hard-to-predict samples by filtering those with low attribute prediction confidence, which are then fed into MCD to enhance their attribute representations. Given the strong contextual dependence of attribute features, MCD integrates both global semantic context and local disentangled visual features to generate refined and discriminative attribute representations.

To balance knowledge transfer and category discrimination, we introduce a class-adaptive margin between each seen composition and its top- k most similar unseen compositions, as shown in Figure 1 (d). We define the margin as a function of semantic similarity, allowing closer pairs to maintain smaller margins. We further propose a transfer balance loss (TBL), which explicitly constrains the class-aware margins, encouraging the model to establish clear decision boundaries while supporting effective semantic transfer.

Our main contributions are summarized below:

- 108 • We propose DETB, a novel OV-CZSL framework to achieve detail enhancement and transfer
109 balance. To our knowledge, we are the first to leverage the strong generative ability of
110 diffusion models for fine-grained detail recovery in both CZSL and OV-CZSL.
- 111 • We propose a multi-scale condition-guided diffusion (MCD) module to enhance attribute
112 representations for hard samples, guided by both global context and local disentangled
113 features. Furthermore, a class-adaptive transfer balance loss (TBL) dynamically adjusts
114 margins based on semantic similarity, promoting clearer class boundaries between confusing
115 seen and unseen compositions.
- 116 • We comprehensively evaluate our DETB on three OV-CZSL datasets, achieving state-of-the-
117 art performance.

120 2 RELATED WORKS

121 **Compositional Zero-Shot Learning (CZSL)** represents a specialized branch of Zero-Shot Learning
122 (ZSL). It aims to classify images into previously novel attribute-object pair labels by learning
123 primitives (*i.e.*, attributes or objects) in images with known pair labels. Early studies on CZSL mainly
124 follow two paradigms: word composition and visual disentanglement. Some word composition
125 methods Naeem et al. (2021); Mancini et al. (2022); Karthik et al. (2022) learn joint representations
126 via graph convolutional networks, leveraging the dependencies among attributes, objects, and their
127 compositions to facilitate knowledge transfer from seen to unseen pairs. Recent works Nayak et al.
128 (2022); Lu et al. (2023) utilize CLIP Radford et al. (2021) to learn soft prompts for individual
129 primitives, which are then combined into novel compositional prompts. For visual disentanglement,
130 contrastive-based approaches Wei et al. (2019); Yang et al. (2020) design attribute-object contrastive
131 losses to improve representation separability. Other methods Saini et al. (2022); Hao et al. (2023)
132 adopt attention-based mechanisms to retrieve samples sharing primitives, enabling the extraction of
133 disentangled features for better separation.

134 However, CZSL methods always depend on a fixed set of seen attributes and objects. To better
135 model open-world conditions, Open-Vocabulary CZSL (OV-CZSL) has emerged Saini et al. (2024),
136 allowing unseen attributes and objects at test time. It leads to challenges like semantic drift and
137 stronger entanglement, as new primitives lack visual supervision. Our work follows this direction by
138 tackling OV-CZSL’s core issues: enhancing attribute discriminative details and mitigating overfitting
139 to seen classes.

140 **Feature Disentanglement** focuses on separating latent semantic factors (*e.g.*, style, identity, attributes)
141 to improve generalization across various visual tasks. In domain generalization methods Zhang et al.
142 (2022); Nguyen et al. (2021), they isolate domain-invariant features to reduce distribution shift. In
143 face recognition methods Tran et al. (2017); Zhang et al. (2021), they disentangle identity from
144 confounding factors like pose and age. In few-shot learning methods Xu et al. (2021); Cheng et al.
145 (2024), they separate class-generic and specific features to improve transfer with limited data. These
146 works demonstrate that learning factorized representations is broadly beneficial for robust and
147 compositional visual understanding.

148 In CZSL, visual feature disentanglement of attributes and objects has become a prevailing strategy.
149 Our work aims to advance this direction by extracting attribute-disentangled features with improved
150 accuracy and richer details.

151 **Diffusion Models** Ho et al. (2020), originally designed for image generation, have recently been
152 adapted for feature reinforcement in discriminative tasks by leveraging their ability to iteratively
153 denoise and generate structured representations. In semantic segmentation, Zbinden et al. (2023)
154 enhances feature learning by generating diverse segmentation masks conditioned on images. Diffu-
155 Mask Wu et al. (2023) leverages Stable Diffusion’s cross-attention to synthesize pixel-level annotated
156 images for supervision. DFormer Wang et al. (2023a) injects noise into ground-truth masks and
157 denoises them to improve universal segmentation.

158 These works demonstrate how diffusion models can enrich feature representations across tasks
159 through diverse, semantically guided synthesis. In this paper, we leverage the powerful detail-
160 capturing capacity of diffusion models and propose a multi-scale condition-guided diffusion module
161 to reinforce the attribute-level visual representations.

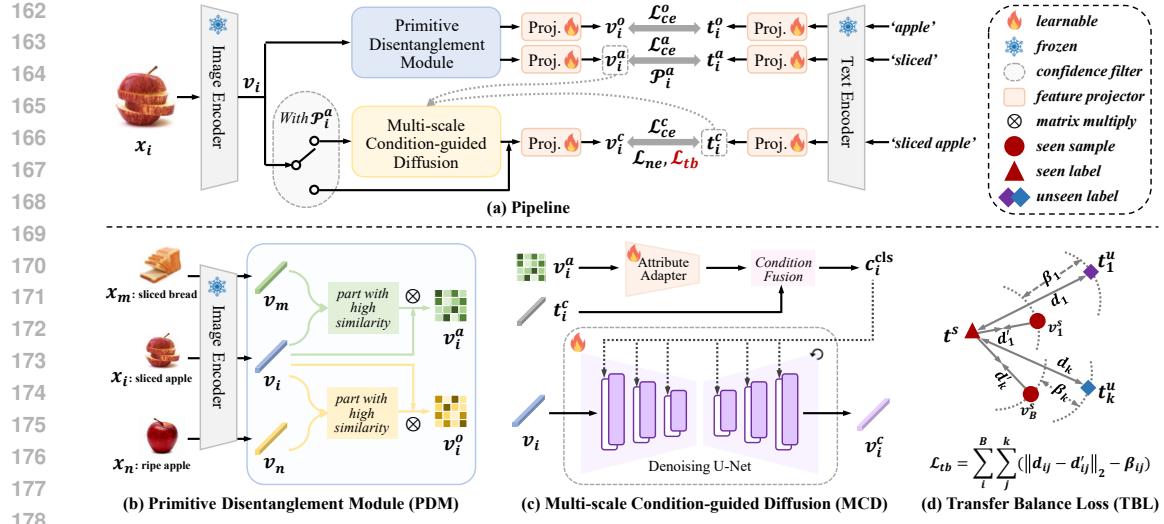


Figure 2: Illustration of our framework DETB, which consists of three main components: a Primitive Disentanglement Module (PDM); a proposed Multi-scale Condition-guided Diffusion (MCD) module that enhances attribute details by global semantic priors with localized visual disentangled representations; and a carefully designed class-adaptive Transfer Balancing Loss (TBL) that adjusts the semantic margins between seen and unseen compositions according to their inter-class similarity.

3 OUR APPROACH

3.1 TASK FORMULATION

OV-CZSL aims to enable the composition of both seen and novel attributes and objects. Each image X is associated with two semantic labels: an attribute A and an object O . We denote previously unseen concepts with an asterisk, such that unseen attributes and objects are represented as A^* and O^* , respectively. The training set consists solely of observed attribute-object pairs, denoted by $Y^s = AO$. During inference, CZSL involves only novel attribute-object compositions with known primitives during training (*i.e.*, $(AO)^*$), whereas OV-CZSL introduces more challenging cases involving unseen primitives. Specifically, the test set includes three types of novel compositions: (1) seen attribute with unseen object AO^* , (2) unseen attribute with seen object A^*O , and (3) both attribute and object unseen A^*O^* . The complete test label space is defined as $Y^u = (AO)^* \cup AO^* \cup A^*O \cup A^*O^*$. Importantly, there is no overlap between training and testing compositions, *i.e.*, $Y^s \cap Y^u = \emptyset$.

3.2 PRELIMINARY

We propose a novel OV-CZSL framework named DETB, to achieve detail enhancement and transfer balance. Inspired by mainstream visual disentanglement approaches in CZSL, we adopt a three-branch architecture with dedicated disentanglers for separating attribute and object representations. Specifically, as illustrated in Figure 2, our proposed framework consists of three main components: a Primitive Disentanglement Module (PDM); a proposed Multi-scale Condition-guided Diffusion (MCD) module that enhances fine-grained attribute-specific details; and a designed class-adaptive Transfer Balancing Loss (TBL) designed to prevent overfitting to seen compositions.

3.3 PRIMITIVE DISENTANGLEMENT MODULE (PDM)

Followed by Saini et al. (2024), in the visual modality, for each sample x_i , we extract image features v_i from the penultimate layer (prior to the average pooling operation) of a pre-trained ResNet18 He et al. (2016). In the semantic modality, embeddings of composition and primitives (*i.e.*, t_i^c , t_i^a , and t_i^o) are extracted from BERT Devlin et al. (2019) separately.

Then, we introduce Primitive Disentanglement Module (PDM) that disentangles attribute and object features from image-level representations. In line with mainstream CZSL approaches, such as OADis

Saini et al. (2022), for each x_i , we select two assisted features randomly in the dataset: one with *the same attribute but a different object*, denoted as x_m , and another with *the same object but a different attribute*, denoted as x_n . The attribute disentangled feature v_i^a is obtained by extracting the similarity weight from the (x_i, x_m) pair and then multiplying it with v_i . Similarly, the object feature v_i^o is extracted from (x_i, x_n) . Followed by Saini et al. (2024), in the visual modality, for each sample x_i , we extract image features f_i from the penultimate layer (prior to the average pooling operation) of a pre-trained ResNet18 He et al. (2016). After aligning v_i^a and v_i^o to match the text embedding dimensions via MLP, the primitive classification probabilities can be calculated as:

$$\mathcal{P}_i^a = \frac{e^{\langle v_i^a, t_i^a \rangle / \tau}}{\sum_{y_i^a \in A} e^{\langle v_a, y_i^a \rangle / \tau}}, \mathcal{P}_i^o = \frac{e^{\langle v_i^o, t_i^o \rangle / \tau}}{\sum_{y_i^o \in O} e^{\langle v_o, y_i^o \rangle / \tau}}, \quad (1)$$

where y_i^a and y_i^o denote the attribute and object labels of x_i respectively, τ is the temperature factor, and $\langle \cdot, \cdot \rangle$ stands for the cosine similarity between visual and semantic features.

3.4 MULTI-SCALE CONDITION-GUIDED DIFFUSION (MCD)

As attributes are fine-grained semantic concepts, while the global visual feature v_i^c is natively object-centric, it often lacks sufficient detail to distinguish subtle attribute variations. To address this limitation, we draw inspiration from the powerful generative capacity of diffusion models, leveraging their ability to recover fine-grained details (e.g., subtle textures, edge color variations, and material characteristics), to capture the key information necessary for correctly distinguishing between confusing attributes.

We identify hard samples as the primary bottleneck to generalization, where missing fine-grained details result in ambiguous attribute representations. Enhancing attribute representations of challenging samples is crucial for improving recognition accuracy. Therefore, we design a hard-aware filtering strategy that focuses on the most critical samples, avoiding redundant information as noise to easier instances and reducing computational cost.

Specifically, we identify hard samples based on attribute prediction errors from the PDM. Among misclassified instances, we rank confidence scores \mathcal{P}_i^a and select the bottom $q\%$, forming a subset \mathcal{H} for diffusion-based visual enhancement.

Then, the selected \mathcal{H} are fed into our proposed Multi-scale Condition-guided Diffusion (MCD). Since the input v_i is a high-dimensional feature represented as a 1D sequence, we introduce Unet1D and apply Gaussian noise following the standard forward process of diffusion:

$$v_{i,t} = \sqrt{\bar{\alpha}_t} \cdot v_i + \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (2)$$

where $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$ denotes the cumulative product in the standard diffusion noise schedule. MCD is used to refine visual features via a class-guided denoising mechanism. Concretely, the class-specific condition c_i^{cls} is formed by the disentangled attribute representation v_i^a and the composition label embedding t_i^c :

$$c_i^{\text{cls}} = \delta \cdot \text{Adapter}(v_i^a) + (1 - \delta) \cdot t_i^c, \quad (3)$$

where δ is hyperparameter. Here we employ a learnable adapter to align the dimensions of v_i^a and t_i^c , which is implemented using a two-layer MLP. As attribute representations are strongly influenced by the co-occurring object, the composition text t_i^c constrains the attribute within its contextual environment, enabling c_i^{cls} to incorporate both global contextual and locally disentangled guidance. We then predict noise under both conditions using the UNet1D:

$$\hat{\epsilon}_\theta = \epsilon_\theta(v_{i,t}, t, c_i^{\text{cls}}), \quad (4)$$

where t is the timestep. This guided noise estimate can be used to recover a denoised representation:

$$\tilde{v}_i = \frac{1}{\sqrt{\bar{\alpha}_t}} (v_{i,t} - \sqrt{1 - \bar{\alpha}_t} \cdot \hat{\epsilon}_\theta). \quad (5)$$

The entire attribute enhancement process within MCD can be formulated as follows:

$$v_i^c = \begin{cases} \tilde{v}_i, & \text{if } i \in \mathcal{H} \\ v_i, & \text{otherwise} \end{cases}. \quad (6)$$

Subsequently, we constrain the predicted noise to match the input, which can be formulated as:

$$\mathcal{L}_{\text{diff}} = \mathbb{E}_{v_i, \epsilon, t, c_i^{\text{cls}}} [\|\epsilon - \hat{\epsilon}_\theta\|^2]. \quad (7)$$

270 3.5 CLASS-ADAPTIVE TRANSFER BALANCE LOSS (TBL)
271

272 Prior works have demonstrated that similarity-based consistency between seen and unseen classes
273 promotes knowledge transfer. For instance, BSPC Saini et al. (2024) uses Neighborhood Expansion
274 Loss (NEL) to propagate labels from seen concepts to semantically similar unseen ones. Intuitively,
275 NEL pulls seen composition features closer to their most similar unseen neighbors.

276 However, this direct pulling operation may blur seen-unseen class boundaries. We think the model
277 should learn an appropriate margin within similar seen-unseen pairs to better balance knowledge
278 transfer and category discrimination. To this end, we propose a class-adaptive Transfer Balance Loss
279 (TBL), which dynamically determines the inter-class distances during training.

280 Our key intuition is that similar pairs should be subject to a smaller margin compared to dissimilar
281 ones. Therefore, we define the margin constraints based on the semantic similarity between class
282 embeddings. For every sample v_i^c in seen compositions, we retrieve the top- k most similar unseen
283 class embeddings $N_i^u = \{t_{i,1}^u, \dots, t_{i,k}^u\}$, based on cosine similarity to t_i^c . Then, the class-adaptive
284 margin β_{ij} is defined as follows:

$$\beta_{ij} = \beta_{\max} \cdot \frac{e^{\langle t_i^c, t_{i,j}^u \rangle / \sigma}}{\sum_{l=1}^k e^{\langle t_i^c, t_{i,l}^u \rangle / \sigma}}, \quad (8)$$

285 where β_{\max} is the upper bound of the margin, σ is a temperature factor, and $\langle \cdot, \cdot \rangle$ stands for the cosine
286 similarity.

287 For each seen-unseen pair, we finally define the triplet loss with margins as:

$$\mathcal{L}_{tb} = \frac{1}{B \cdot k} \sum_{i=1}^B \sum_{j=1}^k \left[\|t_i^c - v_i^c\|_2 - \|t_i^c - t_{i,j}^u\|_2 - \beta_{ij} \right]_+, \quad (9)$$

288 where $t_{i,j}^u$ is the j -th most similar unseen class embedding for t_i^c , B is batch-size, and the operator
289 $[x]_+ = \max(0, x)$ denotes the standard hinge function.

290 3.6 TRAINING LOSS AND INFERENCE PHASE

300 Similar to Eq. 1, once v_i^c is obtained, it can be used to compute classification probabilities with
301 compositional text features, which can be formally expressed as:

$$\mathcal{P}_i^c = \frac{e^{\langle v_i^c, t_i^c \rangle / \tau}}{\sum_{y_i^c \in Y^s} e^{\langle v_i^c, y_i^c \rangle / \tau}}, \quad (10)$$

306 where y_i^c denotes the composition label of x_i , τ is the temperature factor, and $\langle \cdot, \cdot \rangle$ stands for the
307 cosine similarity. Thus, the classification loss can be computed as follows:

$$\mathcal{L}_{ce}^n = -\frac{1}{|X_s|} \sum_{x_i \in X_s} \log \mathcal{P}_i^n, \quad n \in \{a, o, c\}, \quad (11)$$

311 where X_s is the training set. Following BSPC Saini et al. (2024), we also leverage NEL to facilitate
312 knowledge transfer. The final loss is linearly combined as a whole, incorporating the above losses:

$$\mathcal{L} = \mathcal{L}_{ce}^c + \lambda_1 (\mathcal{L}_{ce}^a + \mathcal{L}_{ce}^o) + \mathcal{L}_{diff} + \lambda_2 \mathcal{L}_{tb} + \lambda_3 \mathcal{L}_{ne} \quad (12)$$

313 where λ_1 , λ_2 , and λ_3 are the weighting coefficients to balance the influence of each loss.

314 During the inference phase, consistent with mainstream approaches OADis Saini et al. (2022) and
315 BSPC, assisted samples sharing the same primitives (*i.e.*, x_m and x_n) are unavailable. Consequently,
316 the disentangled attribute feature v_i^a cannot be derived, and the model performs prediction based
317 solely on the holistic composition. Since the probability \mathcal{P}_i^a is unavailable for filtering, we assume that
318 all test samples require attribute enhancement through MCD (*i.e.*, $v_i^c = \tilde{v}_i$), with the class-adaptive
319 condition c_i^{cls} set to empty. The final labels for the sample x_i can be determined as follows:

$$\hat{c} = \arg \max_{c \in Y^u} \mathcal{P}_i^c. \quad (13)$$

324 Table 1: Dataset Splits on MIT-States, C-GQA, and VAW-CZSL. We denote * for unseen primitives:
325 A and O represent seen attributes and objects, while A^* and O^* denote unseen ones. Compositions
326 are categorized as Seen pairs AO , Unseen pairs $(AO)^*$ with seen primitives and Unseen pairs $\{AO^*,$
327 $A^*O, A^*O^*\}$ with unseen primitives.

Datasets	Attributes		Objects		Training Set	Validation Set				Test Set			
	A	A^*	O	O^*		$AO / (AO)^* / A^*O / AO^* / A^*O^*$	$AO / (AO)^* / A^*O / AO^* / A^*O^*$	$AO / (AO)^* / A^*O / AO^* / A^*O^*$	$AO / (AO)^* / A^*O / AO^* / A^*O^*$	$AO / (AO)^* / A^*O / AO^* / A^*O^*$	$AO / (AO)^* / A^*O / AO^* / A^*O^*$	$AO / (AO)^* / A^*O / AO^* / A^*O^*$	
MIT-states Isola et al. (2015)	84	31	182	63	955	236 / 105 / 126 / 177 / 44				289 / 130 / 157 / 218 / 50			
C-GQA Naeem et al. (2021)	311	102	504	170	4094	1012 / 447 / 525 / 517 / 147				1239 / 542 / 664 / 655 / 176			
VAW-CZSL Saini et al. (2022)	330	135	406	110	7142	1767 / 803 / 1420 / 1253 / 412				2161 / 982 / 1737 / 1532 / 504			

333 Table 2: Results (%) on MIT-States and C-GQA. We report Top-1 AUC, which balances between seen
334 and unseen compositions with different bias terms. HM denotes the Harmonic Mean. Best accuracy
335 values of different kinds of compositions $\{AO, (AO)^*, AO^*, A^*O, A^*O^*\}$ are also reported. AUC
336 and HM are the most representative and stable metrics to evaluate the performance of models. The
337 best and second-best results are marked in **bold** and underline, respectively.

Methods	MIT-States								C-GQA									
	AUC	HM	Seen	Unseen	AO	$(AO)^*$	A^*O	AO^*	A^*O^*	AUC	HM	Seen	Unseen	AO	$(AO)^*$	A^*O	AO^*	A^*O^*
LE Nagarajan & Grauman (2018)	1.01	7.64	16.29	9.46	10.24	11.38	5.98	4.15	2.87	1.17	8.39	19.37	8.36	10.76	6.51	9.53	2.67	1.08
CompCos Mancini et al. (2021)	1.97	10.22	26.53	10.29	14.32	21.09	5.86	2.89	0.63	2.35	9.64	40.19	7.25	21.19	20.24	4.47	1.95	0.26
OADis Saini et al. (2022)	1.83	9.55	25.35	10.79	12.68	16.06	6.40	5.41	1.34	2.33	9.74	42.88	7.12	20.86	15.19	6.17	3.47	0.61
SCEN Li et al. (2022)	1.73	9.72	22.08	8.25	11.85	30.02	3.82	0.33	0.08	1.97	9.03	41.65	7.83	20.65	21.42	3.61	1.08	0.05
CANet Wang et al. (2023b)	2.40	10.52	26.42	9.54	<u>16.56</u>	<u>23.08</u>	6.15	4.08	0.58	3.04	11.96	40.52	9.21	22.43	<u>20.87</u>	4.95	2.03	0.64
BSPC Saini et al. (2024)	<u>2.41</u>	<u>10.94</u>	<u>29.02</u>	<u>11.13</u>	14.11	18.87	<u>8.24</u>	<u>5.49</u>	<u>3.54</u>	<u>3.18</u>	<u>12.11</u>	42.38	<u>9.77</u>	19.78	16.07	<u>12.86</u>	2.87	<u>3.04</u>
DETB (Ours)	2.45	11.12	30.45	11.65	16.85	19.94	8.89	6.74	3.82	3.78	14.16	<u>42.73</u>	<u>13.27</u>	<u>22.19</u>	16.82	16.27	4.28	3.81

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

350 **Datasets.** We evaluate our model on three benchmark datasets: 1) *MIT-States* Isola et al. (2015)
351 contains diverse real-world objects (*e.g.*, cheese, sea) described by attributes (*e.g.*, molten, dark). 2)
352 *C-GQA* Naeem et al. (2021) is the most extensive CZSL dataset, which is newly created based on
353 the Stanford GQA dataset Hudson & Manning (2019) for VQA tasks, composed of attributes (*e.g.*,
354 red, dirty) and objects (*e.g.*, pen, window) commonly found in daily life. 3) *VAW-CZSL* Saini et al.
355 (2022) is a large-scale dataset derived from the VAW (Visual Attributes in the Wild) dataset Pham
356 et al. (2021), composed of attributes (*e.g.*, furry, wet) and objects (*e.g.*, dog, umbrella) grounded
357 in real-world images. Its long-tailed distribution and filtered compositions make it well-suited for
358 open-vocabulary scenarios. The split details are shown in Table 1.

359 **Evaluation Metrics.** Since the validation and test set include both seen and unseen compositions,
360 CZSL models inevitably exhibit a bias towards seen ones. Following the Generalized CZSL evaluation
361 protocol proposed by Purushwalkam et al. (2019), we apply a scalar bias to calibrate predictions.
362 Due to the difficulty of OV-CZSL, we adopt a closed-world evaluation, computing metrics only on
363 valid unseen compositions. We vary the scalar to plot an unseen-seen accuracy curve (seen on X-axis,
364 unseen on Y-axis) and calculate the Area Under Curve (AUC). The best Harmonic Mean (HM) is
365 also reported to assess bias balance. Best accuracy values are also reported for Seen AO , Unseen
366 pairs $\{(AO)^*\}$ with seen primitives, and Unseen pairs $\{AO^*, A^*O, A^*O^*\}$. Among these metrics,
367 AUC and HM are the most representative and stable metrics to evaluate the performance of models.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

370 **Compared Methods.** Currently, BSPC Saini et al. (2024) is the only existing method strictly under
371 the OV-CZSL setting. Therefore, we include a range of CZSL methods for comparison. Among them,
372 OADis Saini et al. (2022) is the most similar to our approach. We also compare with recent models,
373 such as SCEN Li et al. (2022) and CANet Wang et al. (2023b). To ensure a fair comparison, all
374 baselines use visual features from ResNet18 and word embeddings from BERT.

375 **Results on MIT-States and C-GQA.** As shown in Table 2, our proposed DETB achieves state-of-
376 the-art performance on both the MIT-States and C-GQA datasets, with significant improvements
377 across most evaluation metrics. It demonstrates a well-balanced prediction between seen and un-
378 seen categories, further validating the effectiveness of our method. Notably, our model achieves

378 particularly evident gains on unseen pairs with unseen primitives (*i.e.*, AO^* , A^*O , A^*O^*), which
 379 directly confirms the effectiveness of our approach in alleviating overfitting to seen pairs. Although
 380 DETB performs favorably on most metrics, it shows relatively weaker performance on unseen
 381 pairs with seen primitives (*i.e.*, $(AO)^*$), where it still falls short compared to some traditional CZSL
 382 methods. It's likely because $(AO)^*$ emphasizes modeling attribute–object relations, whereas DETB
 383 prioritizes primitive knowledge transfer and fine-grained visual enhancement; explicitly capturing
 384 intra-compositional relations is not a primary strength of its design.

385 Results on VAW-CZSL. VAW-CZSL

386 is derived from the multi-label VAW
 387 dataset, where the least frequent la-
 388 bel is assigned to each image. Conse-
 389 quently, the top-1 prediction may cap-
 390 ture attributes present but not labeled.
 391 Following prior CZSL methods, we re-
 392 port evaluation metrics based on the
 393 top-3 predictions. As shown in Table 3,
 394 compared with other traditional CZSL
 395 methods, CANet performs better on
 396 AO , while SCEN excels on $(AO)^*$. In
 397 contrast, DETB achieves the best re-
 398 sults across other metrics, particularly on unseen compositions with unseen primitives (*i.e.*, AO^* ,
 399 A^*O , A^*O^*), highlighting superior generalization to novel attribute-object pairs.

Table 3: Results (%) on VAW-CZSL. All metrics are shown in Top-3 predictions. AUC and HM are the most representative and stable metrics to evaluate the performance of models. The best and second-best results are marked in **bold** and underline, respectively.

Methods	AUC	HM	AO	$(AO)^*$	A^*O	AO^*	A^*O^*
LE Nagarajan & Grauman (2018)	1.49	8.27	15.62	10.48	5.79	2.78	0.98
CompCos Mancini et al. (2021)	2.69	10.68	20.21	20.58	5.04	2.48	0.50
OADis Saini et al. (2022)	2.68	10.91	21.19	15.65	6.75	3.16	0.76
SCEN Li et al. (2022)	2.53	10.64	19.06	20.76	4.52	2.05	0.42
CANet Wang et al. (2023b)	2.89	11.21	24.56	18.42	5.74	2.86	0.95
BSPC Saini et al. (2024)	2.91	<u>11.35</u>	23.02	16.18	7.86	<u>3.37</u>	<u>1.36</u>
DETB (Ours)	3.15	11.99	<u>23.76</u>	17.70	8.61	4.15	1.38

400 4.3 ABLATION ANALYSIS

401 **Effect of MCD and TBL.** We evaluate the effectiveness of Multi-scale Condition-guided Diffusion
 402 (MCD) and Transfer Balance Loss (TBL), and report the results of ablation studies on the MIT-
 403 States dataset in Table 4. Experimental results of the three variants we designed indicate that,
 404 removing either MCD or TBL from
 405 the full DETB framework results in a
 406 notable performance drop. Specifically,
 407 the introduction of MCD brings greater
 408 improvements for compositions involv-
 409 ing seen primitives, especially for AO
 410 pairs. It clearly highlights the benefits
 411 of enhancing visual details in global
 412 features for recognizing seen primitives.
 413 Moreover, leveraging TBL substan-
 414 tially boosts recognition performance
 415 across various unseen pairs, verifying its
 416 strong generalization ability under open-
 417 vocabulary settings.

Table 4: Results (%) on MIT-States, C-GQA, and VAW-
 CZSL w/ or w/o MCD and TBL. For MIT-States and C-
 GQA, we report performance based on Top-1 prediction;
 for VAW-CZSL, we report Top-3.

Datasets	MCD	TBL	AUC	HM	AO	$(AO)^*$	A^*O	AO^*	A^*O^*
MIT-States	✓		2.41	10.94	14.11	18.87	8.24	5.49	3.54
		✓	2.42	11.01	15.89	19.48	8.74	5.52	3.56
	✓	✓	2.43	11.07	16.45	19.02	8.32	6.44	3.71
C-GQA	✓		2.45	<u>11.12</u>	16.85	19.94	8.89	6.74	3.82
		✓	3.18	12.11	19.78	16.07	12.86	2.87	3.04
	✓	✓	3.55	14.07	21.19	16.22	14.99	3.39	3.16
VAW-CZSL	✓		3.53	13.83	22.58	14.92	15.63	4.01	3.34
		✓	3.78	14.16	22.19	16.82	16.27	4.28	3.81
	✓	✓	2.91	11.35	23.02	16.18	7.86	3.37	1.36
	✓		3.06	11.57	23.58	17.56	8.62	3.81	1.19
		✓	3.13	11.87	23.16	17.30	8.46	4.34	1.39
	✓	✓	3.15	11.99	<u>23.76</u>	<u>17.70</u>	8.61	4.15	1.38

Table 5: Results (%) on MIT-States with differ-
 ent scale guided in the MCD module. δ is the
 hyperparameter in Eq. 3.

Scales δ	AUC	HM	AO	$(AO)^*$	A^*O	AO^*	A^*O^*
0.00	2.43	10.96	15.84	19.74	8.59	6.61	3.45
0.25	2.41	10.89	16.89	18.96	8.40	6.67	3.67
0.50	2.45	<u>11.12</u>	16.85	19.94	8.89	6.74	3.82
0.75	2.40	10.73	16.40	19.66	8.28	6.80	3.64
1.00	2.43	10.95	15.65	19.87	8.50	6.96	3.62

423 We evaluate the different values of the condition
 424 fusion weight δ in MCD, and report the results of
 425 ablation studies on the MIT-States dataset in Table
 426 5. Specifically, δ controls the fusion ratio between
 427 the disentangled attribute representation v_i^a and
 428 the compositional text embedding t_i^c . When $\delta =$
 429 0, MCD is guided solely by t_i^c ; when $\delta = 1$, it is
 430 guided only by v_i^a . Experimental results of the five
 431 variants we designed indicate that appropriately combining semantic and visual information leads to
 432 better overall performance. Moreover, fully relying on visual attribute guidance (*i.e.*, $\delta = 1$) results in
 433 a decline in overall performance, indicating that dependence on a single modality limits the model's
 434 generalization capability. However, its best results on unseen compositions with seen attributes
 435 (*i.e.*, $(AO)^*$ and AO^*), indirectly demonstrate the advantage of enhanced attribute-level features for
 436 recognizing seen attributes.

		Success Cases					Failure Cases		
432									
433		<i>AO*</i>	<i>AO*</i>	<i>A*O</i>	<i>A*O</i>	<i>A*O*</i>	<i>AO*</i>	<i>A*O</i>	<i>A*O*</i>
434	MIT-States	ancient clock	dirty coal	empty library	cooked seafood	tiny room	cluttered table	empty toy	melted bottle
435	Ground truth	ancient clock	smooth phone	scratched wall	clean seafood	cloudy bed	painted pear	filled ceiling	bent knife
436	BSPC	ancient clock	smooth phone	scratched wall	cooked seafood	tiny room	small table	empty hose	engraved bottle
437	DETB(Ours)	ancient clock	dirty coal	empty library					
438									
439	C-GQA								
440	Ground truth	young girl	blue water	round bowl	worn tire	white table	black fireplace	open umbrella	yellow book
441	BSPC	young girl	blue barrier	rubber bowl	worn tire	red dress	vinyl cord	steel shirt	wavy shirt
442	DETB(Ours)	young girl	blue water	round bowl	worn tire	white table	black box	worn umbrella	yellow dress
443									
444									

Figure 3: Qualitative comparison with BSPC Saini et al. (2024). We present predictions on randomly selected cases from MIT-States and C-GQA, focusing on unseen pairs with unseen primitives (*i.e.*, AO^* , A^*O , A^*O^*). Green / Red denotes the correct / wrong predictions.

4.4 QUALITATIVE RESULTS

Performance comparison. Since OV-CZSL is more challenging than traditional CZSL due to the inclusion of unseen primitives during testing, we select samples from MIT-States and C-GQA belonging to $\{AO^*, A^*O, \text{ and } A^*O^*\}$, and compare our predictions with BSPC Saini et al. (2024) in Figure 3. Our DETB generates more accurate and semantically coherent predictions, especially for samples in novel scenarios A^*O^* . It demonstrates more robust generalization to unseen pairs and supports the effectiveness of our proposed TBL. Failure cases (*e.g.*, 8th example in C-GQA) often stem from semantic entanglement, which hinders accurate prediction. BSPC’s misclassification underscores the limitation of relying solely on global visual features in complex contexts. In contrast, DETB accurately predicts the attribute ‘yellow’, validating the effectiveness of our attribute enhancement design in MCD.

T-SNE visualization of hardest samples fed into MCD. To directly validate the effectiveness of MCD in enriching the discriminative features of samples, we visualize the feature distributions before and after applying MCD using t-SNE. As shown in Figure 4, the sample points belonging to the same class in (b) are more compact compared to (a) (*e.g.*, ‘weathered fence’), indicating that the MCD module enhances intra-class consistency, which makes samples in the same class more tightly clustered in the feature space. Meanwhile, the class boundaries in (b) are more distinct, and fine-grained categories become more separable (*e.g.*, confusing pairs ‘murky soup’ and ‘thick soup’), demonstrating the effectiveness of MCD in improving fine-grained discriminability.

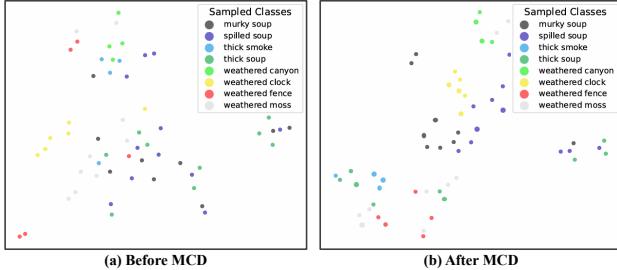


Figure 4: T-SNE visualization of the hardest samples from MIT-States before and after enhancement by MCD.

Please refer to the Appendix for Implementation Details A, more Ablations B, and Discussion C.

5 CONCLUSION

We propose a novel OV-CZSL framework named DETB, which simultaneously achieves fine-grained detail enhancement and knowledge transfer balance. We design the MCD module to refine attribute representations of challenging samples by leveraging both global context and local disentangled features. In addition, our class-adaptive TBL dynamically adjusts decision boundaries based on semantic similarity, boosting DETB’s generalization to unseen compositions. Extensive quantitative and qualitative results demonstrate that DETB consistently outperforms existing approaches.

486 REFERENCES
487

488 Hao Cheng, Yufei Wang, Haoliang Li, Alex C. Kot, and Bihan Wen. Disentangled feature representa-
489 tion for few-shot image classification. *IEEE Trans. Neural Netw. Learn. Syst.*, 35(8):10422–10435,
490 2024.

491 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
492 hierarchical image database. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 248–255, 2009.

493 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
494 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
495 *the North American chapter of the association for computational linguistics: human language*
496 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

497 Shaozhe Hao, Kai Han, and Kwan-Yee K Wong. Learning attention as disentangler for compositional
498 zero-shot learning. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 15315–15324, 2023.

499 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
500 recognition. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 770–778, 2016.

501 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Adv. Neural*
502 *Inform. Process. Syst.*, 33:6840–6851, 2020.

503 Siteng Huang, Biao Gong, Yutong Feng, Yiliang Lv, and Donglin Wang. Troika: Multi-path cross-
504 modal traction for compositional zero-shot learning. In *IEEE Conf. Comput. Vis. Pattern Recog.*,
505 2024.

506 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
507 compositional question answering. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 6700–6709,
508 2019.

509 Dat Huynh and Ehsan Elhamifar. Compositional zero-shot learning via fine-grained dense feature
510 composition. *Adv. Neural Inform. Process. Syst.*, 33:19849–19860, 2020.

511 Phillip Isola, Joseph J Lim, and Edward H Adelson. Discovering states and transformations in image
512 collections. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 1383–1391, 2015.

513 Shyamgopal Karthik, Massimiliano Mancini, and Zeynep Akata. Kg-sp: Knowledge guided simple
514 primitives for open world compositional zero-shot learning. In *IEEE Conf. Comput. Vis. Pattern*
515 *Recog.*, pp. 9336–9345, 2022.

516 Xiangyu Li, Xu Yang, Kun Wei, Cheng Deng, and Muli Yang. Siamese contrastive embedding
517 network for compositional zero-shot learning. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
518 9326–9335, 2022.

519 Xin Li, Yulin Ren, Xin Jin, Cuiling Lan, Xingrui Wang, Wenjun Zeng, Xinchao Wang, and Zhibo
520 Chen. Diffusion models for image restoration and enhancement—a comprehensive survey. *arXiv*
521 *preprint arXiv:2308.09388*, 2023.

522 Xiaocheng Lu, Song Guo, Ziming Liu, and Jingcai Guo. Decomposed soft prompt guided fusion
523 enhancing for compositional zero-shot learning. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
524 23560–23569, 2023.

525 Massimiliano Mancini, Muhammad Ferjad Naeem, Yongqin Xian, and Zeynep Akata. Open world
526 compositional zero-shot learning. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 5222–5230,
527 2021.

528 Massimiliano Mancini, Muhammad Ferjad Naeem, Yongqin Xian, and Zeynep Akata. Learning
529 graph embeddings for open world compositional zero-shot learning. *IEEE Trans. Pattern Anal.*
530 *Mach. Intell.*, 2022.

531 Muhammad Ferjad Naeem, Yongqin Xian, Federico Tombari, and Zeynep Akata. Learning graph
532 embeddings for compositional zero-shot learning. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
533 953–962, 2021.

540 Tushar Nagarajan and Kristen Grauman. Attributes as operators: factorizing unseen attribute-object
 541 compositions. In *Eur. Conf. Comput. Vis.*, pp. 169–185, 2018.

542

543 Nihal V Nayak, Peilin Yu, and Stephen Bach. Learning to compose soft prompts for compositional
 544 zero-shot learning. In *Int. Conf. Learn. Represent.*, 2022.

545

546 A Tuan Nguyen, Toan Tran, Yarin Gal, and Atilim Gunes Baydin. Domain invariant representation
 547 learning with domain density transformations. *Adv. Neural Inform. Process. Syst.*, 34:5264–5275,
 548 2021.

549

550 Khoi Pham, Kushal Kafle, Zhe Lin, Zhihong Ding, Scott Cohen, Quan Tran, and Abhinav Shrivastava.
 551 Learning to predict visual attributes in the wild. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
 552 13018–13028, 2021.

553

554 Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio Ranzato. Task-driven
 555 modular networks for zero-shot compositional learning. In *Int. Conf. Comput. Vis.*, pp. 3593–3602,
 556 2019.

557

558 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 559 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 560 models from natural language supervision. In *Int. Conf. Mach. Learn.*, pp. 8748–8763, 2021.

561

562 Nirat Saini, Khoi Pham, and Abhinav Shrivastava. Disentangling visual embeddings for attributes
 563 and objects. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 13658–13667, 2022.

564

565 Nirat Saini, Khoi Pham, and Abhinav Shrivastava. Beyond seen primitive concepts and attribute-
 566 object compositional learning. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 14466–14476,
 567 2024.

568

569 Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation learning gan for pose-invariant
 570 face recognition. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 1283–1292, 2017.

571

572 Hefeng Wang, Jiale Cao, Rao Muhammad Anwer, Jin Xie, Fahad Shahbaz Khan, and Yanwei
 573 Pang. Dformer: Diffusion-guided transformer for universal image segmentation. *arXiv preprint*
 574 *arXiv:2306.03437*, 2023a.

575

576 Qingsheng Wang, Lingqiao Liu, Chenchen Jing, Hao Chen, Guoqiang Liang, Peng Wang, and
 577 Chunhua Shen. Learning conditional attributes for compositional zero-shot learning. In *IEEE
 578 Conf. Comput. Vis. Pattern Recog.*, pp. 11197–11206, 2023b.

579

580 Kun Wei, Muli Yang, Hao Wang, Cheng Deng, and Xianglong Liu. Adversarial fine-grained
 581 composition learning for unseen attribute-object recognition. In *Int. Conf. Comput. Vis.*, pp.
 582 3741–3749, 2019.

583

584 Tianxu Wu, Shuo Ye, Shuhuang Chen, Qinmu Peng, and Xinge You. Detail reinforcement diffusion
 585 model: augmentation fine-grained visual categorization in few-shot conditions. *IEEE Transactions
 586 on Emerging Topics in Computational Intelligence*, 9(1):630–640, 2024.

587

588 Weijia Wu, Yuzhong Zhao, Mike Zheng Shou, Hong Zhou, and Chunhua Shen. Diffumask: Synthe-
 589 sizing images with pixel-level annotations for semantic segmentation using diffusion models. In
 590 *Int. Conf. Comput. Vis.*, pp. 1206–1217, 2023.

591

592 Jingyi Xu, Hieu Le, Mingzhen Huang, ShahRukh Athar, and Dimitris Samaras. Variational feature
 593 disentangling for fine-grained few-shot classification. In *Int. Conf. Comput. Vis.*, pp. 8792–8801,
 594 2021.

595

596 Muli Yang, Cheng Deng, Junchi Yan, Xianglong Liu, and Dacheng Tao. Learning unseen concepts
 597 via hierarchical decomposition and composition. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp.
 598 10248–10256, 2020.

599

600 Lukas Zbinden, Lars Doorenbos, Theodoros Pissas, Adrian Thomas Huber, Raphael Sznitman, and
 601 Pablo Márquez-Neila. Stochastic segmentation with conditional categorical diffusion models. In
 602 *Int. Conf. Comput. Vis.*, pp. 1119–1129, 2023.

594 Hanlin Zhang, Yi-Fan Zhang, Weiyang Liu, Adrian Weller, Bernhard Schölkopf, and Eric P. Xing.
595 Towards principled disentanglement for domain generalization. In *IEEE Conf. Comput. Vis. Pattern*
596 *Recog.*, pp. 8024–8034, June 2022.

597 Wei Zhang, Xianpeng Ji, Keyu Chen, Yu Ding, and Changjie Fan. Learning a facial expression
598 embedding disentangled from identity. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pp. 6755–6764,
599 2021.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A IMPLEMENTATION DETAILS

650 We implement DETB based on Pytorch 1.12.1. The model is trained and evaluated on NVIDIA
 651 GeForce RTX 3090 for all three datasets. For fair comparison with existing CZSL Saini et al. (2022);
 652 Li et al. (2022); Wang et al. (2023b) and OV-CZSL Saini et al. (2024) methods, we use image features
 653 extracted from a frozen ResNet18 He et al. (2016) pre-trained on ImageNet Deng et al. (2009) without
 654 finetuning. We use BERT Devlin et al. (2019) text embeddings for labels. Following OADis Saini et al.
 655 (2022), we use image augmentations (random crop, horizontal flip) for our method. All projectors
 656 are implemented as trainable two-layer MLPs. In the PDM module, τ is always set to 0.05. In the
 657 MCD module, the inference steps t are set to 1000 across all three datasets. The confidence filter
 658 threshold $q\%$ is set to 10% for all three datasets. In TBL, we configure the number of neighbors k as
 659 5, 5, 10 for MIT-States Isola et al. (2015), C-GQA Naeem et al. (2021), and VAW-CZSL Saini et al.
 660 (2022), separately. β_{\max} and σ are always set to 1 and 10, respectively. In the final loss \mathcal{L} , λ_1 is 0.05,
 661 λ_2 is 0.3, 0.2, and 0.5 for MIT-States, C-GQA, and VAW-CZSL, separately. λ_3 Consistent with the
 662 setting in BSPC Saini et al. (2024), λ_3 is fixed to 0.8 across all datasets. Our optimization setup uses
 663 Adam optimizer with a learning rate of 5×10^{-5} for MIT-States and VAW-CZSL, and 1×10^{-4} for
 664 C-GQA.

665 B ABLATION ANALYSIS

666 Table 6: Results (%) on MIT-States with different filter ratios in the MCD module. We select the
 667 bottom $q\%$ of samples with the lowest attribute prediction confidence \mathcal{P}_i^a and feed them into the
 668 MCD module.

669 Filter Ratio $q\%$	AUC	HM	AO	$(AO)^*$	A^*O	AO^*	A^*O^*
670 5%	2.43	10.96	16.68	19.60	8.28	6.59	3.60
671 10%	2.45	11.12	16.85	19.94	8.89	6.74	3.82
672 20%	2.40	10.89	15.52	20.11	8.05	6.83	3.45
673 30%	2.36	10.87	16.56	18.65	7.82	6.88	3.39
674 40%	2.33	10.65	15.15	18.20	7.54	7.25	3.54

675 Table 7: Results (%) on MIT-States with different numbers of neighbors in TBL.

676 Neighbors Num k	AUC	HM	AO	$(AO)^*$	A^*O	AO^*	A^*O^*
677 1	2.36	10.80	15.50	19.60	8.56	6.52	3.29
678 3	2.42	11.00	15.62	19.96	8.63	6.71	3.47
679 5	2.45	11.12	16.85	19.94	8.89	6.74	3.82
680 7	2.38	10.89	15.85	20.17	8.49	6.76	3.64
681 10	2.37	10.87	16.25	18.87	7.56	6.59	3.32

682 **Effect of Filter by Attribute Confidence in MCD.** We evaluate the different values of filter ratios $q\%$
 683 in MCD, and report the results of ablation studies on the MIT-States dataset in Table 6. Specifically,
 684 we forward the bottom $q\%$ of samples ranked by attribute prediction confidence \mathcal{P}_i^a into MCD to
 685 enhance attribute awareness. Experimental results show that a moderate filtering ratio improves
 686 overall model performance. In particular, when $q\% = 10\%$, the model achieves optimal AUC and
 687 HM scores. Although gradually increasing q leads to a consistent accuracy gain on AO^* , further
 688 confirming the benefit of MCD in recognizing seen attributes, we do not advocate using a large
 689 q . First, it incurs higher computational cost; second, the overall performance (*i.e.*, AUC and HM)
 690 deteriorates, potentially due to over-enhancement of features, which may introduce noise and hinder
 691 generalization from seen to unseen compositions. In summary, the results confirm the effectiveness
 692 of the confidence-driven filtering mechanism. An appropriate selection ratio allows for targeted
 693 enhancement of challenging samples, leading to improved compositional generalization.

694 **Effect of the Number of Neighbors in TBL.** We evaluate the different values of neighbor number
 695 k in TBL, and report the results of ablation studies on the MIT-States dataset in Table 7. The
 696 results indicate that a proper selection of k is crucial for enhancing compositional generalization.
 697 When $k = 5$, our model achieves optimal performance across multiple metrics. It suggests that
 698 moderately expanding the neighborhood during semantic transfer is beneficial, which helps estimate
 699 the category semantics more robustly and reduces the risk of overfitting to a single class. However, as
 700 k increases further (*e.g.*, $k = 10$), the model’s performance degrades, possibly due to the introduction

702 Table 8: Results (%) on MIT-States with different TBL weights λ_2 in the final loss \mathcal{L} .
703

TBL weights λ_2	AUC	HM	AO	$(AO)^*$	A^*O	AO^*	A^*O^*
0.1	2.44	11.06	16.69	20.77	8.10	6.42	3.26
0.2	2.42	11.02	16.29	19.48	8.40	6.42	3.60
0.3	2.45	11.12	16.85	19.94	8.89	6.74	3.82
0.4	2.31	10.69	17.18	18.03	7.68	6.82	3.36
0.5	2.29	10.73	15.40	17.07	7.56	6.57	3.29

709
710 of noisy neighbors that weaken the discriminative power during class transfer. Overall, a moderate
711 neighborhood size offers a good trade-off between semantic generalization and class distinctiveness.
712

713 **Effect of TBL Weight in the Final Loss.** We evaluate the different values of TBL weight λ_2 in \mathcal{L} , and
714 report the results of ablation studies on the MIT-States dataset in Table 8. The results indicate that a
715 proper balance between the TBL component and the overall loss is essential for optimal compositional
716 generalization. When $\lambda_2 = 0.3$, the model achieves the best performance across multiple metrics,
717 suggesting that moderately reinforcing TBL positively contributes to modeling unseen compositions.
718 However, with a larger weight (e.g., $\lambda_2 = 0.5$), the model’s performance drops, indicating that
719 overemphasizing TBL may suppress the optimization of other crucial learning signals. In summary,
720 assigning TBL a moderate weight helps achieve better balance and generalization across different
721 composition splits.

722 C DISCUSSION

724 **Why not directly generate unseen samples using diffusion models?** As illustrated in Table 1
725 1 in our manuscript, the OV-CZSL setting involves approximately 6,000 unseen classes during
726 validation, and around 7,000 unseen classes during testing in large-scale datasets like VAW-CZSL.
727 Using MCD on our training GPUs, each image takes roughly 1 second by sampling, which greatly
728 slows down training and increases computational overhead. Moreover, many unseen classes are
729 visually similar, particularly those sharing the same object but differing in attributes. Thus, to enable
730 effective generation of such fine-grained unseen samples, future work would require stronger and
731 more discriminative conditions to guide the diffusion process.

732 **Why is TBL not applied to the attribute branch?** TBL defines a class-adaptive margin β based on
733 semantic similarity between seen and unseen classes. However, as fine-grained semantic concepts,
734 attributes often exhibit inconsistency between their semantic and visual similarities. In CZSL datasets,
735 attributes are grouped into categories like color (e.g., white, red), size (e.g., big, small), or state (e.g.,
736 clean, dirty). While attributes within a category are semantically close, their visual appearances can
737 vary drastically (e.g., ‘black’ and ‘white’). Therefore, applying a semantic similarity-based margin
738 constraint in TBL is not suitable for knowledge transfer between seen and unseen attributes. It can
739 easily introduce noise, so we do not apply TBL to the attribute branch.

740 **Use of VLMs?** Recent CZSL works increasingly incorporate Vision-Language Models (VLMs) like
741 CLIP Radford et al. (2021) to project data into a shared semantic space. Due to the fine-grained
742 nature of attributes as semantic concepts, we consider that even high-quality global visual features
743 obtained from VLMs still suffer from a lack of attribute details. In future work, we plan to leverage
744 their strong zero-shot capabilities to further improve CZSL performance under the open-vocabulary
745 setting.

746 D LLM USAGE STATEMENT

747 748 We only used GPT to polish the content of our manuscript and did not use LLM for any other purpose.
749
750
751
752
753
754
755