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Abstract

In the realm of Graph Neural Network (GNNs), two intriguing research direc-
tions have recently emerged: Subgraph GNNs and Graph Transformers. These
approaches have distinct origins – Subgraph GNNs aim to address the limitations
of message passing, while Graph Transformers seek to build on the success of
sequential transformers in language and vision tasks. In this paper, we propose a
model that integrates both approaches, dubbed Subgraphormer, which combines
the message passing and global aggregation schemes from Subgraph GNNs with at-
tention mechanisms and positional and structural encodings, which are arguably the
most important components in Graph Transformers. Our preliminary experimental
results demonstrate significant performance improvements over both Subgraph
GNNs and Graph Transformers.

1 Introduction

Due to their scalability and elegant architectural design, Message Passing Neural Networks (MPNNs)
have emerged as the gold standard type of Graph Neural Networks (GNNs) for processing graph
data. Nonetheless, message passing suffers from a set of limitations, including limited expressive
power [23, 35], and issues like over-squashing [1] and over-smoothing [31]. Over the past few years,
multiple GNN-based architectures have been proposed to mitigate these problems.

In this paper, we focus on two different enhanced GNN architectures: Subgraph GNNs and Graph
Transformers. In Subgraph GNNs [39, 7, 41, 2], an MPNN is applied to a bag (multiset) of subgraphs,
which is generated from the original graph (for example the set of subgraphs obtained by deleting one
node in the original graph). Notably, these subgraph-based architectures are provably more expressive
than the traditional Message Passing (MP) algorithms applied directly to the original graph. In parallel,
Transformers [32] have demonstrated outstanding performance across a wide range of applications,
including natural language processing (NLP) [32, 13, 15], computer vision [14, 8, 18], and, more
recently, graph-based tasks [36, 38, 29]. In particular, Graph Transformers (GTs) have achieved
impressive empirical results, as evidenced in tasks like molecular prediction [17]. As demonstrated
by Müller et al. [24], these achievements are often attributed to the GTs’ ability to overcome some
of the inherent limitations of traditional GNNs, such as the issues of over-smoothing [31] and
over-squashing [1] mentioned earlier.

In an effort to design a model that enjoys the benefits of both architectural paradigms, we introduce
Subgraphormer, a transformer-based architecture that combines Graph Transformers with subgraph
methodologies; To the best of our knowledge, this represents the first attempt to harmonize these two
paradigms. To elaborate, we construct a bag of subgraphs and implement attention-based aggregation
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methods, thereby allowing individual nodes to refine their representations by selectively attending to
particular nodes from different subgraphs. More specifically, we incorporate the inductive biases that
are intrinsic to subgraph-based aggregations. Additionally, we propose a subgraph-based positional
and structural encoding scheme, enriching each node with information from subgraphs.

Our preliminary experiments confirm that our architecture delivers performance improvements on
the ZINC12k dataset [30, 12, 9], achieving state-of-the-art results. Furthermore, we address the
potential computational burden of operating on extensive bags of subgraphs, demonstrating that
the performance of stochastic bag sampling improves dramatically when using Subgraphormer
compared to other Subgraph GNNs.

To summarize, the contributions of this paper are: (1) Subgraphormer, a novel architecture which
combines the strengths of both transformer-based and subgraph-based methodologies; (2) A positional
and structural encoding scheme tailored to subgraphs, enabling each node to integrate information
from multiple subgraphs; and (3) An empirical study demonstrating significant improvements of
Subgraphormer compared to existing baselines in both full bag and stochastic bag sampling setups.

2 Previous Work and Preliminaries

Notation. Let G = (A,X) denote an undirected graph, which belongs to the family G of finite,
simple, node-attributed graphs1. The adjacency matrix A ∈ Rn×n represents the graph connectivity
while the feature matrix, X ∈ Rn×d, maintains the node features. We denote the sets of nodes
and edges as V and E, respectively. Let BG be the set of all possible bags of subgraphs derived
from G. For a given multiset (or bag) BG ∈ BG comprising S subgraphs of G, the adjacency and
feature matrices associated with the subgraphs in BG are structured as tensors: A ∈ RS×n×n and
X ∈ RS×n×d, respectively; we define TA ⊆ RS×n×n to be the set of all possible such adjacency
tensors. We use the superscript notation (t);s to denote subgraph s at layer t, while the underscore
notation v represents the v-th node; e.g., x(0);s

v denotes the feature of node v in subgraph s, at the
0-th layer.

2.1 Subgraph GNNs

Subgraph GNNs represent a graph as a multiset of subgraphs and then process it using a permutation-
equivariant architecture. The bag of subgraphs is generated through the application of a predefined
selection policy to the original graph. While several selection polices have been proposed [2], in this
paper we focus on node-based policies [11], in which each subgraph is associated with a unique node
in the graph. For example, the simplest implementation of the node-marking (NM) policy generates
the i-th subgraph in the bag by copying the original graph and marking its i-th node. Since there is a
bijection between nodes and subgraphs, then subgraph i is associated to node i, which we will refer
to as the root of the subgraph. These subgraphs are subsequently processed using an architecture that
applies GNNs to the subgraphs, and in some cases, shares information between them.

Although extensive research has been conducted on Subgraph GNNs [39, 7, 26, 41, 25, 11, 28] our
method draws particular inspiration from Zhang et al. [37], which constructed a comprehensive
hierarchy of Subgraph Weisfeiler-Lehman Tests (SWL). The authors proposed a corresponding family
of Subgraph GNN architectures that leverage various atomic operations: single-point, global, and
local aggregations. Let NG(v) denote the neighbours of v in a graph G, these operations are formally
defined in Equations (1), (2), and (3), respectively, as follows,

Single-point: x(t+1);s
v ← x(t);s

v or x(t+1);s
v ← x(t);v

s (1)

or x(t+1);s
v ← x(t);s

s or x(t+1);s
v ← x(t);v

v ,

Global: x(t+1);s
v ←

S∑
s′=1

x(t);s′

v or x(t+1);s
v ←

V∑
v′=1

x
(t);s
v′ , (2)

Local: x(t+1);s
v ←

∑
v′∈NG(v)

x
(t);s
v′ or x(t+1);s

v ←
∑

s′∈NG(s)

x(t);s′

v . (3)

1The consideration of edge-features is omitted for simplicity.
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Figure 1: On the left, the complete architecture; on the right, the Subgraph Attention-Based Block
(SABB) composed of both attention-based aggregations and single-point aggregations – we visualize
each of the attention-based aggregations. A specific graph is selected for visualization, as indicated
in the right legend (bottom part). We show each sparsified tensor related to the sparsification function
∆ (red cubes represent the nodes selected by the sparsification function ∆) w.r.t. a reference node,
denoted by a white ’X’ (refer to the legend for details).

In the equations above, indices associated with s and v, are rendered in red and blue, respectively. As
demonstrated by Zhang et al. [37], employing these aggregation methods or even just a specific subset
of them, results in the most expressive Subgraph GNN proposed to date, surpassing the expressive
capability of the 1-WL test.

2.2 Graph Transformers

Transformers have achieved notable success in both natural language processing (NLP) [32, 13, 15]
and computer vision [14, 8, 18]. The success of transformers can be largely attributed to their key
component, the attention mechanism [32]. Building on the success of transformers, researchers
have recently introduced Graph-Transformers (GTs), a specialized adaptation of the transformer
architecture tailored for graph-structured data. In particular, Graphormer [36] and Graphormer-
GD [38], effectively integrates graph-induced biases into the attention mechanism. Rampášek
et al. [29] proposed GPS, a hybrid architecture that employs both MP and transformer-based layers.
Additionally, K-Subgraph SAT [6] enhances the self-attention mechanism with structural awareness.
Specifically, it integrates structural information into the original self-attention mechanism by first
extracting a subgraph representation rooted at each node.

3 Subgraphormer
Our architecture, Subgraphormer, is composed of a structural and positional encoding layer, a
stacking of Subgraph Attention-Based Blocks (SABBs), and a pooling layer, as illustrated in Figure 1
(left). In the following, we describe these building blocks in detail.

3.1 Subgraph Transformer Architecture

In this subsection, we introduce the structure of the Subgraph Attention-Based Blocks (SABBs),
designed to update the representation of each node v within every subgraph s. In every SABB, we
leverage a combination of single-point aggregations and attention-based aggregations. The SABB is
visualized in Figure 1 (right).

Overview. Within each SABB, a node’s representation is updated by considering a list of possible
single-point and attention-based aggregations. For each attention-based aggregation, only specific
nodes from the subgraphs within BG influence the update equation for the given node, while others
are disregarded. As we elaborate later, the criteria for selecting these subsets are determined by a
sparsification function ∆, chosen from a predefined set of functions. Different choices for ∆ enable
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attention mechanisms that operate on distinct subsets of nodes. For example, employing ∆Ls for
the update operation effectively sparsifies the graph, and the representation of the targeted node
is updated based solely on its immediate neighbors in the original graph. Conversely, ∆Gs allows
updates of the node’s representation by considering all nodes within the same subgraph. Figure 1
(right) contains a visual representation of all the different ∆s. The attention coefficient function
α, defined in Equation (7), quantifies the strength of the attention between nodes, serving as a
weighting factor in the update equation, determining the influence of different nodes on each other.
Together, ∆ and α offer a flexible framework in modeling node interactions. In what follows, we
provide a rigorous mathematical formulation of our architecture. We begin by discussing single-
point aggregations, followed by attention-based aggregations; a complexity analysis is provided in
Appendix A.2, Table 3.

Single-point aggregations. We adopt the single-point aggregations from Zhang et al. [37],
Agsv(X , s, v) ≜ xs

v , Agvs(X , s, v) ≜ xv
s , Agss(X , s, v) ≜ xs

s, Agvv(X , s, v) ≜ xv
v .

For a given instance of single-point aggregation, denoted by AgP and chosen from the set
{Agsv,Agvs,Agss,Agvv}, we employ a GIN base encoder [35], that is,

x(t+1);s;AgP
v = (1 + ϵ(t+1;AgP ))x(t);s

v + AgP , (4)

Attention-Based Aggregations. In the following, we present the attention-based aggregations within
the SABBs. Each attention component serves to update a node v within a specific subgraph s. This
update is performed with respect to a distinct subset of nodes contained in the subgraphs within the
bag BG. More precisely, each node index pair (s, v) attends to a subset of nodes, determined by a
sparsification function ∆ ∈ D, defined as follows:

∆ : V 2 × V 2 × TA × G → {0, 1}, (5)

where by D we denote the set of all possible sparsification functions. The function ∆ takes four
inputs: two tuples of indices, the adjacency matrices of the subgraphs, A, and the original graph, G.
It returns either 0 or 1, where 0 signifies that attention should not be applied between the nodes, and 1
signifies that it should. This function essentially determines which nodes should participate in the
attention mechanism of a given node in a given subgraph.

We provide five specific instantiations of ∆ allowing various attention mechanisms tailored for
different scenarios, all visualized in Figure 1 (right). In particular, the Global Same Subgraph
Attention directs attention exclusively within individual subgraphs; it “turns on” attention only when
nodes belong to the same subgraph. Conversely, the Global Same Node Attention prompts nodes to
attend to their own representations across different subgraphs. Additionally, we introduce locality-
sensitive mechanisms. The Local Subgraph-to-Subgraph Attention permits nodes within the same
subgraph to attend to each other, but only if they are also neighbors in the original graph G. Similarly,
the Local Node-to-Node Attention allows for inter-subgraph attention, but it is restricted to nodes
in subgraphs whose root nodes are neighbors in G. Lastly, we introduce a Global Attention mode,
which disregards subgraph and node identities, enabling attention across all nodes in all subgraphs.

Each of these attention mechanisms is represented by a specific instance of the sparsification function
∆, as formalized below:

∆ ∈ {∆Gs,∆Gv,∆Ls,∆Lv,∆G}, (6)

where,
Global Same Subgraph Attention: ∆Gs

(
(s, v), (s′, v′),A, G

)
= δss′

Global Same Node Attention: ∆Gv
(
(s, v), (s′, v′),A, G

)
= δvv′

Local Subg.-to-Subg. Attention: ∆Ls
(
(s, v), (s′, v′),A, G

)
=

{
δss′ if v and v′ are neighbors in G,

0 otherwise

Local Node-to-Node Attention: ∆Lv
(
(s, v), (s′, v′),A, G

)
=

{
δvv′ if s and s′ are neighbors in G,

0 otherwise

Global Attention: ∆G
(
(s, v), (s′, v′),A, G

)
= 1

By δ we are referring to the Kronecker delta.
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We introduce the attention coefficient function α, defined as,

α : D × Rd × Rd × V 2 × V 2 × B × G → R+. (7)

The function α takes as input: an attention sparsification function ∆ from the set D, two vectors
representing the features of the nodes under consideration and their corresponding indices, a bag
of subgraphs BG ∈ B, and the original graph G ∈ G. Based on these inputs, α calculates the
normalized attention score between the nodes. Precisely, if ∆ yields a value of 0, then α also returns
0, indicating that no attention should be applied. On the contrary, if ∆ returns 1, α computes attention
scores for the corresponding elements and normalizes them using a softmax function. Our specific
implementation of α is inspired by GATv2 [5]; for further details, see Appendix A.

Given a source node xs
v , and a specific sparsification function ∆, its new representation is computed

via the following equation:

x(t+1),∆;s
v =

S∑
s′=1

n∑
v′=1

α(t)

(
∆,
(
x(t);s
v , x

(t);s
′

v′

)
,
(
(s, v), (s′, v′)

)
, BG, G

)
· FV

(
x
(t);s

′

v′

)
, (8)

where FV : Rd → Rd is a value transformation.

In each SABB, the final representation of a node is determined by applying a MLP to the concatenation
of the four single-point aggregations, and the five attention-based aggregations, as illustrated in
Figure 1 (right).

Pooling. The final pooling layer, ρ is implemented as follows:

ρ(B
(T )
G ) =

1

S

S∑
s=1

MLP

(
N∑

v=1

x(T );s
v

)
, (9)

where the superscript T refers to the representations at the final layer, when t = T .

3.2 Positional and Structural Encodings for Subgraph Transformers

Previous works have demonstrated the effectiveness of both positional and structural encodings in
various settings [10, 34, 19, 37], and specifically in the context of GTs [29, 27]. In the following, we
provide a formal definition of our Subgraph Structural Encoding (SE) and Positional Encoding (PE)
block, as depicted in Figure 1 (left).

Node-marking. We employ the node-marking strategy used in Zhang et al. [37]. In particular, a
special mark is added to each node xs

v , as follows:

x(0);s;NM
v ← x(0);s

v + zdist(s,v). (10)

The vector z ∈ Rd is a learnable embedding specified by the shortest path zdist(s, v) between the root
node s of subgraph s, and any node v within that same subgraph2.

Positional Encoding for Graphs. Positional encodings for graphs aim to represent the relative
positions of nodes within a graph. To establish a suitable positional encoding in the context of
subgraphs, we build upon the widely recognized Graph Laplacian, L := D −A = UTΛU , where A
represents the original adjacency matrix of G, Dii :=

∑n
j=1 Aij , and Λ, U denote respectively to the

eigenvalues and eigenvectors of L. Let pi := [Ui1, . . . , Uik] (k is a hyperparameter), then, using the
node embeddings of both root node and current node, our positional encoding is defined as follows3:

x(0);s;PE
v ←WPE

1 LeakyReLU
(
WPE

2 [ps ⊕ pv]
)
. (11)

Structural Encoding for Graphs. Structural encoding (SE) techniques have proven highly effective
in enhancing the performance of GNNs, as demonstrated in Ma et al. [22]. The fundamental idea
involves augmenting each node in the graph with additional information that enhances its knowledge
of the surrounding structural context. In our work, we make use of the random walk operator utilized
in previous research [10, 20] for constructing SE for graphs. This operator is formally defined

2We assign a unique mark if the two nodes are unreachable from each other, e.g., dist(s, v) = ∞.
3Bias weights are also included but omitted here for simplicity
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Table 1: Performance comparison for different
architectures. Transformer-based and Subgraph-
based architectures are in gray and light blue ,
respectively. Best method is bolded.

Model ZINC (Test MAE ↓)

GSN [4] 0.101 ± 0.010
CIN (small) [3] 0.094 ± 0.004
GIN [35] 0.252 ± 0.017

SAN [16] 0.139 ± 0.006
URPE [21] 0.086 ± 0.007
GPS [29] 0.070 ± 0.004
Graphormer [36] 0.122 ± 0.006
Graphormer-GD [38] 0.081 ± 0.009
K-Subgraph SAT [6] 0.094 ± 0.008

NGNN [20] 0.111 ± 0.003
SUN [11] 0.083 ± 0.003
ESAN [2] 0.102 ± 0.003
OSAN [28] 0.154 ± 0.008
GNN-AK [40] 0.105 ± 0.010
GNN-AK+ [40] 0.091 ± 0.002
GNN-SSWL [37] 0.082 ± 0.003
GNN-SSWL+ [37] 0.070 ± 0.005

Subgraphormer 0.064 ± 0.001
Subgraphormer + SE 0.066 ± 0.003
Subgraphormer + PE 0.062 ± 0.002
Subgraphormer + SE + PE 0.067 ± 0.002

Table 2: Results for the stochastic sampling approach, where
each model sees 100%, 50%, 20%, and 5% of subgraphs for
each graph, uniformly sampled at each training epoch. Best
method for each percentage is bolded.

Model ZINC (Test MAE ↓)

ESAN [2] (100%) 0.102 ± 0.003
ESAN [2] (50%) 0.155 ± 0.007
ESAN [2] (20%) 0.166 ± 0.005
ESAN [2] (5%) 0.179 ± 0.001

Subgraphormer (100%) 0.064 ± 0.001
Subgraphormer (50%) 0.079 ± 0.050
Subgraphormer (20%) 0.129 ± 0.010
Subgraphormer (5%) 0.217 ± 0.008

Subgraphormer + SE (100%) 0.065 ± 0.002
Subgraphormer + SE (50%) 0.081 ± 0.005
Subgraphormer + SE (20%) 0.121 ± 0.014
Subgraphormer + SE (5%) 0.143 ± 0.001

Subgraphormer + PE (100%) 0.062 ± 0.002
Subgraphormer + PE (50%) 0.082 ± 0.005
Subgraphormer + PE (20%) 0.130 ± 0.003
Subgraphormer + PE (5%) 0.227 ± 0.012

Subgraphormer + SE + PE (100%) 0.067 ± 0.002
Subgraphormer + SE + PE (50%) 0.081 ± 0.006
Subgraphormer + SE + PE (20%) 0.114 ± 0.005
Subgraphormer + SE + PE (5%) 0.164 ± 0.005

as, RW := D−1A, where A and D denote the adjacency and degree matrices of a given graph G,
respectively.

To adapt SE to subgraphs, we take the following steps. First, we construct the RW operator cor-
responding to the original graph G. Then, we define a random walk vector ri for each node i as
ri = [RWii,RW2

ii, . . . ,RWk′

ii ]. Finally, we obtain the the structural encoding for subgraphs based on
these random walk vectors as follows,

x(0);s;SE
v ←WSE

1 LeakyReLU
(
WSE

2 [rs ⊕ rv]
)
. (12)

The three vectors x(0);s;NM
v , x

(0);s;PE
v , x

(0);s;SE
v are then concatenated and passed through an MLP

with one hidden layer, along with a residual connection with x
(0);s;NM
v . Notably, the framework is

also flexible to support cases where only PE or SE is used, or even cases where neither is applied.
The output of this SE & PE block serves as the input to the SABB, as depicted in Figure 1 (left).

4 Experiments
In this section, we conduct a preliminary evaluation of Subgraphormer using the ZINC12k [30, 12,
9] molecular benchmark. To assess the effectiveness of our Subgraphormer model, we compare it
against several baselines, including the two natural ones, Graph Transformers (GTs) and Subgraph
GNNs. We also analyze the performance of our model when using stochastic sampling.

Table 1 clearly demonstrates that all variations of our Subgraphormer model improve over all
baselines, including both subgraph-based architectures and GTs, by a large margin. More specif-
ically, Subgraphormer + PE achieves the best mean absolute error (MAE) – 0.062, a significant
improvement of 0.008 from the best baseline, namely, GNN-SSWL+, which achieved a MAE of
0.070. Notably, this improvement holds with a statistical significance within a 1-σ error bar.

In Table 2, we evaluate the performance of our model when utilizing only a subset of the subgraphs;
Due to space constraints, we refer the reader to Appendix A.1 for an in-depth explanation of this
variation for our model. By employing stochastic sampling to select a subset of the subgraphs, we
balance performance with complexity. Our model is benchmarked against ESAN [2], which also
supports stochastic sampling. Impressively, even when utilizing a reduced subset of subgraphs, both
Subgraphormer + SE and Subgraphormer + SE + PE variants consistently outperform ESAN
across all sampling percentages: {5%, 20%, 50%, 100%}. This observation underscores the signif-
icant role played by structural and positional encodings in compensating for the limited subgraph
usage. Notably, all variants of Subgraphormer demonstrate a significant performance leap, requiring
only 50% of the subgraphs to surpass the full capacity performance of ESAN (100%).
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A Implementation Details

In this section we elaborate on our specific implementation of our attention mechanism.

Implementation of Attention Mechanism We employ an attention layer inspired by GATv2 [5]
to determine the attention parameter α, as specified in Equation (7). In this context, α signifies the
sparsified softmax normalization applied to an unnormalized attention coefficient, denoted by e. In
particular, the unnormalized attention coefficient e : (Rd × Rd) → R is calculated between two
elements, xs

v and xs′

v′ , as follows:

e(xs
v, x

s′

v′) ≜ e(s,v),(s′,v′) = aT · σ
(
W[xs

v ⊕ xs′

v′ ]
)
, (13)

where a and W are learnable parameters. Importantly, we compute e only for pairs for which
the specific sparsification function, as described in Equation (5), yields a non-zero value. More
specifically, given a sparsification function ∆, from the sparsification set, recall Equation (6), and let
S(s,v) = {(s′′, v′′)|∆((s, v), (s′′, v′′),A, G) = 1}. Then, α is computed as follows,

α(s,v),(s′,v′)(∆,
(
x(t);s
v , x

(t);s
′

v′

)
,
(
(s, v), (s′, v′)

)
,A(t), G) =

exp(e(s,v),(s′,v′))∑
(s′′,v′′)∈S(s,v)

exp(e(s,v),(s′′,v′′))
if ∆((s, v), (s′, v′),A, G) = 1,

−∞ otherwise.
(14)

In our implementation, we also support the standard multi-head attention [5, 32, 33].

Finally, we note that in our experiments we used only the following three aggregations: ∆Ls, ∆Lv,
and Agvv. This selection was based on their superior performance compared to other options.

A.1 Stochastic sampling

To enhance the scalability of our model, we embrace the stochastic sampling technique, as suggested
in Bevilacqua et al. [2]. Specifically, during each training iteration, we stochastically omit individual
subgraphs from the bag BG based on a pre-defined rate p, with p ranging in our experiments
from {0.95, 0.8, 0.5}, corresponding to {0.05%, 0.2%, 0.5%} of subgraphs which remain. For the
inference phase, we perform l = 5 runs, each independently performing the stochastic omission of
subgraphs using the same probability p. The final output is determined by a majority vote across
these l inferences. Importantly, our attention mechanism is adapted to ignore subgraphs that were not
sampled stochastically. Recalling Figure 1 (right), this means that arrows originating from nodes in
unsampled subgraphs are effectively nullified.

A.2 Complexity analysis

In this section, we analyze the computational complexity associated with each of the proposed
aggregation methods, as depicted in Figure 1 (right).

Let E be the edges and d(·) denote the degree of a node in the original graph. In the case of stochastic
sampling (recall Appendix A.1), we use S̃ to denote the set of indices corresponding to subgraphs
chosen stochastically. Thus, when no sampling is applied, we have S̃ = S, and, using a slight abuse
of notation, d(s) represents the degree of node s based solely on sampled subgraphs. For clarification,
consider ∆Gv in Figure 1 (right) as an example. Arrows originating at cubes, which correspond to
nodes in subgraphs that were not sampled, simply do not exist.

A detailed analysis is provided in Table 3.

A.3 Training details

All experiments were conducted on an NVIDIA RTX A6000 GPU. The training parameters are
outlined in Table 4, while Table 5 details the hyperparameters explored.
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Table 3: Complexity analysis of our proposed aggregations.
Aggregation Type Complexity

∆Gs ∑
s∈S̃

∑
v∈V |V | = |V |2 · |S̃|

∆Gv ∑
s∈S̃

∑
v∈V |S̃| = |S̃|2 · |V |

∆Ls ∑
s∈S̃

∑
v∈V (1 + d(v)) = |S̃| · (|V |+ E)

∆Lv ∑
v∈V

∑
s∈S̃(1 + d(s))

∆G ∑
s∈S̃

∑
v∈V |S̃| · |V | = |S̃|2 · |V |2

Point Aggregations
∑

s∈S̃

∑
v∈V 1 = |S̃| · |V |

Table 4: Training Parameters.
ZINC

Number of layers 6
Optimizer Adam
Scheduler ReduceLROnPlateau
Patience 20
Learning rate 0.0005
Embedding size 96
Epochs 400
Batch size 128
Drop ratio 0.0
Weight decay 0.0

Table 5: Hyperparameters Search.
ZINC

Number of layers {6}
Optimizer {Adam}
Scheduler {ReduceLROnPlateau}
Patience { 20 }
Learning rate {0.0005, 0.0001, 0.001}
Embedding size {96}
Epochs {400}
Batch size {128}
Drop ratio {0.0}
Weight decay {0.0}
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