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Abstract

Modern LLMs, with their internet-scale pretraining and advanced human-level
capabilities across specialized tasks, have demonstrated promising performance
in molecular discovery using existing text-based molecular representations, such
as SMILES and SELFIES. However, generating valid, unique, and high-fidelity
molecules while precisely controlling for multiple properties simultaneously re-
mains challenging. While prior works demonstrated success by fine-tuning lan-
guage models on a novel corpus of molecules with property-conditioned tags,
real-world applications require generating molecules from diverse property distri-
butions, previously unseen in the training data. To this end, we present Concept-
based Activation STeering (CAST), the first approach to apply activation steering
to directly edit a model’s internal representation for conditional molecular genera-
tion. CAST offers a lightweight, flexible alternative to fine-tuning by computing
property-conditioned steering vectors via a concept network that does not require
retraining the LLM. Through extensive experiments on datasets such as Thera-
peutics Data Commons, we show that CAST consistently outperforms existing
methods on both in-distribution and out-of-distribution conditional generation tasks.
We also conduct comprehensive ablation studies to highlight the extent of control
our concept-guided steering provides on the molecules generated by the LLM.

1 Introduction

The ability to efficiently generate valid, unique, and novel molecules with targeted properties has
become crucial for accelerating drug discovery and the development of advanced materials [Mer-
chant et al., 2023 M. Bran et al., [2024| [Ma et al. 2024, Wang et al.,[2025]]. This challenge has
spurred increasing interest in the task of conditional molecular generation, which enables the design
of molecules optimized for specific characteristics, such as enhanced drug-likeliness (QED) and
favorable solubility (LogP). Recently, large language models (LLMs) trained on text-based molecular
representations, such as SMILES strings, have shown promising capabilities in generating valid and
high-fidelity molecules. In particular, tags representing molecular properties have been incorporated
into some LL.Ms to enable conditional generation Guevorguian et al.|[2024]. However, these methods
typically require computationally expensive fine-tuning to achieve precise property control, limiting
their flexibility and practical applicability. Furthermore, existing approaches often struggle to gener-
ate diverse molecular structures that satisfy multiple property constraints simultaneously [Jang et al.
[2025]], especially when target properties fall outside the distribution of the training data.
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Traditional approaches to molecular generation primarily rely on supervised fine-tuning (SFT) and
reinforcement learning (RL) methods, each of which presents notable limitations when applied to
large language models. Recent work such as [Fan et al.|[2025]] combines learnable numerical and
text embeddings during fine-tuning, improving the model’s fidelity. Other research, such as|Li et al.
[2024], Lin et al.|[2025]], |Li et al.|[2025]], proposes methods that include dynamic context integration
and multi-step instruction tuning. However, these SFT approaches are resource-intensive and lack
flexibility, requiring considerable effort to adapt models to new property distributions or objectives.
RL methods, while more adaptable, suffer from the inherent challenge of designing appropriate
reward functions and access to accurate oracles for feedback-guided learning. Some works also
combine the two approaches for better results. For example, Cavanagh et al.|[2025] leverages DPO
after SFT to improve alignment to specified property values. Similarly, Jang et al.| [2025] optimizes
the structural diversity of the generated molecules with a tailored reward function.

Recently, activation steering has emerged as a promising alternative for model alignment [Turner et al.
[2024],Zou et al.| [2025]. By directly editing hidden-layer activations in pretrained models, activation
steering can guide model outputs toward desired behaviors without altering model weights. Besides
being more efficient than fine-tuning, this method has already demonstrated improved interpretability,
flexibility, and precision in various NLP tasks such as enhancing trustworthiness and mitigating biases
Zou et al.| [2025]], Bayat et al.|[2025]]. In conditional molecular generation, given the dominance of
string-based molecular representations such as SMILES and the remarkable capabilities of pretrained
LLMs, activation steering presents a compelling new direction. While activation steering shows
promise, it does present some limitations, such as being largely dependent on manually crafted
contrastive prompts and the need to tune the steering strength, which can limit its effectiveness across
diverse samples.

In this paper, we first explore the feasibility of activation steering to conditional molecular generation
using LL.Ms. We further propose a novel approach, Concept-based Activation STeering (CAST),
that leverages a Concept Bottleneck Model (CBM) |[Koh et al.|[2020] to automatically compute
property-conditioned steering vectors with appropriate steering strength calculated dynamically
during inference. This approach preserves the interpretability advantages of activation steering while
addressing its inherent shortcomings. The main contributions of our paper are as follow:

* We introduce activation steering as a promising alternate method for conditional molecular
generation with LLMs.

* We identify and address key limitations of traditional activation steering, including reliance
on manually crafted contrastive prompts, fixed steering magnitudes, and manual construction
of steering vectors.

* We propose Concept-Based Activation Steering (CAST), which incorporates a concept
bottleneck model to compute property-conditioned steering vectors.

* We demonstrate CAST’s strong and robust performance through comprehensive experiments
on both in-distribution and out-of-distribution settings.

* We present extensive qualitative studies to establish the high quality and extent of control
over properties of molecules generated by CAST.

2 Related Work

2.1 LLMs for Molecular Generation

Advances in LLMs have opened new directions for leveraging diverse text-based representations such
as SMILES and SELFIES in scientific applications, particularly molecular generation. While early
works|Bagal et al.|[2022], [Edwards et al.|[2022] demonstrated success in training smaller Transformer-
based models; the field has increasingly shifted toward more capable LLMs. Recent studies |Yu
et al.[[2024]],|Zhang et al.|[2024]], Fang et al.|[2024] have shown that incorporating domain-specific
chemical knowledge through instruction-tuning greatly enhances molecular generation performance.
However, supervised fine-tuning methods face inherent limitations in generating diverse molecular
structures with desired properties Jang et al.| [2025]]. Other works involving LLMs have also explored
preference tuning techniques, including reinforcement learning and offline methods, to incorporate
feedback in their generation. Notable examples include (Cavanagh et al.|[2025]] and Jang et al.|[2025],



who employ RL-based approaches to improve alignment with specific property constraints and
structural diversity. Despite these advances, achieving precise conditional control over multiple
molecular characteristics simultaneously remains a significant challenge.

2.2 Activation Steering

Activation steering, first introduced in the ActAdd paper Turner et al.|[2024], has gained attention as
an alternative to prompt engineering and fine-tuning for aligning LLMs’ behaviors. Unlike model
editing techniques that directly modify model weights, activation steering constructs steering vectors
that are added to the residual stream of a frozen LLM, influencing the output generation process. The
most common approach for computing steering vectors involves using contrastive prompts (p4, p—)
that elicit desired and undesired behaviors, respectively. The steering vector is then derived by
taking the difference between their corresponding activation vectors (hl+, h' ) at intermediate layer /.
Alternative methods, such as the approach proposed by [Zou et al.| [2025], compute steering vectors
by training a linear classifier on the activation pairs (hl+, h' ) and extracting the normal vector to the
decision boundary as the steering direction. During inference, these steering vectors are applied by
adding them to the model’s hidden activations in the forward pass Turner et al.|[2024], effectively
manipulating the model’s internal representations toward the desired behavioral patterns without
requiring parameter updates. Moreover, most works such as|Zou et al.[[2025]], Bayat et al.|[2025]],
Panickssery et al.|[2024], Lee et al.|[2025] have primarily focused on behavioral alignment tasks, such
as enhancing refusal, truthfulness, honesty, or mitigating various forms of bias. To our knowledge,
this work represents the first attempt to apply activation steering techniques to scientific domain
applications, specifically conditional molecular generation.

3 CAST: Concept-based Activation STeering

We propose the Concept-based Activation STeering (CAST) framework for aligning molecular gener-
ation language models to any arbitrary target property distribution, without requiring computationally
intensive fine-tuning or post-training methods. CAST is a novel approach for generating steering
vectors explicitly conditioned on interpretable input properties. Prior steering methods often rely
heavily on the quality of hand-crafted contrastive sets of prompts and are restricted to manually ex-
tracting a single steering vector per property of interest. CAST, however, overcomes these limitations
by training a concept bottleneck model to automatically and adaptively compute steering vectors
grounded in property values. In our work, we view the different properties of interest as concepts
and will use the terms interchangeably. This section discusses the input setup, the proposed CBM
architecture, training, and inference procedures.

Input Setup We adopt the structured input prompt from|Guevorguian et al.|[2024] for our molecular
generation task. Each molecular input sequence is composed of special tokens denoting molecular
properties, followed by the SMILES string. Specifically, each input sequence begins with special
property tags indicating desired target properties, i.e., </s>[QED]0.8[/QED] [START_SMILES]. The
model generation task involves completing this input sequence by generating the corresponding
SMILES representation, ending with an [END_SMILES] token. This format ensures that the model is
explicitly conditioned on the desired molecular property values during generation.

3.1 Architecture

The proposed architecture of our Concept-based Activation STeering framework is shown in Figure
[I] The framework operates on top of a pre-trained decoder-only large language model that we aim
to steer. Given an input sequence © = {x1, Z2, ..., T, }, the LLM processes the n tokens through L
transformer layers, producing hidden states H(") € R™*< at each layer, where d is the hidden size. We
select a specific intermediate layer [ and extract the hidden representations h € R™*¢, Considering
the decoder-only architecture of the LLMs, we only use the hidden representation corresponding
to the last token, denoted as h,,, as input to the CBM. This particular representation captures the
model’s condensed internal understanding of the entire input.

Concept Bottleneck Module Similarly to|Ismail et al.|[2024], we design the CBM to receive the
extracted hidden representations h,, € R? from the LLM as input and learns a mapping function



Input

Input layer

Layer i

|:| |:| |:| |:| Token hidden representations
CBM |

EmEE 7
——

QED LogP
SMILES

LLM

NMSE -+ Orthogonality loss (e;, e;)

Figure 1: Architecture of the Concept-based Activation STeering (CAST) framework.

f : R — R* that transforms the internal representations to scalar concept values c; for each
target molecular property i € {1,2, ..., k}, where k is the number of target properties. To ensure
property-specific directions within the latent activation space, each concept value c; is associated
with a learnable embedding vector e; € R?. These embeddings encode fixed directional bases for
each property, learned during training. Dynamic steering is then achieved through the concept values
¢; that modulate the magnitude of each property-specific direction. The final property-conditioned
representation z; is computed through the product:

Z; = Ci€; (D

Property Predictor Module Each resulting representation z; is further processed by a dedicated
multi-layer perceptron (MLP) to reconstruct the ground-truth molecular property values provided
in the prompt. The training objective minimizes the Normalized Mean Squared Error (NMSE) loss
between the predicted values (y;) and their actual input values (y;):

O
L = — gt IV 2
NSE = 1D G (1) @

Additionally, the orthogonality loss is imposed between embedding vectors e;, promoting disentan-
gled and interpretable property representations:

Etotal = £NMSE + )\Eorth- (3)

Importantly, backpropagation is performed only through the CBM and property MLPs while keeping
the underlying LLM parameters frozen. We use A = 1 in our experiments.

Activation Steering At inference, we can compute the steering vector z by summing all property-
specific vectors z = ), z,. This aggregated steering vector can then be simply added to the LLM’s
hidden activations at the chosen intermediate layer as follows:

h=h+z )

The modified hidden activations h then propagate through the remaining transformer layers, steering
the generation to produce a SMILES string that exhibits the desired molecular properties. While
the model autoregressively generates the output sequence token by token, we apply this activation
steering at each generation step by adding z to the hidden representation at the selected layer. This
ensures that the property-driven guidance is maintained throughout the entire decoding process,
dynamically aligning the model’s outputs with the input property values during the full sequence
generation.



Table 1: In-Distribution results on the TDC Datasets. Performance is reported for QED MAE,
LogP MAE, and Validity (%). Lower MAE and higher validity indicate better performance. We also
include # Trainable parameters for each method. Bolded results indicate the best results without
including fine-tuning methods, as we use them for reference.

Zinc Moses ChemBL
#Train. QED LogP - QED LogP - QED LogP L
Base LLM Method params. MAE (1) MAE (J) Validity (1) MAE (1) MAE (J) Validity (1) MAE (1) MAE (1) Validity (1)

Chemlactica- Baseline 0 0.086 0.472 99.7% 0.126 1.342 99.5% 0.185 2.015 99.3%

125M +ActAdd 0 0.141 2.955 93.3% 0.175 2.097 93.3% 0.348 9.079 86.8%
HCAST M 10075 0611 100% ] 0078 122 100% 0226 1738 9:5% .

Full SFT 125M 0.025 0.127 100% 0.097 1.446 100% 0.202 1.747 99.9%

LoRA SFT  78M 0.147 1.571 99.7% 0.104 1.038 100% 0.249 2.221 97.7%

Chemlactica- Baseline 0 0.063 0.391 97.3% 0.085 1.461 99.9% 0.182 1.793 92.0%

13B +ActAdd 0 0.126 2.119 65.8% 0.115 1.483 77.4% 0.394 2.229 57.8%
’ HCAST oM 10054 0386 . 10% | 0079 . 1420 ] 100% 10221 s 992%

Full SFT 1.3B 0.030 0.171 100% 0.107 1.471 100% 0.176 1.604 99.8%

LoRA SFT 210M 0.146 1.578 100% 0.107 1.038 100% 0.251 2314 99.3%

Baseline 0 0.231 8.824 100% 0.221 1.456 100% 0.232 23.928 96.9%

Chemma-2B +ActAdd 0 0.393 12.446 62.7% 0.452 14.868 58.0% 0.299 15.890 75.4%
#CAST  50M | 0084 2780 987% ] 0073 372 999% 0230 1720 921%

Full SFT 2B 0.020 0.125 99.9% 0.099 1.459 99.9% 0.176 1.604 99.8%

LoRA SFT 1B 0.233 2.170 99.2% 0.227 1.820 99.6% 0.281 4.090 98.1%

Qwen3-4B Baseline 0 0.396 2.407 55.5% 0.204 2.152 63.5% 0.466 3.628 42.5%

+CAST 85M 0.370 2.275 59.6% 0.228 1.911 70.9% 0.418 2.936 91.0%

4 Experiments

To extensively assess our proposed method, we perform experiments across both in-distribution and
out-of-distribution settings. We also conduct qualitative studies to further understand the nuances of
the CAST framework.

Datasets For in-distribution evaluation, we use the datasets from the Therapeutics Data Commons
(TDC) Huang et al.| [2021] molecular generation task, which is composed of the ZINC |Sterling
and Irwin| [2015]], MOSES |Polykovskiy et al.| [2020], and ChemBL Mendez et al.|[2018]] datasets.
We specifically chose TDC because it contains well-characterized, widely studied molecules with
property distributions that are representative of real-world small-molecule drug discovery, minimizing
the risk of out-of-distribution effects. To adapt these datasets for the conditional generation task, we
use RDKit to compute ground truth values of QED and LogP. These datasets serve as the primary
training and evaluation data for CAST. For out-of-distribution experiments, we follow the setup
defined in|Jolicoeur-Martineau et al.| [2024]] to condition on specific single known out-of-distribution
molecular properties. We also extend the methodology to include the combinations of out-of-
distribution properties. Finally, we also evaluate on Conjugated-xTB [Jolicoeur-Martineau et al.
[2025]], a molecular dataset composed of organic m-conjugated molecules with out-of-distribution
property values. We chose this dataset because these molecules tend to have structures significantly
different from the molecules present in popular datasets like TDC. This enables us to evaluate “true”
out-of-distribution performance better, as the LLM is less likely to have seen such structures in
pretraining.

Models For all our experiments, we use the tag-based LLMs, Chemlactica-125M, Chemlactica-
1.3B, and Chemma-2B |Guevorguian et al.| [2024]] and steer at layers 6, 12 and 9 respectively. To
also test the generalizability of our method, we include experiments with a general-purpose LLM,
Qwen3-4B [Yang et al.|[2025] steered at layer 18. In addition, both the concept bottleneck module
and property predictor modules trained for each of these models were composed of two intermediate
layers of dimensions 4d and 2d, where d is the dimension of the hidden representation. Both modules
were trained using the AdamW optimizer on a single NVIDIA A100 40GB GPU, with early stopping
employed based on validation loss to prevent overfitting. For a holistic evaluation, we also compare
against full supervised fine-tuning (SFT) and low-rank (LoRA) Hu et al.|[2022] fine-tuning versions
of the base models. Note that in all tables, bolded results indicate the best results without including
fine-tuning methods, as we use them for reference.

Metrics We evaluate the quality and controllability of generated molecules using a suite of quanti-
tative metrics that collectively assess property alignment, chemical validity, and molecular novelty.
To evaluate fidelity with respect to input target properties, we mainly use the Mean Absolute Error
(MAE) and BestlOOMAE. For a set of NV generated molecules, where each molecule ¢ is conditioned



Table 2: Single Property OOD setting - Best00MAE and GenEff with QED and LogP targets. Note
that it is impossible to obtain a QED value > 1; therefore, at best, the MAE can be 0.2861.

Single Property - Bestl00MAE (/) Single Property - GenEff(%) (1)
Base LLM Method QED LogP QED LogP
0.1778 1.2861 -3.2810 8.1940 | 0.1778 1.2861 -3.2810 8.1940

Baseline 0.0443  0.780 0.147 0.203 80.5 84.6 98.1 81.2
Chemlactica-125M -.----.....L7 ST T TP EPRRNPR R Sr L CPRP P PET PR s LT

LoRA SFT | 00062 0581 0418 2766 | 882 903 726  77.1
Bascline | 00109 0484  0.152 0129 | 878 966 974 965
Chemlactica-1.3B -7 -......L~ B e E SRR R L ST RPR S TP R I AITITes

Chemma-2B . =220 17 RACAII G0 Y A B B 070 R4 DA
Full SFT 0.0051  0.613 0.160 5.206 94.5 96.7 88.9 99.1

LoRA SFT | 0.0051  0.464 2.372 2.028 90.7 96.4 98.4 98.7

on a target property value y; and the resulting molecule has property ¥;, the MAE is defined as:
LN
MAE = — Ui — Yi 5
N ; 19 — vl ©)

This metric quantifies the average deviation between each generated molecule’s predicted property
and its ground truth target, capturing overall conditional accuracy across diverse target values. For
Best10OMAE, computed only for OOD settings with a given property target, we select the 100
molecules with the smallest absolute errors from N generated candidates and compute their average.

In addition to these metrics, we also use validity to quantify the quality of the generated molecules.
Validity is defined as the proportion of generated molecules that correspond to chemically valid
structures according to RDKit:

N
1
Validity = Z I [mol; is valid] (6)

i=1
where I[-] is the indicator function, and mol; denotes the i-th generated molecule.

For out-of-distribution evaluation, we further assess the novelty of the generation process using
generative efficiency (GenEff). Generative efficiency is then defined as the probability of satisfying
validity, uniqueness, and novelty:

N
1
GenEff = N ; I'[mol; is valid, unique and novel] @)

4.1 How well does CAST perform on in-distribution data?

We evaluate CAST on three base models across the ZINC, MOSES, and ChEMBL molecular datasets,
using N = 2000 randomly sampled QED and LogP property combinations per dataset. In addition to
our base LLMs’ vanilla, full SFT, and LoRA SFT baselines, we include the ActAdd method Turner
et al.| [2024], a widely used activation steering approach, to directly compare its effectiveness with
our proposed method. As shown in Table [} CAST consistently achieves lower QED and LogP mean
absolute errors (MAEs) compared to both base model and ActAdd, demonstrating more precise
and reliable control over generated molecular properties. For instance, on Chemma-2B with ZINC,
CAST attains a QED MAE of 0.084 and a LogP MAE of 2.780, representing over a 50% relative
improvement in both properties MAE compared to the base model (QED MAE of 0.231 and LogP
MAE of 8.824), while maintaining a competitive validity of 98.7%. We observe a similar pattern of
improvements across the other datasets and models. Particularly, the performance gains from CAST
are more pronounced as model size increases, suggesting that larger models with richer internal



representations enable more effective activation steering. Importantly, CAST maintains high validity
across all datasets (all above 90%) and consistently outperforms ActAdd in this regard, indicating
that CAST can steer adequately toward more chemically meaningful regions. We also observe that
ActAdd does not improve conditional generation, as we see an increase in MAEs across all datasets
and models. As shown in Table[I} CAST consistently improves performance on all metrics, even
on the Qwen3-4B model. While our primary goal is not to outperform full supervised fine-tuning
(full SFT), we include both SFT and LoRA as strong baselines to contextualize the performance
of CAST. Compared to LoRA, a widely adopted parameter-efficient fine-tuning method, CAST
yields better MAE results in the majority of experiments, as evident in Table[l] Moreover, CAST
achieves performance comparable to full SFT, despite not requiring any model fine-tuning. We note
that among these proposed methods, with the exception of ActAdd, CAST uses the least amount of
trainable parameters, as shown in Table E} These findings underscore the effectiveness, efficiency,
and practicality of CAST as an alternative to parameter-efficient methods.

4.2 How well does CAST perform on out-of-distribution data?

To evaluate the robustness of our method under out-of-distribution (OOD) conditions, we conduct
experiments in three settings: single OOD property, multiple OOD properties, and Conjugated-xTB
properties. For the single property setting, we follow the protocol established in Jolicoeur-Martineau
et al.| [2024], conditioning on specific values such as QED of 0.1778 or a LogP of 8.1940. In the
multiple properties settings, we assess all possible combinations of these single OOD property values,
resulting in four OOD combinations. For both settings, we generate 2000 candidate molecules per
test case and report aggregated metrics, including Best|00MAE and generative efficiency. In addition,
to further assess generalization, we evaluate our method on the Conjugated-xTB dataset.

Table [2| presents results for single
OOD property target experiments.
Across all models and property tar-
gets, CAST outperforms base LLM

Table 3: Multiple OOD property combination: QED Target
0.1778, LogP Target 8.1940.

Base LLM Method ‘ BeStIOOMALE (I{ ‘ GenEff (%) ( in most cases, while achieving com-
o8 parable performance otherwise. No-
Bés/:g%e ‘ 8 8%3 (2] g; [ ;(1) ; tably, CAST remains competitive with
Chemlactica-125M . =220 00502 0099 (| 00T both LoRA SFT and full SFT. How-

Full SFT | 0.0057  2.163 96.7 . .
LoRA SFT | 00031 0223 367 ever, we note that its relative advan-
Baseline o010 0432 c6a tage is somewhat dlmlplshed f_or LogP
. +CAST 0.0097 0.353 90.4 Compared to QED, lndlcatlng that
Chemlactica-1.3B TRl SET 1 o0a7a Tass T oxg T property-specific challenges persist
LoRA SFT ‘ 0.0025  0.062 ‘ 92.6 for certain molecular targets. Another
Baseline ‘ 0.0137  0.992 [ 55.3 significant finding is that CAST con-
Chemma-2B _FCAST | 0.0124 0863 | 596 sistently and substantially surpasses
Full SET | 0.0034  3.752 94.4 all other methods in terms of gener-

LoRA SFT | 0.0041 0.154 88.4

ative efficiency, achieving the high-
est proportion of valid and unique
molecules across all settings. These
results indicate that CAST provides
robust property control in out-of-

Table 4: Performance on OOD Conjugated-xTB dataset.

Conjugated-xTB
Method QED MAE (/)

Base LLM LogP MAE (|)  GenEff(%)(1) T . : :

Chemlactica.  B&scline 0.119 20.255 60.09 distribution regimes, without com-

125M +CAST | 0243 12650 935 promising molecular diversity. For
Full SFT 0.191 12.433 95.52 the multiple OOD properties setting
LoRA SFT 0.147 8.941 85.53 . .
o o095 or 500 (results in Tables [3 [SHIO), which

. aseline A B B . . . .

IC;l;mlactlca- ACAST | o 0106 20279 9640 involves combinations of the single

’ Full SET 0.243 13715 91.40 property targets, we observe that
LoRA SFT 0.094 6335 79.51 CAST largely outperforms the base

h - BéS/ilsi;e 3-:;; g;‘g:g gg-gg models across all combinations, both

emma- + . B B .

Full SFT 098 FE o134 in terms .of Best100MAE and genera-
LoRA SFT 0.119 11.421 88.51 tive efficiency. Furthermore, CAST re-

mains competitive with the fine-tuned
methods in terms of QED alignment,

though we note that fine-tuned models achieve better fidelity to LogP property targets. Additionally,



Table 5: Novelty and synthesizability for in-distribution datasets (2000 samples each). In PC. reports
the percentage of valid generated molecules that are in the PubChem database. We average the SA
score (SA sc.) for all the valid generated molecules.

Zinc Moses ChemBL

Base LLM Method | Valid(%) InPC.(%) SAsc.()) | Valid(%) InPC.(%) SAsc.()) | Valid(%) InPC.(%) SAsc.(])
Chemlactica- Baseline 99.70 50.95 2.84 99.90 59.81 2.79 99.30 33.03 3.07
125M +CAST 99.45 30.92 2.24 99.05 91.97 2.28 90.15 73.66 3.07
Chemlactica- Baseline 97.25 58.10 2.59 99.95 63.33 2.50 92.00 48.09 2.83
1.3B +CAST 96.70 95.08 2.63 100 97.75 2.55 98.40 73.68 4.07
Chemma-2B Baseline 100 52.80 4.74 100 38.05 4.52 96.95 61.84 5.27

+CAST 98.65 97.77 3.32 99.85 98.65 2.61 91.00 85.99 4.26

Table 6: Novelty and synthesizability for the OOD 110 7. Maximum and Minimum MAE Variation

setup of Table 3] The In PC. and SA sc. are the ob d it lues due to steeri
computed similarly as described in Table[5] lsrtlren;t(l)l -S;rirli property vatiies diie fo steeting

QED: 01778, LogP: 8.1940
Base LLM Method | Valid(%) InPC.(%) SAsc. ()

71.75 0.42 9.18
90.70 3.33 6.63

Zinc
QED MAE LogP MAE
Min. Max. Min. Max.

Chemlactica-  QED 0.0201 04998 02703 9.9348
86.40 7.06 6.33 125M LogP | 0.0267 0.6190 03301 28.4044

90.40 5.03 6.28
Chemlactica- QED ‘040329 05912 0.3760  31.8766

55.80 14.87 6.20
60.10 16.57 613 1.3B LogP 0.0326  0.5907 0.3828 31.3571

Base LLM Steered

Baseline
Chemlactica-125M  +CAST

Baseline
Chemlactica-1.3B +CAST

Baseline
Chemma-2B +CAST

we observe that for low and high LogP targets, Chemma-2B struggles to generate proper molecules,
resulting in very low generative efficiency. Nonetheless, we also validate that CAST maintains
molecular diversity when looking at the number of unique Murcko scaffolds across all generated
SMILES for a given target.

In order to test the robustness of our approach, we also evaluate on the Conjugated-xTB dataset.
In this setting, we sample 100 property combinations and generate 100 candidate molecules for
each, reporting MAEs and GenEff averaged across all samples. As shown in Table[d, CAST closely
matches or exceeds the base LLM in terms of MAEs, while consistently generating with much higher
generative efficiency. Interestingly, full SFT struggles to outperform base models on this benchmark,
highlighting the significant challenge posed by the Conjugated-xTB dataset.

4.3 Qualitative Analysis of CAST

Sections[d.T|and .2] demonstrated the superior empirical performance of our proposed CAST method
on both in-distribution and out-of-distribution datasets. In this subsection, we take a more qualitative
look at the molecules generated by CAST in both setups. Specifically, we focus on two central
themes: novelty and synthesizability. Since our base LLMs are pre-trained on data from PubChem
Kim et al.|[2024]], we evaluate novelty as whether the generated molecule is a part of the PubChem
database. Furthermore, we characterize the molecule’s synthesizability using the RDKit’s synthetic
accessibility score (SA score) [Ertl and Schuffenhauer| [2009]. The SA score ranges between 1 and 10,
with 1 being easiest and 10 being hardest to synthesize.

Tables [6| and [5|display the qualitative results of the generated molecules in both in-distribution and
out-of-distribution setups. It can be observed that for in-distribution settings, the proposed CAST
method tends to recreate more molecules from the PubChem database as compared to the base
LLM, thus having similar or better SA scores across all models and all datasets. Combined with
its improved MAE values (see Table [I), the concept-based steering guides the LLM generation
toward both qualitatively and quantitatively better molecules. It is imperative to note here that for the
conditional generation task in this work, our primary focus is on generating valid molecules that obey
the desired property values and not on novelty. Similarly, Table[6]shows that while both CAST and
base LLM generate more novel molecules in the OOD setting, CAST still outputs relatively more
valid molecules from PubChem with better SA scores, especially with Chemlactica-125M, where the
SA score is significantly better. Therefore, CAST improves upon the baselines quantitatively and
also provides gains in qualitative terms of synthetic accessibility.



4.4 Steering Strength vs Property Values

Previous sections have shown the superiority of CAST in generating quantitatively and qualitatively
better molecules conditioned on property values. However, the remaining question is how much
control this steering has over generated molecules: does it provide only minor corrections, or
can it significantly alter the observed properties? We answer the question with the following two
experimental settings.

Setting 1: Here, we vary the steering strength for only one property at a time (say, property j),
keeping the ¢; fixed for all other properties i # j. Specifically, given the input property values, we
perform a forward pass through the LLM and obtain the concept values ¢;, Vi. Now, we obtain z;- by
varying ¢; in the range of [0, 1] in increments of 0.1 and calculate the z,,c,, = z; + X;+;2; for each
z'.. ThiS Z,,.,, is added to LLM’s hidden representation h, and property values are measured for the
generated SMILES string. From all these property observations corresponding to all z,,,, for a given
sample, we note each property’s maximum and minimum MAE. We repeat this procedure for the
entire set of samples and report the average max and min MAE.

Table[/|contains the average min and max MAE results on Zinc. It can be observed that varying the
steering strength of either QED or LogP can cause significant changes in the observed values for both
properties. Take, for example, QED, which ranges between 0 and 1; the max MAE usually is close to
0.5 or 0.6 across all settings, implying that through the steering strength variable, CAST provides
enough flexibility to cover a wide range of QED values in its generation.

Setting 2: Here, we intend to investigate the
behavior of LLM when steered with abnormal
Generative Efficiency Rate vs Alpha . .

0 steering strength values. In particular, we mod-
ify the equation forh =h +zash =h + az
where we vary « in the range of [—2,4]. In
the interest of space, we only include results on
the OOD setting with high target value for both
04 QED and LogP, and the GenEff metric (Fig. [2).
We report the Bestl00MAE metric in Figure
in the appendix.

Generative Efficiency Rate

Figure [2] portrays the variation of the GenEff

Apha metric as we vary the values of a. It is evident

from the plot that the metric begins to deterio-

Figure 2: Generative efficiency at varying steering rate significantly as the steering strength goes

strengths for high QED and high LogP targets. above 2 or below —1, symbolizing that abnor-

mally high positive or negative steering strength

values can break the model, leading it to gener-

ate invalid molecules. Therefore, we can conclude that the steering strength is not an infinite-range
knob; it only works in a specific range.

5 Conclusion and Future Works

In this work, we introduced Concept-based Activation STeering (CAST), a novel framework for
conditional molecular generation with large language models. By leveraging a concept bottleneck
model, CAST enables direct and precise control over multiple molecular properties without requiring
fine-tuning of the base model. Extensive experiments across in-distribution and out-of-distribution
benchmarks, including TDC and Conjugated-xTB datasets, demonstrate that CAST achieves strong
property alignment and superior generative efficiency compared to the existing activation steering
approach. Our results further show that CAST is robust to challenging property targets, offering a
practical and flexible alternative to traditional fine-tuning methods. In addition, CAST is able to
achieve such performance without sacrificing molecular diversity and quality.

Despite the promising results, we highlight some limitations that point toward important directions
for future research. First, the current study focuses on controlling a limited set of continuous
molecular properties (QED and LogP), and it remains to be seen how well CAST scales to scenarios
requiring control over a larger number of properties. Second, while QED and LogP serve as standard
benchmarks, they are relatively straightforward compared to more challenging properties such as



HOMO-LUMO gaps or excitation energies, which are highly relevant for real-world drug design.
Additionally, CAST currently steers properties at the scalar level but does not explicitly enforce
structural or substructural constraints (such as scaffold retention or functional group presence), which
are often crucial in practical applications. The framework is also tailored to continuous properties and
may require adaptation for categorical, discrete, or graph-structured attributes. Another promising
direction is extending CAST from conditional molecular generation to molecule optimization, where
the task is to iteratively modify a given starting molecule to achieve desired target properties.
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A Ethical Assessment

Our work proposes CAST, an activation steering approach for conditional molecular generation. At
its backbone, CAST still relies on an LLM which can have implications in critical domains like
chemistry and drug discovery. LLMs tend to generate or hallucinate molecules without encoded
safety constraints. Therefore, it is recommended to conduct a manual safety check or enforce safety
constraints in the architecture itself when using the system for practical real-world situations.

B OOD Results

We further present additional results for the out-of-distribution (OOD) setups. Specifically, Tables
[8l O and [I0] represent a comparison of CAST against baselines for different out-of-distribution
properties combinations, such as low QED and low LogP, for example. As shown across these tables,
CAST is able to outperform the base LLM most of the time in terms of property alignment and
generative efficiency. In addition, we observe that CAST is also able to consistently outperform full
supervised-tuning (SFT) models. While we see that LoRA is able to achieve the best performance
overall, CAST is able to match its numbers very closely in terms of QED Best100MAE and even
better generative efficiency in most cases. We note that Chemma-2B seems to show abnormally low
numbers of generative efficiency for low LogP targets, which indicates to us that the model itself has
gaps for generating molecules for these specific values. In brief, these numbers further support our
claims on the robustness and efficiency of CAST on out-of-distribution input properties.

C Qualitative Analysis

This section further presents results on the qualitative assessments of CAST. We first show in tables
[[T]and [T2] the minimum and maximum MAE variation observed due to changes in steering strength.
Similarly to the conclusions we mention in the main sections, we can clearly observe that by varying
steering strength, CAST allows us to explore a wide range of property values. We also add Figure []
that shows the relationship between the overall steering strength and MAE. The graph shows that as
we increase the steering strength, we have an increasing trend of misalignment in property values. We
also see that at one point (o = 2), the steering breaks the generation where we see a high deviation
in terms of MAE. This phenomenon could also be seen in Figure [2] where it happens on generative
efficiency.

Tables [13] [14] and [T5] presents qualitative metrics on a OOD setting. Specifically, it presents the
proportion of molecules found in PubChem and the average SA score at different OOD property
value combinations. Similar to what we describe above, we see that CAST pushes the generation
toward molecules that are found in PubChem. This, in turn, improves its SA scores as molecules
found in PubChem are known, valid and good quality molecules. This further shows that CAST is
able to generate high quality molecules.

Figure 3: Drawings of SMILES strings of Molecules generated by CAST

D Examples of Generated Molecules

Figure |3| shows some example drawings of the molecules generated by our proposed CAST method.
It can be observed that the method creates molecules of varying complexity (different branching,
different ring structures) with a variety of functional groups and atoms other than standard carbon and

14



hydrogen atoms. These drawings also confirm that the generated SMILES are not only syntactically
right, but also represent chemically coherent and plausible molecules.
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Best100MAE(])

GenEff (%) (1)

Base LLM Method QED LogP
Baseline 0.691 0.812 82.9
Chemlactica-125M . TCAST | 0440 0741 | 985
Full SFT 0.614 2.132 97.2
LoRA SFT | 0.651 0.254 85.4
Baseline 0.510 0.346 95.8
Chemlactica-1.3B +CAST0'4880347 ,,,,,,,,,,,, 96.4 ,,,,,,,,,
Full SFT 0518  5.015 95.8
LoRA SFT | 0.661 0.065 92.5
Baseline 0.591 1.059 49.3
Chemma-2B _*CAST ] 0585 1316 | 483
Full SFT 0.604 4.379 96.9
LoRA SFT | 0.565  0.308 92.1
Table 8: Results for property combination: QED Target 1.2861, LogP Target 8.1940

Bestl00MAE(]) | GenEff (%) (1)

Base LLM Method QED LogP

Baseline 0.0313  6.950 72.7
Chemlactica-125M - +,CAS,T I 0',02,56, ,,,,, ,2'52,3 ,,,,,,,,,,,, 8,9',5 ,,,,,,,,,

Full SFT 0.0122  0.029 76.5

LoRA SFT | 0.0108  0.085 82.2

Baseline 0.0108 1.794 87.1
Chemlactica-1.3B . +CAST P 0'0089 e 1'373 ,,,,,,,,,,,, 88'8 ,,,,,,,,,

Full SFT 0.0199  0.044 84.1

LoRA SFT | 0.0060  0.054 91.0

Baseline 0.0293  1.836 24.0
Chemma-2B (FCAST 00291 1.851 | 260

Full SFT 0.0056  0.033 84.2

LoRA SFT | 0.0090 0.220 64.0

Table 9:

Results for property combination:

QED Target 0.1778, LogP Target -3.2810

Bestl100MAE(]) | GenEff (%) (1)

Base LLM Method QED LogP

Baseline 0.734 2.572 81.0
Chemlactica-125M - +CAST U 0'446 ,,,,,, 1 '357 ,,,,,,,,,,,, 98'4 ,,,,,,,,,

Full SFT 0.734 0.027 76.8

LoRA SFT | 0.602 0.096 81.6

Baseline 0.496 1.467 95.3
Chemlactica-1.3B - +CAST U 0'494 ,,,,,, 1 '238 ,,,,,,,,,,,, 96'6 ,,,,,,,,,

Full SFT 0.625 0.043 85.6

LoRA SFT | 0.604 0.054 93.5

Baseline 0.685 1.365 26.6
Chemma-2B JYCAST | 0693 1524 | . 260 ..

Full SFT 0.683 0.032 75.1

LoRA SFT | 0.582 0.120 90.0

Table 10: Results for property combination: QED Target 1.2861, LogP Target -3.2810
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Moses
Base LLM Steered QED MAE LogP MAE
Min. Max. Min. Max.

Chemlactica- QED 0.0158 0.5006 0.2022  7.6618

125M LogP 0.0212 0.6443  0.2326 24.6594
Chemlactica- QED 0.0341 0.6356 0.3115 28.6960
1.3B LogP 0.0369 0.6309 0.3201 28.9727

Table 11: Maximum and Minimum MAE Variation in the observed property values due to steering
strength - Moses Dataset.

ChemBL
Base LLM Steered QED MAE LogP MAE
Min. Max. Min. Max.

Chemlactica- QED 0.0321 0.4855 0.5075 17.3955

125M LogP 0.0422 0.5231 0.7082  39.5629
Chemlactica- QED 0.0330 0.4706 0.8700 46.3020
1.3B LogP 0.0327 04711 0.8202 46.3962

Table 12: Maximum and Minimum MAE Variation in the observed property values due to steering
strength - ChemBL Dataset.

QED: 1.2861, LogP: 8.1940

Base LLM Method | Valid(%) InPC.(%) SAsc. ()

Baseline 82.90 2.33 7.53
Chemlactica-125M  +CAST 98.60 10.76 3.34

Baseline 95.80 14.16 4.53
Chemlactica-1.3B +CAST 96.35 16.63 4.50

Baseline 50.05 23.00 5.13
Chemma-2B +CAST 48.80 22.23 5.14

Table 13: Novelty and synthesizability for the OOD setup of Table[8] The In PC. and SA sc. are
computed similarly as described in Table[5]

QED: 01778, LogP: -3.2810

Base LLM Method | Valid(%) InPC.(%) SAsc.({)
Baseline 73.15 0.07 9.22
Chemlactica-125M  +CAST 89.45 1.75 6.88
Baseline 87.10 6.48 6.26
Chemlactica-1.3B +CAST 88.80 6.77 6.29
Baseline 25.10 24.79 6.54
Chemma-2B +CAST 27.25 22.24 6.52

Table 14: Novelty and synthesizability for the OOD setup of Table[9] The In PC. and SA sc. are
computed similarly as described in Table[5]
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QED: 1.2861, LogP: -3.2810

Base LLM Method | Valid(%) InPC.(%) SAsc.(])
Baseline 81.30 2.14 7.61
Chemlactica-125M  +CAST 98.40 11.30 3.40
Baseline 95.30 16.55 4.48
Chemlactica-1.3B +CAST 96.55 16.93 4.48
Baseline 26.85 26.62 5.52
Chemma-2B +CAST 26.60 23.69 5.61

Table 15: Novelty and synthesizability for the OOD setup of Table[I0] The In PC. and SA sc. are
computed similarly as described in Table[3]

Best100MAE of QED and LOGP vs Alpha

Best100MAE QED
—=— Best100MAE LOGP

Best100MAE

Ot | f i i
-2 -1 0 1 2 3 4

Alpha

Figure 4: Best100MAE:s at varying steering strengths for high QED and high LogP targets
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