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Abstract

In this paper, we explore the nature of sudden breakthroughs in language model1

performance at scale, which stands in contrast to smooth improvements governed2

by scaling laws. While advocates of “emergence" argue that abrupt performance3

gains arise from acquiring new capabilities at specific scales, recent work has4

suggested that these are illusions caused by thresholding effects. We propose5

an alternative explanation: that breakthroughs are driven by random variation,6

particularly multimodal performance distributions across random seeds. Using a7

length generalization task as a case study, we show that different random seeds8

lead to both highly linear or emergent behavior. We further demonstrate that the9

probability of a model acquiring a breakthrough capability increases continuously10

with scale, despite apparent discontinuities in performance. Additionally, we11

find that scaling models in width versus depth has distinct effects: depth impacts12

the likelihood of sampling from a successful distribution, while width improves13

the average performance of successful models. These insights suggest a need to14

consider the role of random variation in scaling and emergent capabilities in LMs.15

1 Introduction16

On most benchmarks, language model (LM) performance is determined by a scaling law [12, 8] that17

responds smoothly to parameter size and overall training compute. There are, however, a number of18

celebrated exceptions in which performance abruptly improves on specific benchmarks [15].19

Sudden breakthroughs at scale provide the backdrop of one of the most heated debates in modern20

machine learning. On one side, advocates of emergence claim that performance abruptly improves at21

particular scales because those scales allow the LM to acquire specific concepts that permit out-of-22

distribution generalization [17]. On the other side, skeptics argue that these sudden improvements23

are a mirage driven by thresholding effects and alleviated by more appropriate continuous metrics—24

though a few breakthrough capabilities remain stubbornly emergent [13]. Here, we argue that such25

discontinuities are driven by predictable changes in the probability of a breakthrough at each scale.26

We posit that a breakthrough capability is distinguished not by direct responses to scale, but by27

multimodal random variation. Such effects are currently undetected because scaling laws are generally28

measured across independent training runs, and resources are rarely committed to correct for random29

variation by reusing the same hyperparameter settings with different random seeds. Although random30

variation may be insignificant when model performance is measured in-distribution [6], previous31

work already suggests that settings which require compositional reasoning may be prone to having32

performance vary widely across random seeds [19, 20] which can also be seen at larger scales [10].33

Since training numerous seeds becomes prohibitively expensive at large scales, we study the ability34

for models to length generalize on compositional tasks. Even in these synthetic settings, previous35

works train on only at most tens of seeds and report summary statistics of these runs. In this work, we36

seek to characterize the resulting distribution— particularly demonstrating that multimodal variation37

is present for the studied task. Our contributions can be summarized as follows:38
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• Breakthrough scaling curves can result from bimodal performance distributions. Using39

length generalization as a case study, we demonstrate that different random seeds can exhibit40

either highly linear or highly emergent scale behavior. We connect these differences to41

the bimodal distribution of this compositional skill across random seeds, a property that42

materializes at many parameter scales. At these scales, “emergence” is a stochastic property.43

• Although a given scale curve can exhibit discontinuity (emergence), the probability of a44

model learning a skill actually responds continuously with respect to scale. Modeling45

the bimodal distribution as a mix of failure and success distributions, we illustrate that46

improvements with scale can come from changes in the probability of success or in the47

average performance of a successful model.48

• The random variation distribution changes differently when scaling up models with49

respect to width vs. depth. Although the scaling laws literature generally treats parameter50

scale as a single property, we find that scaling in depth changes the probability of sampling51

from the successful distribution—thereby changing the probability of emergence—whereas52

scaling in width only changes the average performance of the successful distribution. With53

respect to emergent capabilities, these are significant differences.54

2 Methodology55

Breakthrough capabilities often require compositional reasoning [15, 9, 1]; one such category is the56

propensity for length generalization [18]. Below we outline our experimental setup, with further57

details given in Appendix A.58

Architecture: In all of our experiments, we train decoder-only transformer models from scratch,59

using rotary position embeddings (RoPE) [16] at each layer. To observe the random variation60

distribution at a variety of scales, we train our models on 250 seeds at a range of 5 scales across three61

variations of scaling— scaling up width, scaling up depth, and scaling with a fixed parameter count.62

Task: We primarily consider an algorithmic task previously studied in Zhou et al. [20]: learning to63

count. Given two numbers in increasing order, the model is tasked with outputting a sequence which64

counts consecutively from the first number to the second number. Examples are given in the form "5,65

9 >, 5, 6, 7, 8, 9", with the training length representing the length of the counting sequence.66

It has been previously shown that models can length generalize on this counting task to more than67

twice their training length; however, we will see in the next section that inspecting the distribution of68

performance across random variation gives a more nuanced picture about the model’s capacity to69

length generalize.70

Dataset: During training, we sample sequences i.i.d from the train set and fill the context with71

examples, following previous work [5, 20]. The length of examples are sampled uniformly from 1 to72

the maximum training length, which we fix at 30.73

3 Results74

3.1 Bimodality leads to emergence75

Following Srivastava et al. [15], we take the vector of model performances for a fixed seed at test76

length 60 across different scales and calculate their breakthroughness and linearity metric (for their77

definitions, refer to Appendix B). We plot the performance across scale for the top 5 seeds with the78

highest breakthrough metric and highest linearity metric in Figure 1. Here we fix the random seed79

which has become the standard practice for reporting benchmark performance for LLMs; although the80

same random seed has no relation across different scales, this is often a fixed parameter overlooked81

in practice. In Figure 2, we provide violin plots of the resulting EM accuracy distribution across our82

three variations of scaling models for test lengths from 30 to 100, with additional figures given in83

Appendix C.84

As is clear in Figure 2, many parameter scales exhibit specifically bimodal distributions of length85

generalization capabilities. The impact of this variability is depicted in Figure 1, which illustrates86

that we can easily find fixed seeds that show varying levels of emergence and linearity, due to random87

variation in breakthroughs. Although work on emergence often makes claims as to the specific model88
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Figure 1: Scaling curves that exhibit emergence (according to the breakthroughness metric in [15])
and those that don’t, all sampled from the same task and hyperparameters, fixing random seed for
each scale.

size required for particular tasks, we show that one can find different levels of emergence and different89

breakthrough scales depending on random experimental conditions—particularly in our fixed depth90

setting (Figure 1b), where curves range from clear breakthroughs to nearly linear.91

3.2 Scaling depth versus width92

Classically, scaling laws treat parameter size as a single scalar value without differentiating between an93

increase in width or depth. This difference, though of limited consequence for unimodal capabilities,94

becomes crucial when considering breakthrough capabilities. In Figure 2a, we see that, as depth95

increases, a fixed parameter count goes from all model runs failing to almost all models scoring over96

80% accuracy even at the longest test lengths. When focusing on parameter growth through depth97

(Figure 2c), we see mass move from the failed runs to the successful runs; meanwhile, if parameters98

grow through hidden width (Figure 2b), the probability of a run failing completely does not decrease,99

but the average performance of a successful run increases.100

The specifics of how these distributions shift is shown in Figure 3. Here, we plot the fraction of runs101

which achieve EM accuracy below 10% and above 50% across model scales, as well as the mean of102

the runs which achieve above 50% accuracy across scales. First, note that the average accuracy for a103

“successful” run (any run with above 50% EM accuracy) increases persistently and monotonically104

with width, but not depth. Second, as we increase depth, the proportion of successful runs increases105

and the proportion of failed runs (below 10% match accuracy) falls—but as we increase width, neither106

trend appears. We conclude that both depth and width can improve performance, but depth improves107

performance primarily by shifting the likelihood of a breakthrough, whereas width only improves the108

expected performance of a model with the breakthrough capability.109

4 Discussion and conclusions110

Zhou et al. [20] first documented the variability of length generalization across random seeds, which111

we take advantage of in our work. In general, out-of-distribution behavior like compositional rules112

[11] or associative biases [14] often exhibit extreme variation compared to in-distribution performance.113

We are also not the first to note bimodal distributions like these, which are also present in text classifier114

performance metrics [7] and even in the timing of generalization breakthroughs during training [4].115

Our findings are highly suggestive, but they leave much to future work. Studying other emergent116

synthetic tasks, especially other compositional or length generalization settings, would confirm how117

general these findings are. Most crucially, we intend to study whether breakthrough capabilities in118

language models are associated with bimodal or outlier behavior.119
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Figure 2: Violin plots illustrating how the EM accuracy distributions across test lengths vary across
a) increasing depth while fixing parameter count, b) increasing width while fixing depth, and c)
increasing depth while fixing width. Although the number of parameters remains the same, the
distribution in deeper networks exhibits significantly less bimodality. This is further exemplified
where at fixed depths, bimodality remains present even at greater widths.
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Figure 3: Across fixed width and fixed depth, on the two leftmost plots we show the fraction of runs
which achieve above 50% and below 10% EM accuracy, and on the two rightmost plots we show the
mean performance of the runs which achieve EM accuracy above 50%.
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A Additional Experimental Details178

Count task: For all of our training runs, we fix the vocabulary size to 150. For evaluation, we179

compute the exact match (EM) accuracy across all consecutive subsequences of the test length.180

Model scales: As mentioned in Section 2, we scale up our models in three ways: fixing width and181

scaling depth, fixing depth and scaling width, and fixing parameter count and scaling depth. The182

precise parameters for each variation are as follows:183

• Fixed depth: We fix the network depth to 4 layers and vary width by taking hidden184

dimensions {64, 128, 256, 384, 512}. The head dimension is fixed to 64.185

• Fixed width: We fix the hidden dimension to be 512 and vary the depth from {1, 2, 4, 6, 8}186

layers.187

• Fixed parameter count: We fix the parameter count to 3.2m and vary the depth from188

{1, 2, 4, 7, 16} layers, with the appropriate hidden dimension.189

Hyperparameters: We train all of our models to convergence on the train distribution and use a190

learning rate of 1e− 3 with a cosine decay scheduler and weight decay 0.1. We set the maximum191

training duration to be 10000 steps, with batch size 128 and context length 256.192

B Breakthroughness and Linearity193

Srivastava et al. [15] introduced breakthroughness and linearity metrics to capture model performance194

improving suddenly or reliably with scale. Given a model’s performances yi at model scales xi sorted195

by ascending model scale, the linearity metric L and breakthroughness metric B are respectively196

calculated as197

L =
I(y)

RootMeanSquare({yi+1 − yi}i)
,

B =
I(y)

RootMedianSquare({yi+1 − yi}i)

where I(y) = sign(argmaxi yi − argmini yi)(maxi yi −mini yi).198

C Additional Figures199

In Figures 4, 5, and 6 we provide raw histograms for EM accuracy across test lengths in200

{50, 60, 70, 80, 90, 100} and across model scales fixing parameter count, fixing depth, and fixing201

width respectively. As highlighted in Section 3.2, for a fixed parameter count we see a transition202

from all model runs failing to almost all models scoring over 80% accuracy even at the longest test203

lengths. When fixing depth, there remains a fraction of runs failing even at larger widths, but the204

average performance of a successful run increases. Finally, when fixing width, mass seems to shift205

from the failed runs to successful runs, again due to scaling depth.206
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Figure 4: Histogram across model scales fixing parameter count at different test lengths.
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Figure 5: Histogram across model scales fixing network depth at different test lengths.
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Figure 6: Histogram across model scales fixing network width at different test lengths.

9



D Debunking Challenge Submission207

D.1 What commonly-held position or belief are you challenging?208

It is now widely recognized that increasing the scale of language models (e.g., in terms of training209

computation and model parameters) can result in improved performance and sample efficiency across210

various downstream NLP tasks. However, there are cases where performance can be predicted211

smoothly in terms of scale via scaling laws [3, 8] as well as cases where performance cannot be212

predicted as scale increases due to discontinuous improvements [2, 15, 17]. Our work simultaneously213

addresses both common positions on emergent capabilities. The first position is that continuous214

metrics can always make them discrete and smooth continuous scaling laws always hold, even215

in apparent breakthroughs. The second position is that they represent exceptions to scaling laws216

determined by capacity at scale. Prior work has called into question the empirical validity of217

emergence; for instance, Schaeffer et al. [13] argued that more than 92% of proposed emergent218

skills were caused by thresholding effects in accuracy metrics. This does however, still leave a219

number of potential emergent abilities. Thus, our work addresses both perspectives by considering220

the distribution across performance due to random variation, where both emergence and linear221

improvement can be present for the same task and training hyperparameters.222

D.2 How are your results in tension with this commonly-held position?223

We propose continuous scaling laws in the distribution of capabilities rather than the sampled scalar224

value associated with that capability for a single trained model. By addressing distributions rather than225

point samples, we explain emergent behavior using scaling laws that are entirely continuous—but226

bimodal. In other words, the notion of a pointwise scaling “law” leads inevitably to discontinuities, but227

these discontinuities are stochastic in nature and determined by a continuous underlying distribution.228

We show the potential issue with only considering point samples in Figure 1, where even on the same229

hyperparameters, different random seeds exhibit varying degrees of breakthroughness and linearity.230

Another element of tension is with the notion of a breakthrough parameter size. While the scaling231

laws literature tends to treat depth and width equivalently—as they may be in-distribution—we232

show that depth and width are, in fact, materially different in how they change the probability of233

a breakthrough. We discuss this in depth in Section 3.2, where upon inspecting the distribution234

across scale, we see that increasing depth increases the likelihood of sampling from a “successful”235

distribution, whereas width improves the average performance of “successful” models.236

D.3 How do you expect your submission to affect future work?237

When targeting emergent properties, our initial results suggest that depth may be prioritized over238

width. Furthermore, future work on emergence may involve training multiple seeds—though of239

course, at very large scales this may be resource-intensive. In general, we hope our results provide240

further evidence to the susceptibility of research on emergence in LLMs to statistical artifacts like241

the Texas sharpshooter fallacy. Although it becomes computationally prohibitive to run multiple242

seeds with the same set of hyperparameters to statistically validate empirical observations, we believe243

the effect of random variation on out-of-distribution or downstream performance should not be244

disregarded especially if the variation is not Gaussian and can be presented as multimodal. There245

are several directions for future work, such as investigating the generalizability of our findings and246

particularly the presence of bimodal distributions across different tasks, investigating influences247

of various hyperparameters to the random variation distribution, and studying seed performance248

correlation in the multi-task setting.249
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