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STORM: BENCHMARKING VISUAL RATING OF
MLLMS WITH A COMPREHENSIVE ORDINAL REGRES-
SION DATASET

Anonymous authors
Paper under double-blind review

Broad	Domain	Data Diverse	Level	Annotations
IAA	:	Unacceptable	(0),	Flawed	(1),	Average	(2)	,	

Professional	(3),	Excellent	(4)	

IQA	:	Bad	(0),	Poor	(1),	Fair	(2),	Good	(3),									
Excellent	(4)		

MDG	:	Normal	(I),	Mild	(II),	Moderate	(III),	
Severe	(IV),	Extreme	(V)

FAE	:	0-116	Yeas	Old

All-in-one	Evaluation	
Framework

Coarse-to-fine	CoT
Coarse	CoT：
“What	is	the	age	of	this	person？Please	give	the	coarse	
prediction	first.	Then	give	the	final	fine-grained	prediction	
based	on	coarse	prediction. “

Coarse	Thought：
Child	(0-10)													Teenager	(11-20)									Youth	(21-30)								

Adult	(30-44)										Middle	(45-60)														Elder	(60+)

Final	Prediction：
Answer:	<27	years	old>

Input	image

IAA

IQA

MDG

FAE

General
MLLMs

Score	:	0-4	or	0-9

Garde	:	I-V

Age	:	0-116
…

Facial	Age	Estimation	(FAE)

Image	Quality	Assessment	(IQA)

Image	Aesthetic	Assessment	(IAA)

Medical	Disease	Grading	(MDG)

Historical	Date	Estimation
(HDE)

HDE	:	1930s-1970s

Any	rating
…

Figure 1: An overview of our STORM benchmark. STORM consists of four key components: 1)
Broad domain data (14 datasets across 5 domains); 2) diverse level annotations; 3) coarse-to-fine
CoT; 4) all-in-one visual rating framework.

ABSTRACT

Visual rating is an essential capability of artificial intelligence (AI) for multi-
dimensional quantification of visual content, primarily applied in ordinal regression
(OR) tasks such as image quality assessment, facial age estimation, and medical
image grading. However, current multi-modal large language models (MLLMs)
under-perform in such visual rating ability while also suffering the lack of relevant
datasets and benchmarks. In this work, we collect and present STORM, a data
collection and benchmark for Stimulating Trustworthy Ordinal Regression Ability
of MLLMs for universal visual rating. STORM encompasses 14 ordinal regression
datasets across five common visual rating domains, comprising 655K image-level
pairs and the corresponding carefully curated VQAs. Importantly, we also propose
a coarse-to-fine processing pipeline that dynamically considers label candidates and
provides interpretable thoughts, providing MLLMs with a general and trustworthy
ordinal thinking paradigm. This benchmark aims to evaluate the all-in-one and
zero-shot performance of MLLMs in scenarios requiring understanding of the
essential common ordinal relationships of rating labels. Extensive experiments
demonstrate the effectiveness of our framework and shed light on better fine-tuning
strategies. The STORM datasets and codes are available on anonymous links in the
Supplementary Material to support further research in this area.

1 INTRODUCTION

With the success of large language models (LLMs) like GPT-4 Achiam et al. (2023a) and Gemini Team
et al. (2023), researchers have been enhancing these models by incorporating visual understanding ca-
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pabilities. This enthusiasm has led to the emergence of multi-modal large language models (MLLMs),
such as LLaVA Liu et al. (2023a;b), GPT-4o Achiam et al. (2023b), and Qwen-VL Bai et al. (2023a;b),
which show demonstrated viability in various VQA scenarios.

However, the potential of MLLMs in visual rating capabilities has not yet been fully explored despite
their critical importance in various visual analysis applications, such as image quality/aesthetic
assessment, face age estimation, medical image grading, etc. The hindrance in the development of
stronger MLLMs for visual rating is attributed to the following three challenges. (1) The complexity
of task labels, that is, inconsistent numbers and levels of labels of different visual rating tasks. Existing
methods only train MLLMs with the same number and definition of level labels Wu et al. (2023c),
which could yield unsatisfied performance when users propose a different rating protocol. (2) The
hallucination phenomenon of MLLMs for numeric labels. MLLMs typically use contrastive learning
for pre-training and pay more attention to high-level semantics than to precise numerical features Wu
et al. (2023b). Furthermore, the subjective inconsistency of human annotation can also lead the model
to learn noise. (3) Poor zero-shot performance. Existing MLLMs can only be trained on specific
tasks, which can incur severe limitations when the model is tested on out-of-domain datasets and may
lack general rating practicality. Unfortunately, there is still a lack of relevant datasets and benchmarks
to train and test trustworthy MLLMs with strong and general visual rating capabilities.

To address the above challenges, we look into the inherent logic of common visual rating tasks and
observe a shared nature of these tasks: They are all ordinal regression (OR) problems whose labels
are ordinal. Therefore, we introduce STORM, a data collection and benchmark for Stimulating
Trustworthy Ordinal Regression Ability of MLLMs for universal visual rating. First, STORM
includes a comprehensive OR data collection comprising 655K question-answer pairs across 5 popular
visual rating tasks. Through joint training based on this comprehensive OR dataset, an MLLM is
initially endowed with a fundamental ability to tackle most visual rating tasks. Furthermore, we
develop a lite version dataset of about 250K samples for faster model training. Second, for all
question-answer pairs, the answer not only adopts a mixed description of text and numbers to
significantly mitigate the model’s numeric hallucination but also includes an extra intermediate
prediction step, which is designed to instruct the MLLM with a logical, coarse-to-fine Chain-of-
Thought (CoT) process to understand a general way of thinking about OR problems, enabling MLLMs
to attain a better zero-shot performance on out-of-domain visual rating tasks. Third, we provide the
corresponding visual rating benchmark and pre-trained models for reproducibility, aiming to foster
further research in visual rating for MLLMs.

In summary, the key highlights of our STORM benchmark include:

• Broad Domain Data: STORM contains high-quality data including 14 popular ordinal
regression datasets comprising 655k data items across five distinct domains.

• Diverse Level Annotations. STORM includes basic numeric labels, suitable for fundamental
settings of all visual rating questions. It also incorporates diverse text labels to strengthen
the specific semantic understanding for different visual rating tasks and the capabilities of
MLLMs in explainable rating predictions.

• Coarse-to-fine CoT: We introduce a coarse-to-fine Chain-of-Thought (CoT) pipeline for
MLLMs, enabling them to learn a universal paradigm of ordinal regression and providing
intermediate interpretable thoughts.

• All-in-one Evaluation Framework: We propose a comprehensive evaluation framework
to benchmark the all-in-one visual rating capability of MLLMs on both in-domain and
out-of-domain datasets. To the best of our knowledge, STORM is the first benchmarking
and dataset building effort to test the universal visual rating abilities of MLLMs.

2 RELATED WORKS

Multi-modal LLMs. The success of large language models (LLMs) in various language applications
has paved the way for the development of multi-modal large language models (MLLMs), which
integrate vision and language modalities. More recently, MLLMs have focused on aligning these
modalities through extensive training on image-caption pairs or image-question conversations. No-
table methods like LLaVA Liu et al. (2023b) train a projector that maps image tokens to aligned
representations of pre-trained LLMs. Other approaches, such as BLIP-2 Li et al. (2022a; 2023a),
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Table 1: A summary of the ordinal regression datasets in STORM for visual rating. STORM spans 5
domains and includes various source datasets, offering a broad representation of visual data styles.

Domain Source Dataset Full Version Size Lite Version Size Category

Image Quality Assessment (IQA)
SPAQ Fang et al. (2020) 11,125 11,125 5 levels

ChallengeDB Ghadiyaram & Bovik (2015) 1,169 1,169 5 levels
KonIQ Hosu et al. (2020) 10,073 10,073 5 levels

Image Aesthetics Assessment (IAA)
Aesthetics Dataset Dosovitskiy et al. (2020) 13,706 13,706 5 levels

TAD66K He et al. (2022) 66,327 27,132 5 levels
AVA Gu et al. (2018) 255,508 51,104 5 levels

Facial Age Estimation (FAE)

Adience Levi & Hassner (2015) 17,321 17,321 8 groups
CACD Chen et al. (2015) 163,446 32,690 14-62 years

Morph Jr. & Tesafaye (2006) 50,015 20,006 16-77 years
UTK Zhang et al. (2017) 24,106 24,106 1-116 years

Medical Disease Grading (MDG)
Eyepacs Dugas et al. 35,127 35,127 5 grades

DeepDR Liu et al. (2022) 2,000 2,000 5 grades
APTOS Karthik & Dane (2019) 3,662 3,662 5 grades

Historical Date Estimation (HDE) HCI Palermo et al. (2012) 1,325 1,325 5 decades

adopt a query Transformer (Q-Former) to learn image embeddings using learnable queries after
obtaining image features. In terms of training strategy, recent works Liu et al. (2023b); Bai et al.
(2023a); Wang et al. (2023c); Zhu et al. (2023); Chen et al. (2022); Luo et al. (2024) commonly
employ a 2-stage framework that involves pre-training and vision-text alignment. MLLMs have also
been extended to various applications, including fine-grained localization Wang et al. (2024); Lai
et al. (2023) such as object detection Zhang et al. (2023b), video understanding Zhang et al. (2023a);
Li et al. (2023b); Chen et al. (2023), and image generation Koh et al. (2024); Qian et al. (2023).

LMMs for Visual Rating. Some recent studies have discussed the possibilities of adopting Large
Multi-modality Models (LMMs) for visual rating/scoring. For example, Q-Bench Wu et al. (2023a)
and Q-Instruct Wu et al. (2023b) proposed enabling LMMs to predict quantifiable quality scores
by extracting softmax pooling results on logits of two frequent tokens (good/poor). Another work,
Q-Align Wu et al. (2023c), systematically emulated human rating and post-processing in visual rating.
However, these methods are still limited in that they focus only on (1) certain types of tasks, such as
image/video quality assessment and image aesthetic assessment, and (2) fixed number of categories
with poor generalization. In comparison, our STORM framework introduces a comprehensive ordinal
regression dataset and VQA template paradigm that contains many other tasks across different do-
mains for visual rating in addition to image/video quality assessment and image aesthetic assessment,
such as facial age estimation, medical image grading, and image historical estimation.

Ordinal Regression. Given an input image, ordinal regression (OR) in computer vision aims to map
the image to a rank or a continuous value. Many popular methods Rothe et al. (2018); Geng et al.
(2013); Frank & Hall (2001); Li & Lin (2006); Chen et al. (2017) adopted a classification framework.
Some recent studies Lim et al. (2019); Liu et al. (2019); Lee & Kim (2020); Li et al. (2021) proposed
ordinal distribution constraints to exploit the ordinal nature of regression. Adding prior order
knowledge to loss calculation, several methods Fu et al. (2018); Diaz & Marathe (2019) created soft
labels artificially by changing the distances between categories. A few advanced methods Liu et al.
(2017; 2018); Li et al. (2021); Shin et al. (2022) sorted tuples that are formed by two or three instances
with ordinal categories to learn the rank information. Ord2Seq Wang et al. (2023a) proposed to
transform OR tasks to sequence prediction and solve ordinal regression using autoregressive models.
Recent works like OrdinalCLIP Li et al. (2022b), L2RCLIP Wang et al. (2023b), and NumCLIP Du
et al. (2024) used CLIP Radford et al. (2021a) for OR tasks, focusing on improving image-text
alignment. Although these deep learning (DL) methods are general and effective, they need to train
separate models for different OR tasks. In comparison, our proposed STORM is a general framework
built on MLLMs and aims to construct an all-in-one visual rating model.

3 ORDINAL REGRESSION DATA COLLECTION FOR VISUAL RATING

3.1 OVERVIEW

Currently, a general visual rating framework is still lacking. Existing domain-specific models are
predominantly optimized for fixed-format labeling schemes, thus exhibiting poor generalization
capability when encountering diverse label configurations or cross-domain scenarios. To address this
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<image>

An example of original VQA in age estimation datasets
Answer: 27 years old

An example of coarse-to-fine CoT process in age estimation datasets
Question: What is the age of this person?
###
<image>You are an experienced facial analysis expert, and you need to estimate the
age group of the person in the provided facial image based on their facial features.
Please provide the coarse category that can help you answer the question better.
###

Coarse Intermediate Thoughts: Youth

Answer: Youth, 27 years old

Coarse-to-fine CoT:
1. Make the coarse prediction with the candidates: Child (0-10 years old), Teenager
(11-20 years old), Youth (21-30 years old), Adult (31-44 years old), Middle (45-60
years old), Elder (60+ years old).
2. Based on the coarse classification, proceed to make a final age prediction.
3. Please note that the coarse thoughts and answer should be consistent.

Question: What is the age of this person?

<image>

Figure 2: A data example with the original VQA compared with our coarse-to-fine CoT VQA.

gap, we curate a comprehensive OR data collection that spans five distinct domains and includes 14
various source datasets, as shown in Tab. 1. For more details on distribution, see Appendix C.

To ensure a robust foundation for different visual rating tasks, our STORM data collection deliberately
integrates a diverse selection of data including image quality assessment (IQA), image aesthetic
assessment (IAA), facial age estimation (FAE), medical disease grading (MDG), and image historical
date estimation (HDE). These data domains are intentionally chosen to cultivate a comprehensive skill
set across varied visual rating tasks. 1) IQA and IAA are the most widely demanded scenarios, which
enhance MLLMs’ capability in subjective qualitative judgment of quality or superiority gradation.
2) Facial age estimation aids in cognitive capabilities of objective estimation tasks with continuous
and wide-ranging labels, particularly in scenarios requiring precise numerical regression like depth
estimation. 3) Medical disease grading fosters the ability of severity assessment in complex scenarios,
which are essential for medical and anomaly detection applications. 4) Historical date estimation
develops temporal awareness of MLLMs, which is vital for time-related estimation tasks.

3.2 DATA GENERATION DETAILS

To gather and build a comprehensive and diverse visual rating data collection, we select 14 source
ordinal regression datasets across five distinct domains. As these datasets provide only images
and digital labels, they are designed with a standardized VQA paradigm by reusing their images
and modifying the annotations into a textual form to enable MLLMs to undergo joint training for
heterogeneous tasks of diverse domains. Specifically, each data sample originally consists of a
simple question and a corresponding numeric answer. However, this paradigm can lead to numerical
hallucination. Hence, we add extra domain-driven prompts and coarse-to-fine CoT to mitigate this
issue. An example with the original VQA and our proposed coarse-to-fine CoT process is shown
in Fig. 2. Meanwhile, we adopt the form of text + numbers for the labels to enhance semantic
understanding. In the following sections, we elaborate on the VQA details employed for each
domain-specific visual rating dataset.

Image Quality Assessment (IQA). We choose three IQA datasets to create data in this domain:
SPAQ Fang et al. (2020), KonIQ Hosu et al. (2020), and ChallengeDB Ghadiyaram & Bovik (2015).
The three datasets focus on the impact of distortions and other quality issues in images on human
perception. The fact that these datasets provide only mean opinion score (MOS) values makes it
difficult to teach LMMs to predict scores aligned with human. Thus, we simulate the process of
training human annotators. We convert the MOS values to five text-defined rating levels itu (2000):
{‘bad’ (0), ‘poor’ (1), ‘fair’ (2), ‘good’ (3), ‘excellent’ (4)}. For coarse intermediate thoughts, the
candidates are: {‘below fair’ (0-1), ‘fair’ (2), ‘above fair’ (3-4)}.

Image Aesthetics Assessment (IAA). For this domain, we use Aesthetics Dataset Dosovitskiy et al.
(2020), TAD66K He et al. (2022), and AVA Gu et al. (2018), which are widely-used datasets for
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Multi-modal Large Language Model (MLLM)

Image
0-10:Child	 								11-20:Teenagers									21-30:Youth
30-44:Adult	 						45-60:Middle																60+:Elder

Generate	 text	 for	numeric	label	by	GPT	
and	manual	adjustment	

Vision Encoder
What is the age of this person? Please provide the coarse category that
can help you answer the question better. The candidates: Child (0-10 years
old), Teenager (11-20 years old), Youth (21-30 years old), Adult (31-44
years old), Middle (45-60 years old), Elder (60+ years old).

Coarse	intermediate	Thought： Youth

Coarse-to-fine	CoT
Final	Answer:			27	years	old

Based on the previous coarse
classification, proceed to make
a final age group prediction.
Please note that the coarse and
final predicted age group results
should be consistent.

Previous	Answer
Youth：21-30	 years	old.

IAA

IQA

MDG

FAE

Datasets Evaluation

…

In-domain	
Evaluation

Zero-shot	
Testing

In-domain
Testing

Out-of-domain
Testing

Popular	
MLLMs

Figure 3: The model pipeline of STORM. It first extracts visual tokens of an input image from
STORM dataset and determines the task objective. Then, pre-generated coarse and fine candidate
categories, including numeric and text labels (generated by GPT and manually adjusted, stored in the
dataset), are used to formulate instructional prompts that guide the model to perform coarse-to-fine
CoT, thus predicting the corresponding labels for the image progressively. Finally, STORM conducts
a comprehensive evaluation and testing, including in-domain and out-of-domain tasks.

image aesthetics assessment. The IAA datasets provide images and the corresponding multi-rater
scores. Similarly to IQA, we compute the MOS values of all raters and convert the MOS values
to five text-defined rating levels: {‘unacceptable’ (0), ‘flawed’ (1), ‘average’ (2), ‘professional’
(3), ‘excellent’ (4)}. For coarse intermediate thoughts, the candidates are: {‘below average’ (0-1),
‘average’ (2), ‘above average’ (3-4)}.

Facial Age Estimation (FAE). We use Adience Levi & Hassner (2015), CACD Chen et al. (2015),
Morph Jr. & Tesafaye (2006), and UTK Zhang et al. (2017) as datasets for facial age estimation tasks.
In the Adience dataset, each image encompasses a category label that is annotated in 8 groups: 0-2,
4-6, 8-13, 15-20, 25-32, 38-43, 48-53, and over 60 years old. Thus, we assign the most suitable text
for each group according to the age range: {‘infants’ (group0, 0-2 years old), ‘preschoolers’ (group1,
4-6 years old), ‘preteens’ (group2, 8-13 years old), ‘teens’ (group3, 15-20 years old), ‘adult’ (group4,
25-32 years old), ‘midlifers’ (group5, 38-43 years old), ‘matures’ (group6, 48-53 years old), ‘seniors’
(group7, over 60 years old)}. In the other three datasets, each label is a specific age number. Hence,
we set the answer as an age with a corresponding text, such as ‘adult’ (30 years old). The coarse
intermediate thoughts for all these datasets are the same and the candidates are: {‘baby’ (group0-1,
0-7 years old), ‘teenagers’ (group2-3, 8-24 years old), ‘adult’ (group4-5, 25-47 years old), ‘elder’
(group6-7, over 48 years old)}.

Medical Disease Grading (MDG). We select a series of Diabetic Retinopathy (DR) grading datasets,
including Eyepacs Dugas et al., DeepDR Liu et al. (2022), and APTOS Karthik & Dane (2019), as
datasets for medical disease grading. In these datasets, images are annotated in five levels of diabetic
retinopathy from grade 1 to 5. We also add text-defined rating labels for all the levels: {‘normal’
(1), ‘mild’ (2), ‘moderate’ (3), ‘severe’ (4), ‘extreme’ (5)}. For coarse intermediate thoughts, the
candidates are: {‘normal’ (1), ‘early’ (2-3), ‘late’ (4-5)}.

Historical Date Estimation (HDE). We select the HCI dataset Palermo et al. (2012) as the dataset for
historical date estimation, which aims to estimate the decades of historical color photos. There are five
decades, from 1930s to 1970s, annotated as 1 to 5. We add text-defined rating labels for each phase:
{‘early’ (phase1, 1930s), ‘early-mid’ (phase2, 1940s), ‘middle’ (phase3, 1950s), ‘mid-late’ (phase4,
1960s), ‘late’ (phase5, 1970s)}. For coarse intermediate thoughts, the candidates are: {‘before middle’
(phase1-2, 1930s-1940s), ‘middle’ (phase3, 1950s), ‘after middle’ (phase4-5, 1960s-1970s)}.

4 ENHANCING MLLMS WITH ALL-IN-ONE VISUAL RATING CAPABILITIES

Model Pipeline. Fig. 3 presents an overview of the model pipeline, which mainly consists of three
parts: Vision Encoder, Text Candidate Generation, and Coarse-to-fine CoT. The Vision Encoder
processes visual input and encodes it into a series of visual tokens. Text Candidate Generation
provides both coarse and fine text definitions, which will act as prompts and form a new question
to instruct the LLM to provide an intermediate coarse thought for the coarse-to-fine CoT. Coarse-
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Table 2: Accuracy performance of the visual rating benchmark (higher is better). “Tra.” indicates
the datasets used for fine-tuning. “Zero” denotes the model without fine-tuning. “Lite” denotes that
the model is fine-tuned on the lite vision of datasets. “Full” denotes that the model is fine-tuned on
the full datasets. Datasets highlighted in gray indicate that their training splits are not used in our
model’s fine-tuning phase, which act as zero-shot testing.

IQA1 FAE
MLLM Tra. SPAQ ChallengeDB KonIQ Adience CACD Morph UTK

LLaVA-1.5-7B Zero 0.243 0.296 0.396 0.452 - - -
Lite 0.259 0.249 0.263 0.333 - - -

Qwen2.5-VL-3B Zero 0.512 0.472 0.493 0.444 - - -
Lite 0.600 0.446 0.561 0.480 - - -

MiniGPT-v2-7B Zero 0.300 0.369 0.387 0.538 - - -
Lite 0.298 0.369 0.488 0.426 - - -

BLIP2-opt-2.7B Zero 0.144 0.185 0.158 0.087 - - -
Lite 0.367 0.262 0.183 0.142 - - -

InternVL-2B Zero 0.317 0.279 0.333 0.252 - - -
Lite 0.352 0.348 0.372 0.198 - - -

STORM-3B Lite 0.583 0.468 0.582 0.534 - - -
Full 0.585 0.466 0.568 0.551 - - -

IAA MDG HDE Average
MLLM Tra. TAD66K AVA Aes. Eyepacs DeepDR APTOS HCI

LLaVA-1.5-7B Zero 0.137 0.096 0.030 0.028 0.090 0.057 0.258 0.189
Lite 0.354 0.591 0.583 0.547 0.248 0.445 0.220 0.372

Qwen2.5-VL-3B Zero 0.207 0.275 0.081 0.073 0.158 0.191 0.265 0.288
Lite 0.338 0.546 0.260 0.731 0.433 0.506 0.273 0.466

MiniGPT-v2-7B Zero 0.197 0.179 0.047 0.164 0.218 0.273 0.250 0.266
Lite 0.268 0.543 0.457 0.732 0.425 0.492 0.189 0.426

BLIP2-opt-2.7B Zero 0.184 0.117 0.050 0.731 0.433 0.492 0.129 0.247
Lite 0.273 0.188 0.196 0.714 0.433 0.495 0.187 0.313

InternVL-2B Zero 0.284 0.348 0.286 0.254 0.240 0.309 0.204 0.282
Lite 0.347 0.449 0.434 0.567 0.388 0.434 0.303 0.381

STORM-3B Lite 0.370 0.650 0.658 0.734 0.435 0.508 0.341 0.533
Full 0.368 0.655 0.668 0.741 0.435 0.506 0.424 0.542

to-fine CoT generates a finer final answer based on the coarse thought. Our STORM chooses
Qwen2.5-VL-3B Bai et al. (2023b) as the LLM backbone. For more details, see Appendix B.

Text Candidate Generation. For different domain tasks, we first use GPT to generate a text definition
for each numeric label. Then, manual adjustments are applied to make the text definition more realistic
and compatible with human rating practices. After this, both the intermediate coarse thought and
final answer have a text label and a numeric label. This offers several advantages: 1) Reducing
digital hallucination. Since MLLMs are pre-trained using CLIP to align images and text rather than
numbers, they are prone to numerical hallucination. By supplementing numeric labels with text
definitions, MLLMs can learn more ordinal semantic relationships and reduce digital hallucination.
2) Differentiating task specificity. Since different tasks may share identical label ranges (e.g., 1-5
ratings) while having distinct task natures, the models could confuse label distributions across tasks.
Leveraging textual definitions allows the models to capture task-specific specificity, while numeric
labels can preserve the ordinal commonality essential for diverse rating tasks.

Coarse-to-fine CoT. To train an MLLM with our newly generated data, we add a CoT prompt
(“Please provide the coarse category that can help you answer the question better. The candidates is:

”), followed by text along with numeric category candidates for the question. The MLLM is instructed
to perform the following three steps: (1) Make a coarse rating thought with the candidates (e.g.
Child (0-10 years old), Teenager (11-20 years old), Youth (21-30 years old), Adult (31-44 years old),

1Here we use Accuracy and MAE for the IQA tasks to unify the metrics. For the commonly used metrics for
IQA tasks, PLCC and SRCC, are provided in the supplementary materials, Appendix D.
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Table 3: MAE performance of the visual rating benchmark (lower is better).
IQA1 FAE

MLLM Tra. SPAQ ChallengeDB KonIQ Adience CACD Morph UTK

LLaVA-1.5-7B Zero 1.294 1.155 0.852 0.859 11.439 9.251 11.763
Lite 0.983 1.017 0.919 0.990 8.776 6.691 9.934

Qwen2.5-VL-3B Zero 0.534 0.592 0.547 0.734 9.746 5.470 6.534
Lite 0.423 0.605 0.469 0.715 7.541 7.589 6.433

MiniGPT-v2-7B Zero 1.084 0.944 0.791 0.705 10.813 27.923 13.173
Lite 1.143 0.922 0.638 0.919 10.075 9.511 11.837

BLIP2-opt-2.7B Zero 1.846 1.721 1.681 3.734 10.436 14.156 28.921
Lite 1.003 1.350 1.478 3.113 10.160 13.090 21.598

InternVL-2B Zero 0.982 1.056 0.947 1.592 8.865 17.448 23.265
Lite 0.902 0.939 0.876 1.980 8.683 10.776 15.695

STORM-3B Lite 0.442 0.597 0.431 0.636 8.202 5.975 5.879
Full 0.441 0.602 0.460 0.602 8.014 5.886 5.689

IAA MDG HDE Average
MLLM Tra. TAD66K AVA Aes. Eyepacs DeepDR APTOS HCI

LLaVA-1.5-7B Zero 1.594 1.390 1.739 2.507 2.085 2.161 1.333 3.530
Lite 0.776 0.433 0.466 0.864 1.295 1.984 1.318 2.531

Qwen2.5-VL-3B Zero 1.301 0.857 1.337 1.645 1.348 1.221 1.159 2.358
Lite 0.886 0.474 0.868 0.537 1.285 1.107 1.181 2.155

MiniGPT-v2-7B Zero 1.373 1.028 1.477 1.536 1.239 1.240 1.311 4.617
Lite 0.831 0.465 0.562 0.536 1.285 1.134 1.992 2.989

BLIP2-opt-2.7B Zero 1.405 1.371 1.577 0.541 1.260 1.123 1.962 5.124
Lite 1.115 1.014 1.047 0.578 1.200 1.107 1.658 4.251

InternVL-2B Zero 1.049 0.815 0.956 1.123 1.200 1.141 1.364 4.407
Lite 0.909 0.660 0.702 0.832 1.028 0.929 1.171 3.292

STORM-3B Lite 0.726 0.363 0.360 0.511 1.280 1.098 0.924 1.958
Full 0.730 0.354 0.351 0.495 1.280 1.106 0.689 1.907

Middle (45-60 years old), Elder (60+ years old)). (2) Based on the coarse rating thought, proceed to
make a final answer. (3) Check that the coarse rating thought and answer are consistent. This strategy
is designed to alleviate the problem of inconsistency between coarse intermediate thought and final
answer, that is, to prevent the coarse intermediate thought from not including the final answer.

This methodology aims to serve three key objectives. 1) First and foremost, through a coarse-to-fine
progressive analysis process, it allows to learn universal solutions for ordinal regression to endow
the models with the all-in-one visual rating capability. This hierarchical approach is universally
applicable to ordinal regression problems, as only their ordered categorical nature permits merging
of adjacent categories for candidate reduction, enabling recursive hierarchical decomposition of
the problem. 2) It transforms a multi-class rating problem into several smaller rating tasks with
fewer candidate categories, therefore reducing the classification complexity through progressive
candidate pruning. 3) Coarse labels are equivalent to merged neighboring categories, partially helping
alleviate the class imbalance issues through category aggregation. For more VQA illustrations on
other datasets, see Appendix E.

5 EXPERIMENTS

5.1 VISUAL RATING BENCHMARK

Our visual rating benchmark primarily focuses on scenarios where the MLLMs need to concentrate
on ordinal understanding based on the visual input. Our experiments utilize 14 source datasets, and
when an official training/evaluation split exists, we adopt it. In the cases where such a split does not
exist, we randomly divide the dataset. Additionally, we incorporate the test splits of HCI, CACD,
UTK, Aesthetic, KonIQ, and APTOS to evaluate the model’s zero-shot visual rating capabilities.
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Table 4: Ablation study on different instruct prompt strategies. “w/o CoT” denotes a standard,
non-CoT-based inference process. “Only Num.” and “Only Text” use only numeric and only text
instruct prompts, respectively. “Num. + Text” uses both numeric and text instruct prompts.

IQA FAE
Instruct Prompt Strategy Metric SPAQ ChallengeDB KonIQ Adience CACD Morph UTK

w/o CoT ACC 0.600 0.446 0.561 0.480 - - -
MAE 0.423 0.605 0.469 0.715 7.541 7.589 6.433

Only Num. ACC 0.573 0.399 0.547 0.531 - - -
MAE 0.461 0.751 0.487 0.674 9.856 9.620 9.464

Only Text ACC 0.542 0.391 0.537 0.532 - - -
MAE 0.495 0.717 0.503 0.665 9.412 9.326 8.298

Num. + Text ACC 0.583 0.468 0.582 0.534 - - -
MAE 0.442 0.597 0.431 0.636 8.202 5.975 5.879

IAA MDG HDE Average
Instruct Prompt Strategy Metric TAD66K AVA Aes. Eyepacs DeepDR APTOS HCI

W/o CoT ACC 0.338 0.546 0.260 0.731 0.385 0.506 0.273 0.466
MAE 0.886 0.474 0.868 0.537 1.348 1.107 1.181 2.155

Only Num. ACC 0.351 0.622 0.364 0.716 0.433 0.504 0.326 0.487
MAE 0.831 0.388 0.734 0.557 1.285 1.185 0.909 2.585

Only Text ACC 0.351 0.609 0.434 0.731 0.433 0.514 0.265 0.485
MAE 0.831 0.403 0.650 0.537 1.285 1.085 1.023 2.516

Num. + Text ACC 0.370 0.650 0.658 0.734 0.435 0.508 0.341 0.533
MAE 0.726 0.363 0.360 0.511 1.280 1.098 0.924 1.958

Table 5: Ablation study on different training strategies.
Training Datasets IQA FAE IAA MDG HDE Average

ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE
Single 0.523 0.521 0.532 6.976 0.444 0.770 0.557 0.972 0.318 0.985 0.492 2.548
Full 0.544 0.490 0.534 5.173 0.562 0.483 0.559 0.963 0.341 0.924 0.533 1.958

5.2 PERFORMANCE EVALUATION

We comprehensively evaluate STORM across various visual rating tasks to thoroughly assess our
model’s ordinal understanding ability. Tab. 2 and Tab. 3 report the accuracy and MAE performances of
our STORM benchmark and popular MLLMs, including LLaVA-1.5-7B Liu et al. (2023a), Qwen2.5-
VL-3B Bai et al. (2023b), MiniGPT-v2-7B Zhu et al. (2023), BLIP2-opt-2.7B Li et al. (2023a), and
InternVL-2B Chen et al. (2024). We test other MLLMs only on the lite version of our datasets, and test
our STORM on both the lite and full versions. By comparing the results of different models without
fine-tuning and with fine-tuning on the lite version, we observe that after fine-tuning, the model
significantly improves performances across all the datasets. This demonstrates the effectiveness of our
proposed dataset. Notably, our STORM shows remarkable improvement in zero-shot performance
when the training splits for the corresponding datasets are not utilized for model training. For instance,
on the Aes. datasets, our model achieves nearly 2.5× performance compared to the Qwen2.5-VL
pipeline without a coarse-to-fine CoT process. Furthermore, the STORM pipeline trained on the lite
versions yields superior results on the HCI task which is a zero-shot domain not appearing during the
training process, showing the efficacy of our benchmark in enhancing the model’s universal visual
rating abilities. The STORM pipeline trained on the full versions achieves the best performances on
both in-domain and out-of-domain tasks, which validate the effectiveness and potential of our dataset.

5.3 ABLATION STUDIES

In the ablation studies below, by default, we ablate STORM-3B that is trained and evaluated on the
lite version of our datasets with the proposed coarse-to-fine CoT benchmark.

Different Instruct Prompt Strategies. Tab. 4 shows the performances of our model on the lite
version of the visual rating benchmark using different strategies for instruct prompts. As anticipated,
the model not employing coarse-to-fine CoT yields lower performance, which indicates inherent
challenges in directly predicting ratings. In contrast, our baseline with coarse-to-fine CoT performs
better, especially on zero-shot datasets, illustrating the effectiveness of the coarse-to-fine CoT in
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Question:What is the age of this person?
GTAnswer: 17 years old.

CoTAnswer: Teenager, 17 years old.
(w/o CoT) Answer: 20 years old.
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Question:What is the quality of this image?
GTAnswer: Level 4.

CoTAnswer: Above Average. Good (4).
(w/o CoT) Answer: Average (3).

Question:What is the grade of this image?
GTAnswer: Grade 2.

CoTAnswer: Abnormal. Mild (2).
(w/o CoT) Answer: Normal (1).

Question:What is the date of this image?
GTAnswer: 1930s.

CoTAnswer: Before Middle. Early (1930s).
(w/o CoT) Answer:Middle (1950s).
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Coarse-to-fine CoT:
1. Make the coarse prediction with the candidates: Child (0-10 years old), Teenager (11-20 years old), Youth
(21-30 years old), Adult (31-44 years old), Middle (45-60 years old), Elder (60+ years old).
2. Based on the coarse classification, proceed to make a final age prediction.
3. Please note that the coarse thoughts and answer should be consistent.

Figure 4: Visualization results of coarse-to-fine CoT on different datasets.

enhancing robust and general thinking ability for visual rating by learning the ordinal regression
nature. In addition, compared to using only numeric labels or text definitions, the MLLM with both
numeric labels and text definitions achieves the best performance, showing the effect of both digital
and semantic instructions. Notably, text proves to be more effective than numbers, which validates
our previous hypothesis that LLMs pre-trained with CLIP are more sensitive to text prompts.

Different Training Strategies. We conduct ablation experiments on different selections of training
data. For each domain task, we compare the model’s performances after being trained on single-
domain datasets versus being trained on all domain datasets. The results are shown in the top part of
Table 5, which indicate that the model performs better after training on all the domains compared
to training only on a single domain. This demonstrates that the model can learn generalized and
useful ordinal regression properties from different domain tasks, therefore improving the overall
performance across various visual rating tasks. It also highlights the advantages and effectiveness of
our benchmark and datasets. We also investigate the LLM performance under different fine-tuning
methods, e.g, Low-Rank Adaptation (LoRA) Hu et al. (2022) and Full Fine-Tuning, see Appendix D.

5.4 VISUALIZATION

We visually display STORM’s performance qualitatively in Fig. 4, highlighting its visual rating ability
to conduct a coarse-to-fine CoT process and provide trustworthy predictions. Despite variations
in label definitions and ranges across different tasks, the inherent commonality in ordinal nature
of labels enables a unified thinking paradigm through progressive refinement of label granularity,
achieving coarse-to-fine estimation across these visual rating tasks.

6 CONCLUSIONS

In this paper, we introduced STORM, a pioneering approach that enhances multi-modal large
language models with the all-in-one visual rating capability. This methodology addresses critical
gaps in MLLMs, especially in interpretability and processing of dynamic visual input. Our STORM
data collection offers 655K annotated question-answer pairs from diverse ordinal regression tasks for
comprehensive visual rating learning. Our novel coarse-to-fine processing pipeline allows MLLMs
to learn a universal paradigm of ordinal regression and provide intermediate interpretable thoughts.
STORM offers a general and trustworthy paradigm for tackling diverse visual rating tasks, and our
visual rating benchmark advances the evaluation of MLLMs on both in-domain and out-of-domain
tasks. Extensive experiments validated the framework’s effectiveness and robustness, putting forward
a promising basis for further exploration in visual rating.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Recommendation 500-10: Methodology for the subjective assessment of the quality of television
pictures. ITU-R Rec. BT.500, 2000.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023a.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023b.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv:2308.12966, 2023b.

Bor-Chun Chen, Chu-Song Chen, and Winston H Hsu. Face recognition and retrieval using cross-
age reference coding with cross-age celebrity dataset. IEEE Transactions on Multimedia, 17(6):
804–815, 2015.

Shixing Chen, Caojin Zhang, Ming Dong, Jialiang Le, and Mike Rao. Using ranking-CNN for age
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5183–5192, 2017.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. PaLI: A jointly-scaled multilingual
language-image model. arXiv preprint arXiv:2209.06794, 2022.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. LongLoRA:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 24185–24198, 2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing
GPT-4 with 90%* ChatGPT quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.

Raul Diaz and Amit Marathe. Soft labels for ordinal regression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4738–4747, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yao Du, Qiang Zhai, Weihang Dai, and Xiaomeng Li. Teach CLIP to develop a number sense for
ordinal regression. In European Conference on Computer Vision, pp. 1–17. Springer, 2024.

Emma Dugas, Jorge Jared, and Will Cukierski. Diabetic retinopathy detection (2015). URL
https://kaggle. com/competitions/diabetic-retinopathy-detection, 7.

Yuming Fang, Hanwei Zhu, Yan Zeng, Kede Ma, and Zhou Wang. Perceptual quality assessment of
smartphone photography. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3677–3686, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eibe Frank and Mark Hall. A simple approach to ordinal classification. In European Conference on
Machine Learning, pp. 145–156. Springer, 2001.

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal
regression network for monocular depth estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2002–2011, 2018.

Xin Geng, Chao Yin, and Zhi-Hua Zhou. Facial age estimation by learning from label distributions.
TPAMI, 2013.

Deepti Ghadiyaram and Alan C Bovik. Massive online crowdsourced study of subjective and objective
picture quality. IEEE Transactions on Image Processing, 25(1):372–387, 2015.

Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sudheendra
Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. AVA: A video dataset
of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6047–6056, 2018.

Shuai He, Yongchang Zhang, Rui Xie, Dongxiang Jiang, and Anlong Ming. Rethinking image
aesthetics assessment: Models, datasets and benchmarks. In IJCAI, pp. 942–948, 2022.

Vlad Hosu, Hanhe Lin, Tamas Sziranyi, and Dietmar Saupe. KonIQ-10k: An ecologically valid
database for deep learning of blind image quality assessment. IEEE Transactions on Image
Processing, 29:4041–4056, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Karl Ricanek Jr. and Tamirat Tesafaye. MORPH: A longitudinal image database of normal adult
age-progression. In FG, 2006.

Maggie Karthik and Sohier Dane. APTOS 2019 blindness detection. Kaggle https://kaggle.
com/competitions/aptos2019-blindness-detection Go to reference in, 5, 2019.

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Generating images with multimodal language
models. Advances in Neural Information Processing Systems, 36, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. LISA:
Reasoning segmentation via large language model. arXiv preprint arXiv:2308.00692, 2023.

Seon-Ho Lee and Chang-Su Kim. Deep repulsive clustering of ordered data based on order-identity
decomposition. In International Conference on Learning Representations, 2020.

Gil Levi and Tal Hassner. Age and gender classification using convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
34–42, 2015.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In International Conference
on Machine Learning, pp. 12888–12900. PMLR, 2022a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023a.

Ling Li and Hsuan-Tien Lin. Ordinal regression by extended binary classification. Advances in
Neural Information Processing Systems, 19, 2006.

Wanhua Li, Xiaoke Huang, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Learning probabilistic ordinal
embeddings for uncertainty-aware regression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13896–13905, 2021.

Wanhua Li, Xiaoke Huang, Zheng Zhu, Yansong Tang, Xiu Li, Jie Zhou, and Jiwen Lu. OrdinalCLIP:
Learning rank prompts for language-guided ordinal regression. Advances in Neural Information
Processing Systems, 35:35313–35325, 2022b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yanwei Li, Chengyao Wang, and Jiaya Jia. LLaMA-VID: An image is worth 2 tokens in large
language models. arXiv preprint arXiv:2311.17043, 2023b.

Kyungsun Lim, Nyeong-Ho Shin, Young-Yoon Lee, and Chang-Su Kim. Order learning and its
application to age estimation. In International Conference on Learning Representations, 2019.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023b.

Ruhan Liu, Xiangning Wang, Qiang Wu, Ling Dai, Xi Fang, Tao Yan, Jaemin Son, Shiqi Tang, Jiang
Li, Zijian Gao, et al. DeepDRiD: Diabetic retinopathy—grading and image quality estimation
challenge. Patterns, 3(6), 2022.

Yanzhu Liu, Adams Wai-Kin Kong, and Chi Keong Goh. Deep ordinal regression based on data
relationship for small datasets. In IJCAI, pp. 2372–2378, 2017.

Yanzhu Liu, Adams Wai Kin Kong, and Chi Keong Goh. A constrained deep neural network for
ordinal regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 831–839, 2018.

Yanzhu Liu, Fan Wang, and Adams Wai Kin Kong. Probabilistic deep ordinal regression based on
Gaussian processes. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5301–5309, 2019.

Gen Luo, Yiyi Zhou, Tianhe Ren, Shengxin Chen, Xiaoshuai Sun, and Rongrong Ji. Cheap and
quick: Efficient vision-language instruction tuning for large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Frank Palermo, James Hays, and Alexei A Efros. Dating historical color images. In European
Conference on Computer Vision, pp. 499–512. Springer, 2012.

Shengju Qian, Huiwen Chang, Yuanzhen Li, Zizhao Zhang, Jiaya Jia, and Han Zhang. StraIT: Non-
autoregressive generation with stratified image Transformer. arXiv preprint arXiv:2303.00750,
2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021a.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021b.

Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent age from a
single image without facial landmarks. IJCV, 2018.

Nyeong-Ho Shin, Seon-Ho Lee, and Chang-Su Kim. Moving window regression: A novel approach
to ordinal regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18760–18769, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Jinhong Wang, Yi Cheng, Jintai Chen, TingTing Chen, Danny Chen, and Jian Wu. Ord2Seq:
Regarding ordinal regression as label sequence prediction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5865–5875, 2023a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rui Wang, Peipei Li, Huaibo Huang, Chunshui Cao, Ran He, and Zhaofeng He. Learning-to-rank
meets language: Boosting language-driven ordering alignment for ordinal classification. Advances
in Neural Information Processing Systems, 36, 2023b.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. CogVLM: Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079, 2023c.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu,
Jie Zhou, Yu Qiao, et al. VisionLLM: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Systems, 36, 2024.

Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Chunyi Li,
Wenxiu Sun, Qiong Yan, Guangtao Zhai, and Weisi Lin. Q-Bench: A benchmark for general-
purpose foundation models on low-level vision. 2023a.

Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Kaixin Xu,
Chunyi Li, Jingwen Hou, Guangtao Zhai, et al. Q-Instruct: Improving low-level visual abilities for
multi-modality foundation models. arXiv preprint arXiv:2311.06783, 2023b.

Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-Align: Teaching LMMs for visual scoring via
discrete text-defined levels. arXiv preprint arXiv:2312.17090, 2023c.

Hang Zhang, Xin Li, and Lidong Bing. Video-LLaMA: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023a.

Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, Wenqi Shao, Wenwei Zhang, Kai Chen, and
Ping Luo. GPT4RoI: Instruction tuning large language model on region-of-interest. arXiv preprint
arXiv:2307.03601, 2023b.

Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial
autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5810–5818, 2017.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

STORM: Benchmarking Visual Rating of MLLMs with a
Comprehensive Ordinal Regression Dataset

Supplementary Material / Appendix

A APPENDIX OVERVIEW

Our supplementary includes the following sections:

• Section B: Framework details. Details for model design, implementation and training
data.

• Section C: More Dataset Details and Visualization. More Details and Visualization of
our dataset and demos.

• Section D: More experiment results. Additional performance evaluation and performance
analysis.

• Section E: Prompt design. Prompt for generating the coarse-to-fine CoT dataset and
evaluating the performance.

• Section F: Limitations. Discussion of limitations of our work.
• Section G: Potential negative societal impacts. Discussion of potential negative societal

impacts of our work.
• Section H: Disclaimer. Disclaimer for the visual rating dataset and the related model.
• Section I: Use of LLM. Describe the usage of LLM.

Reproducibility Statement: We offer the anonymous Datasets and code links below to ensure our
framework can be reproduced easily.

Artifcat Link License

Code Repository https://anonymous.4open.science/r/STORM-CDC7/README.md Apache-2.0 license

Data https://huggingface.co/datasets/ttlyy/ORD CC BY 4.0

Model Weights https://huggingface.co/datasets/ttlyy/ORD Apache-2.0 license

The authors are committed to ensuring its regular updates.
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Figure 5: Overview of Qwen-2.5-VL pipeline.

B FRAMEWORK DETAILS

B.1 MODEL DETAILS

For LLaVA-1.5-7B, we choose the pre-trained ViT-L/14 of CLIP Radford et al. (2021b) as the vision
encoder and Vicuna-7B Chiang et al. (2023) as our LLM, which has better instruction following
capabilities in language tasks compared to LLaMA Touvron et al. (2023). For Qwen2.5-VL-3B, the
vision encoder the native dynamic resolution ViT. The overview of Qwen-2.5-VL Bai et al. (2023b)
are shown in Fig. 5. Considering an input original image, we take the vision encoder to obtain the
visual feature. Our STORM-3B employes Qwen-2.5-VL-3B as the backbone.

B.2 IMPLEMENTATION DETAILS

Our model undergoes a two-stage training process. In the first stage, we pre-train the model for 1
epoch using a learning rate of 2e-3 and a batch size of 128. For the second stage, we fine-tune the
model for 1 epoch on our visual rating dataset, employing a learning rate of 2e-5 and a batch size of
128. The Adam optimizer with zero weight decay and a cosine learning rate scheduler are utilized.
To conserve GPU memory during fine-tuning, we employ FSDP (Full Shard Data Parallel) with
ZeRO3-style. All models are trained using 32 × A100s. In the case of training the setting with a 7B
LLM and a resolution of 224, the first/second pre-training stage completes within 1/16 hours.

C MORE DATASET DETAILS AND VISUALIZATION

C.1 DATASETS TRAINING AND TESTING SPLIT.

In this section, we provide the sample numbers of training and test split of all datasets, as shown in
Tab. 6 and Tab. 7.
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Table 6: Training and testing split of IQA and IAA domain datasets. Training split includes full
version and lite version.

Dataset SPAQ CDB KonIQ AVA TAD66K Aesthetic
Training Full 8900 936 - 229958 52224 -
Training Lite 8900 936 - 25551 13056 -
Testing 2225 233 2014 25550 14076 1370

Table 7: Training and testing split of FAE, MDG and HDE domain datasets. Training split includes
full version and lite version.

Dataset Adience CACD Morph UTK Eyepacs DeepDR APTOS HCI
Training Full 15589 147102 40012 - 31599 1200 - -
Training Lite 15589 16345 10003 - 31599 1200 - -
Testing 1732 16344 10003 2410 3527 400 366 132

IQA

KonIQ SPAQ CDB

Figure 6: Statistics of the IQA domain datasets.

IAA

Aesthetic AVA TAD66K

Figure 7: Statistics of the IAA domain datasets.

C.2 DATASETS DISTRIBUTION VISUALIZATION.

In this section, we provide a visualization of the data statistics. We partition the category distribution
of each dataset in Fig. 6, Fig. 7, Fig. 8, Fig. 9.
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Eyepacs APTOS DeepDR

MDG

Figure 8: Statistics of the MDG domain datasets.

HCI Adience

HDE FAE

Figure 9: Statistics of the FAE and HDE domain datasets.

D MORE EXPERIMENT RESULTS

D.1 LARGER STORM MODEL

Tab. 8 and Tab. 8 show the performance of STORM-7B using Qwen2.5-VL-7B as the backbone.
However, the performance is not much different from the 3B version. Therefore, we choose STORM-
3B as the final model.

D.2 PLCC AND SRCC PERFORMANCE IN IQA TASKS.

Tab. 10 show the SRCC and PLCC results. It can be seen that our STORM achieves the best
performance both in SRCC and PLCC on all IQA datasets, showing the effectiveness of our method.

D.3 DIFFERENT FINE-TUNING STRATEGIES.

To explore the effect of different parameter fine-tuning methods for LLMs. We compare the commonly
used Low-Rank Adaptation (LoRA) Hu et al. (2022) and Full Fine-Tuning (FFT) methods, and report
the results in the lower part of Tab. 11. One can observe that FTT performs better and is more robust.
Hence, we adopt FTT for all the fine-tuning experiments.

D.4 CONFUSION MATRIXES ANALYSIS

We provide more visualization results of confusion matrixes of our STORM on zero-shot datasets in
Fig. 10, Fig. 11, Fig. 12, Fig. 13 and Fig. 14.
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Table 8: ACC performance of the STORM-7B.
IQA FAE

MLLM Tra. SPAQ ChallengeDB KonIQ Adience CACD Morph UTK

STORM-3B Lite 0.583 0.468 0.582 0.534 - - -
STORM-7B Lite 0.514 0.438 0.543 0.503 - - -

IAA MDG HDE Average
MLLM Tra. TAD66K AVA Aes. Eyepacs DeepDR APTOS HCI

STORM-3B Lite 0.370 0.650 0.658 0.734 0.435 0.508 0.341 0.533
STORM-7B Lite 0.367 0.654 0.541 0.177 0.340 0.429 0.250 0.432

Table 9: MAE performance of the STORM-7B.
IQA FAE

MLLM Tra. SPAQ ChallengeDB KonIQ Adience CACD Morph UTK

STORM-3B Lite 0.442 0.597 0.431 0.636 8.202 5.975 5.879
STORM-7B Lite 0.562 0.652 0.496 0.641 7.776 5.405 5.508

IAA MDG HDE Average
MLLM Tra. TAD66K AVA Aes. Eyepacs DeepDR APTOS HCI

STORM-3B Lite 0.726 0.363 0.360 0.511 1.280 1.098 0.924 1.958
STORM-7B Lite 0.739 0.353 0.514 1.481 1.093 1.003 1.129 1.953

Table 10: SRCC and PLCC results of all models in IQA tasks.
SPAQ CDB KonIQ

MLLM Tri. PLCC SRCC PLCC SRCC PLCC SRCC

LLaVA-1.5-7B Zero -0.034 -0.007 0.094 0.130 -0.007 -0.014
LLaVA-1.5-7B Lite 0.037 0.036 -0.008 -0.005 0.008 0.009

MiniGPT-v2-7B Zero 0.384 0.376 0.192 0.198 0.279 0.266

BLIP2-opt-2.7B Zero -0.067 -0.115 -0.085 -0.073 -0.070 -0.077
BLIP2-opt-2.7B Lite 0.172 0.173 0.101 0.090 0.038 0.049

InternVL-2B Zero 0.333 0.327 0.134 0.134 0.095 0.088
InternVL-2B Lite 0.365 0.354 0.229 0.233 0.107 0.110

Qwen2.5-VL-3B Zero 0.778 0.790 0.690 0.683 0.597 0.531
Qwen2.5-VL-3B Lite 0.787 0.803 0.575 0.537 0.677 0.627

STORM-3B Lite 0.804 0.817 0.675 0.656 0.692 0.650
STORM-3B Full 0.808 0.822 0.686 0.674 0.727 0.690

Table 11: Ablation study on different training strategies.
Fine-tuning Strategy IQA FAE IAA MDG HDE Average

ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE
LoRA Hu et al. (2022) 0.171 1.522 0.189 8.301 0.199 1.041 0.553 0.985 0.227 1.311 0.289 3.225
FFT 0.544 0.490 0.534 5.173 0.562 0.483 0.559 0.963 0.341 0.924 0.533 1.958
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Figure 10: Confusion matrixes visualization results of the STORM on the KonIQ dataset.
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Figure 11: Confusion matrixes visualization results of the STORM on the Aesthetic dataset.
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Figure 12: Confusion matrixes visualization results of the STORM on the Adience dataset.
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Figure 13: Confusion matrixes visualization results of the STORM on the APTOS dataset.
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Figure 14: Confusion matrixes visualization results of the STORM on the HCI dataset.
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E PROMPT DESIGN

E.1 GENERATING THE DATASET FOR IQA

¡image¿ You are now an advanced Image Quality Evaluator, and your task is to assess the quality
of the provided image. Please evaluate the image’s quality based on a 5-rate scale: rate0(Bad),
rate1(Poor), rate2(Fair), rate3(Good), rate4(Excellent). Please provide the coarse category that can
help you answer the question better. Please first coarsely categorise the image: rate0-1(Below Fair),
rate2(Fair), rate3-4(Above Fair). Based on the coarse classification, proceed to make a final rate
prediction. The specific steps are as follows:

1. Make the coarse prediction with the candidates:rate0-1(Below Fair), rate2(Fair), rate3-4(Above
Fair).

2. Based on the coarse classification, proceed to make a final age prediction with the candidates:
rate0(Bad), rate1(Poor), rate2(Fair), rate3(Good), rate4(Excellent).

3. Please note that the coarse thoughts and the final answer should be consistent.

Answer: [Coarse answer], [Final answer]

E.2 GENERATING THE DATASET FOR IAA

¡image¿ You are now an advanced Aesthetic Evaluation Evaluator, and your task is to assess the aes-
thetic quality of the provided image. Please evaluate the image’s aesthetic quality based on a 5-level
scale: level0(Unacceptable), level1(Flawed), level2(Average), level3(Professional), level4(Excellent).
Please first coarsely categorise the image: level0-1(Below Average), level2(Average), level3-4(Above
Average). Based on the coarse classification, proceed to make a final level prediction. The specific
steps are as follows:

1. Make the coarse prediction with the candidates:level0-1(Below Average), level2(Average), level3-
4(Above Average).

2. Based on the coarse classification, proceed to make a final age prediction with the candidates:
level0(Unacceptable), level1(Flawed), level2(Average), level3(Professional), level4(Excellent).

3. Please note that the coarse thoughts and the final answer should be consistent.

Answer: [Coarse answer], [Final answer]

E.3 GENERATING THE DATASET FOR FAE

¡image¿ You are an experienced facial analysis expert, and you need to estimate the age group of the
person in the provided facial image based on their facial features. The known age range of the image
is from 16 to 77 years old. Please first coarsely categorise the image: Teenager(16-24 years old),
Adult(25-47 years old), Elder(48+ years old). Based on the coarse classification, proceed to make
a final age prediction.The final output should be in the format: Coarse Answer: [result], Predicted
Age: [result]. The specific steps are as follows:

1. Make the coarse prediction with the candidates: Teenager(16-24 years old), Adult(25-47 years
old), Elder(48+ years old).

2. Based on the coarse classification, proceed to make a final age prediction with the candidates:
from 16 to 77 years old.

3. Please note that the coarse thoughts and the final answer should be consistent.

Answer: Coarse answer], [Predicted Age]
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E.4 GENERATING THE DATASET FOR MDG

¡image¿ You are an experienced ophthalmologist, and you need to perform disease grading on the
provided fundus image. These are all the candidate stages: stage0(no retinopathy), stage1(mild
NPDR), stage2(moderate NPDR), stage3(severe NPDR) and stage4(PDR). Please first coarsely
categorise the fundus: Normal(stage0), Early(stage1-2), Late(stage3-4). Based on the coarse
classification, proceed to make a final stage prediction. The specific steps are as follows:

1. Make the coarse prediction with the candidates:Normal(stage0), Early(stage1-2), Late(stage3-4).

2. Based on the coarse classification, proceed to make a final age prediction with the candidates:
stage0(no retinopathy), stage1(mild NPDR), stage2(moderate NPDR), stage3(severe NPDR) and
stage4(PDR).

3. Please note that the coarse thoughts and the final answer should be consistent.

Answer: [Coarse answer], [Predicted grade]

E.5 GENERATING THE DATASET FOR HDE

¡image¿ You are now an advanced history researcher, and you need to grade the provided images
by decade. These are all candidate categories: phase0(1930s), phase1(1940s), phase2(1950s),
phase3(1960s), and phase4(1970s). Please first coarsely categorise the image: Early(phase0-phase1),
Mid(phase2), Late(phase3-phase4). Based on the coarse classification, proceed to make a final phase
prediction.The final output should be in the format: Coarse Classification: [result], Predicted Phase:
[result]. The specific steps are as follows:

1. Make the coarse prediction with the candidates: Early(phase0-phase1), Mid(phase2), Late(phase3-
phase4).

2. Based on the coarse classification, proceed to make a final age prediction with the candidates:
phase0(1930s), phase1(1940s), phase2(1950s), phase3(1960s), and phase4(1970s).

3. Please note that the coarse thoughts and the final answer should be consistent.

Answer: [Coarse answer], [Predicted Phase]

F LIMITATIONS

The definitions of labels for different domain tasks are quite diverse.

In scenarios where the definitions of labels for different domain tasks are quite diverse, STORM may
struggle to possess fluctuation in performance according to different text definitions generated of
labels. This places a relatively high demand on the user’s ability to accurately define corresponding
text prompts of rating categories.

Our data pipeline inherits the limitations of utilizing GPT-4 API to generate text definition. (1)
Accuracy and Misinformation: Generated content may not always be accurate, which could lead to
the spread of misinformation. To mitigate this, we have designed a manual adjustment script as a
post-process to improve text prompt quality. (2) Bias and Fairness: Since we do not have access to
the training data of GPT-4, the generated instructional data might reflect inherent biases, potentially
reinforcing social or cultural inequalities present in the base model training. In terms of data usage,
we explicitly state that OpenAI’s terms must be adhered to, and the data can only be used for research
purposes.

G POTENTIAL NEGATIVE SOCIETAL IMPACTS

The potential negative societal impacts of our work are similar to other MLLMs and LLMs. The
development of CoT and MLLMs, while advancing AI, poses societal risks like increased privacy
invasion, the perpetuation of biases, the potential for misinformation, job displacement, and ethical
concerns regarding accountability and consent.
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H DISCLAIMER

This dataset was collected and released solely for research purposes, with the goal of making the
MLLMs dynamically focus on visual inputs and provide intermediate interpretable thoughts. The
authors are strongly against any potential harmful use of the data or technology to any party.

Intended Use. The data, code, and model checkpoints are intended to be used solely for (I) future
research on visual-language processing and (II) reproducibility of the experimental results reported
in the reference paper. The data, code, and model checkpoints are not intended to be used in clinical
care or for any clinical decision making purposes.

Primary Intended Use. The primary intended use is to support AI researchers reproducing and
building on top of this work. STORM and its associated models should be helpful for exploring
various vision question answering (VQA) research questions.

Out-of-Scope Use. Any deployed use case of the model — commercial or otherwise — is out of
scope. Although we evaluated the models using a broad set of publicly-available research benchmarks,
the models and evaluations are intended for research use only and not intended for deployed use
cases.

I USE OF LLM

We employed LLMs solely for language polishing and manuscript refinement purposes. The LLM
assistance was restricted to improving grammatical accuracy, sentence flow, and overall presentation
clarity. All research content, methodology, analysis, and scientific conclusions were developed inde-
pendently by the authors without LLM contribution. The LLM was not utilized for idea generation,
experimental design, data interpretation, or scientific reasoning.
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