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Prompt: a stylish woman walks down a Tokyo street filled with warm glowing neon 
and animated city signage.
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Figure 1: We present S2Q-VDiT, a post-training quantization method for video diffusion transformers.
We quantize HunyuanVideo [24] to 4-bit weights and 6-bit activations without compromising visual
quality. S2Q-VDiT can further achieve 3.9× model compression and 1.3× inference acceleration.

Abstract

Diffusion transformers have emerged as the mainstream paradigm for video gener-
ation models. However, the use of up to billions of parameters incurs significant
computational costs. Quantization offers a promising solution by reducing memory
usage and accelerating inference. Nonetheless, we observe that the joint model-
ing of spatial and temporal information in video diffusion models (V-DMs) leads
to extremely long token sequences, which introduces high calibration variance
and learning challenges. To address these issues, we propose S2Q-VDiT, a post-
training quantization framework for V-DMs that leverages Salient data and Sparse
token distillation. During the calibration phase, we identify that quantization per-
formance is highly sensitive to the choice of calibration data. To mitigate this, we
introduce Hessian-aware Salient Data Selection, which constructs high-quality
calibration datasets by considering both diffusion and quantization characteristics
unique to V-DMs. To tackle the learning challenges, we further analyze the sparse
attention patterns inherent in V-DMs. Based on this observation, we propose
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Attention-guided Sparse Token Distillation, which exploits token-wise attention
distributions to emphasize tokens that are more influential to the model’s output.
Under W4A6 quantization, S2Q-VDiT achieves lossless performance while de-
livering 3.9× model compression and 1.3× inference acceleration. Code will be
available at https://github.com/wlfeng0509/s2q-vdit.

1 Introduction

In recent years, diffusion transformer [39] has emerged as a powerful generative paradigm, demon-
strating remarkable performance across diverse domains such as image synthesis [6, 26, 9, 57], audio
generation [15], and increasingly, video generation [37, 35]. Among these, video diffusion models
(V-DMs) [58, 24] represent a new frontier by extending the spatial generative capabilities of image
diffusion models (I-DMs) into the spatial-temporal domain, enabling high-quality video synthesis
from textual prompts.

However, the transition from image to video generation introduces substantial computational chal-
lenges, primarily due to the exponential growth in token count introduced by the temporal dimen-
sion [35, 58, 24]. These memory and compute demands become particularly severe in large-scale
video generation models [35, 58, 24], which contain up to billions of parameters, where each input
consists of thousands or even tens of thousands of tokens. To enable efficient deployment of such
models in resource-constrained environments, post-training quantization (PTQ) [32, 52, 20, 5] has
become a widely adopted approach. PTQ compresses the pre-trained models into low-bit representa-
tions without modifying the model weights, relying only on a small dataset to calibrate quantization
parameters with only hours on a single GPU [51, 28].

While PTQ has proven effective for I-DMs [30, 45, 54], directly applying it to V-DMs leads to
substantial performance degradation [2, 62]. Prior works [2, 54, 62] have sought to improve V-DMs’
quantization performance primarily from the perspective of quantizer design. In this paper, we delve
deeper into the PTQ challenges specific to V-DMs, focusing on calibration data and optimization
methods.

We identify that the long token sequences characteristic of V-DMs significantly constrain the number
of calibration samples (e.g., thousands for I-DMs vs. only dozens for V-DMs under equal compu-
tational budgets). Under such limited budgets, quantization performance becomes highly sensitive
to the selection of calibration samples. Existing methods [54, 2, 62] typically employ random or
uniform sampling strategies, which work reasonably well for I-DMs but fail to generalize well to
only dozens of data for V-DMs. Moreover, we observe that V-DMs exhibit sparse attention patterns
across all tokens. Current PTQ optimization frameworks [54, 30] treat all tokens equally during
loss alignment between full-precision and quantized models. However, this uniform treatment is
suboptimal for long token sequences, where only a small subset of tokens significantly impacts the
final output. These observations highlight two fundamental challenges in PTQ for V-DMs: (1) the
absence of a principled method for selecting calibration samples, and (2) the inefficiency of uniform
token treatment during optimization, despite the varying importance of tokens.

To address these limitations, we propose S2Q-VDiT, a post-training quantization framework tailored
for V-DMs, built upon Salient data selection and Sparse token distillation. An overview of the
proposed framework is illustrated in Fig. 2. First, we introduce Hessian-aware Salient Data Selection,
which constructs calibration datasets by jointly assessing diffusion informativeness and quantization
sensitivity. We define a unified metric to quantify sample’s saliency to the denoising process and
its sensitivity to quantization perturbations. Second, we present Attention-guided Sparse Token
Distillation, a technique that leverages the inherent sparsity of spatial-temporal attention in V-DMs.
Rather than treating all tokens equally during optimization, we reweight quantization losses based on
token-wise attention distribution, allowing the model to focus more on the impactful representations.

Our main contribution can be summarized as follows:

• We empirically identify that V-DMs suffer from high calibration data variance in quantization
performance. We propose Hessian-aware Salient Data Selection, which jointly considers
diffusion informativeness and quantization sensitivity to construct effective calibration
datasets.
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Figure 2: Overview of S2Q-VDiT. The framework includes Hessian-aware Salient Data Selection
(SDS) for constructing calibration dataset and Attention-guided Sparse Token Distillation (STD) for
block-wise optimization.

• We introduce Attention-guided Sparse Token Distillation, a method that leverages the
inherent sparsity in spatial-temporal attention of V-DMs. We reweight the quantization loss
of different tokens by measuring token-wise attention distribution. This enables the model
to focus more on the impactful representations during optimization.

• Extensive experiments on large-scale video diffusion transformers with 2B to 13B parameters
demonstrate that our S2Q-VDiT consistently outperforms existing PTQ baselines, achieving
state-of-the-art performance under all quantization settings.

2 Related Works

Diffusion models[46, 17] have demonstrated strong generative capabilities in video generation tasks.
However, up to billions of parameters [35, 49, 58, 24] pose major challenges for deployment in
resource-constrained environments. Quantization has emerged as a widely adopted solution for model
compression and acceleration [40, 14, 3, 21, 25]. A growing body of work has explored post-training
quantization (PTQ) for diffusion models, particularly focusing on U-Net-based architectures [30,
45, 16, 18, 29, 63]. For the Diffusion Transformer architecture specifically, recent methods [54,
2, 10] have made further explorations from the perspective of data distribution and architecture
characteristics on quantization behavior. To address performance degradation at ultra-low bits, several
quantization-aware training approaches have been proposed [64, 31, 36, 65, 8, 11]. While effective,
these methods typically require extensive training time and large-scale datasets, making them less
practical in many scenarios.

Despite these advances, most existing quantization research remains focused on image diffusion
models (I-DMs), with limited exploration of video diffusion models (V-DMs). ViDiT-Q [62] and
Q-DiT [2] have made the first explorations on the quantization of V-DMs. Q-DiT [2] introduces
automatic quantization granularity allocation for fine-grained quantizer selection. ViDiT-Q [62] pro-
poses static-dynamic quantization strategy to enhance quantization accuracy. While these approaches
improve performance from different perspectives, they primarily focus on quantization granularity
and quantizer design. In this paper, we tackle V-DM quantization from a new angle—calibration data
quality and optimization strategy. Our method achieves lossless performance on various large-scale
video diffusion transformers from 2B to 13B.

3 Methods

3.1 Preliminary

Video Diffusion Transformer. Diffusion transformers [39] predict the target using the represen-
tation of multiple tokens X ∈ Rn×d where n and d represent the number of tokens and feature
dimension, respectively. For image diffusion models (I-DMs) [42, 26], n = s accounts for spatial
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tokens. But for video diffusion models (V-DMs) [58, 24, 37], n = s× t incorporates the temporal
dimension t. This significantly increases the token count per sample (e.g., t = 49 for a 6-second
video at 8 FPS), resulting in heightened memory consumption and greater optimization complexity.

Post-training Quantization. Quantization maps the model weights and activation to low-bit
integers for acceleration and memory saving. For a float vector x, the symmetry quantization process
can be formulated as:

xint = clamp(round[
x

∆
],−2N−1, 2N−1 − 1), ∆ =

max(abs(x))
2N−1 − 1

(1)

where N is the quantized bit, round(·) is the round operation, and clamp(·) constrains the value
within integer range [−2N−1, 2N−1 − 1]. Among quantization methods, post-training quantization
(PTQ) is a more efficient method that only calibrates quantization parameters using a small calibration
dataset Dcalib without altering model weights. According to common practice [1, 55, 62], the
quantization loss is expressed as:

Lquant = EX∼Dcalib [||θf (x)− θq(x)||2], (2)

where θf and θq denote the full-precision and quantized model parameters, respectively. Dcalib ∈
RN×n×d where N denotes the sample number in Dcalib. Due to the limitations in computing resources
and long token sequences in V-DMs, the calibration sample size N is smaller than that in I-DMs,
leading to higher variance in data representation. This variance is further exacerbated by the diverse
text prompts and different denoising timesteps present in the diffusion models.

3.2 Hessian-aware Salient Data Selection

FP ATOP ATFP RTFP Ours

Figure 3: Visualization of different calibration data on CogVideoX-2B. We compare our proposed
method with All Timesteps from One Prompt (ATOP), All Timesteps from Five Prompts (ATFP),
and Random Timesteps from Five Prompts (RTFP). Our method has better generation quality.

Observation 1. Calibration sample selection methods result in high variance of the quantized model
performance.

In line with we discussed in Sec. 3.1, we observed that under constrained calibrated data size, different
samples have significant differences in the final model performance as shown in Fig. 3 and Fig. 6a.
However, the sample selection method for V-DMs post-training quantization has not been thoroughly
explored. Therefore, we hope to evaluate the importance of different data for V-DMs. To address
this issue, we propose evaluating sample utility along two dimensions that naturally exist in the
quantization of diffusion models: contribution to the diffusion process and sensitivity to quantization.

Prior work on timestep distillation [43, 44] and caching [33, 22] indicates that skipping certain
consecutive timesteps has limited impact on output quality, suggesting varying information content
across different timesteps. Based on this insight, we measure the salient information of timestep t for
the whole denoising diffusion process by calculating the contribution of two consecutive timesteps
latent representation. Given all candidate data among all the diffusion timesteps [x1, x2, · · · , xT ]
where T is the total denoising timesteps defined in the pretrained models. We define the diffusion
salience as:

Cdiff =
||xt − xt−1||2

||xt||2
, (3)

where xt stands for the denoised feature of timestep t. A higher Cdiff value denotes more informative
denoising steps, while a lower Cdiff value indicates that the contained information largely overlaps
with the previous timestep. Cdiff naturally measures the saliency of different timesteps during
the diffusion denoising process. By focusing on the salient data, we can better approximate the
distribution of the entire diffusion process and achieve better performance.

4



We then consider the quantization of weight W and its quantized version Ŵ = W + ∆, the
quantization loss that jointly considers the input X can be be approximated using a Taylor expansion:

E[||XW⊤ −XŴ⊤||2] = E[||XW⊤ −X(W +∆)⊤||2]

≈ ∆gX +
1

2
∆HX∆⊤,

(4)

where gX is the gradient and HX is the Hessian matrix. Using gX = 0 for a well-trained model
provided in [32, 59] and HX = E[2X⊤X] provided in [13], Eq. (4) can be further simplified to:

E[||XW⊤ −XŴ⊤||2] ≈ E[∆(X⊤X)∆⊤], (5)

where Hessian matrix X⊤X is given by Levenberg-Marquardt approximation [12, 38]. The Hessian
matrix represents the inherent perturbation ability of sample X to the quantization process, which
leads us to define quantization salience as:

Cquant = ||x⊤
t xt||2, (6)

where a larger Cquant denotes that xt is more sensitive to the quantization process due to the property
of the Hessian matrix [13, 12, 59]. By focusing on the quantization-sensitive samples, we can further
relieve the bridge between the original data distribution and quantization operations, making the
quantized model more robust and perform better.

To jointly emphasize diffusion informativeness and quantization sensitivity, we apply min–max
normalization over the candidate calibration pool Dcalib:

Cdiff(xt) =
Cdiff(xt)− Cmin

diff

Cmax
diff − Cmin

diff
, Cquant(xt) =

Cquant(xt)− Cmin
quant

Cmax
quant − Cmin

quant
, (7)

where Cmin
diff , Cmax

diff , Cmin
quant, and Cmax

quant denote the mininum value and maxminum value of all Cdiff(·)
and Cquant(·) respectively. The unified salience score is then defined as the product:

Csample(xt) = Cdiff(xt) · Cquant(xt) ≤
(
Cdiff(xt) + Cquant(xt)

2

)2

, (8)

by the Arithmetic–Geometric Mean inequality [67] which ensuring the score is maximized only when
both normalized metrics are high. This mutual-salience product metric inherently penalizes samples
that are only strong on one dimension, aligns with mutual-information objectives, and yields a more
strong, robust calibration set.

3.3 Attention-guided Sparse Token Distillation
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(a) Attention heatmaps.
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Figure 4: Visualization of sparse attention patterns in CogVideoX-2B block-10. In (4a), fewer
columns have significantly higher weights. In (4b), only 10% of tokens have larger attention weights.

Observation 2. The fully spatial-temporal attention in V-DMs exhibits certain sparse patterns,
suggesting that only subsets of tokens notably impact the model output.
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Table 1: Performance of 4-bit weight and 6-bit activation quantization on text-to-video generation
under VBench evaluation benchmark suite. We evaluate on Imaging Quality (IQ), Aesthetic Quality
(AQ), Motion Smoothness (MS), Dynamic Degree (DD), Background Consistency (BC), Subject
Consistency (SuC), Scene Consistency (ScC), and Overall Consistency (OC). Higher (↑) metrics
represent better performance. Bold: the best result.

Model Method IQ AQ MS DD BC SuC ScC OC

CogVideoX-2B

FP 58.69 55.25 97.95 50.00 96.40 94.30 33.79 25.91
Q-DiT 48.63 47.63 98.08 19.44 95.30 92.15 23.84 24.00
PTQ4DiT 42.91 45.49 98.48 5.56 95.65 92.85 17.88 21.15
SmoothQuant 44.60 44.33 98.22 9.72 95.62 92.04 18.60 21.20
Quarot 51.89 48.48 97.49 31.94 95.61 93.01 22.97 23.57
ViDiT-Q 51.94 48.06 97.47 33.33 95.54 92.87 22.17 23.69
S2Q-VDiT 55.49 53.74 98.10 40.28 96.05 94.16 32.70 25.19

CogVideoX-5B

FP 61.80 58.88 97.61 72.22 95.56 94.63 45.28 26.46
Q-DiT 49.94 50.18 97.03 43.06 95.52 91.58 29.65 24.49
PTQ4DiT 43.54 42.70 97.77 4.17 96.70 93.32 10.93 21.75
SmoothQuant 39.50 36.92 97.88 6.94 96.39 92.28 23.11 18.19
Quarot 43.95 44.81 97.33 31.94 96.58 92.27 20.93 22.34
ViDiT-Q 48.87 50.51 97.66 37.50 96.25 93.60 27.76 23.57
S2Q-VDiT 60.75 56.90 97.46 58.33 96.76 94.24 46.66 26.30

HunyuanVideo

FP 62.30 62.49 99.00 56.94 98.08 95.30 33.36 26.85
Q-DiT 50.23 48.40 98.95 40.28 97.14 94.03 18.46 14.41
PTQ4DiT 48.31 50.13 98.26 19.44 97.95 94.37 20.19 19.85
SmoothQuant 47.55 56.03 98.77 27.78 97.33 94.57 23.69 25.47
Quarot 52.31 58.50 99.13 37.50 97.98 95.31 25.51 26.01
ViDiT-Q 52.21 58.38 99.12 41.67 98.02 95.20 23.69 26.15
S2Q-VDiT 58.83 59.62 99.20 48.61 98.15 95.57 33.65 26.91

Let x ∈ Rn×d be the token embeddings, we can express Eq. (2) in the summation form as follows:

Lquant =
1

n

n∑
j=1

||θf (xj,:)− θq(xj,:)||2, (9)

where xj,: refers to the jth token in the video diffusion transformer. This loss function assumes that
each token contributes equally to the overall error between the quantized and full-precision models.
However, due to the spatial-temporal modeling objectives, V-DMs typically require large-scale
pretraining to achieve full convergence [37, 58, 24, 56].

In the post-training quantization (PTQ) stage, only a small dataset is used to calibrate the quantization
parameters, which naturally limits the model’s ability to optimize from all tokens. Nevertheless,
attention maps derived from V-DMs reveal that only subsets of tokens significantly influence the final
output (see Fig. 4 and Appendix Sec. H). This observation aligns with prior studies on attention in
V-DMs [60, 4, 61, 66], which have shown that pruning irrelevant tokens has a negligible impact on
generation quality. These findings motivate a strategy that focuses learning more intensely on salient
tokens while relaxing constraints on less impactful ones. Thereby enabling better convergence and
improved performance even with limited calibration data.

To improve alignment between quantized and full-precision outputs, we reweight each token’s
contribution in the loss function based on its influence on the block output. Formally, we modify
Eq. (9) to:

Lquant =
1

n

n∑
j=1

λj ||θf (xj,:)− θq(xj,:)||2, (10)

where λj denotes the weighting factor corresponding to token xj,:. Leveraging the attention mech-
anism within each transformer block of V-DMs, we can obtain the complete multi-head attention
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Table 2: Performance of both 4-bit weight and activation quantization on text-to-video generation
under VBench evaluation benchmark suite.

Model Method IQ AQ MS DD BC SuC ScC OC

CogVideoX-2B

FP 58.69 55.25 97.95 50.00 96.40 94.30 33.79 25.91
Q-DiT 26.26 27.66 99.14 0 98.09 96.52 1.16 8.43
PTQ4DiT 20.66 28.50 99.30 0 97.61 95.33 2.11 11.11
SmoothQuant 29.76 28.31 98.95 0 97.62 94.65 5.31 9.74
QuaRot 43.22 39.59 97.54 13.89 96.18 92.35 12.21 19.57
ViDiT-Q 45.56 42.03 97.57 12.5 96.08 92.43 11.91 19.61
S2Q-VDiT 53.71 52.31 98.09 36.11 96.15 93.99 34.23 24.90

CogVideoX-5B

FP 61.80 58.88 97.61 72.22 95.56 94.63 45.28 26.46
Q-DiT 40.80 33.00 95.71 36.11 98.26 96.99 0.22 1.91
PTQ4DiT 41.48 28.63 96.38 0 97.29 95.09 0 7.37
SmoothQuant 40.30 29.99 95.76 1.39 96.54 96.02 0.44 6.51
QuaRot 29.41 35.36 97.77 15.28 97.23 92.71 8.36 15.31
ViDiT-Q 31.95 36.71 97.09 15.28 96.37 93.01 10.85 16.91
S2Q-VDiT 58.76 55.35 97.18 47.22 96.25 93.69 36.56 26.02

map A ∈ RH×n×n where H is the number of attention heads. A naturally represents the importance
matrix of different tokens within each block, and Ah,i,j denotes the attention weight jth token
receives from the ith token in hth attention head. We use the attention map A to compute λj using:

Sj =
∑
h,i

Ah,i,j , λj =
Sj − min(S)

max(S)− min(S)
(λmax − λmin) + λmin, (11)

where min(S) and max(S) denote the minimum and maximum values in all S respectively. The
hyperparameters λmin and λmax define the normalization range for token importance. Ultimately, λj

quantifies each token’s salience and helps guide the optimization process to prioritize alignment for
tokens that exert greater influence.

4 Experiments

4.1 Experimental and Evaluation Settings

Quantization Scheme. We employ uniform per-channel weight quantization and dynamic per-token
activation quantization with channel-wise scale and rotation matrix same as prior works [2, 1, 62].
We use symmetry quantization for both weight and activation for better hardware acceleration and
memory saving. We follow the block-wise post-training strategy used in prior works [30, 54, 2].
More implementation details and model settings can be seen in Appendix Sec. A.

Evaluation Settings. We conduct text-to-video experiment on different scale SOTA models
CogVideoX-2B, CogVideoX-5B [58] and HunyuanVideo-13B [24] for better evaluation. We evaluate
the performance of the quantized model using the VBench benchmark [19], which provides a com-
prehensive evaluation on video generation performance. Same as the prior works [2, 62], we select 8
major evaluation dimensions from VBench to ensure a thorough assessment. We also present more
experiments on EvalCrafter [34] benchmark in Appendix Sec. D. As current works [2, 62] have
achieved almost lossless performance at high bits (e.g., 6-8 bits), we evaluated the performance at
more challenging and unexplored low-bit W4A6 and W4A4 settings.

Compared Methods. Consist with prior works [2, 62], we compare S2Q-VDiT with current PTQ
baseline methods. For diffusion baseline, we compare with Q-DiT [2], PTQ4DiT [54], and ViDiT-
Q [62]. We further compare with strong LLM baseline, SmoothQuant [55] and QuaRot [1].
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Prompt: A panda standing on a surfboard in the ocean in sunset.

BF16 Quarot

ViDiT-Q S2Q-VDiT

(a) CogVideoX-5B.

Prompt: A robot DJ is playing the turntable, in heavy raining futuristic tokyo rooftop cyberpunk night, sci-fi, fantasy.

BF16 Quarot

ViDiT-Q S2Q-VDiT

(b) HunyuanVideo-13B.

Figure 5: Visual comparison on different models under W4A6 quantization setting.

4.2 Quantitative Comparison

We present text-to-video experiment under VBench evaluation benchmark suite in Tab. 1 and Tab. 2.
W4A6 Quantization. In Tab. 1, we focus on relatively higher bit quantization setting of W4A6 (4-bit
weight and 6-bit activation). In three different scale current V-DMs CogVideoX-2B, CogVideoX-5B,
and HunyuanVideo-13B, our method outperforms all current quantization methods by a notable
margin. Our S2Q-VDiT achieves almost lossless performance across all eight selected dimensions.
For CogVideoX-5B, S2Q-VDiT even outperforms FP model with 46.66 scene consistency while
other methods achieved the highest score of 29.65.
W4A4 Quantization. In Tab. 2, we further explored the quantization performance of V-DMs under
extremely low bit W4A4 settings. It is worth noting that this is currently the first exploration under
4-bit activation quantization. In this extremely low bit setting, S2Q-VDiT can still maintain 95% of
the model’s performance while other methods showed significant performance degradation. Although
some methods are particularly high in metrics such as SuC and BC, this is due to their almost
collapsed generation quality. ViDiT-Q [62] pointed out that these metrics are particularly
high on extremely collapsed methods, and maintaining performance closer to FP is better. For
CogVideoX-2B, our method achieves even lossless scene consistency of 34.23 while other methods
achieved the highest score of 12.21 with almost a three times improvement.

4.3 Visual comparison

We present visual comparisons on different models under W4A6 in Fig. 5. Compared with the current
SOTA methods QuaRot [1] and ViDiT-Q [62], S2Q-VDiT has significant improvements in image
quality and dynamic degree, and is lossless compared to FP models. For CogVideoX-5B, QuaRot
can hardly generate clear images; ViDiT-Q lacks the ability in color richness and image details;
S2Q-VDiT is significantly better in color, detail, and video dynamics. For HunyuanVideo, although
all methods have not significantly reduced image clarity, the semantic information of QuaRot has
severely declined; the generated characters and background details of ViDiT-Q are also insufficient.
S2Q-VDiT maintains high quality in the details and colors of both the background and characters, and
ensures the dynamic level of the video at different frame. The consistent and significant improvement
on three different scales V-DMs also demonstrates the generalization and effectiveness of our method.
We provide more visual comparison in Appendix Sec. I.
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(a) Ablation study on SDS.
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(b) Ablation study on STD.

Figure 6: Ablation study of proposed methods on W4A4 CogVideoX-2B.

Table 3: Ablation study on calibration data size.

Method Data Size Calbration Time
(Hour)

Imaging
Quality

Aesthetic
Quality

Overall
Consistency

FP - - 58.61 55.25 25.91
S2Q-VDiT 20 1.64 53.56 53.07 24.69
S2Q-VDiT 40 2.88 55.49 53.74 25.19
S2Q-VDiT 80 5.56 55.52 53.64 25.21

4.4 Ablation Study

In Fig. 6, we present ablation studies on Hessian-aware Salient Data Selection (SDS) and
Attention-guided Sparse Token Distillation (STD). To verify the effectiveness of these techniques,
we conducted integration experiments with existing PTQ methods in Appendix Sec. E.
Ablation on SDS. We study different calibration data selection methods with our proposed SDS
and shown the results in Fig. 6a. We compare three different straightforward methods, including
All Timesteps from One Prompt (ATOP), All Timesteps from Five Prompts (ATFP), and Random
Timesteps from Five Prompts (RTFP). We selected 40 samples for all methods for fair comparison.
We also present the visual comparison in Fig. 3. Our proposed SDS outperforms all other methods in
terms of both visual and metric effects while other methods can not maintain high generation quality.
We conducted more ablation experiments on the random seeds and decoupled the two saliences
used in SDS. We present the experimental results in Appendix Sec. B. We further conduct an
ablation study on calibration data size in CogVideoX-2B under W4A6 setting and present the results
in Tab. 3. It can be seen that the calibration time increases almost linearly with the increase of data
size. The performance of 40 data is significantly better than that of 20 data, but the performance
improvement of 80 data is minor. Therefore, in the trade-off of performance and calibration time, we
choose to use 40 data as the unified experimental settings.
Ablation on STD. In Fig. 6b, we compare our proposed STD with no sparse distillation (w/o
STD). It can be seen that compared with no STD, all distillation strategies can improve model
performance. We also compare different hyperparameters used in Eq (11). We set λmax = 1 as
default and investigate different λmin selections which control the relaxation degree on less impactful
tokens. It can be seen that all different λmin can improve quantization performance which proves
the robustness of STD. We select λmin = 0.5 in the main experiments for the most balanced per-
formance improvement. We provide more visualization of the sparse patterns in Appendix Sec. H.

4.5 Efficiency Study

We study the deployment efficiency of different-scale video diffusion transformers in Tab. 5. We
used the CUDA implementation provided in [62, 47] for deployment and conducted all experiments
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on a single NVIDIA A800 GPU. For Inference Memory and Latency, we use a batch size of 1 in
Tab 5. Compared with baseline method PTQ4DiT [54], our method brings significant performance
improvement with almost no extra inference burden. Compared with FP model, our method can bring
3.94× model memory saving, 1.56× inference memory saving, and 1.28× inference acceleration on
CogVideoX-5B. In Appendix Sec. F, we conducted more experiments on deployment efficiency.

4.6 Calibration Resource Cost

Table 4: Calibration cost on W4A4 CogVideoX-2B.

Method GPU Memory (GB) GPU Time (hour) Imaging Quality Aesthetic Quality
FP - - 58.61 55.25
Q-DiT 29.85 2.69 26.26 27.66
PTQ4DiT 33.30 2.25 20.66 28.50
S2Q-VDiT 35.68 2.88 53.71 52.31

We reported on the calibration resource consumption of our S2Q-VDiT compared with existing
baseline methods Q-DiT [2] and PTQ4DiT [54] in Tab. 4. Compared with existing methods, S2Q-
VDiT only increases 2GB memory consumption and 0.2h calibration time, but improves Imaging
Quality from 26.26 to 53.71, significantly enhancing the quantization performance. This proves the
high efficiency and performance of S2Q-VDiT. We further reported more detailed calibration
resource consumption of each proposed component in Appendix Sec. G.

Table 5: Efficiency study on different W4A6 models.

Model Method
Model

Storage (GB)
Inference

Memory (GB)
Latency (s)

Imaging
Quality

Aesthetic
Quality

CogVideoX-5B
FP 10.375 15.801 259.2 61.80 58.88
PTQ4DiT 2.633 10.139 203.1 43.54 42.70
S2Q-VDiT 2.633 10.145 203.2 60.75 56.90

HunyuanVideo
FP 23.881 29.260 191.3 62.30 62.49
PTQ4DiT 6.494 13.703 175.1 48.31 50.13
S2Q-VDiT 6.494 13.713 175.2 58.83 59.62

5 Conclusion

In this paper, we propose S2Q-VDiT, a post-training quantization framework for V-DMs using
Salient data and Sparse token distillation. To address the sensitivity to calibration data, we propose
Hessian-aware Salient Data Selection to construct high-quality datasets from the perspectives of
diffusion and quantization. To address the learning challenge brought by long token sequences, we
propose Attention-guided Sparse Token Distillation, which utilizes the natural sparse attention in
V-DMs to allocate more loss weights to important tokens. Extensive experiments have shown that
S2Q-VDiT outperforms all existing methods on different scales of V-DMs.
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A Implementation Details

In the main experiment, we use 10 random prompts for generating the candidate calibration samples.
We finally selected 40 samples for post-training quantization for all methods. For our method, we use
a channel-wise scale used in [55, 62, 54] and a rotation matrix used in [47] for linear quantization.
We further use a learnable threshold for clipping the weight and activation min-max value as prior
work [30, 18, 47]. We also use GPTQ weight quantizer [13] for our experiment, following prior
work [2]. We conduct all the experiments on a single NVIDIA A800 GPU.

For optimization, we train the diag-balancing scale, rotation-based matrix, and learnable clipping
threshold following the layer-wise post-training quantization framework as prior works [30, 54]. We
use 30 samples and train 15 epochs for each layer. We use AdamW optimizer and cosine learning
rate scheduler. For the diag-balancing scale and rotation-based matrix, we use a learning rate of 5e-3.
For the learnable clipping threshold, we use a learning rate of 5e-2.

For deployment, we absorb all weight quantization parameters as prior works [54, 55, 62], which
brings no extra burden. For activation quantization, we apply online dynamic quantization follow-
ing [62, 1].

B More Ablation on Hessian-aware Salient Data Selection

Table 6: Performance of both 4-bit weight and activation quantization on CogVideoX-2B under three
random seeds.

Method
Imaging

Quality

Aesthetic

Quality

Motion

Smooth.

Dynamic

Degree

BG

Consist.

Subject

Consist.

Scene

Consist.

Overall

Consist.

- 58.69 55.25 97.95 50.00 96.40 94.30 33.79 25.91

ATOS 51.65±(1.76) 49.79±(0.59) 98.09±(0.16) 29.17±(3.40) 95.82±(0.35) 93.24±(0.19) 29.94±(1.35) 24.31±(0.37)

ATDS 50.63±(0.81) 50.13±(0.25) 98.05±(0.11) 29.63±(2.62) 95.94±(0.16) 93.16±(0.41) 30.98±(2.14) 24.11±(0.27)

DTDS 50.66±(1.04) 50.33±(0.19) 98.03±(0.14) 31.48±(4.58) 96.01±(0.16) 93.07±(0.18) 30.47±(1.77) 24.75±(0.25)

DS 52.73±(0.98) 50.62±(0.81) 98.15±(0.19) 31.75±(2.73) 96.06±(0.18) 93.29±(0.15) 31.38±(0.98) 24.78±(0.22)

QS 52.34±(0.85) 51.17±(0.23) 98.11±(0.12) 32.01±(2.97) 96.10±(0.17) 93.57±(0.19) 31.86±(0.90) 24.79±(0.23)

SDS(Ours) 52.95±(0.69) 51.58±(0.11) 98.16±(0.09) 32.87±(2.36) 96.13±(0.15) 93.89±(0.17) 32.75±(0.77) 24.84±(0.26)

In this section, we investigate the random seed influence on the quantization performance of different
calibration datasets mentioned in Sec. 3.2 and Sec. 4.4. We compare our proposed Hessian-aware
Salient Data Selection (SDS) with All Timesteps from One Prompt (ATOP), All Timesteps from Five
Prompts (ATFP), and Random Timesteps from Five Prompts (RTFP) using three different random
seeds. We further decoupled SDS into Diffusion Salience (DS) in Eq. (3) and Quantization Salience
(QS) in Eq. (6) and reported the performance. We present the average results and variance in Tab. 6.

Other straightforward sampling methods have lower average performance and larger variances, prov-
ing the influence of random seeds in these random sampling methods. Using our proposed diffusion
salience (DS) or quantization salience (QS) can all improve the performance and reduce the impact of
random seeds. Only using DS and QS can improve Scene Consistency to over 31 with variances less
than 1, while other random sampling methods cannot achieve. By jointly considering two saliences,
Hessian-aware Salient Data Selection (SDS) can achieve the best quantization performance with
minimal impact from randomness. SDS achieved an average Imaging Quality of 52.95 with only 0.69
variance, while the random sampling only achieved the best average of 51.65 with 1.67 variance.

C Detailed Description of Selected Evaluation Metrics

C.1 VBench Benchmark

For VBench [19] benchmark, we follow the previous work ViDiT-Q [62], which selects 8 dimensions
from three key aspects in video-generation task.

Frame-wise Quality: In this aspect, we assess the quality of each individual frame without taking
temporal quality into concern.
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• Imaging Quality assesses distortion (e.g., over-exposure, noise) presented in the generated
frames using the MUSIQ [23] image quality predictor trained on the SPAQ [7] dataset.

• Aesthetic Quality evaluates the artistic and beauty value perceived by humans towards each
video frame using the LAION aesthetic predictor [27].

Temporal Quality: In this aspect, we assess the cross-frame temporal consistency and dynamics.

• Dynamic Degree evaluates the degree of dynamics (i.e., whether it contains large motions)
generated by each model.

• Motion Smoothness evaluates whether the motion in the generated video is smooth, and
follows the physical law of the real world.

• Subject Consistency assesses whether the subject’s appearance remains consistent through-
out the whole video.

• Background Consistency evaluate the temporal consistency of the background scenes by
calculating CLIP [41] feature similarity across frames.

Semantics: In this aspect, we evaluate the video’s adherence to the text prompt given by the user.
consistency.

• Scene evaluates whether the synthesized video is consistent with the intended scene de-
scribed by the text prompt.

• Overall Consistency further use overall video-text consistency computed by ViCLIP [50]
on general text prompts as an aiding metric to reflect both semantics and style consistency.

We use three different prompt sets provided by the official github repository of VBench [19] to
generate videos. We generate one video for each prompt for evaluation same as ViDiT-Q [62].

• overall consistency.txt: includes 93 prompts, used to evaluate overall consistency, aesthetic
quality, and imaging quality.

• subject consistency.txt: includes 72 prompts, used to evaluate subject consistency, dynamic
degree, and motion smoothness.

• scene.txt: includes 86 prompts, used to evaluate scene and background consistency.

C.2 EvalCrafter Benchmark

For EvalCrafter [34] benchmark, consistent with prior work ViDiT-Q [62], we select 5 low-level
metrics to evaluate the generation performance.

CLIPSIM and CLIP-Temp: CLIPSIM computes the image-text CLIP similarity for all frames
in the generated videos, and we report the averaged results. This quantifies the similarity between
input text prompts and generated videos. CLIP-Temp computes the CLIP similarity of each two
consecutive frames of the generated videos and then gets the averages for each two frames. This
quantifies the semantic consistency of generated videos. We use the CLIP-VIT-B/32 [50] model to
compute CLIPSIM and CLIP-Temp. We use the implementation from EvalCrafter [34] to compute
these two metrics.

DOVER’s VQA: VQA-Technical measures common distortions like noise, blur, and over-exposure.
VQA-Aesthetic reflects aesthetic aspects such as the layout, the richness and harmony of colors,
the photo-realism, naturalness, and artistic quality of the frames. We use the Dover [53] method to
compute these two metrics.

FLOW Score: Flow score was proposed in [34] to measure the general motion information of the
video. We use RAFT [48] to extract the dense flows of the video in every two frames, and we calculate
the average flow on these frames to obtain the average flow score of each generated video.

We use the prompt sets provided by the official github repository of ViDiT-Q [62] to generate 10
videos for evaluation. We also attached the prompt sets in the supplementary material.
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D Experiments on more metrics

Following prior work [62], we evaluate different methods on EvalCrafter [34] benchmark for multi-
aspects metrics evaluation. We select CLIPSIM, CLIP-Temp, DOVER [53] video quality assessment
(VQA) metrics to evaluate the generation quality, and Flow-score to evaluate the temporal consistency.
We conduct experiments on CogVideoX-2B, CogVideoX-5B, and HunyuanVideo-13B under W4A6
quantization setting. We present the evaluation results in Tab. 7.

Table 7: Performance of 4-bit weight and 6-bit activation quantization on text-to-video generation
under EvalCrafter benchmark. Higher (↑) metrics represent better performance.

Model Method CLIPSIM CLIP-Temp VQA-
Aesthetic

VQA-
Technical

FLOW
Score.

CogVideoX-2B

FP 0.1844 0.9978 76.64 85.02 3.452
Q-DiT 0.1787 0.9978 63.15 67.37 2.331
PTQ4DiT 0.1772 0.9985 58.76 52.60 1.837
SmoothQuant 0.1762 0.9981 55.18 53.87 1.378
Quarot 0.1808 0.9975 51.83 56.79 2.867
ViDiT-Q 0.1812 0.9976 53.09 59.84 3.040
S2Q-VDiT 0.1838 0.9979 70.50 73.31 3.122

CogVideoX-5B

FP 0.1814 0.9982 78.87 73.17 4.536
Q-DiT 0.1835 0.9976 47.96 46.72 2.967
PTQ4DiT 0.1789 0.9984 22.93 44.07 2.230
SmoothQuant 0.1742 0.9976 3.05 14.13 1.026
Quarot 0.1805 0.9983 33.10 43.67 3.040
ViDiT-Q 0.1795 0.9980 42.01 48.59 1.850
S2Q-VDiT 0.1819 0.9987 73.45 74.41 3.688

HunyuanVideo

FP 0.1910 0.9985 80.66 63.51 1.674
Q-DiT 0.1871 0.9987 56.45 43.17 1.482
PTQ4DiT 0.1786 0.9973 42.17 33.69 1.089
SmoothQuant 0.1782 0.9978 7.24 0.42 0.111
Quarot 0.1873 0.9977 66.49 52.81 0.899
ViDiT-Q 0.1895 0.9978 66.23 51.35 0.897
S2Q-VDiT 0.1902 0.9985 77.80 66.38 1.562

It can be seen that under the EvalCrafter [34] benchmark, our S2Q-VDiT still achieved almost
lossless performance and showed significant performance improvement compared to all comparison
methods. Especially in terms of VQA-Technical metrics, our S2Q-VDiT even outperforms the
full precision model on CogVideoX-5B and HunyuanVideo, while other methods show notable
performance degradation. For CogVideoX-5B, S2Q-VDiT achieves 74.41 in VQA-Technical which
outperforms the full precision model of 73.17, while current methods achieve the best of 48.59.

E Integration with Existing PTQ Methods

The techniques that we proposed Hessian-aware Salient Data Selection (SDS) and Attention-guided
Sparse Token Distillation (STD) can also be applied to existing block-wise optimization-based
post-training quantization methods. To verify the generality of these two techniques, we combined
them with the existing baseline method PTQ4DiT [54] and reported the performance improvement of
these techniques on W4A6 CogVideoX-2B under VBench [19] benchmark in Tab. 8. By using the
calibration constructed by SDS, we further improved the performance of PTQ4DiT and increased
Aesthetic Quality by 1.4. This demonstrates the improvement of SDS-constructed datasets under
different optimization frameworks. From optimization perspective, we further improved the Aesthetic
Quality to 47.27 by using sparse distillation STD. This also demonstrates the effectiveness and
generalization of our attention-based optimization method.
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Table 8: Performance of 4-bit weight and 6-bit activation quantization on CogVideoX-2B under
VBench evaluation benchmark suite

Method
Imaging
Quality

Aesthetic
Quality

Motion
Smooth.

Dynamic
Degree

BG
Consist.

Subject
Consist.

Scene
Consist.

Overall
Consist.

FP 58.69 55.25 97.95 50.00 96.40 94.30 33.79 25.91
PTQ4DiT 42.91 45.49 98.48 5.56 95.65 92.85 17.88 21.15
+SDS 43.06 46.89 98.64 11.11 95.79 93.33 18.10 22.27
+STD 43.08 47.27 98.78 9.72 95.97 93.68 19.04 22.09

F More Experiments on Deployment Efficiency
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Figure 7: Deployment latency comparison under different batch size.

We further expanded the experiments provided in Sec. 4.5. We compared the deployment efficiency of
different models under different batch sizes in Fig. 7. Our S2Q-VDiT can bring consistent inference
acceleration to different models under different batch sizes. Under the 50-step inference setting of
CogVideoX-5B with a batch size of 4, our S2Q-VDiT can reduce the inference latency from 945.4s
to 782.5s, achieving a significant acceleration of 163 seconds and outperforming the baseline method
PTQ4DiT [54].

Table 9: Calibration cost about each component.

Hessian Approximation Attention Computation

Method
Construct Time

(mins)
Imaging
Quality

Method
Calibration Time

(hours)
Imaging
Quality

CogVideoX-2B

FP - 58.69 FP - 58.69
w/o Hessian 7.708 53.16 w/o Attention 2.82 52.16
w Hessian 7.717 55.49 w Attention 2.84 55.49

CogVideoX-5B

FP - 61.80 FP - 61.80
w/o Hessian 20.719 58.91 w/o Attention 3.97 58.23
w Hessian 20.734 60.75 w Attention 4.00 60.75

HunyuanVideo-13B

FP - 62.30 FP - 62.30
w/o Hessian 19.505 57.25 w/o Attention 5.70 56.94
w Hessian 19.508 58.83 w Attention 5.73 58.83
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G More Detailed Calibration Resource Cost

We reported the time increase caused by using the Hessian approximation when constructing the
calibration dataset and the attention scores calculation across different scale video generation models
in Tab. 9.

It can be seen that the computational burden of using Hessian approximation is minor, but it can
bring significant performance improvement. We use the Levenberg-Marquardt approximation [13] to
calculate the Hessian approximation, which requires only one step matrix multiplication to obtain the
approximate result, and is very efficient.

Also, during the calibration process, we only need to use the Full-Precision model to conduct a single
forward calculation of attention scores for all data in advance. When optimizing the quantization
model, we can directly get the pre-computed attention scores by the data index, which brings minimal
burden.

H More Visualization about Sparse Attention Pattern
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Figure 8: Visualization of attention heatmaps in CogVideoX-2B.
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Figure 9: Visualization of token-wise attention distribution in CogVideoX-2B.

We demonstrate the sparse attention patterns existing in V-DMs that we mentioned in Sec 3.3. We
present more visualization results of different blocks of CogVideoX-2B in Fig. 8 and Fig. 9. There
is a considerable degree of sparse attention patterns in the most layers of the model, and almost all
90% tokens have significantly lower attention weights than the top 10% tokens. This indicates that
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Figure 10: HunyuanVideo-13B results. Prompt: A cat wearing sunglasses on a beach.

sparse attention is commonly present in V-DMs, and almost every layer only has a small portion of
tokens that play an important role in the final output. This proves the universality of our observations
in Sec. 3.3 and the effectiveness of our Attention-guided Sparse Token Distillation.

I More Visualization Results

We present more visual comparison results on HunyuanVideo-13B [24], CogVideoX-5B, and
CogVideoX-2B [58] under W4A6 quantization in the following figures. Compared with current meth-
ods SmoothQuant [55], Q-DiT [2], ViDiT-Q [62], our S2Q-VDiT made notable visual improvement
on different scale video diffusion models. This proves that our S2Q-VDiT not only surpasses existing
methods in terms of evaluation metrics but also shows significant improvement in visual effects,
demonstrating the effectiveness of our S2Q-VDiT.

J Limitations

Although our S2Q-VDiT outperforms existing methods, it cannot achieve completely lossless per-
formance under the most difficult fully 4-bit quantization. We hope to optimize the quantization
performance under low bit settings in the future.

K Broader Impacts

Our quantized model may be used by people to generate false content, and we will require users to
apply our model in legitimate and reasonable scenarios and label it as AI-generated.
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Figure 11: HunyuanVideo-13B results. Prompt: A boat sailing leisurely along the Seine River with
the Eiffel Tower in background.
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Figure 12: HunyuanVideo-13B results. Prompt: A panda cooking in the kitchen.
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Figure 13: CogVideoX-5B results. Prompt: A beautiful coastal beach in spring, waves lapping on
sand by Hokusai, in the style of Ukiyo.
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Figure 14: CogVideoX-5B results. Prompt: A modern art museum, with colorful paintings.
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Figure 15: CogVideoX-5B results. Prompt: Yoda playing guitar on the stage.
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Figure 16: CogVideoX-2B results. Prompt: Macro slo-mo. Slow motion cropped closeup of roasted
coffee beans falling into an empty bowl.
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Figure 17: CogVideoX-2B results. Prompt: A boat sailing leisurely along the Seine River with the
Eiffel Tower in background by Vincent van Gogh.
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not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The models used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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