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ABSTRACT

We study beyond worst-case dimensionality reduction for s-sparse vectors
(vectors with at most s non-zero coordinates). Our work first presents pessimistic
lower bounds and then bypasses them by introducing a non-negative assumption:

(a) We first consider average-case guarantees for embedding s-sparse vectors.
Here, a well-known folklore upper bound based on the birthday-paradox states:
For any collection X of s-sparse vectors in Rd, there exists a linear map
A : Rd → RO(s2) which exactly preserves the norm of 99% of the vectors in
X in any ℓp norm (as opposed to the usual setting where guarantees hold for all
vectors). We provide novel lower bounds showing that this is indeed optimal in
many settings. Specifically, any oblivious linear map satisfying similar average-
case guarantees must map to Ω(s2) dimensions. The same lower bound also
holds for a wider class of sufficiently smooth maps, including ‘encoder-decoder
schemes’, where we compare the norm of the original vector to that of a smooth
function of the embedding. These lower bounds reveal a surprising separation
result for smooth embeddings of sparse vectors, as an upper bound of O(s log(d))
is possible if we instead use arbitrary functions, e.g., via compressed sensing
algorithms.

(b) Given these lower bounds, we specialize to sparse non-negative vectors with
hopes of improved upper bounds. For a dataset X of non-negative s-sparse vectors
and any p ≥ 1, we show that we can non-linearly embed X to O(s log(|X|s)/ε2)
dimensions while preserving all pairwise distances in ℓp norm up to 1 ± ε,
with no dependence on p. Surprisingly, the non-negativity assumption enables
much smaller embeddings than arbitrary sparse vectors, bypassing our previous
quadratic lower bounds and improving on previous best known upper bounds that
suffer an exponential (log |X|)O(p) dependence. Our map also guarantees exact
dimensionality reduction for the ℓ∞ norm by embedding X into O(s log |X|) di-
mensions, which is tight. We further give separation results showing that both the
non-linearity of f and the non-negativity of X are necessary, and provide down-
stream algorithmic improvements using our embedding.

1 INTRODUCTION

Many popular algorithms for data processing in machine learning suffer from large running times on
high-dimensional datasets. To alleviate this curse of dimensionality, a common paradigm is to first
embed the data into a lower dimension and then run any desired algorithm in the embedded space.
Arguably the most fundamental result in this area is the the Johnson-Lindenstrauss (JL) lemma. It
states that any set of high-dimensional data X with |X| = n can be embedded into an O(log n/ε2)-
dimensional space while approximately preserving all pairwise ℓ2 distances up to ε relative error
Johnson & Lindenstrauss (1984). While very versatile, the JL lemma is still a pessimistic worst
case bound. This has led to a proliferation of works studying better trade-offs in more constrained
settings, with the goal of exploiting intrinsic structure within the problem or in the dataset to obtain
smaller embedding dimensions beyond JL. This ‘fine-grained’ approach has found success in many
domains including nearest neighbor search Indyk & Naor (2007); Andoni et al. (2018), clustering
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Boutsidis et al. (2010); Makarychev et al. (2019); Becchetti et al. (2019); Narayanan et al. (2021);
Izzo et al. (2021); Jiang et al. (2024), and numerical linear algebra Woodruff et al. (2014); Cohen
et al. (2015).

In this paper, we consider data sparsity as the structure to exploit to obtain better dimensionality
reduction. Sparsity is an ubiquitous property of datasets and plays a crucial role in many tasks across
machine learning, statistics, and signal-processing. Theoretically, sparsity assumptions allow for
dimensionality reduction upper bounds for sparse vectors in general ℓp norms. In contrast, virtually
all the aforementioned progress to improve beyond JL has been limited to the ℓ2 norm1. However,
all known embedding2 results for sparse vectors rapidly degrade as p increases. For ℓp norms, it
is known that any linear dimensionality reduction for sparse vectors must suffer an exponential
dependence on p on the embedding dimension Zhu et al. (2015). In particular for the important ℓ∞
case, all known bounds become vacuous.

However, if we relax to average-case guarantees and only require 99% of the pairs of distances in a
dataset of sparse vectors to be preserved, then a well known folklore dimensionality reduction map
is known to give excellent dimensionality reduction. It is based on the birthday-paradox map:

Definition 1.1 (Birthday Paradox Map). Consider the linear map f : Rd → Rm where every
coordinate in {1, . . . , d} = [d] is mapped uniformly at random to one of m coordinates. The
coordinates in [d] that are mapped to the same ‘bucket’ in [m] are summed.

For any fixed s-sparse vector x ∈ Rd, the birthday paradox implies that if m ≥ Cs2 for a large
constant C, then with probability at least 99%, all the support elements of x do not collide. Thus
with probability at least 99%, ∥f(x)∥p = ∥x∥p holds for any fixed sparse x 3. Since f is linear,
this also implies the same statement for pairwise distances. Interestingly, this map guarantees exact
dimensionality reduction (for most pairs), the embedding dimension does not depend on p, and the
guarantees hold for arbitrary sparse vectors. The natural question following from this discussion
is if we can improve upon the O(s2) upper bound of the birthday paradox map, under the same
average-case guarantees. This is the first question we address.

(Q1) Is the birthday paradox map optimal for ‘average-case’ dimensionality re-
duction of general sparse vectors?

In our contributions detailed in Section 2, we prove novel lower bounds demonstrating that the
birthday paradox map is optimal in many natural settings. This prompts us to ask if conditions in
addition to sparsity enable improved dimensionality reduction upper bounds. Towards this end, we
analyze the novel setting of sparse non-negative vectors, i.e., sparse vectors whose non-zero coor-
dinates are positive, to go beyond existing lower bounds. This additional constraint is motivated in
two ways. Practically in many applications, many sparse vector datasets are naturally non-negative,
such as one-hot vectors in recommendation datasets or ReLU activations in deep learning He et al.
(2024). Theoretically, there exists other fundamental problems demonstrating separations between
non-negative sparse vectors and arbitrary sparse vectors Bringmann et al. (2021; 2022); Jin & Xu
(2024). Note that one cannot assume non-negativity by simply shifting the dataset, as shifting can
destroy sparsity. Thus the second question we ask is:

(Q2) Can we obtain improved dimensionality reduction for non-negative sparse
vectors in general ℓp norms, such as ℓ∞?

2 OUR CONTRIBUTIONS

We detail our contributions to each question (Question 1 in Section 2.1 and Question 2 in Section
2.2). Table 1 summarizes our lower bound results, Table 2 summarizes our upper bound results, and
Table 3 lists applications of our upper bounds. Additional related works are discussed in Section A.

1This is not for the lack of trying: there exist fundamental limits disallowing for dimensionality reduction
for general ℓp norms Brinkman & Charikar (2005) for dense vectors.

2in this paper, we use the terms dimensionality reduction and embedding interchangeably.
3this hashing idea is ubiquitous, e.g. see CountMin and its variants Cormode & Muthukrishnan (2005)
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2.1 QUESTION 1: AVERAGE CASE LOWER BOUNDS FOR GENERAL SPARSE VECTORS

Our main contribution towards (Q1) is to demonstrate that the average-case guarantees of the folk-
lore birthday paradox upper bound of Definition 1.1 is optimal in many natural settings. First recall
that the folklore upper bound guarantees that for any p and for any point set of s-sparse vectors,
there exists an embedding into O(s2) dimensions which preserves the ℓp norm exactly for 99% of
the vectors (this is a weaker hypothesis than requiring pairwise distances to preserved as long as the
all zeros vector is also mapped to the all zeros vector).

• Arbitrary linear maps. Our first result states that any linear map with arbitrary real entries
which satisfies the properties of the folklore upper bound must embed to at least m = Ω(s2) di-
mensions. Our lower bound holds for any even integer p. More precisely, we construct a set of
s-sparse vectors in d-dimensions, where we show that any linear map A which guarantees exact
norm-preservation for more than 99% of this set (i.e., a randomly chosen vector in the set has a
> 99% chance of their ℓp norm being preserved under the map) must map to Ω(s2) dimensions.
Note that the lower bound below for d = s2 automatically implies the same lower bound for all
higher d by padding zeros in the ‘hard’ instance.
Theorem 2.1 (Informal, see Theorem B.1). Let p ≥ 2 be an even integer. There exists a point set
S ⊂ Rs2 of s-sparse vectors such that any linear map A : Rs2 → Rm satisfying ∥Ax∥p = ∥x∥p for
99% of vectors x ∈ S must map to m = Ω(s2) dimensions.

We note that our lower bound, even for the p = 2 case, is not implied by the known lower bounds
for the JL lemma Alon (2003); Larsen & Nelson (2014; 2017), even if some of the hard point sets in
prior works are sparse. This is because the hypotheses of the lower bounds are different. We prove
a lower bound against only preserving 99% of distances, rather than all of them. Our lower bound
also has no term that depends on the size of the point set (matching the folklore upper bound).

There is also a known lower bound for the JL lemma (again p = 2) where only one distance must
be preserved with high probability (similar to the setting of the above theorem) Jayram & Woodruff
(2013). However, this lower bound is only against dense vectors, and so it cannot imply Theorem
2.1. Prior lower bounds for the JL lemma are discussed in detail in Section A.

• Beyond Exact Preservation. Our lower bound for linear maps extends to a stronger statement
for the ℓ2 case. We show that m = Ω(s2) even if we only require the weaker guarantee of |∥Ax∥22−
∥x∥22| ≤ O(

∥x∥2
2

s ). This is optimal as any larger relative error of ε ≫ 1/s can be accomplished with
the standard linear JL map with Õ(1/ε2) = o(s2) dimensions. This reveals an interesting phase
transition: any larger error than 1/s enables o(s2) dimensional embeddings but any smaller error
requires Ω(s2) dimensional embeddings (1/s error is no easier than 0 error!).

Theorem 2.2 (Informal, see Theorem 3.1). There exists a point set S ⊂ Rs2 of s-sparse vectors
such that any linear map A : Rs2 → Rm satisfying |∥Ax∥22 − ∥x∥22| ≤ O(∥x∥22/s) for 99% of
vectors x ∈ S must map to m = Ω(s2) dimensions.

We also extend this lower bound for linear maps to the case where we require inner-products to be
preserved, rather than ℓ2 norms (Theorem B.4).

• Arbitrary smooth embeddings. For the ℓ2 case, we consider a more general class of embed-
dings f : Rs2 → Rm where f(x) = (f1(x), . . . , fm(x)) and each fi : Rs2 → R is twice differen-
tiable with continuous second partial derivatives. We prove that this large richer class of mappings
still requires m = Ω(s2) to satisfy the guarantees of the folklore upper bound for the ℓ2 case.
Theorem 2.3 (Informal, see Theorem B.2). The lower bound statement of Theorem 2.2 extends to
the general class of mappings defined above.

• Beyond Embeddings. Our ℓ2 lower bounds hold even when we are not restricted to computing
the norm on the embeddings produced by a mapping f and can use another function g (on top of
the output of f ) to compute the norm. Formally, we define an encoding-decoding scheme using an
encoding function f which maps an s-sparse vector in Rs2 to a dimension m. A decoding function
g then takes the output of f and maps it to a potentially much larger dimension k. Our goal is to
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show that even if k is large, as long as m is substantially less than the initial sparsity squared, we
cannot have ∥g(f(x))∥2 ≈ ∥x∥2.

Definition 2.1. We suppose the encoder and decoder functions satisfy the following.

• (Encoder function) f : Rs2 → Rm where

f(x) = (f1(x), . . . , fm(x))

and each fi : Rs2 → R is twice differentiable with continuous second partial derivatives.

• (Decoder function) g : Rm → Rk where

g(x) = (g1(x), . . . , gk(x))

and each gi : Rm → R is twice differentiable with continuous second partial derivatives.

Theorem 2.4 (Informal, see Theorem B.3). The lower bound statement of Theorem 2.2 extends to
the case of encoder/decoder schemes of Definition 2.1 and shows that f (the encoder) must map to
Ω(s2) dimensions.

Perhaps surprisingly, the theorem above states that if f and g are both sufficiently smooth, then f still
must map to Ω(s2) dimensions (matching the folklore upper bound). That is, the whole procedure
is still ‘bottle-necked’ by the dimension of f .

One reason for why this lower bound is surprising is that the hypothesis that f and g are smooth is
quite crucial. In fact, the lower bound cannot hold if g is arbitrary, even if f is constrained to be a
linear map. Indeed, compressed sensing algorithms tells us that there exists a suitable linear map
A : Rd → RO(s log(d)) (the so called RIP matrices Candes & Tao (2005)) and a decoding function g
such that g(Ax) = x for any s-sparse x. However, g is usually a complicated optimization step. For
example in the popular Lasso algorithm for exact recovery, g amounts to solving a linear program
Foucart & Rauhut (2013), and the optimal solutions to such optimization programs can be highly
discontinuous. If we also for arbitrary encoding functions f , then f can also just be a list of the non-
zero coordinates of x along with their values, thereby also mapping into Õ(s) dimensions. Clearly
this f is also highly discontinuous.

Thus, our results reveal an interesting separation result in the context of compressed sensing and
sketching in general: if we let the encoding and decoding functions be arbitrary, then we can map
to Õ(s) dimensions. On the other hand, imposing even mild smoothness assumptions on f and g
implies a much larger Ω(s2) lower bound. See Section A for more details.

2.2 QUESTION 2: UPPER BOUNDS FOR EMBEDDING NON-NEGATIVE SPARSE VECTORS

We begin with our upper bound theorem for embedding non-negative sparse-vectors.

Theorem 2.5 (Informal, see Theorem C.2). Let X be a set of n non-negative s-sparse vectors. For
every p ≥ 1, there exists a non-linear map f : Rd → Rm for m = O(log(ns) ·s/ε2) which satisfies
∥f(x) − f(y)∥p = (1 ± ε)∥x − y∥p for all x, y ∈ X . For the ℓ∞ case, we can instead guarantee
∥f(x)− f(y)∥∞ = ∥x− y∥∞ for all x, y ∈ X with m = O(s log n).

We note that for every p, it is the same map f (up to scaling by a known factor) that gives the
guarantees of the above theorem. There are three interesting aspects of Theorem 2.5 that we want to
highlight:

1. The map f is non-linear and non-smooth.

2. X needs to be a point sets of non-negative sparse vectors.

3. Our embedding gives a non-trivial embedding for ℓ∞.

Given these points, we additionally show that our upper bound for embedding non-negative sparse
vectors presented in Theorem 2.5 is optimal in many ways.
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Point Set Guarantee
Our Lower

Bound
Thm.

O(1)-sparse

non-negative vectors

∥x∥∞
2 ≤ ∥f(x)∥∞ ≤ 3∥x∥∞

2

Linear f
Ω(d) 2.6

O(1)-sparse

non-negative vectors

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ (2− ε) · ∥x+ y∥∞
Arbitrary f , any ε > 0

Ω(d) 2.8

O(1)-sparse

non-negative vectors

∀r > 0, 0.99∥rx∥∞ ≤ ∥f(rx)∥∞ ≤ 1.01∥rx∥∞
Arbitrary f with continuous second-order derivatives

Ω(d) 2.7

O(1)-sparse

vectors

0.9 · ∥x− y∥∞ ≤ ∥f(x)− f(y)∥∞ ≤ 1.1 · ∥x− y∥∞
∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ C · ∥x+ y∥∞

Arbitrary f , any C > 0

Ω(d) 2.9

s-sparse

vectors

∥f(x)− f(y)∥∞ ≤ ∥x− y∥∞
C∥x− y∥1 ≤ ∥f(x)− f(y)∥1

Arbitrary f , any C > 0

Ω(Cs) D.1

s-sparse

vectors

∥f(x)∥p = ∥x∥p for 99% of the points

Linear f , even p
Ω(s2) B.1

s-sparse

vectors

|∥f(x)∥22 − ∥x∥22| ≤ O(∥x∥22/s) for 99% of points

Arbitrary f with continuous second-order derivatives
Ω(s2) B.2

s-sparse

vectors

|∥g(f(x))∥22 − ∥x∥22| ≤ O(∥x∥22/s) for 99% of the points

Arbitrary f , g with continuous second-order derivatives
Ω(s2) B.3

Table 1: Our lower bound results. d is the ambient dimension. The first five guarantees hold for
every pair of vectors x, y in the point set specified in the respective theorems. The second to last
column is the dimension that f must map to. In the last row, g is allowed to map to an arbitrary
dimension.

• Non-linearity is necessary. We give an example of an O(1)-sparse and a non-negative point
set in Rd where any linear map requires Ω(d) dimensions to preserve the ℓ∞ norm up to relative
error 0.5. This is particularly interesting as many prior oblivious dimensionality reduction maps, i.e.
maps which do not depend on the input dataset such as JL or RIP matrices, are linear. However in
the natural case of non-negative sparse vectors, linear maps are provably insufficient.
Theorem 2.6. Let S be the set of all 10-sparse vectors in Rd with all non-zero coordinates equal to
1. Let A : Rd → Rm be a matrix such that 1

2∥x∥∞ ≤ ∥Ax∥∞ ≤ 3
2∥x∥∞ ∀x ∈ S. Then m = Ω(d).

• ‘Non-smoothness’ is necessary. Our upper bound of Theorem 2.5 is continuous but not differ-
entiable. Motivated by this phenomenon, we show that any upper bound satisfying Theorem 2.5
cannot be ‘very smooth’: any twice differentiable map (satisfying the same hypothesis) must embed
into Ω(d) dimensions.
Theorem 2.7. Suppose f : Rd → Rm is such that f(x) = (f1(x), . . . , fm(x)) where each fi is
twice differentiable with continuous second partial derivatives. Let S be the set of all 10-sparse
vectors in Rd with all non-zero coordinates being equal to 1. Suppose f satisfies

0.99∥rx∥∞ ≤ ∥f(rx)∥∞ ≤ 1.01∥rx∥∞ ∀r > 0,∀x ∈ S.

Then m = Ω(d).

• Sums of non-negative sparse vectors cannot be preserved. It is natural to ask if the map f of
Theorem 2.5 can also preserve sums of non-negative sparse vectors: ∥f(x) + f(y)∥p ≈ ∥x+ y∥p?
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Indeed, our upper bound of Theorem 2.5 has the additional property that it preserves the norms of
sums in ℓ∞ norm up to a multiplicative factor of 2, even if we embed into one dimension (see the
formal Theorem C.2). We show that the approximation factor 2 is tight in a very strong sense.
Theorem 2.8. Let ei be the ith basis vector in Rd. Consider the set S = {ei}∪{0} of d+1 vectors.
Suppose f : S → Rm be an arbitrary mapping which satisfies

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ (2− ε)∥x+ y∥∞ ∀x, y ∈ S

for any ε > 0. Then m ≥ d.

• General sparse vectors are hard to embed. We also consider dropping the non-negative hy-
pothesis. We again show that for the ℓ∞ case, upper bounds as in the non-negative case cannot exist
for general sparse vectors. Note that prior lower bounds studied in Zhu et al. (2015) are restricted
to linear maps. In contrast, we show in the following theorem that any map which satisfies the
same hypothesis as Theorem 2.5, but which holds for general sparse vectors with possibly negative
entries, must embed into Ω(d) dimensions.
Theorem 2.9. Let ei be the ith basis vector in Rd. Consider the set S = {±ei} ∪ {0} of 2d + 1
vectors. Suppose f : S → Rm be an arbitrary mapping which satisfies

0.9∥x− y∥∞ ≤ ∥f(x)− f(y)∥∞ ≤ 1.1∥x− y∥∞ ∀x, y ∈ S,

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ C∥x+ y∥∞ ∀x, y ∈ S

for any C ≥ 1. Then m ≥ d.

The final lower bound implies that Ω̃(s) embedding dimension is necessary in Theorem C.2.
Theorem 2.10 (Informal, see Theorem D.1). Any map f satisfying similar guarantees to that of
Theorem C.2 with ε = O(1) must map to Ω(s/ log(n)) dimensions.

Approx. ℓp norm
Our embedding

dimension

Prior embedding

dimension

Prior

Reference

1± ε

2 < p < ∞

O
(

s log(n)
ε2

)
Non-linear Map

s2

ε2 · (p log(n))O(p)

Linear Map
Zhu et al. (2015)

1 < p < 2
O
(

sp log(d)
ε2 + s4−2/p−p log(d)

ε2/(p−1)

)
Linear Map

Zhu et al. (2015)

p ∈ {1, 2}
O
(

s log(d/s)
ε2

)
Linear Map

Candes & Tao (2005); Berinde et al. (2008)

1 p = ∞
O(s log(n))

Non-linear Map
- -

Table 2: Our upper bound results. The ambient dimension is d. Our upper bounds are in Theorem
C.2, and hold for a set of n non-negative s-sparse vectors. The first row is not explicitly given in
Zhu et al. (2015), but can be derived from their argument. However, their result also holds for n
arbitrary s-sparse vectors. The 1 ≤ p ≤ 2 cases of prior work can also handle all s-sparse vectors
simultaneously.

2.3 APPLICATIONS OF OUR NON-NEGATIVE EMBEDDING

Our dimensionality reduction upper bound for non-negative sparse vectors, just as the JL lemma,
has a slew of downstream algorithmic applications. We present a small subset of some of the new
applications here, with a focus on more fundamental geometric optimization problems that have
been well studied. At a high level, dimensionality reduction allows us to make black-box use of any
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existing algorithm for a geometric task in low-dimensions. If the dimensionality reduction step is
sufficiently powerful, we can hope to get faster runtimes at the cost of a small approximation factor
loss; see Table 3 for a summary of our downstream algorithmic applications (diameter, max-cut,
k-clustering, and more).

Problem Definition
Embedding

Dimension
Distortion Reference

Diameter E.1 O(s2) 1 Lemma E.1 and Theorem E.3

Max-Cut E.2 O(s/ε2) 1± ε Theorem E.4

k-median/k-center E.3 O(s log(n)/ε2) 4± ε Theorem E.5

k-means E.3 O(s log(n)/ε2) 16± ε Theorem E.5

Distance Estimation E.4 O(s/ε2) 1± ε Theorem E.6

Table 3: Applications of our dimensionality reduction upper bound. The input is always a dataset of
n s-sparse non-negative vectors and the underlying norm is ℓp for an arbitrary p ≥ 1. The distortion
bounds hold with probability at least 99%. See the theorem statements for full details.

3 TECHNICAL OVERVIEW

We give on overview of our average-case lower bounds for embedding arbitrary sparse vectors and
upper bound for embedding non-negative sparse vectors.

3.1 OVERVIEW: AVERAGE-CASE LOWER BOUNDS

In this section, we provide insights to our lower bound result of Theorem 3.1. Similar ideas are used
in all of our average-case lower bounds, so we focus on this case which is the most instructive.

First we briefly outline how a known lower bounds for the JL lemma is proven. We state the proof
of Alon (2003) where a slightly suboptimal lower bound is given (the result is tight up to log(1/ε)
factors), but is perhaps more pedagogically useful in relation to our approach.

Alon (2003) construct a specific set of n unit vectors and consider an embedding of these points into
m dimensions which preserves all pairwise distances up to 1 ± ε multiplicative factor, or the inner
product up to additive ±ε. Letting X ∈ Rn×m denote the matrix of embeddings, they consider the
gram matrix XXT . The key point is that they have precise control on all the entries of XXT due to
the JL assumption. This allows them to argue that the rank of X must be sufficiently large, implying
a lower bound for m, the embedding dimension.

For us, we cannot directly employ this approach. Our lower bound hypothesis is weaker since we
only guarantee that the norm is preserved say 99% of the time. This means that we have no control
over a constant fraction of the entries in XXT , which can wildly influence the rank. However, this
approach suggests that rank is a useful parameter and this observation is the starting point of our
lower bound.

We now outline our lower bound approach for the case of a linear map A given in Theorem 3.1. We
first construct a suitable ‘hard’ input. We remark that showing a lower bound under this specific hard
example extends to a lower bound for general point sets, as the former is a special case of the latter.
The hard input we use can be represented as a distribution over sparse vectors. Our distribution
first randomly samples the support elements and then puts random Gaussian values in the sampled
support. The distribution we use, Unift,r, is defined below.

Definition 3.1. To generate x ∼ Unift,r,

1. First pick t coordinates uniformly at random to be the support.

2. The non-zero coordinates of x are mean zero i.i.d. Gaussians with variance r.
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If r = 1, we also denote the distribution as Unift. Theorem 3.1 states the following.

Theorem 3.1. Let A : Rs2 → Rm be a linear map and γ ≤ C/s for a sufficiently small constant
C > 0. If A is such that for any 1 ≤ t ≤ s,

Pr
u∼Unift

(
|∥Au∥22 − ∥u∥22| ≤ γ∥u∥22

)
≥ 0.99,

then m ≥ s2/1000.

Note that as stated above, we are assuming the ambient dimension is s2. This easily generalizes to
any larger dimension by padding zeros.

To begin the proof, we first assume for contradiction that m ≪ s2. Now note that

∥Ax∥22 − ∥x∥22 =
∑
i,j

xixj⟨Ai, Aj⟩ −
∑
i

x2
i = Tr(xxTATA)−

∑
i

x2
i

where Ai are the columns of A. For simplicity, let’s ignore the
∑

i x
2
i portion for the rest of the

discussion. We also assume the sum
∑

i,j xixj⟨Ai, Aj⟩ is over i ̸= j. (In the formal proof, we
show that the

∑
i x

2
i portion and the

∑
i x

2
i ∥Ai∥22 ‘roughly cancel’.) We view this expression as

a polynomial P (x) of degree 2 in the variables xi. Then the condition |∥Ax∥22 − ∥x∥22| ≤ γ∥x∥22
implies that with large probability, P (x) lies in a fixed interval I of size O(1) (as typically, γ∥x∥22 =
O(1)). Our goal now is to show that P (x) has variance Ω(1) (under the randomness of x), implying
it does not lie in any fixed I with large constant probability, violating the hypothesis of the theorem.

Now it would be very bad for us if P takes on ‘very small’ values over a typical choice of x. This
means that we cannot rule out P ∈ I . For example, P could even be equal to 0 if the non-zero entries
of xTx only collide with the zero entries of ATA. To avoid this possibility, we first demonstrate that
a large fraction of the columns of A have norms very close to 1. However, there are s2 columns,
which are all in Rm. Since we assumed m to be very small, this means that we have ≫ m almost-
unit vectors in m dimensions. We show that this implies there are at least Ω(s2) pairs of Ai and Aj

that have non-zero inner products (note that there are Θ(s4) total pairs). This bound crucially relies
on the fact that m ≪ s2 and can be thought of as a ‘generalized’ version of the rank argument used
in Alon (2003). Since any pair (i, j) is non-zero in xTx with probability approximately 1/s2, this
means xTx and ATA ‘collide’ on a non-zero entry with a large constant probability.

However, this is not quite strong enough for our purposes since the coefficient of P , which are
exactly ⟨Ai, Aj⟩, can be very close to 0 and unluckily, xTx could only collide on such small entries.
Thus, our refined aim is to show that the coefficients of P that collide with the non-zero entries of
xTx are ‘large’ in the sense that the sum of these coefficient squared is Ω(1). It can be checked that
this is sufficient to show the variance of P (x) = Ω(1).

Then in the formal proof, we show that the sum of non-zero coefficient squared is Ω(1), via a
‘fine-grained’ exploitation of the fact that m ≪ s2 (i.e. another appearance of rank). Now to
argue anti-concentration of P (x), we invoke the following classical inequality which states that the
random variable P (x) cannot be concentrated in an interval that is much smaller than the variance
(which is directly related to the sum of non-zero coefficients squared).
Lemma 3.2 (Theorem 8 in Carbery & Wright (2001)). Let P : Rn → R be a degree d polynomial
and Z denote the random variable where P is evaluated on a standard Gaussian vector in Rn. Then

Pr(|Z| ≤ ε
√

Var(Z)) ≤ O(dε1/d).

An application of Lemma 3.2 then implies that with sufficiently large constant probability, P (x)
does not lie in the interval I defined above, contradicting the theorem hypothesis that ∥Ax∥22 ap-
proximately preserves the norm of x with large probability. Hence, our assumption that m ≪ s2 is
not valid, finishing the proof. The formal details are given in the proof of Theorem 3.1.

3.2 OVERVIEW: EMBEDDING NON-NEGATIVE SPARSE VECTORS

The goal of this section is to motivate our upper bound result of Theorem C.2. For simplicity, we
only focus on the ℓ∞ norm case of the theorem in the overview, but the ideas generalize to any ℓp.

The main idea is to first construct a map with slightly weaker guarantees. We initially give a con-
struction of a (randomized) map f : Rd → RO(s) such that
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1. f preserves the ℓ∞ norm of any pair in X with probability 99%.

2. f is never expanding deterministically: ∥f(x)− f(y)∥∞ ≤ ∥x− y∥∞ always.

Before discussing the construction of f , let’s quickly see why the two points are beneficial towards
the final construction. The final construction simply concatenates O(log n) independent copies of
f . Due to independence, with high probability, every pair x, y will have at least one copy of f which
‘certifies’ the ℓ∞ norm between them is at least ∥x− y∥∞ (due to property (1)). Furthermore, since
we know every copy of f is non-expanding, we will never overestimate the distance (due to property
(2)). Putting together these two statements implies the guarantees of our main theorem (for the ℓ∞
case).

Now we describe the construction for f which satisfies the two properties listed above. Property (1)
actually holds for the birthday paradox map. However, this will not ultimately work since it cannot
guarantee property (2). (And more directly, our lower bound in Theorem 2.6 rules out all linear
maps). Instead, we use a highly non-linear map f . Similar to the birthday paradox map, we start by
hashing all coordinates of the ambient dimension, d, to a set of O(s) buckets. These buckets are the
coordinates of the embedding. The crucial difference is that instead of summing the coordinates that
land in a bucket, we take the maximum, a very unintuitive operation. More precisely, for a sparse
vector x, we look at the buckets where the support elements of x land. Then for all buckets which
are non-empty, we take the maximum of the support elements of x that land in the bucket, while all
empty buckets get 0.

The hashing step already guarantees property (1), similar to the birthday paradox upper bound. So it
remains to check property (2). This reduces to checking the following: suppose coordinates 1, . . . , k
map to the same bucket under f . Let x and y be two non-negative sparse vectors. Then we want
|max(x1, . . . , xk) − max(y1, . . . , yk)| ≤ maxi |xi − yi|, where xi and yi are the ith entries of x
and y (they may be 0). We can check that this is sufficient to imply property (2). To show this
claim, imagine all the coordinates xi and yi together on the real line. They must all be to the right
of the origin due to the non-negativity constraint. The right most coordinate, say x1 without loss of
generality, is always closer to the rightmost coordinate among the y’s, than it is to y1. So the claim
follows.

This construction crucially relies on the non-negativity of the vectors. An explicit example where
our proposed map fails for arbitrary sparse vectors is as follows: consider two sparse vectors
x = [−1, 0, . . . , 0] and y = [0, 1, 0, . . . , 0]. Clearly, ∥x − y∥∞ = 1. Now suppose the first two
coordinates hash to the same bucket under f . Then the first coordinate of f(x) will have coordinate
−1, since we take the maximum of all the support elements of x that land in the first bucket. In this
trivial case, the bucket is a singleton. Similarly, the first coordinate of the embedding of y will be 1,
so ∥f(x) − f(y)∥∞ = 2. Thus, property (2) does not hold as the distance expands. One could try
to massage the map f to fix this particular issue, but our Theorem 2.9 rules out the existence of any
map which preserves the distances between arbitrary sparse vectors in ℓ∞ norm.

3.3 OPEN PROBLEMS

We note some interesting questions that follow naturally from our work.

1. What is the right ε and s dependency for sparse non-negative dimension reduction (The-
orem C.2)? Can we improve upon the Ω̃(s) lower bound of Theorem D.1 to also include
ε factors? For example, for every p ≥ 1, can we construct a set of n non-negative s-
sparse vectors such that any embedding f to m dimensions which preserves all pairwise
ℓp distances up to distortion 1 ± ε requires m = Ω(s log(n)/ε2)? Interestingly, such a
lower bound cannot be true for the p = 2 case since JL already gives us an upper bound
of O(log n/ε2) (regardless if the vectors are sparse or dense), so we must look at other
p’s. On the other hand, for the p = 2 case, the JL lower bound of Alon (2003) implies a
Ω(log(n)/(ε2 log(1/ε))) lower bound for arbitrary mappings (for a 1 ± ε approximation)
since their hard point set consists of basis vectors (i.e. 1-sparse). Thus, we know some-
thing about the ε dependency for the p = 2 case. Can we extend this lower bound to other
ℓp norms? Note that our ‘average-case’ lower bounds discussed in Section 3.1 are not di-
rectly applicable since they rule out exact (not approximate) dimensionality reduction for a
constant fraction of (not all) pairs of vectors.
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Figure 1: A simple plot demonstrating the performance of our non-negative embedding (Theorem
C.2) versus the map of Zhu et al. (2015). The dots represent a 10-sparse vectors in R1000 with
non-zero entries chosen uniformly in [0, 1]. The x-axis is the true ℓ∞ norm and the y axis is the
approximated norm using the two different maps. Every vector has two dots (one for each map). We
adapt both maps to embed to R50, but the performance is qualitatively similar for other m. We see
that the performance of our map is demonstrably superior (it hugs the y = x line).

2. Our ‘average-case’ lower bound of Theorem B.1 states that the folklore birthday-paradox
mapping of Definition 1.1 is optimal for linear maps as well as sufficiently-smooth maps.
It is an interesting question to prove a similar bound for arbitrary maps for the question of
preserving 99% of distances between sparse vectors. Note that for linear maps, preserving
distances is equivalent to preserving norms (on the set of differences of vectors), but this is
not the case for arbitrary maps. The question of only preserving norms is easy for arbitrary
maps: there exists an upper bound of 1 dimensions by just writing down the norm exactly,
so the question of preserving distances is the natural one.

3. What is the power of non-linear embeddings in dimensionality reduction? Many oblivious
dimensionality reduction upper bounds in literature use linear maps. Our results demon-
strate a separation between linear and non-linear maps in the natural case of non-negative
sparse vectors, and it is intriguing to ask if such separations exist in other settings.

4. In general, are there other natural dataset assumptions or relaxations that enable beyond
worst case dimensionality reduction?

4 OUTLINE OF THE APPENDIX

Full details can be found in the appendix, which is organized as follows. Section A contains a
discussion on related works. Section B gives full proofs for lower bounds for Question (1). Section
C gives the full proofs for our upper bounds for Question (2). Section D proves that all of the
hypothesis in our upper bound for embedding for non-negative sparse vectors are necessary. Lastly,
Section E gives novel algorithmic applications based on our embedding for non-negative sparse
vectors.
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A RELATED WORKS

Lower-bounds for the JL Lemma Lower bounds for dimensionality reduction were intro-
duced for understanding the minimum embedding dimension for n vectors with at most 1 + ε
multiplicative distortion. By using rank arguments of perturbed identity matrices, as outlined
in Section 3.1, the first such lower bounds showed that the embedding dimension must satisfy
Ω(log(n)/(ε2 log(1/ε))), even when the embedded vectors are simple basis vectors Alon (2003).
Furthermore, these bounds hold even when a non-linear or adaptive embedding function is applied;
however they crucially depend on the maximum distortion being smaller than ε. These lower bounds
were improved to an optimal Ω(log(n)/ε2) bound for an oblivious or fixed linear map Larsen &
Nelson (2014), and then finally improved to any non-oblivious, non-linear embedding function by
Larsen & Nelson (2017). It is worth noting that the final construction is significantly different that
that of previous works and does not use nearly orthogonal sparse vectors. Note that these lower
bounds inherently rely on the assumption that the dot product of the embedding must approximately
preserve the dot product, without any post-processing or decoding.

Speeding up JL for Sparse Vectors There have been a number of works on speeding up the
runtime for embedding a collection of n sparse vectors using a JL map (while still embedding
to O(log(n)/ε2) dimensions). Kane & Nelson (2014) demonstrates a distribution over sparse JL
embedding matrices Π such that Πx takes Õ(∥x∥0/ε) time to compute, where ∥x∥0 denotes the
number of non-zero entries of a vector x.

Distributional Embedding Lower Bounds and JL Recall that the standard JL lemma states that
for any n vectors in Rd, one can use a random Gaussian embedding to O(log(n)/ε2) dimensions
to guarantee the following maximum distortion bound with high probability: (1 − ε)∥x − y∥2 ≤
∥Ax− Ay∥2 ≤ (1 + ε)∥x− y∥2 for all x, y ∈ V , where |V | = n. Furthermore, this embedding is
also oblivious. While it is also known that the JL lemma is tight in the worst case, we emphasize that
even our average-case lower bounds towards Question (2) (see Section 2.1) are not implied by the
existing JL lower bounds, even for the p = 2 case of Theorem 2.1. At a high level, this is because
our hypothesis is much weaker (we only require a large fraction of the norm to be preserved, rather
than all pairs). We elaborate below.

JL embedding lower bounds state that for large enough n, there exists a specific point set on n points
such that any map f which preserves all pairwise distances must map to Ω(log(n)/ε2) dimensions
Larsen & Nelson (2017). The main difference between this lower bound and our lower bounds of
Section 2.1 are that the hypotheses assumed are different. The JL upper bound guarantee implies
approximate norm preservation for every pair of differences of points in a collection of n points,
simultaneously and with high probability. Similarly, the JL lower bound assumes approximate norm
preservation for every pair in a collection of n vectors. On the other hand, the folklore birthday
paradox upper bound assumes a fixed sparse vector as input, whose norm it preserves with constant
probability. Similarly, our lower bounds of Section 2.1 only assume approximate norm preservation
only a constant fraction of the time across a uniform distribution of suitably chosen sparse vector
inputs. Consequently, we have no term depending on the number of input vectors in the statement
(both in the folklore upper bound and the lower bounds).
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There is also the distributional JL lemma which is a random map from Rd → RO(1/ε2) preserving
the norm of any fixed vector in Rd up to a multiplicative 1± ε with probability at least 99% Johnson
& Lindenstrauss (1984). It is shown in Jayram & Woodruff (2013) that the projection dimension of
the distributional JL lemma is tight information theoretically. This ostensibly seems to imply our
lower bounds (e.g. the p = 2 case of Theorem 2.1), for example if we parameterize the sparsity as
s = 1/ε, seemingly rendering our lower bounds obsolete. But this is not the case! The information-
theoretic lower bound proved in Jayram & Woodruff (2013) relies on dense vectors in Rd. This is
not an artifact of the proof, but an inherent requirement to prove their information-theoretic lower
bound: any such lower bound cannot use sparse vectors. This is because information-theoretically,
there is already a smaller projection dimension from compressed sensing: we can encode any sparse
vector in Õ(s) dimensions. Parameterizing the sparsity by s = 1/ε, this implies an information-
theoretic upper bound of Õ(1/ε), demonstrating that the lower bound of Jayram & Woodruff (2013)
is not applicable to sparse vectors.

Compressed Sensing The field of compressed sensing studies decoding to recover encoded or
compressed sparse vectors Donoho (2006). The restricted isometry property (RIP), introduced in
Candes & Tao (2005), is a way to recover sparse vectors and focuses on bounding the RIP constant:
the maximum distortion D of a linear map A ∈ Rm×d on all s-sparse vectors: (∥x∥p ≤ ∥Ax∥p ≤
D∥x∥p for all x with x ∈ Rd and s-sparse. The mappings under matrices with good RIP constants
can serve as the compressed representation. Furthermore, matrices with such properties automat-
ically give dimensionality reduction for s-sparse vectors. The prior known bounds for m for RIP
matrices with distortion 1± ε are O(s log(d/s)/ε2) for the p = 1 and 2 case Candes & Tao (2005);
Berinde et al. (2008). For other values of p, Zhu et al. (2015) gave bounds of the form Õ(sp). If we
only require to embed n many s-sparse vectors, then one can calculate that Zhu et al. (2015)’s bound
can be converted to s2(log(n)p)O(p), ignoring ε factors (see Table 2). Thus, both bounds suffer an
exponential dependence on p. Zhu et al. (2015) further showed that m = Ω(sp) if A has a bounded
RIP constant.

We note that if the RIP constant is small enough, then applying a linear programming decoding via ℓ1
minimization recovers the sparse vectors when compressed to the informational-theoretical optimal
O(s log(d)) dimensions, with a matching lower bound Li et al. (2020); Mai et al. (2023). There are
other alternatives, e.g. based on CountSketch Charikar et al. (2002); Price & Woodruff (2011), but
all these decoders solve a complex optimization problem. Moreover, these mappings do not serve as
embeddings/dimensionality reduction (e.g. the ℓp of the original vector is not approximated by the
ℓp norm of the mapping).

Role of Sparsity in Machine Learning Primitives for sparse vectors, such as sparse matrix mul-
tiplication, is fundamental in a wide range of domains, such as graph analytics and scientific com-
puting, and is used as iterative algorithms for sparse matrix factorization. Moreover, the field of
deep learning often relies on faster sparse kernels to demonstrate speedups in practice, as it is a core
operation in graph neural networks, transformers, and other architectures Child et al. (2019); Hoefler
et al. (2021). On the theoretical side, there are also many works which seek to understand the role
of sparsity in computational hardness for optimization problems such as sparse regression Natarajan
(1995); Davis et al. (1997); Mahabadi (2015); Foster et al. (2015); Har-Peled et al. (2018); Chen
et al. (2019); Gupte & Vaikuntanathan (2021); Price et al. (2022).

Non-linear dimensionality reduction One particularly interesting facet of our upper bound for
embedding non-negative sparse vectors is that the mapping we give is non-linear. This is an example
of an oblivious dimensionality reduction map (a mapping that does not depend on the input dataset)
with this property. Oblivious maps include for instance JL matrices and RIP matrices, which are
linear maps. We would like to highlight that non-linear dimensionality reduction results have found
many applications, such as modifications of the JL lemma to ℓ2 distances raised to fractional powers
Gottlieb & Krauthgamer (2015); Bartal et al. (2011), terminal embeddings for ℓ2 Cherapanamjeri &
Nelson (2024); Narayanan & Nelson (2019); Mahabadi et al. (2018); Elkin et al. (2016), and finding
the optimal way to embed a given set of vectors in euclidean space Grötschel et al. (2012). The last
two of the aforementioned applications crucially adapt the mapping to a given input point set and
are not oblivious.
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B AVERAGE-CASE LOWER BOUNDS FOR EMBEDDING GENERAL SPARSE
VECTORS

The goal of this section is to prove lower bounds showing that the birthday paradox map of Definition
1.1 is optimal in many settings. The point set we use are generated randomly from the following
distribution as discussed in Section 3.
Definition 3.1. To generate x ∼ Unift,r,

1. First pick t coordinates uniformly at random to be the support.

2. The non-zero coordinates of x are mean zero i.i.d. Gaussians with variance r.

Our first result is to show that any linear map with the same average-case guarantees as the birthday
paradox map must map to Ω(s2) dimensions. Note that the birthday paradox map satisfies the
hypothesis of the theorem statement below up to constant factors (by mapping to Cs2 dimensions
for a sufficiently large constant C). This is because any fixed set of coordinates of size at most s
hashes to unique buckets under the map with probability say at least 99% (by picking large enough
C). If this is the case, then it does not matter what entries we put in this set of coordinates.

Theorem B.1. Let A : Rs2 → Rm be a linear map and p ≥ 2 be an even integer. If A is such that
for any 1 ≤ t ≤ s,

Pr
u∼Unift

(∥Au∥p = ∥u∥p) ≥ 0.99,

then m ≥ s2/1000.

Proof. Suppose for the sake of contradiction that m < s2/1000. The proof is roughly divided into
three parts. The first part shows that ATA has many ‘non-zero’ coordinates. The second part shows
that a random sparse vector u (as chosen in the hypothesis of the theorem statement) has ‘many’
pairs of coordinates ui and uj such that the corresponding (i, j) entry in ATA is also non-zero. The
last part then shows that the prior result implies that A does not (approximately) preserve the norm
of u with a large constant probability, contradicting the assumption of the theorem. The last part
relies on the fact that the zero set of a non-zero polynomial has measure 0.

Part #1. Let A1, . . . , As2 denote the columns of A. Let v be a random vector chosen from Unif1,
and let i be its support with vi the corresponding non-zero entry. Then ∥Av∥pp = ∥Ai∥pp · vpi and
∥v∥pp = vpi . Then the hypothesis implies that

Pr(|∥Ai∥22 − 1| ≤ 0.00001) ≥ 0.99. (1)

(Note that we deliberately work with a weaker hypothesis since it will be more useful to us later on).
Thus, a 0.99 fraction of the columns of A have Euclidean norm in the range [0.9999, 1.0001]. Let
AX be the restriction to such columns. Note that all diagonal entries of AT

XAX are at in the range
[0.999, 1.001] and all entries are bounded by 1.001 in absolute value (via Cauchy-Schwarz on the
columns of AX ). For i ≥ 1, we let ℓi denote the number of non-diagonal entries of AT

XAX whose
absolute values are in (2−i, 2−i+1] and ℓ0 denote the rest of the non-diagonal entries (with absolute
values in (1, 1.001]). We show the following claims hold.

a) ∥AX∥2F ≥ (0.99)2s2,

b) ∥AT
XAX∥2F ≥ (.99)4s4

m ,

c)
∑

i≥0 ℓi2
−2i+2 ≥ (.99)4s4

m − 1.001s2.

Claim (a) readily follows from inequality equation 1. To show (b), note that singular values of
AT

XAX are the squared singular values of AX so ∥AT
XAX∥2F =

∑m
i=1 σi(AX)4 (since the rank of

A is at most m). By Cauchy–Schwarz,

m · ∥AT
XAX∥2F = m

∑
i

σi(AX)4 ≥

(∑
i

σi(AX)2

)2

= ∥AX∥4F ≥ (.99)4s4.
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To show (c), note that all diagonal entries of AT
XAX are at in the range [0.999, 1.001]. Claim (c)

then follows from using the lower bound of Claim (b) since there are at most s2 diagonal entries.

Part #2. Now let u be a vector drawn from Unifs and let T be its support. The hypothesis of the
theorem states that

Pr(∥Au∥p = ∥u∥p) ≥ 0.99. (2)
Our goal is to demonstrate a contradiction by showing Pr(∥Au∥p ̸= ∥u∥p) ≥ 0.02, which contra-
dicts equation 2.

Let uX be the restriction of u to the coordinates in X (i.e., only keep the coordinates in X). Consider
uXuT

X . By our choice of u, the non-zero entries of uXuT
X lie on a random principal submatrix of

size |T ∩X| × |T ∩X|. We show that with a sufficiently large constant probability, both uXuT
X ∈

R|X|×|X| and AT
XAX ∈ R|X|×|X| have a non-zero value in ‘many’ shared entries.

Towards this end, let Yij be the indicator variable for the entry (i, j) in uXuT
X being non-zero and

let sij denote the squared (i, j) entry of AT
XAX . We know

E[Yij ] =
s(s− 1)

s2(s2 − 1)
=

1

s(s+ 1)
.

Finally, let Z =
∑

i,j sijYij . Recalling our partitions ℓk that we defined earlier and Claim (c), we
have

E[Z] =
∑
i,j

sij E[Yij ] ≥
1

s(s+ 1)

∑
k

ℓk2
−2k ≥ 1

4s(s+ 1)

(
(.99)4s4

m
− 1.001s2

)
> 200.

We want to show Z concentrates well around its mean. Towards this end, we bound E[Z2]. We have

Z2 =

∑
i,j

sijYij

2

=
∑
i,j

s2ijYij +
∑
i,j,j′

sijsij′YijYij′ +
∑

i,j,i′,j′

sijsi′j′YijYi′j′ .

Since s2ij ≤ 1.001, the first term can be bounded as

E

∑
i,j

s2ijYij

 ≤ 1.001

s(s+ 1)

∑
i,j

sij = 1.001E[Z].

Similarly, the third term can be bounded as

E

 ∑
i,j,i′,j′

sijsi′j′YijYi′j′

 =
∑

i,j,i′,j′

sijsi′j′

(
1

s(s+ 1)

)2

≤

∑
i,j

sij
s(s+ 1)

2

= (E[Z])
2
.

It remains to bound the second term. We know E[YijYij′ ] ≤ 1/s3. For a row i of AT
XAX , let Zk(i)

denote the number of entries in that row which are in level ℓk. Then the second sum is

E

∑
i,j,j′

sijsij′YijYij′

 ≤ s
∑
i

∑
j,j′

sijsij′

s4

≤ 4s
∑
i

∑
k,k′

Zk(i)Zk′(i)

s422k22k′

= 4s
∑
i

(∑
k

Zk(i)

s222k

)2

.
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Let ti =
∑

k Zk(i)2
−2k. We now consider the following two cases.

Case 1: At least half of the ti’s are at least s. In this case, we note that

E[Z] ≥
∑
i

∑
k

Zk(i)

22ks2
=
∑
i

ti
s2

≥ |X|
2s

≥ 0.495s.

We have

4s
∑
i

(∑
k

Zk(i)

s222k

)2

≤ 4s
∑
i

∑
k

Zk(i)

s222k
≤ 4sE[Z]

where we have used the fact that
∑

k Zk(i) ≤ s2. So altogether,

E[Z2] ≤ 5sE[Z] + E[Z]2 ≤ 12E[Z]2.

Thus the Paley–Zygmund inequality implies that

Pr(Z ≥ 1) ≥ (1− 0.01)2 · E[Z]2

E[Z2]
≥ 1

20
.

Case 2: At least half of the ti’s are at most s. In this case, let AT
X′AX′ be AT

XAX restricted to the
rows where ti ≤ s. We know |X ′| ≥ 0.5|X|. Our goal is to show that AT

X′AX′ still has at least
‘many’ non-zero off-diagonal entries.

The proof is identical to the proof of the three claims (a), (b), (c) above. All sums below only pertain
to the matrix AT

X′AX′ . Indeed, we know ∥AX′∥2F ≥ 0.495s2 so

m · ∥AT
X′AX′∥2F = m

∑
i

σi(AX′)4 ≥

(∑
i

σi(AX′)2

)2

= ∥AX′∥4F ≥ (.495)2s4.

Combining with the fact that all non-diagonal entries are bounded by 1.001 in absolute value, the
above inequality implies that

∑
i≥0 ℓi2

−2i+2 ≥ (.495)2s4/(1.001m) − s2 ≥ 50s2. Furthermore,
for a row i of AT

X′AX′ , ∑
k

Zk(i)

s222k
=

ti
s2

≤ 1

s
,

so we can bound

4s
∑
i

(∑
k

Zk(i)

s222k

)2

≤ 4
∑
i

∑
k

Zk(i)

s222k

= 4
∑
i

ti
s2

≤ 4E[Z].

Thus,
E[Z2] ≤ 6E[Z] + E[Z]2.

So by Payely-Zygmund,

Pr(Z ≥ 1) ≥ (1− 0.01)2 · E[Z]2

E[Z2]
≥ 1

20
.

Thus we see that Z ≥ 1 with probability at least .05 in both cases.

Part #3. Recalling that T is the support set of u, we have Au
∑

t∈T utAt and thus,

∥∥∥∥∥∑
t∈T

utAt

∥∥∥∥∥
p

p

− ∥u∥pp =
∑

i1,...,ip

ui1 · · ·uip

∑
j∈[m]

Ai1(j) · · ·Aip(j)

−
∑
t∈T

u2
t := P (u), (3)
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where the outer sum is over all p-sized tuples of indices (with repeats allowed), the notation Ai1(j)
denotes the jth entry of the column Ai1 , and the inner sum is over all the entries of the column.

We claim that if p is an even integer, then P (u) is a non-zero polynomial. To do so, we demonstrate
a monomial ui1 · · ·uip with a non-zero coefficient. Now if we assume Z ≥ 1, then this implies there
exists two columns say A1 and A2 of A such that ⟨A1, A2⟩ is non-zero and both 1 and 2 are in the
support set T of u. We consider the following different cases for p.

If p = 2, consider the monomial u1u2. It’s coefficient in P is
∑

j A1(j)A2(j) = ⟨A1, A2⟩ ≠ 0, so
we are done. Now if p > 2 and even, instead consider the monomial up−2

1 u2
2. We claim that this is

non-zero. Indeed, since p− 2 is also even,
∑

j A1(j)
p−2A2(j)

2 must be non-zero since it is a sum
of non-negative terms, one of which is non-zero (since at least one j satisfies A1(j)A2(j) ̸= 0). So
we are also done.

Now finally, we note that since the entries of u in its support are picked from a continuous distribu-
tion and P is non-zero, the probability of the event P (u) = 0 is also 04. However, ∥Au∥p = ∥u∥p
implies ∥Au∥pp − ∥u∥pp = P (u) = 0. Overall, with probability at least 0.05 (the event that Z ≥ 1),
we have P (u) ̸= 0, contradicting the hypothesis equation 2. Thus, m ≥ s2/1000, as desired.

We extend the previous theorem to the case of approximate norm preservation for the ℓ2 case.

Theorem 3.1. Let A : Rs2 → Rm be a linear map and γ ≤ C/s for a sufficiently small constant
C > 0. If A is such that for any 1 ≤ t ≤ s,

Pr
u∼Unift

(
|∥Au∥22 − ∥u∥22| ≤ γ∥u∥22

)
≥ 0.99,

then m ≥ s2/1000.

Proof. Suppose for the sake of contradiction that m < s2/1000. The proof is roughly divided into
three parts as in Theorem B.1. The first part shows that ATA has many ‘non-zero’ coordinates. The
second part shows that a random sparse vector u (as chosen in the hypothesis of the theorem state-
ment) has ‘many’ pairs of coordinates ui and uj such that the corresponding (i, j) entry in ATA
is also non-zero. The last part then shows that the prior result implies that A does not (approxi-
mately) preserve the norm of u with a large constant probability, contradicting the assumption of
the theorem. The last part relies on bounding the probability that a random polynomial lies in an
unexpectedly small interval. Since the first two parts are identical, we just present the last part.

Recall the random variable Z defined in the proof of Theorem B.1. There we showed that Z ≥ 1
with probability at least 0.05.

Part #3. Recalling that T is the support set of u, we have ∥Au∥22−∥u∥22 =
∥∥∑

t∈T utAt

∥∥2
2
−∥u∥22.

∥∥∥∥∥∑
t∈T

utAt

∥∥∥∥∥
2

2

− ∥u∥22 =
∑

t̸=t′∈T

utut′⟨At, At′⟩+
∑
t∈T

ϵtu
2
t := P (u) (4)

where |ϵt| ≤ 0.001. If we pick the entries of u to be standard Gaussians, we have

E[P (u)] =
∑
t

ϵt.

Recalling that Yij is the indicator for uT
XuX having a non-zero entry at (i, j), we have

E[P (u)2] ≥
∑
i,j

sijYij +
∑

t ̸=t′∈T

ϵtϵt′ +
∑
t∈T

3ϵ2t

so
Var(P (u)) = E[P (u)2]− (E[P (u)])2 ≥

∑
i,j

sijYij = Z.

Thus, if we assume that Z ≥ 1, then Lemma 3.2 implies that if the variables of u in the support T are
picked from the standard Gaussian distribution, then the probability that P (u) ∈ [−ε, ε] = O(

√
ε)

for any sufficiently small ε > 0. Now consider the following three events.
4e.g. see (https://math.stackexchange.com/users/822/nate eldredge)
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• E1 = event that ∥u∥22 ≤ 100s.

• E2 = event that Z ≥ 1.

• E3 = event that P (u) ̸∈ [−c, c] for a sufficiently small constant c.

By picking c to be a small enough constant, we know that all the events hold with probability
at least 0.02. Let’s condition on all of these events holding. If so, we show that the condition
|∥Au∥22 −∥u∥22| ≤ γ∥u∥22 cannot hold. Indeed, the condition directly implies that ∥Au∥22 −∥u∥22 =
P (u) lies in an interval strictly contained in [−c, c]. Thus altogether, with probability at least 0.02,
we have |∥Au∥22−∥u∥22| > γ∥u∥22, contradicting inequality equation 2. This finishes the proof.

We now extend the result of the prior theorem to a more general class of mappings. We recall the
general class that we consider, as described in Section 2. We let f : Rs2 → Rm where f(x) =

(f1(x), . . . , fm(x)) and assume each fi : Rs2 → R is twice differentiable with continuous second
partial derivatives.

At a high level, the level of smoothness assumed allows us to consider a taylor expansion, where
we approximate each fi using a linear function up to some quadratic error. By taking the expansion
sufficiently close to the origin, the quadratic error becomes negligible, thereby reducing the problem
to the linear case. Crucially, we use the fact that our sparse vectors are drawn from a ‘scale invariant’
distribution, in the sense that scaling a vector sampled from Unift,r is equivalent to sampling from
Unift,r′ for an appropriate r′. The full details are given in the proof below.

Theorem B.2. Suppose γ ≤ C/s for a sufficiently small constant C > 0. If f : Rs2 → Rm as
defined above is such that for any 1 ≤ t ≤ s and any r > 0,

Pr
x∼Unift,r

(
|∥f(x)∥22 − ∥x∥22| ≤ γ∥x∥22

)
≥ 0.999,

then m ≥ s2/1000.

Proof. Note that we may assume that fi(0) = 0; otherwise our guarantees would trivially fail when
r → 0. Since the second partial derivatives of all fi which comprise f are continuous, they are
bounded in magnitude in [−1, 1]s

2

, a compact set. Let L be such an upper bound which holds for
all i (note that L may depend on s). Now we let c ≪ 1 be a sufficiently small value which will be
determined shortly. For any fixed fi, Taylor’s theorem for multivariate functions5 implies that for
any x ∈ [−c, c]s

2

,

|fi(x)− ⟨∇fi(0), x⟩| ≤ L (x1 + . . .+ xs2)
2 ≤ Ls4c2

for every i. Let A : Rs2 → Rm be the matrix with ai as it’s rows. The above inequality implies that

∥f(x)−Ax∥∞ ≤ c2s4L.

Thus Lemma F.3 implies that

|∥f(x)∥22 − ∥Ax∥22| ≤ c3 · poly(s, L) (5)

for all x ∈ [−c, c]s
2

satisfying ∥f(x)∥22 ≤ 2∥x∥22. By picking c sufficiently small, we can say the
following:

• For any x ∈ [−c, c]s
2

such that |∥f(x)∥22−∥x∥22| ≤ γ∥x∥22, we also have |∥Ax∥22−∥x∥22| ≤
γ∥x∥22 + c3 · poly(s, L),

• For any x where |∥Ax∥22 − ∥x∥22| ≤ γ′∥x∥22 holds for some scalar γ′ > 0, then for any
scalar r > 0, we also have |∥Ay∥22 − ∥y∥22| ≤ γ′∥y∥22 where y = r · x.

5https://en.wikipedia.org/wiki/Taylor’s_theorem#Taylor’s_theorem_for_
multivariate_functions
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The first claim follows from inequality equation 5, and the second claim follows from the fact
that A is a linear map. Now note that by picking a large enough constant β ≫ 1, we know that
sampling from any t, x ∼ Unift,c/sβ satisfies ∥x∥22 ≥ c2.5/sβ

′
(for some other constant β′ > 0) with

probability 0.999. Thus a sufficiently small choice of c and large enough β implies the following:

• For any x ∈ [−c, c]s
2

such that |∥f(x)∥22−∥x∥22| ≤ γ∥x∥22, we also have |∥Ax∥22−∥x∥22| ≤
2γ∥x∥22,

• For any t, x sampled from Unift,c/sβ is in [−c, c]s
2

with probability at least 0.999.

Now note that a uniformly chosen vector in Unift,r for any r > 0 is just a scaled uniformly chosen
vector in Unift,1. Due to our hypothesis on f , it then follows that A is such that for any 1 ≤ t ≤ s,

Pr
x∼Unift,1

(∣∣∥Ax∥22 − ∥x∥22
∣∣ ≤ 2γ∥x∥22

)
≥ 0.99.

The theorem then follows from Theorem 3.1 (note that 2γ is smaller than the tolerance required in
that proof).

As discussed in Section 2, we further extend our prior result to encoder decoder schemes (recalled
below), where another ‘decoder’ function can be applied on top of the embeddings to compute the
ℓ2 norm. Our lower bound shows that as long as both the encoder and decoder functions are suffi-
ciently smooth, the encoder function is required to map to Ω(s2) dimensions. We do not restrict the
embedding dimension of the decoder function. In other words, the whole process is ‘bottle necked’
by the inner dimension. We recall the definition of encoder decoder schemes for convenience.

Definition 2.1. We suppose the encoder and decoder functions satisfy the following.

• (Encoder function) f : Rs2 → Rm where

f(x) = (f1(x), . . . , fm(x))

and each fi : Rs2 → R is twice differentiable with continuous second partial derivatives.

• (Decoder function) g : Rm → Rk where

g(x) = (g1(x), . . . , gk(x))

and each gi : Rm → R is twice differentiable with continuous second partial derivatives.

Theorem B.3 (Encoder/Decoder Schemes). Let γ ≤ C/s for a sufficiently small constant C > 0.
If h(x) = g(f(x)) : Rs2 → Rs2 for k = s2 (as defined above) is such that for any 1 ≤ t ≤ s and
any r > 0,

Pr
x∼Unift,r

(
|∥h(x)∥22 − ∥x∥22| ≤ γ∥x∥22

)
≥ 0.999,

then m ≥ s2/1000.

Proof. Similar to the proof of Theorem B.2, let A be the matrix where the ith row is equal to ∇hi(0).
Note that A : Rs2 → Rs2 . We first claim that A has rank at most m. To see this, note that

h(x) = (g1(f(x)), . . . , gs2(f(x)).

For 1 ≤ j ≤ s2, let hj(x) = gj(f(x)). Denoting the input variables of gj as gj(y1, . . . , ym), the
chain rule tells us that for any j and i,

∂hj

∂xi
=

m∑
ℓ=1

∂gj
∂yℓ

· ∂fℓ
∂xi

= ⟨qi, pj⟩

where

qi =

(
∂f1
∂xi

, . . . ,
∂fm
∂xi

)
∈ Rm
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and

pj =

(
∂gj
∂y1

, . . . ,
∂gj
∂ym

)
∈ Rm.

(For simplicity, we are omitting the fact that all the parital derivatives of fℓ are being evaluated at 0
and the parital derivatives of gj are being evaluated f(0)). Letting

B =


qT1
qT2
...

qTs2

 ∈ Rs2×m, C =


pT1
pT2
...

pTs2

 ∈ Rs2×m,

we see that

A =


pT1 B

T

pT2 B
T

...
pTs2B

T

 = CBT ∈ Rs2×s2 .

Thus, A has rank at most m. Now the rest of the proof proceeds by combining elements of Theorem
3.1 and B.2, which we only briefly sketch for simplicity.

First, identical to the proof of Theorem B.2, a second-order multi-variable talyor expansion around
0 implies that A is such that for any 1 ≤ t ≤ s

Pr
x∼Unift,1

(∣∣∥Ax∥22 − ∥x∥22
∣∣ ≤ γ∥x∥22

)
≥ 0.99.

Now we cannot directly invoke Theorem 3.1, since the matrix A in the statement of Theorem 3.1
maps Rs2 to Rm, but A is Rs2 → Rs2 . However, note that the proof of Theorem 3.1 only relies
on the rank of the matrix ATA, which is at most m (also true here). Thus, the rest of the proof is
identical to the proof of Theorem 3.1.

Finally, we extend the lower bound of Theorem 3.1 to the case of approximately preserving inner
products.

Theorem B.4. Let A : Rs2 → Rm be a non-zero linear map and γ ≤ C/s for a sufficiently small
constant C > 0. If A is such that for any 1 ≤ t, t′ ≤ s,

Pr
x∼Unift,y∼Unift′

(|⟨Ax,Ay⟩ − ⟨x, y⟩| ≤ γ∥x∥2∥y∥2) ≥ 0.99

and
Pr

y∼Unif1

(
|∥Ay∥22 − ∥y∥22| ≤ γ∥y∥22

)
≥ 0.99,

then m ≥ s2/1000.

Proof. The proof is almost identical to that of Theorem 3.1 but we present the full details for
completeness, since we are working with two vectors instead of one. Suppose for the sake of
contradiction that m < s2/103. The proof is again roughly divided into three parts. The first part
shows that ATA has many ‘non-zero’ coordinates. The second part shows that a pair of random
sparse vector u and v (as chosen in the hypothesis of the theorem statement) have ‘many’ pairs of
coordinates ui and vj such that the corresponding (i, j) entry in ATA is also non-zero. The last part
then shows that the prior result implies that A does not (approximately) preserve the inner product
with a large constant probability, contradicting the assumption of the theorem. The last part relies
on bounding the probability that a random polynomial lies in an unusually small interval.

Part #1.

Let A1, . . . , As2 denote the columns of A. Let v be a random vector chosen from Unif1, and let i
be its support with vi the corresponding non-zero entry. Then ∥Av∥22 = ∥Ai∥22 · v2i and ∥v∥22 = v2i .
Then the hypothesis implies that

Pr(|∥Ai∥22 − 1| ≤ 0.0001) ≥ 0.99. (6)
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Thus, a 0.99 fraction of the columns of A have Euclidean norm in the range [0.9999, 1.0001]. Let
AX be the restriction to such columns. Note that all diagonal entries of AT

XAX are at in the range
[0.999, 1.001] and all entries are bounded by 1.001 in absolute value (via Cauchy-Schwarz on the
columns of AX ). For i ≥ 1, we let ℓi denote the number of non-diagonal entries of AT

XAX whose
absolute values are in (2−i, 2−i+1] and ℓ0 denote the rest of the non-diagonal entries (with absolute
values in (1, 1.001]). We show the following claims hold.

a) ∥AX∥2F ≥ (0.99)2s2,

b) ∥AT
XAX∥2F ≥ (.99)4s4

m ,

c)
∑

i≥0 ℓi2
−2i+2 ≥ (.99)4s4

m − 1.001s2.

Claim (a) readily follows from inequality equation 6. To show (b), note that singular values of
AT

XAX are the squared singular values of AX so ∥AT
XAX∥2F =

∑m
i=1 σi(AX)4 (since the rank of

A is at most m). By Cauchy–Schwarz,

m · ∥AT
XAX∥2F = m

∑
i

σi(AX)4 ≥

(∑
i

σi(AX)2

)2

= ∥AX∥4F ≥ (.99)4s4.

To show (c), note that all diagonal entries of AT
XAX are at in the range [0.999, 1.001]. Claim (c)

then follows from using the lower bound of Claim (b) since there are at most s2 diagonal entries.

Part #2.

Now let u and v be a vector drawn from Unifs and Unifr respectively and let Tu and Tv be their
corresponding support sets. The hypothesis of the theorem states that

Pr(|⟨Au,Av⟩ − ⟨u, v⟩| ≤ γ∥u∥2∥v∥2) ≥ 0.99. (7)

Our goal is to demonstrate a contradiction by showing Pr(⟨Au,Av⟩| > γ∥u∥2∥v∥2) ≥ 0.02, which
contradicts equation 7.

Let uX be the restriction of u to the coordinates in X (i.e., only keep the coordinates in X) and
similarly define vX . Consider uXvTX . The non-zero entries of uXvTX lie on a random principal
submatrix. We show that with a sufficiently large constant probability, both uXvTX ∈ R|X|×|X| and
AT

XAX ∈ R|X|×|X| have a non-zero value in ‘many’ shared entries.

Towards this end, let Yij be the indicator variable for the entry (i, j) in uXuT
X being non-zero and

let sij denote the squared (i, j) entry of AT
XAX . We know

E[Yij ] =
1

s2
.

Finally, let Z =
∑

i,j sijYij . Recalling our partitions ℓk that we defined earlier and Claim (c), we
have

E[Z] =
∑
i,j

sij E[Yij ] ≥
1

s2

∑
k

ℓk2
−2k ≥ 1

4s2

(
(.99)4s4

m
− 1.001s2

)
> 200.

The same proof as in Theorem 3.1 shows that Z ≥ 1 with probability at least .05.

Part #3.

Recalling that Tu and Tv are the support sets of u and v, we have

⟨Au,Av⟩ − ⟨u, v⟩ =
∑
i,j

uivj⟨Ai, Aj⟩ −
∑
i

uivi := P (u, v). (8)
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If we pick the entries of u and v to be standard Gaussians, we have E[P ] = 0. Recalling that Yij is
the indicator for uT

XvX having a non-zero entry at (i, j), we have

E[P 2] ≥
∑
i,j

sijYij = Z.

Thus, if we assume that Z ≥ 1, then Lemma 3.2 implies that if the variables of u and v in their
support are picked from the standard Gaussian distribution, then the probability that P ∈ [−ε, ε] =
O(

√
ε) for any sufficiently small ε > 0. Now consider the following three events.

• E1 = event that ∥u∥2∥v∥2 ≤ 100s.

• E2 = event that Z ≥ 1.

• E3 = event that P ̸∈ [−c, c] for a sufficiently small constant c.

By picking c to be a small enough constant, we know that all the events hold with probability at least
0.02. Let’s condition on all of these events holding. If so, we show that the condition |⟨Au,Av⟩ −
⟨u, v⟩| ≤ γ∥u∥2∥v∥2 cannot hold. Indeed, the condition directly implies that ⟨Au,Av⟩−⟨u, v⟩ = P
lies in an interval strictly contained in [−c, c]. Thus altogether, with probability at least 0.02, we have
|⟨Au,Av⟩ − ⟨u, v⟩| > γ∥u∥2∥v∥2, contradicting inequality equation 7. This finishes the proof.

C UPPER BOUNDS FOR EMBEDDING FOR NON-NEGATIVE SPARSE VECTORS

In this section we present our embeddings for non-negative sparse vectors and prove Theorem C.2.
See section 3 for an overview.

Our embedding is constructed in two parts. In the first part, we introduce a ‘base’ mapping f :
Rd → Rm. It will be a random mapping which preserves all ℓp norms of a fixed pair of non-
negative sparse vectors with constant probability. Crucially, it will be non-expanding. Our final
embedding is formed by stacking many independent copies of our base mapping.

The base mapping maps every coordinate into one of m buckets and takes the max of all non-zero
coordinate elements that map to any bucket. The max pooling operation makes this map non-linear.
Definition C.1 (Base mapping). We define a mapping f : Rd → Rm. Pick a uniformly random
function from h : [d] → [m]. For every i ∈ [m], let Si = {j ∈ [d] | h(j) = i}. We define
f(x) ∈ Rm as follows. For every i ∈ [m],

f(x)i =

{
max ({xj | j ∈ Si}) if Si ̸= ∅,
0, otherwise.

Our final embedding is the following. It stacks many copies of the base mapping. Note
⊕

denotes
vector concatenation.
Definition C.2 (Final Embedding). A non-negative (d,m, T ) embedding F : Rd → RmT is defined
as follows. For every 1 ≤ i ≤ T , let fi : Rd → Rm be an independent copy of the random mapping
of Definition C.1. Then for any x ∈ Rd,

F (x) =

T⊕
i=1

fi(x).

The key properties of the base mapping are proved below. As discussed in Section 3, the non-
expansion property is crucial and is only guaranteed for non-negative vectors due to the max opera-
tion.
Theorem C.1. Let f : Rd → Rm be a random mapping of Definition C.1. It satisfies the following:

1. f(0) = 0 deterministically for all values m ≥ 1.

2. For any pair of non-negative s-sparse vectors x, y ∈ Rd (both independent of f ), if we take
m = Ω(s2/δ),

Pr(∀p, ∥f(x)− f(y)∥p = ∥x− y∥p) ≥ 1− δ.
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3. For every pair of non-negative vectors x and y (not necessarily sparse) and any embedding
dimension m, ∥f(x)− f(y)∥p ≤ ∥x− y∥p deterministically for all p ≥ 1.

Proof. The first property follow from the definition of f . Let m = 100s2/δ and h be the uniformly
random function from [d] → [m] that constitutes f .

Let x and y be two fixed s-sparse vectors in Rd. Proving the second condition relies solely on the
fact that h is likely to separate all the non-zero coordinates of x and y. Indeed, the union of their
supports is of size at most 2s. Under h, the probability that some two domain elements in their union
collide is at most (

2s

2

)
· 1

(100s2/δ)
< δ.

This event means that very coordinate in the union of the supports of x and y is mapped to a unique
coordinate in [m], and thus for every p,

∥x− y∥pp =

d∑
j=1

|xi − yi|p =

m∑
i=1

|f(x)i − f(y)i|p = ∥f(x)− f(y)∥pp,

proving the second condition.

The third condition crucially relies on the fact that we are using the ‘max’ operation to define f . For
any pair of non-negative vectors x and y, we have

∥f(x)− f(y)∥p =

m∑
i=1

|f(x)j − f(y)j |p =

m∑
i=1

|max({xj | h(j) = i})−max({yj | h(j) = i})|p.

It suffices to prove the following: if a1, . . . , ak and b1, . . . , bk are non-negative real numbers then

|max(a1, . . . , ak)−max(b1, . . . , bk)| ≤ max
t

|at − bt|. (9)

This is because assuming the claim, we have

m∑
i=1

|max({xj | h(j) = i})−max({yj | h(j) = i})|p ≤
m∑
i=1

max
j|h(j)=i

|xj − yj |p ≤
d∑

j=1

|xi − yi|p,

since h maps every coordinate in [d] to only one coordinate in [m].

Now to prove the claim, assume without loss of generality that at′ = max(at) ≥ maxt(bt). Then
|at′ −maxt(bt)| ≤ |at′ − bt′ | since in the real line, we have the ordering bt′ ≤ maxt(bt) ≤ at′ .

Building upon Theorem C.1, we give an embedding which approximately preserves all pairwise
distances between points in a dataset of non-negative sparse vectors.

Theorem C.2 (Embedding for non-negative sparse vectors). Let F : Rd → RmT be a non-negative
(d,m, T ) embedding for m = O(s/ε) and T = O(log(ns)/ε) as stated in Definition C.2. Let
X ⊂ Rd be a dataset of n non-negative s-sparse vectors (which is independent of F ). We have

1.

Pr

(
∀p ≥ 1,∀x, y ∈ X,

∥F (x)− F (y)∥pp/T
∥x− y∥pp

∈ 1± ε

)
≥ 1− 1/poly(n).

2. For the ℓ∞ norm, it suffices to take m = O(s) and T = O(log n) and guarantee that

Pr (∀x, y ∈ X, ∥F (x)− F (y)∥∞ = ∥x− y∥∞) ≥ 1− 1/poly(n).

3. Additionally for the ℓ∞ norm, it suffices to take m = 1 and T = 1 and guarantee that

Pr

(
∀x, y ∈ X,

∥F (x) + F (y)∥∞
∥x+ y∥∞

∈ [1, 2]

)
= 1.
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Proof. We first prove part (1). Note that

F =

T⊕
k=1

fk

where each fk : Rd → RO(s/ε) is the mapping of Definition C.1 and T = O(log(ns)/ε). Now
consider an arbitrary fixed pair x, y ∈ X . First by the non-expanding property of each fk, we
always have ∑

k

∥fk(x)− fk(y)∥pp ≤ T · ∥x− y∥pp.

Now we show that the sum is also sufficiently large. Consider any fixed coordinate i in the union
of the support of x and y. For any fk, the probability that i does not collide with any other support
element is at least 1 − ε/100 since there are only O(s) total coordinates in the union of the sup-
ports of x and y, and fk maps to O(s/ε) dimensions. Since the fk’s are independent, this means
that i will not collide with any other support elements for at least 1 − ε fraction of the fk’s with
failure probability at most exp(−Ω(Tε)) (Lemma F.1). By union bounding, we can extend this
statement to all the coordinates in the support of x and y, except with failure probability at most
s exp(−Ω(Tε)) ≪ 1/poly(n), by our choice of T . Now if coordinate i does not collide with any
others in some fk, then we know that ∥fk(x)−fk(y)∥pp ≥ (xi−yi)

p. We can sum this relation over
all coordinates i and all fk. Thus, except with failure probability at most 1/poly(n), we have∑

k

∥fk(x)− fk(y)∥pp ≥ (1− ε)T · ∥x− y∥pp,

as desired.

The ℓ∞ case can be handled as follows. For a fixed pair x, y, suppose that the first coordinate
witnesses their ℓ∞ norm. If we take m = O(s), then the first coordinate does not collide with any
other coordinate with probability at least 99% (there maybe collisions among other coordinates).
Thus with large constant probability, a fixed base mapping f of Definition C.1 certifies that ∥f(x)−
f(y)∥∞ ≥ ∥x− y∥∞. But we always have ∥f(x)− f(y)∥∞ ≤ ∥x− y∥∞ deterministically. Thus
with O(log n) repetitions, every pair x, y will have at least one copy of the base mapping which
ensures that the ℓ∞ distance is exactly preserved.

For the third part of the theorem, note that since the coordinates are non-negative and F (x) ∈ R
is just the maximum coordinate, we trivially have ∥F (x) + F (y)∥∞ ≥ ∥x + y∥∞. In the other
direction, we claim that ∥f(x) + f(y)∥∞ ≤ 2∥x + y∥∞ always holds deterministically where f
is our base mapping of Definition C.1. Indeed, it suffices to show that for any non-negative real
numbers a1, . . . , ar and b1, . . . , br, we always have

max(a1, . . . , ar) + max(b1, . . . , br) ≤ 2max
t∈[r]

(at + bt). (10)

This is seen to be true by just taking t = argmax at (w.l.o.g. max(at) ≥ max(bt)). This completes
the proof.

The additive guarantees of our mapping F also extends to general ℓp norms, with an overhead of
2O(p).

Corollary C.3. Let p ≥ 1 and F : Rd → Rs22O(p) log(n)/ε2 be a non-negative (d, s22O(p)/ε, T )
embedding for T = 2O(p) log(n)/ε as stated in Definition C.2. Let X ⊂ Rd be a dataset of n
non-negative s-sparse vectors (which is independent of F ). We have

Pr

(
∀x, y ∈ X,

∥F (x) + F (y)∥pp/T
∥x+ y∥pp

∈ 1± ε

)
≥ 1− 1/poly(n).

Proof. The proof is very similar to that of Theorem C.2 so we only highlight the differences. For
the parameters, we take independent base embeddings fk : Rd → Rm for m = s22O(p)/ε (of
Theorem C.1) and T = log(n)2O(p)/ε. Let γ = s2/m. First, for any fixed pair x, y ∈ X we have
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∥fk(x)+fk(y)∥pp = ∥x+y∥pp holds for at least 1−γ fraction of k’s (due to property (2) in Theorem
C.1) with failure probability at most 1/poly(n). Thus we have∑

k

∥fk(x) + fk(y)∥pp ≥ (1− γ)T · ∥x+ y∥pp.

To bound the other direction, we also always have ∥fk(x)+fk(y)∥pp ≤ 2p∥x+y∥pp for every k from
Eq. 10. This means that∑

k

∥fk(x) + fk(y)∥pp ≤ (1− γ)T · ∥x+ y∥pp + γT2p∥x+ y∥pp.

Recalling the value of γ finishes the proof as in Theorem C.2.

If we limit the entries of the sparse vectors to be from a discrete set, then we can extend our non
linear map to sparse vectors with arbitrary entries as well. Contrasting it with the known Ω(sp)
lower bounds for embedding arbitrary s-sparse vectors (using linear maps) from Zhu et al. (2015)
hints that the ‘hardness’ for embedding arbitrary sparse vectors maybe due to entries with a large
range.

Theorem C.4. Let p ≥ 1 and F : Rd → Rs2∆O(p) log(n)/ε2 be a (d, s2∆O(p)/ε), T ) embedding for
T = log(n)∆O(p)/ε as stated in Definition C.2. Let X ⊂ Rd be a dataset of n s-sparse vectors
with entries in the discrete set {−∆, . . . ,∆}. We have

Pr

(
∀x, y ∈ X,

∥F (x)− F (y)∥pp
∥x− y∥pp

∈ [(1− ε)T, T ]

)
≥ 1− 1/poly(n).

Proof. We again consider

F =

T⊕
k=1

fk

where each fk : Rd → Rm for m = s2(2∆)p/ε is the mapping of Definition C.1 and T =
O(log(n)(2∆)p/ε). We can check that the first two properties of f in Theorem C.1 hold for arbitrary
s-sparse vectors. However, the third property crucially relies on non-negative entries. Nevertheless,
we can obtain the following variant, assuming the entries are in a discrete set: for every pair of
vectors x, y ∈ {−∆, . . . ,∆}d, we have ∥fk(x)− fk(y)∥p ≤ ∆∥x− y∥p. Indeed, as in the proof of
Theorem C.1, it suffices to prove the following: if a1, . . . , ak and b1, . . . , bk are all in {−∆, . . . ,∆},
then

|max(a1, . . . , ak)−max(b1, . . . , bk)| ≤ 2∆ ·max
t

|at − bt|.

And this holds because if the RHS is 0, then so is the LHS. Otherwise, the RHS is at least 2∆ ·1 and
the LHS is always bounded by 2∆.

Equipped with this, we similarly have that with failure probability at most exp(−Ω(Tγ)) =
1/poly(n), ∥fk(x) − fk(y)∥pp = ∥x − y∥pp for at least (1 − γ/2)T fraction of the indices k where
γ = ε/(2∆)p. If this is the case, then again∑

k

∥fk(x)− fk(y)∥pp ≥ (1− γ/2)T · ∥x− y∥pp

and by the bounded-expanding property of fk, we also have∑
k

∥fk(x)− fk(y)∥pp ≤ (1− γ/2)T · ∥x− y∥pp + γT (2∆)p∥x− y∥pp.

Putting everything together, we have
∑

k ∥fk(x)− fk(y)∥pp ∈ (1± ε/2)T · ∥x− y∥pp. And the final
result follows from union bounding over all Θ(n2) pairs, as desired.
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D LOWER BOUNDS FOR EMBEDDING NON-NEGATIVE SPARSE VECTORS

In this section, we provide lower bounds for dimensionality reduction for sparse vectors under var-
ious hypotheses. As stated in Section 2, together they demonstrate that our non-negative sparse
embedding of Theorem C.2 is optimal in many natural ways. See Section 2 for an overview.

We begin by showing that a linear map cannot have the same guarantees as Theorem C.2.

Theorem 2.6. Let S be the set of all 10-sparse vectors in Rd with all non-zero coordinates equal to
1. Let A : Rd → Rm be a matrix such that 1

2∥x∥∞ ≤ ∥Ax∥∞ ≤ 3
2∥x∥∞ ∀x ∈ S. Then m = Ω(d).

Proof. Suppose for the sake of contradiction that m < d/100. By considering the basis vectors,
every column of A must have an entry with absolute value at least 1/2. Then there must exist a row
r of A which has at least d/m ≥ 100 such entries. At least 50 of such entries in row r must be of
the same sign. Let x be an indicator vector for the column of 10 these entries in row r. Note that
x ∈ S and |(Ax)r| ≥ 5 which implies ∥Ax∥∞ ≥ 5, contradicting our assumption on A. Thus,
m ≥ d/100 = Ω(d), as desired.

The following theorem states that preserving the norms of the sum of vectors is impossible a factor
of 2 − ε for any ε > 0 in ℓ∞, even if we only restrict to non-negative sparse vectors. Note that
Theorem C.2 preserves the norms of the sums up to a factor of 2.

Theorem 2.8. Let ei be the ith basis vector in Rd. Consider the set S = {ei}∪{0} of d+1 vectors.
Suppose f : S → Rm be an arbitrary mapping which satisfies

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ (2− ε)∥x+ y∥∞ ∀x, y ∈ S

for any ε > 0. Then m ≥ d.

Proof. Suppose for the sake of contradiction that m < d. First note that f(0) must be the all 0’s
vector by taking x = y = 0. Then taking x = ei and y = 0 implies that ∥f(ei)∥∞ ∈ [1, 2 − ε]
for all i. Again label such coordinates of f(ei) that lie in this range as ‘large.’ If m < d, then there
exists i and j such that f(ei) and f(ej) have the same large index by Pigeonhole. We know that
∥f(ei) + f(ej)∥∞ ∈ [1, 2− ε] by our hypothesis. Now if the large entries of f(ei) and f(ej) have
the same sign, then their sum in absolute value is at least 2, which cannot happen from the above
observation. On the other hand, if they have different signs, then the largest sum (in absolute value)
that these entries can add to is at most 1− ε (either from 2− ε+ (−1) or −(2− ε) + 1), which also
cannot happen. These cases are exhaustive which means our assumption m < d cannot hold, and
we must have m ≥ d.

The following theorem shows that any mapping f also cannot be ‘too smooth’. Note that in our
mapping, we use the maximum function, which is not differentiable.

Theorem 2.7. Suppose f : Rd → Rm is such that f(x) = (f1(x), . . . , fm(x)) where each fi is
twice differentiable with continuous second partial derivatives. Let S be the set of all 10-sparse
vectors in Rd with all non-zero coordinates being equal to 1. Suppose f satisfies

0.99∥rx∥∞ ≤ ∥f(rx)∥∞ ≤ 1.01∥rx∥∞ ∀r > 0,∀x ∈ S.

Then m = Ω(d).

Proof. Note that fi(0) = 0 by taking r → 0. Since the second partial derivatives of all fi are
continuous, they are bounded in magnitude in the compact set [0, 1]d. Let T be such an upper bound
which holds for all i. Now we let r ≪ 1 be a sufficiently small value which will be determined
shortly. For any fixed fi, Taylor’s theorem for multivariate functions6 implies that for any y ∈ [0, r]d

which is O(1)-sparse,

|fi(y)− ⟨∇fi(0), y⟩| ≤ T (y1 + . . .+ yd)
2 ≤ O(Tr2)

6https://en.wikipedia.org/wiki/Taylor’s_theorem#Taylor’s_theorem_for_
multivariate_functions
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for every i. Let A : Rd → Rm be the matrix with ai as it’s rows. The above inequality implies that
∥f(y)−Ay∥∞ ≤ O(Tr2).

Thus if r > 0 sufficiently small, z is any vector such that ∥z∥∞ = 1, and
0.99∥rz∥∞ ≤ ∥f(rz)∥∞ ≤ 1.01∥rz∥∞,

then we must also have
1

2
∥rz∥∞ ≤ ∥A(rz)∥∞ ≤ 3

2
∥rz∥∞.

But since A is linear, this actually implies that
1

2
∥r′z∥∞ ≤ ∥A(r′z)∥∞ ≤ 3

2
∥r′z∥∞

for all r′ > 0. Putting everything together, (letting z be the vectors in the hypothesis of the theorem
statement), implies that

1

2
∥z∥∞ ≤ ∥Ax∥∞ ≤ 3

2
∥z∥∞ ∀z ∈ S.

Then Theorem 2.6 implies that m = Ω(d), as desired.

The next lower bound of this section demonstrates that the non-negative hypothesis is crucial. If we
drop the non-negativity constraint, then any map cannot satisfy the guarantees promised by Theorem
C.2.
Theorem 2.9. Let ei be the ith basis vector in Rd. Consider the set S = {±ei} ∪ {0} of 2d + 1
vectors. Suppose f : S → Rm be an arbitrary mapping which satisfies

0.9∥x− y∥∞ ≤ ∥f(x)− f(y)∥∞ ≤ 1.1∥x− y∥∞ ∀x, y ∈ S,

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ C∥x+ y∥∞ ∀x, y ∈ S

for any C ≥ 1. Then m ≥ d.

Proof. Suppose for the sake of contradiction that m ≤ d− 1. We first show that f(ei) = −f(−ei)
for all i. Indeed, ei+(−ei) = 0 so we must have ∥f(ei)+f(−ei)∥∞ = 0 =⇒ f(ei) = −f(−ei).
We also have f(0) = 0 ∈ Rm, also using the second relation. This means that ∥f(±ei)∥∞ ∈
[0.9, 1.1] for all i by using the first relation with x = ±ei and y = 0.

For a vector v ∈ S, call the indices where ∥f(v)∥∞ ∈ [0.9, 1.1] large entries. Our goal is to show
that most vectors in S need to have distinct large entries. This will imply that m must be large since
|S| is large.

Indeed, if m ≤ d − 1, then there must exists some i ̸= j such that f(ei) and f(ej) share the same
large entry index by Pigeonhole. Then either f(ej) or f(−ej) = −f(ej) also has the opposite sign
as the large entry of f(ei). So at least in one case, we can find two vectors x, y ∈ S such that
∥f(x)− f(y)∥∞ ≥ 2 ·0.9 = 1.8. However, since i ̸= j, we know that ∥x− y∥∞ = 1, contradicting
the first relation. Hence, m ≥ d, as desired.

Finally, the last lower bound demonstrates that any map with weaker guarantees than that of The-
orem C.2 must map to Ω̃(s) dimensions. Note that Theorem C.2 satisfies the hypothesis of the
theorem bellow with C = O(1/ log n) for a dataset of n non-negative s-sparse vectors.

Theorem D.1. Suppose d > 2s and let S =
{∑s

i=1 ei,
∑2s

i=s+1 ei, 0
}

. Suppose f : S → Rm be
an arbitrary mapping which satisfies

∥f(x)− f(y)∥∞ ≤ ∥x− y∥∞ ∀x, y ∈ S,

C∥x− y∥1 ≤ ∥f(x)− f(y)∥1 ∀x, y ∈ S,

for any C > 0. Then m ≥ Cs.

Proof. By shifting, we can assume f(0) = 0. Let v1 =
∑s

i=1 ei and v2 =
∑2s

i=s+1 ei. Then the
first relation implies that all coordinates of v1 and v2 are bounded by 1 in absolute value. The second
relation them implies that

2Cs ≤ ∥f(v1)− f(v2)∥1 ≤ ∥f(v1)∥1 + ∥f(v2)∥1 ≤ 2m,

yielding m ≥ Cs.
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E APPLICATIONS OF OUR NON-NEGATIVE EMBEDDING

We now present applications of our embeddings for sparse vectors for many problems in geometric
optimization. We always assume our input is a dataset X of n non-negative s-sparse vectors in Rd.

E.1 COMPUTING DIAMETER

Our goal is to compute the diameter of the dataset X in ℓp norm (see Definition E.1). The first
lemma shows that the diameter is preserved when projecting onto very low dimensions.
Definition E.1. diameterp = maxx,y∈X ∥x− y∥p.

Lemma E.1. Let f : Rd → RO(s2) mapping given in Definition C.1. Let X̃ = {f(x) | x ∈ X} ⊂
RO(s2). We have

Pr
(
∀p, diameterp(X) = diameterp(X̃)

)
≥ 0.99.

For the ℓ∞ case, we can instead embed to O(s) dimensions.

Proof. Let (x, y) be a pair in X that witnesses the diameter. Theorem C.1 implies that for any p,
the distance between x and y is preserved under f with probability at least 99%. The proof of the
ℓ∞ case is the same as in Theorem C.2: the coordinate which witnesses the distance between x and
y does not collide with any of the other support elements with constant probability. Furthermore,
Theorem C.1 also implies that all other distances do not expand under f . This completes the proof.

This implies the following corollary stating that any ‘low dimensional’ algorithm for computing
the diameter can be used to compute the diameter of X , after composing with our dimensionality
reduction.
Corollary E.2. Given p ≥ 1, consider an algorithm which computes a C-factor approximation
of the diameter of any n point dataset in d-dimensions in Q(n, d, C) time. Then there exists an
algorithm which computes a C approximation of the diameter correctly with 99% probability of
our dataset X in time Q(n,O(s2), C) + O(ns). For the ℓ∞ case, the corresponding bound is
Q(n,O(s), C) +O(ns).

Proof. We simply project our dataset X using f as stated in Lemma E.1 and apply the algorithm Q
in the projected space.

Appealing to existing algorithms on diameter computation implies the following results.
Theorem E.3. Let X be dataset of non-negative s-sparse vectors. We have the following algo-
rithms:

1. Using Chan (2018), for any constant integer p, we can compute a 1 + ε approximation to
diameterp of X in time Õ(n/

√
ε + ns + 2O(s2 log(1/ε))) which is correct with probability

99%.

2. We can exactly compute the diameter of X in ℓ∞ norm in time O(ns). This algorithm can
be implemented in a stream using O(s) words of memory.

3. We can exactly compute the diameter of X in ℓ1 norm in time n2O(s). This algorithm can
be implemented in a stream using 2O(s) words of memory.

Proof. The first result just follows from appealing to Corollary 4.1 in Chan (2018) which gives an
algorithm for computing the diameter in ℓp in low-dimensional spaces, and appropriately plugging
in the bounds as specified in Corollary E.2.

For the second result, we recall a folklore streaming algorithm for computing diameter in ℓ∞ norm.
We have

diameterp(X) = max
dimension i

max
x,y∈X

|xi − yi| = max
dimension i

(
max
x∈X

xi −min
y∈X

yi

)
.
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Thus, it just suffices to only keep track the maximum and the minimum coordinate along every
dimension. Via Lemma E.1, it suffices to assume the dimension is only O(s). The non-streaming
algorithm simply scans the points along every dimension as well.

Finally for the third result, we recall a well known isometric embedding of ℓk1 into ℓ2
k

∞ for any k ≥ 1:
simply map any x ∈ Rd to Ax ∈ R2k where A has all possible ±1 vectors as rows. Applying this
embedding reduces the ℓ1 case to the ℓ∞ case addressed above.

E.2 DIMENSIONALITY REDUCTION FOR MAX CUT

We consider the max cut problem defined as follows.
Definition E.2. MaxCutp(X) = maxS⊆X

∑
x∈S,y∈X\S ∥x− y∥pp.

To the best of our knowledge, dimensionality reduction for max cut has been only studied in the ℓ2
case where its known that O(1/ε2) dimensions suffice to estimate the max cut of an arbitrary sized
dataset up to 1± ε (only for ℓ2) Lammersen et al. (2009); Chen et al. (2023).

We show the following dimensionality reduction for max cut in the general ℓp case, where the point
set consists of non-negative sparse vectors.

Theorem E.4. Let f : Rd → RO(s/ε2) be the mapping given in Theorem C.1. Let X̃ = {f(x) | x ∈
X}. For every p ≥ 1, we have

E
[∣∣∣MaxCutp(X̃)− MaxCutp(X)

∣∣∣] ≤ O(ε) · MaxCutp(X).

Proof. We drop the dependence on p for the sake of clarity. Let E be the set of edges that participate
in a fixed optimal max cut for X . Let MaxCut(X̃) be the value of the cut given by E in the projected
dimension (note that E is deterministic but the value is random since the projection is random).

Fix any pair x, y and consider the random variable ∥f(x) − f(y)∥pp. We know deterministically
∥f(x)− f1(y)∥pp ≤ ∥x− y∥pp. For a non-zero coordinate zi of z := x− y, let ti denote the indicator
random variable for the event that i does not collide with any of the other non-zero coordinates of
z. By our choice of m, we know that E[ti] ≥ 1 − ε2 since the sparsity of z is O(s), as it is the
difference of two s-sparse vectors. Thus,

E[∥f(x)− f(y)∥pp] ≥ (1− ε2)∥x− y∥pp,
so by Markov’s inequality,

0 ≤ ∥x− y∥pp − ∥f(x)− f(y)∥pp ≤ ε∥x− y∥pp
with probability at least 1− ε. We have

E
[∣∣∣MaxCut(X)− MaxCut(X̃)

∣∣∣] ≤ ∑
(x,y)∈E

E
[
|∥f(x)− f(y)∥pp − ∥x− y∥pp|

]
≤

∑
(x,y)∈E

O(ε) · ∥x− y∥pp

= O(ε) · MaxCut(X),

Now we make two simple observations. First, we always have

MaxCut(X̃) ≥ MaxCut(X̃),

since MaxCut(X̃) is the best cut in the projected space. Secondly, since the value of every cut never
expands in the projected dimension due to property (3) in Theorem C.1, we also have that the value
of every cut in the projected space is at most MaxCut(X) deterministically. In particular, it must
also be true that

MaxCut(X) ≥ MaxCut(X̃).

In particular, this means that we have

0 ≤ MaxCut(X)− MaxCut(X̃) ≤ MaxCut(X)− MaxCut(X̃),

so the random variable
∣∣∣MaxCut(X̃)− MaxCut(X)

∣∣∣ is always bounded by∣∣∣MaxCut(X)− MaxCut(X̃)
∣∣∣, which finishes the proof.
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E.3 CLUSTERING APPLICATIONS

We consider the (arguably) most well-studied formulations of clustering: k-median, k-means,
and k-center. Dimensionality reduction for these problems have been well studied in the ℓ2 case
Makarychev et al. (2019). Here we consider dimensionality reduction for general ℓp norms, but with
a restricted set of vectors (non-negative sparse).

We recall their definitions below.
Definition E.3. We are interested in general ℓp norm formulations of the k-median/center/means
clustering objectives.

• k-median: Given a dataset X = {x1, . . . , xn} of n points ∈ Rd, the goal is to find a
partition C = {C1, C2, . . . , Ck} of [n] into k non-empty parts (clusters) to minimize the
following:

cost(C(X)) =

k∑
i=1

min
ui∈Rd

∑
j∈Ci

∥xj − ui∥p.

• k-center: Same as k-median, but we define the cost as

cost(C(X)) = max
k

min
ui∈Rd

max
j∈Ci

∥xj − ui∥p.

• k-means: Same as k-median, but we instead use the squared distances ∥x− ui∥2p.

Note that for these clustering problems, the centers ui do not have to be in X and can be arbitrary
points in space. That is, once the points are partitioned, we optimize for the choice of centers. Note
that even though our initial dataset may satisfy structural properties as sparsity, is it likely that the
optimal centers chosen will not. Thus, while our embedding of Theorem C.2 guarantees that ℓp
distances between our dataset is preserved, there is no meaningful notion of what the center is under
the embedding. Nevertheless, our embedding implies that the cost of every clustering is preserved
up to a small multiplicative factor.
Theorem E.5. Consider the k-median or k-center problem. Let X be a set of n non-negative s-
sparse vectors in Rd. Let F : Rd → RO(s log(n)/ε2) be the mapping given in Theorem C.2 and
X̃ = {F (x) | x ∈ X}. We have

Pr
(
∀C, cost(C(X̃)) = (4± ε)cost(C(X))

)
≥ 1− 1/poly(n).

For k-means, an identical statement as above holds, except we replace 4 with 16.

Proof. Fix a clustering C (partition of the datapoints). The complication arises due the fact that
cost(C(X)) optimizes for (non-necessarily sparse) centers in Rd whereas C(X̃)) optimizes for cen-
ters in the projected space. There may not be an analogue of a center chosen in Rd in the projected
space. To get around this, we show we can simply move the centers to their closest data point in X
with a small multiplicative loss. The proof proceeds formally as follows.

We first only consider the case of k-median and k-center. Assume that F preserves all pairwise
distances between points in X , which holds with probability at least 1−1/poly(n) and condition on
this event. Take any one of the k partitions C of C and consider the best center u for this partition in
Rd. Now let u′ be the closest center to u in its partition C. Moving u to u′ will never decrease the
cost (by the optimality of u). We claim that it will also never increase the cost by more than a factor
of 2. Indeed for k-median, the cost increases by a factor of |C| · ∥u − u′∥p by triangle inequality,
which is less than

∑
j∈C ∥xj − u∥p by the minimiality of u′. Now the sum is just the original cost.

For k-center a similar reasoning holds.

Call such clusterings where the centers are restricted to the dataset points in X as basic. The above
reasoning implies that given a partition C, the cost of the optimum clusterings and the optimum basic
clusterings only differ by a multiplicative factor of 2. Of course the same reasoning is also true in
the projected dimension. But note that the costs of all basic clusterings are preserved under F , since
all pairwise distances are preserved. Thus we have the following chain of inequalities:

cost(C(X̃), basic) ≤ 2cost(C(X̃)) ≤ 2cost(C(X̃), basic) = 2(1± ε)cost(C(X), basic),
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and similarly
2(1± ε)cost(C(X), basic) ≤ 4(1± ε)cost(C(X)) ≤ 4(1± ε)cost(C(X), basic).

Adjusting ε, altogether, this shows that cost(C(X̃)) and cost(C(X)) are within a factor of 4 ± ε of
each other. The argument does not depend on the choice of C (once we condition on the event that
all pairwise distances are preserved). The proof also easily extends to k-means, where the basic
clusterings now increase the cost by at most a factor of 4 due to the squared triangle inequality.

E.4 DISTANCE ESTIMATION

We first define the distance estimation problem.
Definition E.4. In the distance estimation problem, we want to preprocess a dataset X and output
a data structure D. Then on any query y, D outputs an approximation to

∑
x∈X ∥x− y∥pp.

We have the following result.
Theorem E.6. Given a dataset X ⊂ Rd of n non-negative s-sparse vectors and even integer p,
we can compute a data structure D using O(n log(n)ps/ε2) preprocessing time. For any fixed
non-negative s-sparse query y, D(y) computes a value t satisfying∣∣∣∣∣t− ∑

x∈X

∥x− y∥pp

∣∣∣∣∣ ≤ ε ·
∑
x∈X

∥x− y∥pp

with probability 1− 1/poly(n) with query time O(log(n)ps/ε2).

Proof. We will have O(log n) independent d-variate polynomials P1, . . . PO(logn). Each Pi will
output an estimate ti with the guarantee that

E

[∣∣∣∣∣ti − ∑
x∈X

∥x− y∥pp

∣∣∣∣∣
]
≤ ε ·

∑
x∈X

∥x− y∥pp,

which extends to the high-probability guarantee by just taking medians of all the independent esti-
mates.

P1 will be constructed by using the ‘base’ mapping f1 : Rd → Rm for m = O(s/ε2) of Theorem
C.1. We set X̃1 = {f1(x) | x ∈ X}, and let P1(z) =

∑
x∈X̃1

∥x − z∥pp. Then t1 is simply
P1(f1(y)).

Note that each x ∈ X satisfies E[|∥f1(x) − f1(y)∥pp − ∥x − y∥pp] ≤ ε∥x − y∥pp (see the proof of
Theorem E.4). Finally, we repeat this independently for all Pi. The construction and query times
are only dependent on the polynomial evaluation.

Note that each Pi is a polynomial with the number of monomials bounded by O(mp). It takes
O(nmp) time to construct P and given z, we can compute P (z) in time O(mp) as well. Theorem
C.2 guarantees the quality of the approximation.

F USEFUL INEQUALITIES

Lemma F.1. If X1, . . . , Xt are i.i.d. Bernoulli(p) for p ≥ 1− ε/100 then

Pr

(∣∣∣∣∣
t∑

i=1

Xi − tp

∣∣∣∣∣ ≥ εt

)
≤ exp (−Ω(εt)) .

Proof Sketch. Consider the complement random variables Yi = 1−Xi. These are Bernoulli(1− p)
and so by a standard Chernoff bound,

Pr

(∣∣∣∣∣
t∑

i=1

Yi − t(1− p)

∣∣∣∣∣ ≥ εt

)
≤ exp (−Ω(εt)) ,

33



Published as a conference paper at ICLR 2025

as desired.

Lemma F.2. Let z ∈ Rd, p ≥ 10 log(d)/ε, and ε ∈ (0, 1/10). Then ∥z∥p ∈ (1± ε)∥z∥∞.

Proof. Without loss of generality, suppose ∥z∥∞ = |z1| = maxi∈[d] |zi|. We have

d|z1|p ≥ ∥z∥pp ≥ |z1|p.

Taking 1/p-th powers gives us
d1/p|z1| ≥ ∥z∥p ≥ |z1|,

and the lemma follows by noting that d1/p = exp(log(d)/p) = exp(ε/10) = 1 + Θ(ε).

Lemma F.3. If a, b ∈ Rd satisfy ∥a− b∥∞ ≤ δ, then |∥a∥22 − ∥b∥22| ≤ 2δ
√
d∥a∥2 + δ2d.

Proof. Let ci = bi − ai. We know that |ci| ≤ δ. Then bi = ai + ci and a2i − b2i = a2i − (ai + ci)
2 =

c2i − 2aici so |
∑

i(a
2
i − b2i )| ≤ dδ2 + 2δ

∑
i |ai| ≤ 2δ

√
d∥a∥2 + δ2d.
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