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ABSTRACT

Combinatorial generalization (CG)—generalizing to unseen combinations of
known semantic factors—remains a fundamental challenge in machine learning.
While symmetry-based methods are promising, they learn from observed data and
thus fail at what we term symmetry generalization: extending learned symmetries
to novel data. We address this by proposing a novel framework that endows the
latent space with the structure of a symmetric space. This class of manifolds
provides a principled geometric foundation for extending learned symmetries. Our
method operates in two steps: first, it imposes this structure by learning the un-
derlying algebraic properties via the Cartan decomposition of a learnable Lie
algebra. Second, it uses geodesic symmetry as a powerful self-supervisory signal
to ensure this learned structure extrapolates from observed samples to unseen ones.
A detailed analysis on a synthetic dataset validates our geometric claims, and ex-
periments on standard CG benchmarks show our method significantly outperforms
existing approaches.

1 INTRODUCTION

Figure 1: Since trained group
actions should be closed on
the observed region, they can-
not affect the unseen region.

Generalizing a model to unobserved combinations of semantic
factors is a critical challenge in achieving human-like generaliza-
tion (Fodor & Pylyshyn, 1988). In representation learning, this
problem is known as Combinatorial Generalization (CG), where the
goal is to capture the semantic data structure within latent repre-
sentations (Vankov & Bowers, 2019). Despite its importance, most
existing approaches often fail to achieve this effectively (Schott et al.,
2021).

Symmetry, which captures transformations that leave an object’s
identity invariant, is a cornerstone for addressing CG. For instance,
Higgins et al. (2022) demonstrated that symmetry learning effec-
tively captures structural information, while Hwang et al. (2023)
showed its direct benefits for CG. Nonetheless, a critical limitation
persists: these methods learn symmetries exclusively from observed
data, hindering their ability to generalize these symmetries to unseen
combinations.

Exploiting geometric information offers a promising avenue for such generalization. Geometric Deep
Learning has emerged as a powerful paradigm for understanding the dynamics of representation
learning (Bengio et al., 2013; Bronstein et al., 2021). Specifically, the geometry of latent manifolds
can provide deep insights into semantic factors and data relationships (Shao et al., 2018; Choi et al.,
2021). However, integrating these geometric insights with symmetry learning has been limited, often
relying on restrictive assumptions, such as predefined Lie groups or fully observed data, leaving a
critical gap for CG.

∗Corresponding author.
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We summarize our primary contributions to the field of Combinatorial Generalization (CG) as follows:

1. Problem Formulation: We formally identify the core limitation of existing symmetry-
based methods by defining the Symmetry Generalization challenge: extending learned
symmetries from partially observed data to unobserved regions.

2. Novel Framework: We propose CartanFM, a novel framework that embeds the latent
representation of transformations with the rigorous geometric structure of a Symmetric
Space, offering a principled solution to the challenge.

3. Technical Mechanisms: We introduce two novel, complementary losses to realize this
structure:

• The Cartan Loss (LCartan), which enforces the local algebraic structure via Cartan
Decomposition on a learnable Lie algebra.

• The Geodesic Symmetry Consistency (GSC) Loss (LGSC), a self-supervisory signal
that leverages geodesic symmetries to explicitly extrapolate the learned structure to
unseen regions of the data manifold.

2 BACKGROUND

A manifold is a topological space that is locally Euclidean. This concept is foundational to machine
learning, motivated by the manifold hypothesis, which posits that high-dimensional data often lie on
or near a low-dimensional manifold embedded within the ambient space (Narayanan & Mitter, 2010).

Many such manifolds exhibit rich symmetries that can be formally described using the theory of
groups. A Lie group is a particularly suitable framework, as it is a differentiable manifold that is also
a group with smooth operations. A canonical example is the general linear group GL(n), the set of
all invertible n× n matrices.

The interaction between a group and a manifold is formalized by the notion of a homogeneous space,
which serves as a cornerstone of our method.

Definition 2.1 (Homogeneous Space) A Riemannian manifold M is a homogeneous space if there
exists a Lie group G that acts transitively on M.

In a homogeneous space, any point can be mapped to any other point via an element of G, implying
that the manifold is geometrically uniform. This property allows for a coordinate-free analysis of the
manifold’s structure through its symmetries (do Carmo, 1992).

While homogeneous spaces offer a general framework, our work focuses on a more structured
subclass known as symmetric spaces. These spaces possess additional symmetries, such as point
reflections, and can be defined from several equivalent perspectives (Helgason, 2001).

Definition 2.2 (Symmetric Space via Geodesic Symmetry) Let M be a Riemannian manifold.
The geodesic symmetry sp at a point p ∈ M is a map that reverses geodesics passing through
p. Specifically, for a geodesic γ(t) with γ(0) = p, it satisfies sp(γ(t)) = γ(−t). The manifold M is
a symmetric space if, for every point p ∈ M, this map sp can be extended to a global isometry.

An equivalent algebraic characterization defines a symmetric space as a special type of coset space.

Definition 2.3 (Symmetric Space via Lie Groups) Let G be a connected Lie group and K be a
closed subgroup. The coset space G/K is a symmetric space if there exists an involutive automor-
phism σ : G → G such that Gσ

0 ⊆ K ⊆ Gσ , where Gσ = {g ∈ G|σ(g) = g} and Gσ
0 is the identity

component of Gσ .

This group-level algebraic structure induces a corresponding structure at the Lie algebra level, giving
rise to the third equivalent definition via the Cartan decomposition.

Definition 2.4 (Symmetric Space via Cartan Decomposition) Let g be the Lie algebra of G. A
symmetric space structure on G/K corresponds to a Cartan decomposition of its Lie algebra,
g = k ⊕ p, where k is the Lie algebra of the subgroup K. This decomposition is induced by the
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differential of σ at the identity, an involutive automorphism θ on g. Here, k and p are the eigenspaces
of θ for eigenvalues +1 and −1, respectively, and they satisfy the Lie bracket relations:

[k, k] ⊆ k, [k, p] ⊆ p, and [p, p] ⊆ k. (1)

The pair (g, k) is called a symmetric pair.

3 METHOD

3.1 MOTIVATION: SYMMETRY GENERALIZATION

Limitations of Existing Symmetry Learning Symmetry-based machine learning methods aim
to capture data variations by learning underlying symmetries, often framed through equivariant
group actions. While effective, these methods face a critical limitation when symmetries are learned
exclusively from a subset of the data. For instance, approaches like Hwang et al. (2023) learn group
actions from observed training samples to generate novel data. However, the learned symmetries are
confined to the training data, restricting generalization to unseen samples. We term this challenge
symmetry generalization, which we formalize as follows:

The Symmetry Generalization Challenge

Let X be the complete data space and Xobs ⊂ X be the observed subset. Let Gobs be a
symmetry group learned exclusively from actions within Xobs. The generalization failure
occurs because for an unseen sample xnew ∈ X \Xobs, there is generally no transformation
g ∈ Gobs and sample xobs ∈ Xobs such that g · xobs = xnew.

This limitation is not inherent in group theory itself, but in methods that infer symmetries from
incomplete data. Overcoming this gap requires a framework capable of extending learned symmetries
beyond the observed samples, motivating our use of geometric structures.

Exploiting Geometric Information From a geometric perspective, the data manifold encodes the
semantic structure of both observed and unobserved samples. A promising solution to the symmetry
generalization challenge is to consider symmetries that act on the entire data manifold, not just on
the training set. Imposing the structure of a homogeneous space provides a principled way to extend
locally observed symmetries, as its transitive property guarantees a path from any observed point to
any unobserved point. However, this is impractical for general problems because the global group
actions required for such navigation are unknown.

To circumvent this, we propose enforcing the properties of a symmetric space—a special class
of homogeneous spaces with additional geometric structure. A symmetric space is endowed with a
geodesic symmetry (a reflection) at every point (Definition 2.2). This reflection provides a concrete,
locally defined operation for generalization that does not require knowledge of the whole global
group. Specifically, by reflecting an observed point through another chosen as a local origin, we can
generate a plausible sample in an unseen region. By training our model to be consistent with this
reflection property, we directly extend the learned symmetry structure beyond the training data.

3.2 SYMMETRIC SPACE LEARNING VIA LIE ALGEBRA

To model the data manifold M as a symmetric space G/K, we face two primary challenges. First,
the algebraic structure, defined by the symmetry group G and stabilizer K, is unknown for general
datasets. Second, any structure learned solely from observed data must be able to generalize to unseen
regions. Our method addresses these two challenges with two corresponding components for learning
and generalizing the symmetric space structure.

Learning the Symmetric Pair via Cartan Loss We begin by identifying the latent space of our
feature encoder with the tangent space ToM at a chosen origin o. In a symmetric space, this tangent
space corresponds to the subspace p from the Cartan decomposition g = k⊕ p (Definition 2.4). For
each data point x, the encoder thus outputs a latent vector zx ∈ p. Crucially, our model also learns
the bases for the subspaces k and p themselves, which are parameterized as sets of matrices. To
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(a) CFM Loss and Cartan Loss
(b) Geodesic Symmetry Consistency Loss

(c) Geodesic Symmetry by Lie algebra negation.

Figure 2: Overview of our proposed CartanFM framework and its underlying geometric principle. (a)
Main Training Path: The model learns to reconstruct data conditioned on a Lie algebra element P
with CFM Loss LCFM. The learnable bases that constitute P are simultaneously regularized by the
Cartan Loss (LCartan) to form a valid algebraic structure. (b) Generalization Path: A self-supervisory
loop leverages Geodesic Symmetry Consistency (LGSC) to train the encoder. This ensures that a
synthetically generated unseen sample, when encoded, is consistent with the negated representation
of its observed counterpart. (c) Geometric Intuition: In the learned symmetric space, geodesic
symmetry corresponds to simple negation (P → −P ) in the tangent space, providing a principled
bridge between the observed and unseen data regions.

ensure these learnable bases form a valid symmetric pair (g, k), we introduce the Cartan Loss, which
imposes the required Lie bracket relations:

LCartan := L([k, k], k) + L([k, p], p) + L([p, p], k), (2)

where L(·, ·) measures the projection error of the Lie bracket’s output onto the target subspace.

Generalizing Learned Structures via Geodesic Symmetry Consistency The algebraic structure
learned via the Cartan Loss only reflects the observed data. To promote generalization, we leverage a
key property of symmetric spaces: the geodesic symmetry so at the origin corresponds to negation
in the tangent space p. Specifically, if a data point x1 is represented by the tangent vector p ∈ p, its
symmetric counterpart x2 = so(x1) is defined by −p ∈ p. We operationalize this geometric prior
through a cycle-consistency objective we term Geodesic Symmetry Consistency (GSC), with the
following procedure:

1. Encode an observed sample xobs into its latent vector: pobs = Encoder(xobs) ∈ p.

2. Generate an unseen ”candidate” sample by decoding the negated vector: xcand =
Decoder(−pobs).

3. Encode the candidate sample back into the latent space: p̂cand = Encoder(xcand).

4. Optimize the GSC Loss to enforce consistency between the re-encoded and the negated
original vectors:

LGSC := Exobs∼Xobs

[
∥p̂cand + pobs∥2

]
. (3)
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This objective encourages the model to map geometrically symmetric points in the data space to
algebraically opposite points in the latent space, thereby extending the learned structure to unseen
regions.

3.3 IMPLEMENTATION DETAILS

Overview This section outlines the practical implementation of our symmetric space learning
framework. We integrate our proposed architectural components and loss functions into a state-of-
the-art generative model by conditioning its underlying vector field. As illustrated in Figure 2, our
model consists of three core components:

• A Lie Algebra Encoder (ϕ): Maps an input data point to the coefficients (ck, cp) for the
learnable Lie algebra bases.

• Learnable Lie Algebra Bases (Bk, Bp): A set of matrices that form the bases for the
subspaces k and p, respectively. The Cartan Loss regularizes these.

• A Conditional Flow Matching Model: Generates a vector field v(x, t, P ) that is condi-
tioned on the tangent vector P ∈ p, which is constructed from the encoder’s output.

These components are trained jointly. The generative capability is learned via the standard Conditional
Flow Matching loss (LCFM). At the same time, the geometric structure is enforced by our two
proposed losses, the Cartan Loss (Eq. 2) and the GSC Loss (Eq. 3). The following sections provide
detailed explanations of each component.

Backbone Generative Model We build our method upon Flow Matching (Lipman et al., 2022), a
recent class of generative models that learn a probability flow from a noise distribution to the data
distribution. This flow is defined by a neurally parameterized vector field v(x, t, c) and is sampled
by solving an ordinary differential equation (ODE). Inspired by DiffAE (Preechakul et al., 2022),
which adapts diffusion models for representation learning, we employ an autoencoder architecture. A
dedicated encoder network learns a mapping from a data sample x to a Lie algebra element P ∈ p,
which serves as the condition c for the vector field, i.e., v(x, t, P ).

Cartan Loss Our encoder consists of two main parts: a standard VAE-style encoder and a set of
learnable basis matrices. For a given input, the encoder outputs coefficient vectors ck ∈ Rnumk and
cp ∈ Rnump . These coefficients form linear combinations of the learnable bases {Ki} and {Pj}
to produce Lie algebra elements K =

∑
i ck,iKi ∈ k and P =

∑
j cp,jPj ∈ p. While P directly

conditions the generative process, the bases for both subspaces must satisfy the Lie bracket relations
from Eq. 2. For computational efficiency, we apply these constraints directly to the basis elements.
This is enforced via the Cartan Loss, which encourages orthogonality between the relevant subspaces:

LCartan =
∑

i,j,l;i ̸=j

|[Ki,Kj ] · Pl|+
∑
i,j,l

|[Ki, Pj ] ·Kl|+
∑

i,j,l;i ̸=j

|[Pi, Pj ] · Pl|. (4)

Geodesic Symmetry Consistency To implement the GSC objective described in Eq. 3 efficiently,
we bypass the computationally expensive complete decoding process of the Flow Matching model by
using a one-step approximation. The core idea is to generate a synthetic sample corresponding to the
negated latent vector −P and ensure its re-encoded representation aligns with −P . We approximate
this by taking a single step from the original data point x0 along the vector field conditioned on −P .
The resulting GSC Loss is:

LGSC = E
[
∥Encoder(x0 + (1− σmin) · v(x0, t = 0,−P ; θ)) + P∥2

]
, (5)

where σmin is a hyperparameter defined in Lipman et al. (2022). This objective pushes the encoder to
be consistent with the geodesic symmetry defined in the latent space.

Full Objective Function Our final training objective is a weighted sum of the generative loss and
our architectural losses:

L = LCFM + β · LKL + λCartan · LCartan + λGSC · LGSC + ϵ · Lbasis (6)

where:
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• LCFM is the conditional flow matching loss for the generative task (Lipman et al., 2022).

• LKL is the standard Kullback–Leibler divergence from the VAE-style encoder.

• LCartan and LGSC are our proposed losses for enforcing the symmetric space structure and
encouraging generalization, respectively.

• Lbasis =
∑

i 1/∥Ki∥1+
∑

j 1/∥Pj∥1 is a regularization term on the learnable basis elements
{Ki} and {Pj} to prevent them from collapsing to zero.

• β, λCartan, λGSC, and ϵ are hyperparameters that balance each term’s contribution.

4 RELATED WORK

Group-Theoretic Representation Learning Symmetry and group theory are cornerstones of
modern representation learning (Higgins et al., 2022), particularly for achieving disentangled repre-
sentations (Higgins et al., 2018). Various studies have demonstrated that enforcing group structures,
such as orthogonality, enhances disentanglement (Cha & Thiyagalingam, 2023; Yang et al., 2022).
This principle extends to Lie groups, which have been used to develop equivariant networks like
G-CNNs on homogeneous spaces (Cohen et al., 2019) and their more general Lie algebra-based
successors, L-CNNs (Dehmamy et al., 2021). Other works also leverage Lie groups to improve
disentanglement (Zhu et al., 2021; Tonnaer et al., 2020) or to decouple object representations from
group actions (Keurti et al., 2023). However, a common limitation of these ”top-down” approaches is
their reliance on predefined group structures, which restricts their ability to generalize from partially
observed symmetries. In contrast, our framework learns the underlying algebraic structure of a
symmetric space from data, enabling generalization to unobserved symmetry transformations.

Geometry in Generative Models A geometric perspective offers powerful tools for improving
generative models. Manifold learning, for instance, has been shown to enhance disentanglement in
latent spaces (Fumero et al., 2021; Falorsi et al., 2018) and to model hierarchical data structures using
hyperbolic geometry (Mathieu et al., 2019). Furthermore, geometric priors have proven effective
for generalization tasks, such as improving out-of-distribution robustness (Ng et al., 2020; Vural &
Guillemot, 2016). While these studies highlight the benefits of incorporating geometry, our work
takes this a step further. We do not just learn an arbitrary manifold; we impose the rich structure of a
symmetric space, which provides a principled framework for solving the symmetry generalization
problem.

Symmetry Discovery Finding the intrinsic symmetry structure is an important task across various
domains, particularly in scientific data analysis. The Symmetry Discovery task aims to autonomously
identify the latent structure of invariance and equivariance, which is explicitly unknown a priori.
One efficient approach leverages Generative Adversarial Networks (GANs) to find Lie algebra
bases that describe data distributions under various transformations (Yang et al., 2023b;a). Another
promising approach utilizes infinitesimal generators, which are typically found using tools like
Ordinary Differential Equations (ODEs) or self-supervised learning techniques (Shaw et al., 2024;
Ko et al., 2024; Allingham et al., 2024; Hu et al., 2025). While these methods efficiently discover
explicit symmetry structures using Lie algebras or vector fields, our approach focuses on how the
model can extend learned symmetries rather than merely representing them. Moreover, given our
crucial problem setting of partial observation (e.g., an incomplete manifold), there is no guarantee
that such discovery methods can work properly without an explicit, global inductive bias. Thus, we
propose our method to directly solve the symmetry generalization problem.

Combinatorial Generalization Combinatorial generalization (CG) remains a critical challenge in
machine learning (Vankov & Bowers, 2019). Early work suggested that disentangled representations
could be a solution (Montero et al., 2020), but subsequent studies revealed their frequent failure to
generalize to unseen combinations of factors (Montero et al., 2022). More recent approaches have
focused on identifying sufficient conditions for CG (Wiedemer et al., 2023) or designing architectures
that explicitly model group actions (Hwang et al., 2023). Our work contributes to this line of research
by proposing a novel synthesis: we integrate latent geometry and group actions through the framework
of symmetric spaces. This approach directly tackles the limitations of prior methods by addressing
the fundamental problem of symmetry generalization.
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(a) Training Data (270° arc) (b) Test Data (Ground Truth) (c) Cartan FM w/ GSC

(d) Vanilla VAE (e) Cartan VAE (f) Cartan FM w/o GSC

Figure 3: Manifold Reconstruction Results on the sphere point cloud. (a) The distribution of
training data, consisting of a partial 270° arc. (b) The ground truth distribution for the unseen 90° arc
test data. (c-f) Reconstruction results for the unseen test data from each model. Our full method (c) is
the only one that successfully generalizes to the unseen region and reconstructs the complete sphere.

5 EXPERIMENTS

5.1 COMPREHENSIVE ANALYSIS VIA 3D SPHERE SHAPE MANIFOLD RECONSTRUCTION

Experimental Setup As visualized in Figure 3, we partition a sphere point cloud to cre-
ate a challenging generalization task. The training set consists of an incomplete 270-
degree arc (Fig. 3a), while the test set is the entirely unobserved 90-degree arc (Fig. 3b).
We compare four models based on the standard PointNet architecture (Qi et al., 2017):

Table 1: Sphere Manifold Reconstruc-
tion Error (Chamfer distance)

Method Error (↓)

Vanilla VAE 0.0601
Cartan + VAE 0.5763
Cartan + FM 0.0068
Cartan + FM + GSC 0.0061

• Vanilla VAE: A standard VAE baseline.
• VAE + Cartan module: A VAE equipped with

our Cartan Loss, but without the generative flow
model.

• Flow Matching + Cartan Module: Our full gen-
erative model, but without the GSC Loss, serving
as a key ablation baseline.

• Flow Matching + Cartan Module + GSC Loss:
Our full proposed model.

We evaluate reconstruction quality using the Chamfer dis-
tance (Fan et al., 2016), a standard metric for comparing point clouds. Full implementation details
are available in Appendix C.1.

Results The quantitative results in Table 1 show a clear progression across the model configurations.
The Vanilla VAE baseline struggles to reconstruct the unseen test data, only managing to generate
points near the observed boundary. The failure of the VAE + Cartan module underscores that
the algebraic structure requires a compatible generative process. This result validates the design
choice of using Flow Matching, as it operates on the tangent vector level and is thus ideally suited
to realize the transformations defined by our learned Lie algebra. Accordingly, the Flow Matching
+ Cartan Module model achieves a significant performance improvement. Finally, adding the
GSC Loss to create our full model, the Flow Matching + Cartan Module + GSC Loss, yields the
best reconstruction performance by a large margin. This quantitative superiority is mirrored in the
qualitative results (Figure 3), which visually demonstrate that our full model is uniquely capable of
reconstructing the complete spherical manifold.
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Table 2: Mean Squared Error(↓) in Combinatorial Generalization. Bold indicates the best perfor-
mance.

R2E R2R

Symmetry Model Case1 Case2 Case3 Case1 Case2 Case3
dS

pr
ite

s ×
VAE 7.25 8.08 14.96 28.81 34.64 28.90
β-VAE (β = 2) 12.29 13.91 24.23 31.02 35.74 60.31
β-VAE (β = 4) 22.54 20.13 31.18 32.38 40.80 61.43
β-VAE (β = 8) 31.02 27.83 39.65 39.76 55.30 67.03
GAGA 17.17 17.56 25.69 28.07 36.96 44.71

✓
CLGVAE 72.40 76.49 133.15 132.83 218.15 236.28
MAGANet 13.30 10.63 19.49 115.46 108.96 23.35
CartanFM (Ours) 2.21 1.10 2.49 7.02 9.57 5.87

3D
Sh

ap
es ×

VAE 10.93 13.82 12.40 21.07 37.65 13.65
β-VAE (β = 2) 12.70 17.34 18.35 33.82 41.42 17.71
β-VAE (β = 4) 22.17 22.21 22.81 46.05 49.06 22.45
β-VAE (β = 8) 21.11 48.52 46.55 99.73 63.85 44.57

✓
CLGVAE 15.54 71.13 86.60 75.73 38.63 15.46
MAGANet 16.79 16.66 19.60 23.69 37.79 18.87
CartanFM (ours) 5.20 6.96 5.99 8.12 33.87 6.68

M
PI

3D ×
VAE 7.80 12.69 6.51 6.29 6.91 9.35
β-VAE (β = 2) 20.03 72.03 7.49 15.68 20.40 13.02
β-VAE (β = 4) 30.95 73.41 8.35 17.05 20.61 13.36
β-VAE (β = 8) 33.85 73.95 10.02 18.35 22.87 15.22

✓
MAGANet 10.97 21.56 6.56 8.12 7.71 8.42
CartanFM (ours) 1.18 1.99 0.51 0.51 0.76 0.50

5.2 PERFORMANCE ON COMBINATORIAL GENERALIZATION BENCHMARKS

Datasets and Protocol We evaluate our method on two standard benchmarks for combinatorial
generalization, dSprites (Matthey et al., 2017) and 3D Shapes (Burgess & Kim, 2018), as well as
a more complex benchmark, MPI3D (Gondal et al., 2019). Following the protocol of Montero
et al. (2020), we create training and test splits for each dataset under two challenging settings:
Recombination-to-Elements (R2E) and Recombination-to-Range (R2R). To ensure robust evaluation
and minimize bias from any single data split, we generate and test on three distinct sets of excluded
factor combinations for both R2E and R2R settings. Further details are in Appendix C.2.

Baselines and Training Details We compare our method against VAE-based baselines from two
categories: (1) models that do not explicitly model symmetries, VAE (Kingma & Welling, 2013) and
β-VAE (Higgins et al., 2016), Geometry Aware Generative Autoencoder (GAGA) (Sun et al., 2025);
and (2) symmetry-aware models, Commutative Lie Group VAE (CLGVAE) (Zhu et al., 2021) and
MAGANet (Hwang et al., 2023). All models were trained for 100 epochs using an Adam optimizer
with a learning rate of 5e-4. For β-VAE, we report the best performance for each β ∈ {2, 4, 8}.
For MAGANet, we conducted a grid search to determine the optimal hyperparameters, as we were
unable to reproduce the reported performance from the original paper. To ensure a fair comparison,
all models were trained and evaluated using the Mean Squared Error (MSE) loss.

Quantitative Analysis Table 2 presents the quantitative MSE results for all tasks. Our method,
CartanFM, demonstrates superior performance across all three datasets. On dSprites, CartanFM
consistently outperforms all baselines in both R2E and R2R settings. The improvement is particularly
pronounced in the more challenging R2R setting. On 3D Shapes, which contains more complex
factors, CartanFM again establishes a clear and significant advantage, outperforming all baselines
across every case. On MPI3D, the most complex benchmark, CartanFM achieves state-of-the-art
results by a large margin in all settings. This substantial performance gain on a larger, more varied
dataset suggests that our method effectively leverages more data to learn the underlying symmetric
space structure better.

8



Published as a conference paper at ICLR 2026

(a) dSprites (b) 3D Shapes (c) MPI3D

Figure 4: Generated Images in Recombination-to-Range (R2R) Setting

Table 3: Ablation study of our core components. Bold indicates the best performance. In the
’Components’ columns, ✓denotes the inclusion and × denotes the exclusion of the corresponding
loss term.

Components R2E R2R

LCartan LGSC Case1 Case2 Case3 Case1 Case2 Case3

dS
pr

ite
s × × 1.87 1.89 4.52 29.06 23.70 10.40

✓ × 1.85 1.64 21.50 57.38 18.52 40.34
× ✓ 1.31 1.09 2.94 13.11 47.43 9.23
✓ ✓ 2.21 1.10 2.49 7.02 9.57 5.87

3D
Sh

ap
es × × 9.70 9.25 9.20 20.12 33.09 8.97

✓ × 6.00 9.32 12.50 9.42 32.61 10.96
× ✓ 5.96 8.30 8.85 8.96 33.16 12.11
✓ ✓ 5.20 6.96 5.99 8.12 33.87 6.68

Qualitative Analysis Figure 4a, Figure 4b, and Figure 4c show the generated images for the R2R
setting across different datasets and models. For VAEs, the generated outputs often appear as blurry
or distorted blobs, particularly at higher values of β. By contrast, our method effectively captures
critical factors, such as distinct object shapes, where baseline models struggle to generalize to unseen
cases. For example, as shown in Fig. 4a, our method successfully generates heart shapes, whereas
other methods produce squares, ellipses, or amorphous blobs. Similarly, as illustrated in Fig. 4b,
VAEs generate cylinders instead of cubes, indicating a failure to capture the underlying factors of
variation. Furthermore, as shown in Fig. 4c, our method captures the object’s shape, color, and
background more accurately than other methods. Our approach demonstrates strong generalization
capabilities, effectively generating unseen combinations while preserving geometric and semantic
fidelity.

Ablation Study We conduct an ablation study to analyze the individual contributions of our
two main components: the Cartan Loss (LCartan) for inducing the symmetric space structure,
and the Geodesic Symmetry Consistency (GSC) Loss for extending it. We evaluate four model
configurations: the Flow Matching backbone alone, the backbone with each of our two losses applied
individually, and our full model combining both.
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As summarized in Table 3, the backbone model without our components struggles in most cases.
Adding either the Cartan Loss or the GSC Loss individually yields significant performance gains,
demonstrating that both are effective for improving generalization. The GSC Loss alone provides a
particularly substantial boost, highlighting the importance of extending the learned structure. Our full
model, which combines both losses, achieves the best or highly competitive performance in nearly all
scenarios. This result confirms that the two components are complementary and that their synergy is
crucial for the robust performance of CartanFM.

This study addressed the limitations of trained symmetries in generalizing to unseen data for combi-
natorial generalization. We proposed a novel method for learning a symmetric space structure on
the data manifold and extending it to unseen data via Lie algebra properties and geodesic symmetry
consistency, which facilitates the generalization of trained symmetries. An in-depth analysis of
a synthetic sphere manifold dataset validates our geometric claims and the effectiveness of our
approach. Furthermore, experiments on widely used benchmarks, including dSprites, 3D Shapes, and
MPI3D, corroborated that our method significantly outperforms existing approaches. Our study is the
first to establish the utility of integrating manifold and symmetry learning to enhance combinatorial
generalization. This contribution opens up promising directions for future research, including the
exploration of diverse sampling strategies tailored to specific data characteristics and the extension of
the approach to a broader range of generalization tasks beyond combinatorial generalization.

6 CONCLUSION

This study addressed the limitations of trained symmetries in generalizing to unseen data for combi-
natorial generalization. We proposed a novel method for learning a symmetric space structure on
the data manifold and extending it to unseen data via Lie algebra properties and geodesic symmetry
consistency, which facilitates the generalization of trained symmetries. An in-depth analysis of
a synthetic sphere manifold dataset validates our geometric claims and the effectiveness of our
approach. Furthermore, experiments on widely used benchmarks, including dSprites, 3D Shapes, and
MPI3D, corroborated that our method significantly outperforms existing approaches. Our study is the
first to establish the utility of integrating manifold and symmetry learning to enhance combinatorial
generalization. This contribution opens up promising directions for future research, including the
exploration of diverse sampling strategies tailored to specific data characteristics and the extension of
the approach to a broader range of generalization tasks beyond combinatorial generalization.
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Grids, Groups, Graphs, Geodesics, and Gauges, May 2021.

10



Published as a conference paper at ICLR 2026

Chris Burgess and Hyunjik Kim. 3d shapes dataset. https://github.com/deepmind/3dshapes-dataset/,
2018.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in $\beta$-VAE, 2018. URL https:
//arxiv.org/abs/1804.03599v1.

Jaehoon Cha and Jeyan Thiyagalingam. Orthogonality-enforced latent space in autoencoders: An
approach to learning disentangled representations. In Proceedings of the 40th International Con-
ference on Machine Learning, pp. 3913–3948. PMLR, 2023. URL https://proceedings.
mlr.press/v202/cha23b.html.

Ricky T. Q. Chen. torchdiffeq, 2018. URL https://github.com/rtqichen/
torchdiffeq.

Jaewoong Choi, Junho Lee, Changyeon Yoon, Jung Ho Park, Geonho Hwang, and Myungjoo Kang.
Do not escape from the manifold: Discovering the local coordinates on the latent space of GANs.
2021. URL https://openreview.net/forum?id=aTzMi4yV_RO.

Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant CNNs on
homogeneous spaces. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/b9cfe8b6042cf759dc4c0cccb27a6737-Abstract.html.

Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, and Rose Yu. Automatic symmetry
discovery with lie algebra convolutional network. Advances in Neural Information Processing
Systems, 34:2503–2515, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

M.P. do Carmo. Riemannian Geometry. Mathematics (Boston, Mass.). Birkhäuser, 1992. ISBN 978-
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A DETAIL ON THEORETICAL BACKGROUND

Group Action Group (G, ∗) is a mathematical structure which is a tuple of a set G and a binary
operation ∗ closed on the set. The group should satisfy the following axioms:

1. (associativity) a ∗ (b ∗ c) = (a ∗ b) ∗ c
2. (identity element) there exists e ∈ G such that a ∗ e = e ∗ a
3. (inverse element) there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

for every a, b, c ∈ G. The group plays as a representation of symmetry. The group action on a set X
of a group G is a map f : G×X → X which satisfies the following axioms:

1. (identity) f(e, x) = x

2. (compatibility) f(g, f(h, x)) = f(gh, x)

for an identity e ∈ G and every g, h ∈ G and every x ∈ X . We can decompose natural phenomena
into objects and symmetries of those via group action.

Definition A.1 Let G be a group and X be a G-space. The action is said to be transitive if there
exists g ∈ G such that g ∗ x = y for any x, y ∈ X .

This means that every point x ∈ X can be translated into any point in X with an action g ∈ G.

Geometry In geometry and topology, a manifold is a topological space that locally resembles
Euclidean space at every point. More formally, a smooth manifold, which is a type of manifold, can
be defined as follows (do Carmo, 1992).

Definition A.2 A smooth (or differentiable) manifold of dimension n is a set M and a family of
injective mappings xα : Uα ⊂ Rn → M of open sets Uα of Rn into M such that

1.
⋃

α xα(Uα) = M.

2. for any pair α, β with xα(Uα) ∩ xβ(Uβ) = W ̸= ∅, the sets x−1
α (W ) and x−1

β (W ) are
open sets in Rn and the mappings x−1

β ◦ xα are differentiable.

3. The family {(Uα, xα)} is maximal relative to the conditions (1) and (2).

Every point on a manifold has a tangent space, which is the vector space tangent to the manifold.

Definition A.3 Let M be a differentiable manifold. A differentiable function α : (−ϵ, ϵ) → M is
called a (differentiable) curve in M. Suppose that α(0) = p ∈ M, and let D be the set of functions
on M that are differentiable at p. The tangent vector to the curve α at t = 0 is a function α′ : D → R
given by

α′(0)f =
d(f ◦ α)

dt

∣∣∣∣
t=0

, f ∈ D. (7)

A tangent vector at p is the tangent vector at t = 0 of some curve α : (−ϵ, ϵ) → M with α(0) = p.
The set of all tangent vectors to M at p will be indicated by the tangent space TpM.

Informally, a neighborhood of a point p on a manifold is an open subset of M that contains p.

B ARCHITECTURES

B.1 BASELINES

To implement β-VAE (Higgins et al., 2016), we used the structure introduced in (Burgess et al., 2018).
The encoder consists of four convolutional layers with 32 channels, two fully connected layers with
256 nodes, and a fully connected layer with d nodes, where d is the latent vector dimension. The
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decoder consists of a transpose of the encoder structure. ReLU activation is used for each layer,
except for the last layer of the encoder and decoder.

To implement MAGANet (Hwang et al., 2023), we follow the proposed architecture. The encoder
for modeling the group actions was the same as that of the VAE encoder architecture. The decoder
consists of a linear layer without bias to apply the group action, as well as the GLOW model (Kingma
& Dhariwal, 2018). The GLOW model comprises three flow modules, each consisting of three flow
blocks and a squeeze layer. Each flow block comprised ActNorm, 1 × 1 convolution without LU
decomposition, and an additive coupling layer. MAGANet incorporates three primary loss functions
to train the VAE and flow-based components.

Lrecon = lD(D(E(x1, x2), x1), x2), (8)
Lrecon latent = l1(E(x,D(z, x)), z), (9)

LBase = Lrecon + βKLLKL + βrecon latentLrecon latent, (10)

where lD denotes the loss in image space, l1 represents the L1 norm, E is the encoder, and D is the
decoder. The hyperparameters βKL and βrecon latent control the weighting of KL divergence and
latent reconstruction losses, respectively.

B.2 PROPOSED METHOD

We utilize the Lie algebra encoder, inspired by Zhu et al. (2021). However, we do not employ
commutativity, as most symmetric spaces are not commutative, and the influence of commutativity
on combinatorial generalization is not our research focus. The flow matching module consists of a
simple UNet architecture and conditioning by the Lie algebra using AdaGN, as proposed in Dhariwal
& Nichol (2021).

C EXPERIMENTS DETAILS

C.1 EXPERIMENT ON SPHERE SYNTHETIC DATA

Dataset and Common Setting The data point cloud comprises 15,000 points of the training data
and 3,000 points of the test data. Every model was trained for 100 epochs with a learning rate of 1e-4.
Each model has three latent dimensions; Cartan models have two Bp and a Bk.

Model Architecture Every PointNet block consists of layers of point-wise MLPs and Leaky ReLUs
between the layers. Moreover, for flow matching, the AdaGN layer conditioning is performed with
Lie algebra after each block.

Hyperparameter β for the VAE encoder is set to 0.001 to prevent the model from collapsing.
λCartan is set to 0.1 and ϵ in Equation 6 is set to 0.001. The number of groups in AdaGN is set to 8.

C.2 EXPERIMENT ON BENCHMARKS OF COMBINATORIAL GENERALIZATION

Dataset Setting For split dSprites dataset (Matthey et al., 2017) in Recombination-to-Elements
setting, we except following combinations:

1. shape=ellipse, scale=0.5, 120◦ ≤ orientation ≤ 240◦, 0.6 < x, 0.6 < y,

2. scale=0.5, orientation=0◦, x ≤ 0.25, y ≤ 0.25,

3. shape=heart, orientation=0◦, 0.5 < x, 0.5 < y.

In the Recombination-to-Range setting, we except the following combinations:

1. shape=heart, 0.5 < x,

2. shape=square, 0.5 < x,

3. shape=ellipse, 3 <scale, y < 0.5.
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For 3D Shapes dataset Burgess & Kim (2018) in Recombination-to-Elements setting, we except
following combinations:

1. floor-hue> 0.5, wall-hue> 0.5, object-hue> 0.5, scale=7, shape=cube, orientation=0◦,
2. floor-hue≤ 0.5, wall-hue≤ 0.5, object-hue≤ 0.5, scale=7, shape=cylinder, orientation=0◦,
3. floor-hue≤ 0.5, wall-hue> 0.5, object-hue=0, scale=0, shape=[sphere, cube],

orientation=−30◦.

In the Recombination-to-Range setting, we except the following combinations:

1. 0 ≤floor-hue≤ 1, 0 ≤wall-hue≤ 1, object-hue> 0.5, 0 ≤scale≤ 1, shape=oblong,
−30◦ ≤orientation≤ 30◦,

2. 0 ≤floor-hue≤ 1, 0 ≤wall-hue≤ 1, 0 ≤object-hue≤ 1, scale≤ 2, shape=sphere,
−30◦ ≤orientation≤ 30◦,

3. floor-hue< 0.5, 0 ≤wall-hue≤ 1, 0 ≤object-hue≤ 1, 0 ≤scale≤ 8, shape=cylinder,
−30◦ ≤orientation≤ 0◦.

C.3 MODEL ARCHITECTURES

C.3.1 BASELINE MODELS

β-VAE For the β-VAE baseline (Higgins et al., 2016), we adopt the standard convolutional archi-
tecture from Burgess et al. (2018).

• Encoder: Consists of four convolutional layers (32 channels, kernel size 4, stride 2),
followed by two fully-connected layers (256 nodes each) that output a latent vector of
dimension d.

• Decoder: Symmetrically mirrors the encoder architecture using transposed convolutional
layers.

• Activation: ReLU activation is used for all layers except for the output layers of the encoder
and the decoder.

MAGANet For MAGANet (Hwang et al., 2023), the encoder for learning the group action is
identical to the β-VAE encoder. The decoder is composed of a linear layer (without bias) to apply
the group action and a GLOW model (Kingma & Dhariwal, 2018) for the generative process. The
GLOW model comprises three flow modules, each consisting of three blocks that utilize ActNorm, a
1× 1 convolution, and an additive coupling layer. The model is trained with the following primary
loss functions:

Lrecon = lD(D(E(x1, x2), x1), x2), (11)
Lrecon latent = l1(E(x,D(z, x)), z), (12)

LBase = Lrecon + βKLLKL + βrecon latentLrecon latent, (13)
where lD is the image reconstruction loss, and l1 is the L1 norm.

C.3.2 PROPOSED METHOD (CARTANFM)

Our model’s architecture consists of a Lie algebra encoder (detailed in Section 3.3) and a conditional
generative model.

Generative Model The generative model is a simple UNet architecture, where the conditioning on
the Lie algebra element P is performed using Adaptive Group Normalization (AdaGN) (Dhariwal &
Nichol, 2021) in each block. The channel dimensions are structured as follows:

• Input Channels: 1 (dSprites, MPI3D) or 3 (3D Shapes).
• Downsampling Path Channels: [C, 64, 128, 256], where C is the input channel size.
• Middle Block Channels: [256].
• Upsampling Path Channels (with skip connections): [256+256, 128+128, 64+64, C+
C].
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ODE Solver For the decoding process, we use the standard Euler method, a basic ODE solver
implemented in the torchdiffeq library (Chen, 2018).

Hyperparameter Hyperparameters of MAGANet had been searched by grid and Bayesian search
in the range of βKL, βLR ∈ [0, 1000]. We find that 1 is the best value for hyperparameters.

The proposed model has the following hyperparameter settings:

• λCartan, λGSC = 1.0,
• ϵ = 0.001,
• β = 0.01,
• Group number of AdaGN is 8.

We set the number of basis elements for p to 10, consistent with the latent dimension of the baseline
models, and the number of basis elements for k to 5.

Computing Resource We conducted experiments on a local server equipped with NVIDIA graphics
cards, including the RTX 2080 Ti, RTX 3090, RTX A6000, and RTX A100. Each run requires
approximately 6000MiB of VRAM and takes about 30 hours. These requirements may vary depending
on the dataset, split settings, and GPU used.

C.4 ADDITIONAL GENERATED SAMPLES

Every image consists of ground truth (odd columns) and reconstructions (even columns).

D ADDITIONAL EXPERIMENTS

D.1 LIEGAN ON SPHERE DATASET

We conducted additional experiments of LieGAN (Yang et al., 2023a) on 3D Sphere dataset of
subsection 5.1. Experiments details are as follows:

• Training dataset is composed of 15000 points on upper sphere of 135 degree.
• Lie algebra basis of model is randomly initialized.
• Discriminator consists of PointNet block and linear layers.

Sampled result image can be found in 10. Because of difference between VAE based model and
GANs, we sample transformed points by sampled 100 transformations and inspect whether test region
can be generated by such transformations. We can observe that test region is not generated perfectly
by such transformation. Moreover, learned basis are not form skew-symmetric.

D.2 VERIFYING GEODESIC SYMMETRY

We visualize pairs of basis vectors (lines ending in arrows) and their negated vectors (lines ending in
circles). This alignment is consistent with the Lie algebra-theoretic definition of geodesic symmetry,
implying that points on the generated geodesics are effectively reflected through the origin to their
antipodal position including test region.
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(a) dSprites R2E Case1 (b) dSprites R2E Case2

(c) dSprites R2E Case3 (d) dSprites R2R Case1

(e) dSprites R2R Case2 (f) dSprites R2R Case3

Figure 5: Generated Images dSprites
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(a) 3D Shapes R2E Case1 (b) 3D Shapes R2E Case2

(c) 3D Shapes R2E Case3 (d) 3D Shapes R2R Case1

(e) 3D Shapes R2R Case2 (f) 3D Shapes R2R Case3

Figure 6: Generated Images 3D Shapes
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(a) MPI3D R2E Case1 (b) MPI3D R2E Case2

(c) MPI3D R2E Case3 (d) MPI3D R2R Case1

(e) MPI3D R2R Case2 (f) MPI3D R2R Case3

Figure 7: Generated Images MPI3D
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Figure 8: Visualization of Geodesic Symmetries Figure 9: Visualization of Geodesic Symmetries
(p only)

Figure 10: Visualization of Sphere Construction of LieGAN
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Figure 11: Visualization of Geodesic Symmetry on Tangent Space. Each basis vector (lines ending in
arrows) is reflected to its negation (lines ending in circles) by geodesic symmetry.
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